1
|
Steadman BS, Bian J, Shikiya RA, Bartz JC. Minor prion substrains overcome transmission barriers. mBio 2024; 15:e0272124. [PMID: 39440977 PMCID: PMC11559082 DOI: 10.1128/mbio.02721-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Mammalian prion diseases are infectious neurodegenerative diseases caused by the self-templating form of the prion protein PrPSc. Much evidence supports the hypothesis that prions exist as a mixture of a dominant strain and minor prion strains. While it is known that prions can infect new species, the relative contribution of the dominant prion strain and minor strains in crossing the species barrier is unknown. We previously identified minor prion strains from a biologically cloned drowsy (DY) strain of hamster-adapted transmissible mink encephalopathy (TME). Here we show that these minor prion strains have increased infection efficiency to rabbit kidney epithelial cells that express hamster PrPC compared to the dominant strain DY TME. Using protein misfolding cyclic amplification (PMCA), we found that the dominant strain DY TME failed to convert mouse PrPC to PrPSc, even after several serial passages. In contrast, the minor prion strains isolated from biologically cloned DY TME robustly converted mouse PrPC to PrPSc in the first round of PMCA. This observation indicates that minor prion strains from the mutant spectra contribute to crossing the species barrier. Additionally, we found that the PMCA conversion efficiency for the minor prion strains tested was significantly different from each other and from the short-incubation period prion strain HY TME. This suggests that minor strain diversity may be greater than previously anticipated. These observations further expand our understanding of the mechanisms underlying the species barrier effect and has implications for assessing the zoonotic potential of prions. IMPORTANCE Prions from cattle with bovine spongiform encephalopathy have transmitted to humans, whereas scrapie from sheep and goats likely has not, suggesting that some prions can cross species barriers more easily than others. Prions are composed of a dominant strain and minor strains, and the contribution of each population to adapt to new replicative environments is unknown. Recently, minor prion strains were isolated from the biologically cloned prion strain DY TME, and these minor prion strains differed in properties from the dominant prion strain, DY TME. Here we found that these minor prion strains also differed in conversion efficiency and host range compared to the dominant strain DY TME. These novel findings provide evidence that minor prion strains contribute to interspecies transmission, underscoring the significance of minor strain components in important biological processes.
Collapse
Affiliation(s)
- Benjamin S. Steadman
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | - Jifeng Bian
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture – Agricultural Research Services, Ames, Iowa, USA
| | - Ronald A. Shikiya
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska, USA
| |
Collapse
|
2
|
Pritzkow S, Schauer I, Tupaki-Sreepurna A, Morales R, Soto C. Screening of Anti-Prion Compounds Using the Protein Misfolding Cyclic Amplification Technology. Biomolecules 2024; 14:1113. [PMID: 39334879 PMCID: PMC11430292 DOI: 10.3390/biom14091113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/03/2024] [Revised: 08/10/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Prion diseases are 100% fatal infectious neurodegenerative diseases affecting the brains of humans and other mammals. The disease is caused by the formation and replication of prions, composed exclusively of the misfolded prion protein (PrPSc). We invented and developed the protein misfolding cyclic amplification (PMCA) technology for in vitro prion replication, which allow us to replicate the infectious agent and it is commonly used for ultra-sensitive prion detection in biological fluids, tissues and environmental samples. In this article, we studied whether PMCA can be used to screen for chemical compounds that block prion replication. A small set of compounds previously shown to have anti-prion activity in various systems, mostly using cells infected with murine prions, was evaluated for their ability to prevent the replication of prions. Studies were conducted simultaneously with prions derived from 4 species, including human, cattle, cervid and mouse. Our results show that only one of these compounds (methylene blue) was able to completely inhibit prion replication in all species. Estimation of the IC50 for methylene blue inhibition of human prions causing variant Creutzfeldt-Jakob disease (vCJD) was 7.7 μM. Finally, we showed that PMCA can be used for structure-activity relationship studies of anti-prion compounds. Interestingly, some of the less efficient prion inhibitors altered the replication of prions in some species and not others, suggesting that PMCA is useful for studying the differential selectivity of potential drugs.
Collapse
Affiliation(s)
- Sandra Pritzkow
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA (R.M.)
| | - Isaac Schauer
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA (R.M.)
| | - Ananya Tupaki-Sreepurna
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA (R.M.)
| | - Rodrigo Morales
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA (R.M.)
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370993, Chile
| | - Claudio Soto
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA (R.M.)
| |
Collapse
|
3
|
Arshad H, Patel Z, Al-Azzawi ZAM, Amano G, Li L, Mehra S, Eid S, Schmitt-Ulms G, Watts JC. The molecular determinants of a universal prion acceptor. PLoS Pathog 2024; 20:e1012538. [PMID: 39255320 DOI: 10.1371/journal.ppat.1012538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2024] [Revised: 09/20/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
In prion diseases, the species barrier limits the transmission of prions from one species to another. However, cross-species prion transmission is remarkably efficient in bank voles, and this phenomenon is mediated by the bank vole prion protein (BVPrP). The molecular determinants of BVPrP's ability to function as a universal prion acceptor remain incompletely defined. Building on our finding that cultured cells expressing BVPrP can replicate both mouse and hamster prion strains, we systematically identified key residues in BVPrP that permit cross-species prion replication. We found that residues N155 and N170 of BVPrP, which are absent in mouse PrP but present in hamster PrP, are critical for cross-species prion replication. Additionally, BVPrP residues V112, I139, and M205, which are absent in hamster PrP but present in mouse PrP, are also required to enable replication of both mouse and hamster prions. Unexpectedly, we found that residues E227 and S230 near the C-terminus of BVPrP severely restrict prion accumulation following cross-species prion challenge, suggesting that they may have evolved to counteract the inherent propensity of BVPrP to misfold. PrP variants with an enhanced ability to replicate both mouse and hamster prions displayed accelerated spontaneous aggregation kinetics in vitro. These findings suggest that BVPrP's unusual properties are governed by a key set of amino acids and that the enhanced misfolding propensity of BVPrP may enable cross-species prion replication.
Collapse
Affiliation(s)
- Hamza Arshad
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Zeel Patel
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Zaid A M Al-Azzawi
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Genki Amano
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Leyao Li
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Surabhi Mehra
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Shehab Eid
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Do K, Benavente R, Catumbela CSG, Khan U, Kramm C, Soto C, Morales R. Adaptation of the protein misfolding cyclic amplification (PMCA) technique for the screening of anti-prion compounds. FASEB J 2024; 38:e23843. [PMID: 39072789 PMCID: PMC11453167 DOI: 10.1096/fj.202400614r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Prion diseases result from the misfolding of the physiological prion protein (PrPC) to a pathogenic conformation (PrPSc). Compelling evidence indicates that prevention and/or reduction of PrPSc replication are promising therapeutic strategies against prion diseases. However, the existence of different PrPSc conformations (or strains) associated with disease represents a major problem when identifying anti-prion compounds. Efforts to identify strain-specific anti-prion molecules are limited by the lack of biologically relevant high-throughput screening platforms to interrogate compound libraries. Here, we describe adaptations to the protein misfolding cyclic amplification (PMCA) technology (able to faithfully replicate PrPSc strains) that increase its throughput to facilitate the screening of anti-prion molecules. The optimized PMCA platform includes a reduction in sample and reagents, as well as incubation/sonication cycles required to efficiently replicate and detect rodent-adapted and cervid PrPSc strains. The visualization of PMCA products was performed via dot blots, a method that contributed to reduced processing times. These technical changes allowed us to evaluate small molecules with previously reported anti-prion activity. This proof-of-principle screening was evaluated for six rodent-adapted prion strains. Our data show that these compounds targeted either none, all or some PrPSc strains at variable concentrations, demonstrating that this PMCA system is suitable to test compound libraries for putative anti-prion molecules targeting specific PrPSc strains. Further analyses of a small compound library against deer prions demonstrate the potential of this new PMCA format to identify strain-specific anti-prion molecules. The data presented here demonstrate the use of the PMCA technique in the selection of prion strain-specific anti-prion compounds.
Collapse
Affiliation(s)
- Katherine Do
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rebeca Benavente
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Celso S. G. Catumbela
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Uffaf Khan
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Carlos Kramm
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Claudio Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| |
Collapse
|
5
|
Ernst S, Nonno R, Langeveld J, Andreoletti O, Acin C, Papasavva-Stylianou P, Sklaviadis T, Acutis PL, van Keulen L, Spiropoulos J, Keller M, Groschup MH, Fast C. Characterisation of European Field Goat Prion Isolates in Ovine PrP Overexpressing Transgenic Mice (Tgshp IX) Reveals Distinct Prion Strains. Pathogens 2024; 13:629. [PMID: 39204230 PMCID: PMC11357236 DOI: 10.3390/pathogens13080629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
After the detection of bovine spongiform encephalopathy (BSE), and a zoonotic transmissible spongiform encephalopathy (TSE) caused by the pathological prion protein (PrPSc) in two goats, the investigation of goat prions became of greater interest. Therefore, a broad collection of European goat TSE isolates, including atypical scrapie, CH1641 and goat BSE as reference prion strains were biochemically characterised and subsequently inoculated into seven rodent models for further analysis (already published results of this comprehensive study are reviewed here for comparative reasons). We report here the histopathological and immunohistochemical data of this goat TSE panel, obtained after the first passage in Tgshp IX (tg-shARQ) mice, which overexpress the ovine prion protein. In addition to the clear-cut discrimination of all reference prion strains from the classical scrapie (CS) isolates, we were further able to determine three categories of CS strains. The investigation further indicates the occurrence of sub-strains that slightly resemble distant TSE strains, such as BSE or CH1641, reinforcing the theory that CS is not a single strain but a mixture of sub-strains, existing at varying extents in one isolate. This study further proved that Tgshp IX is a potent and reliable tool for the in-depth characterisation of prion strains.
Collapse
Affiliation(s)
- Sonja Ernst
- Friedrich-Loeffler-Institut, 17493 Greifswald-Isle of Riems, Germany; (S.E.)
| | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Jan Langeveld
- Wageningen BioVeterinary Research, Wageningen University & Research, P.O. Box 65, 8200 AB Lelystad, The Netherlands
| | - Olivier Andreoletti
- UMR INRAe/ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Cristina Acin
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza IA2 IIS Aragón, C/ Miguel Servet 177, 50013 Zaragoza, Spain
| | | | - Theodoros Sklaviadis
- School of Pharmacy, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Pier Luigi Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Lucien van Keulen
- Wageningen BioVeterinary Research, Wageningen University & Research, P.O. Box 65, 8200 AB Lelystad, The Netherlands
| | - John Spiropoulos
- Department of Pathology and Animal Science, APHA Weybridge, Addlestone KT15 3NB, Surrey, UK
| | - Markus Keller
- Friedrich-Loeffler-Institut, 17493 Greifswald-Isle of Riems, Germany; (S.E.)
| | - Martin H. Groschup
- Friedrich-Loeffler-Institut, 17493 Greifswald-Isle of Riems, Germany; (S.E.)
| | - Christine Fast
- Friedrich-Loeffler-Institut, 17493 Greifswald-Isle of Riems, Germany; (S.E.)
| |
Collapse
|
6
|
Soto C. α-Synuclein seed amplification technology for Parkinson's disease and related synucleinopathies. Trends Biotechnol 2024; 42:829-841. [PMID: 38395703 PMCID: PMC11223967 DOI: 10.1016/j.tibtech.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Synucleinopathies are a group of neurodegenerative diseases (NDs) associated with cerebral accumulation of α-synuclein (αSyn) misfolded aggregates. At this time, there is no effective treatment to stop or slow down disease progression, which in part is due to the lack of an early and objective biochemical diagnosis. In the past 5 years, the seed amplification technology has emerged for highly sensitive identification of these diseases, even at the preclinical stage of the illness. Much research has been done in multiple laboratories to validate the efficacy and reproducibility of this assay. This article provides a comprehensive review of this technology, including its conceptual basis and its multiple applications for disease diagnosis, as well for understanding of the disease biology and therapeutic development.
Collapse
Affiliation(s)
- Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX77030, USA.
| |
Collapse
|
7
|
Bartz JC, Benavente R, Caughey B, Christensen S, Herbst A, Hoover EA, Mathiason CK, McKenzie D, Morales R, Schwabenlander MD, Walsh DP. Chronic Wasting Disease: State of the Science. Pathogens 2024; 13:138. [PMID: 38392876 PMCID: PMC10892334 DOI: 10.3390/pathogens13020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting cervid species, both free-ranging and captive populations. As the geographic range continues to expand and disease prevalence continues to increase, CWD will have an impact on cervid populations, local economies, and ecosystem health. Mitigation of this "wicked" disease will require input from many different stakeholders including hunters, landowners, research biologists, wildlife managers, and others, working together. The NC1209 (North American interdisciplinary chronic wasting disease research consortium) is composed of scientists from different disciplines involved with investigating and managing CWD. Leveraging this broad breadth of expertise, the Consortium has created a state-of-the-science review of five key aspects of CWD, including current diagnostic capabilities for detecting prions, requirements for validating these diagnostics, the role of environmental transmission in CWD dynamics, and potential zoonotic risks associated with CWD. The goal of this review is to increase stakeholders', managers', and decision-makers' understanding of this disease informed by current scientific knowledge.
Collapse
Affiliation(s)
- Jason C. Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178, USA;
| | - Rebeca Benavente
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (R.B.); (R.M.)
| | - Byron Caughey
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA;
| | - Sonja Christensen
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA;
| | - Allen Herbst
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA;
| | - Edward A. Hoover
- Prion Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (E.A.H.); (C.K.M.)
| | - Candace K. Mathiason
- Prion Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (E.A.H.); (C.K.M.)
| | - Debbie McKenzie
- Department of Biological Sciences, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M9, Canada;
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (R.B.); (R.M.)
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370993, Chile
| | - Marc D. Schwabenlander
- Minnesota Center for Prion Research and Outreach, Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Daniel P. Walsh
- U.S. Geological Survey, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, MT 59812, USA
| | | |
Collapse
|
8
|
Bocharova O, Makarava N, Pandit NP, Molesworth K, Baskakov IV. Multiple steps of prion strain adaptation to a new host. Front Neurosci 2024; 18:1329010. [PMID: 38362022 PMCID: PMC10867973 DOI: 10.3389/fnins.2024.1329010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/27/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024] Open
Abstract
The transmission of prions across species is a critical aspect of their dissemination among mammalian hosts, including humans. This process often necessitates strain adaptation. In this study, we sought to investigate the mechanisms underlying prion adaptation while mitigating biases associated with the history of cross-species transmission of natural prion strains. To achieve this, we utilized the synthetic hamster prion strain S05. Propagation of S05 using mouse PrPC in Protein Misfolding Cyclic Amplification did not immediately overcome the species barrier. This finding underscores the involvement of factors beyond disparities in primary protein structures. Subsequently, we performed five serial passages to stabilize the incubation time to disease in mice. The levels of PrPSc increased with each passage, reaching a maximum at the third passage, and declining thereafter. This suggests that only the initial stage of adaptation is primarily driven by an acceleration in PrPSc replication. During the protracted adaptation to a new host, we observed significant alterations in the glycoform ratio and sialylation status of PrPSc N-glycans. These changes support the notion that qualitative modifications in PrPSc contribute to a more rapid disease progression. Furthermore, consistent with the decline in sialylation, a cue for "eat me" signaling, the newly adapted strain exhibited preferential colocalization with microglia. In contrast to PrPSc dynamics, the intensity of microglia activation continued to increase after the third passage in the new host. In summary, our study elucidates that the adaptation of a prion strain to a new host is a multi-step process driven by several factors.
Collapse
Affiliation(s)
- Olga Bocharova
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Narayan P. Pandit
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kara Molesworth
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Bocharova O, Makarava N, Pandit NP, Molesworth K, Baskakov IV. Multiple steps of prion strain adaptation to a new host. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563743. [PMID: 37961127 PMCID: PMC10634783 DOI: 10.1101/2023.10.24.563743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2023]
Abstract
The transmission of prions across species is a critical aspect of their dissemination among mammalian hosts, including humans. This process often necessitates strain adaptation. In this study, we sought to investigate the mechanisms underlying prion adaptation while mitigating biases associated with the history of cross-species transmission of natural prion strains. To achieve this, we utilized the synthetic hamster prion strain S05. Propagation of S05 using mouse PrPC in Protein Misfolding Cyclic Amplification did not immediately overcome the species barrier. This finding underscores the involvement of factors beyond disparities in primary protein structures. Subsequently, we performed five serial passages to stabilize the incubation time to disease in mice. The levels of PrPSc increased with each passage, reaching a maximum at the third passage, and declining thereafter. This suggests that only the initial stage of adaptation is primarily driven by an acceleration in PrPSc replication. During the protracted adaptation to a new host, we observed significant alterations in the glycoform ratio and sialylation status of PrPSc N-glycans. These changes support the notion that qualitative modifications in PrPSc contribute to a more rapid disease progression. Furthermore, consistent with the decline in sialylation, a cue for "eat me" signaling, the newly adapted strain exhibited preferential colocalization with microglia. In contrast to PrPSc dynamics, the intensity of microglia activation continued to increase after the third passage in the new host. In summary, our study elucidates that the adaptation of a prion strain to a new host is a multi-step process driven by several factors.
Collapse
Affiliation(s)
- Olga Bocharova
- Center for Biomedical Engineering and Technology, Baltimore, Maryland, USA
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, Baltimore, Maryland, USA
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Narayan P. Pandit
- Center for Biomedical Engineering and Technology, Baltimore, Maryland, USA
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kara Molesworth
- Center for Biomedical Engineering and Technology, Baltimore, Maryland, USA
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and Technology, Baltimore, Maryland, USA
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Kell DB, Pretorius E. Are fibrinaloid microclots a cause of autoimmunity in Long Covid and other post-infection diseases? Biochem J 2023; 480:1217-1240. [PMID: 37584410 DOI: 10.1042/bcj20230241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
It is now well established that the blood-clotting protein fibrinogen can polymerise into an anomalous form of fibrin that is amyloid in character; the resultant clots and microclots entrap many other molecules, stain with fluorogenic amyloid stains, are rather resistant to fibrinolysis, can block up microcapillaries, are implicated in a variety of diseases including Long COVID, and have been referred to as fibrinaloids. A necessary corollary of this anomalous polymerisation is the generation of novel epitopes in proteins that would normally be seen as 'self', and otherwise immunologically silent. The precise conformation of the resulting fibrinaloid clots (that, as with prions and classical amyloid proteins, can adopt multiple, stable conformations) must depend on the existing small molecules and metal ions that the fibrinogen may (and is some cases is known to) have bound before polymerisation. Any such novel epitopes, however, are likely to lead to the generation of autoantibodies. A convergent phenomenology, including distinct conformations and seeding of the anomalous form for initiation and propagation, is emerging to link knowledge in prions, prionoids, amyloids and now fibrinaloids. We here summarise the evidence for the above reasoning, which has substantial implications for our understanding of the genesis of autoimmunity (and the possible prevention thereof) based on the primary process of fibrinaloid formation.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
11
|
Concha-Marambio L, Wang F, Armijo E, Gorski D, Ramirez F, Scowcroft A, Pritzkow S, Soto C. Development of a methodology for large-scale production of prions for biological and structural studies. Front Mol Biosci 2023; 10:1184029. [PMID: 37635939 PMCID: PMC10449461 DOI: 10.3389/fmolb.2023.1184029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/10/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Prion diseases are a group of infectious neurodegenerative diseases produced by the conversion of the normal prion protein (PrPC) into the disease-associated form (PrPSc). Extensive evidence indicate that the main or sole component of the infectious agent is PrPSc, which can replicate in affected individuals in the absence of nucleic acids. However, the mechanism of PrPC-to-PrPSc conversion remains elusive, which has been attributed to the lack of sufficient structural information of infectious PrPSc and a reliable system to study prion replication in vitro. In this article we adapted the Protein Misfolding Cyclic Amplification (PMCA) technology for rapid and efficient generation of highly infectious prions in large-scale. Murine prions of the RML strain were efficiently propagated in volumes up to 1,000-fold larger than conventional PMCA. The large-scale PMCA (LS-PMCA) procedure enabled to produce highly infectious prions, which maintain the strain properties of the seed used to begin the reaction. LS-PMCA was shown to work with various species and strains of prions, including mouse RML and 301C strains, hamster Hyper prion, cervid CWD prions, including a rare Norwegian CWD prion, and human CJD prions. We further improved the LS-PMCA into a bioreactor format that can operate under industry-mimicking conditions for continuous and unlimited production of PrPSc without the need to keep adding brain-derived prions. In our estimation, this bioreactor can produce in 1d an amount of prions equivalent to that present in 25 infected animals at the terminal stage of the disease. Our LS-PMCA technology may provide a valuable tool to produce large quantities of well-defined and homogeneous infectious prions for biological and structural studies.
Collapse
Affiliation(s)
- Luis Concha-Marambio
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
- Amprion Inc., San Diego, CA, United States
| | - Fei Wang
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Enrique Armijo
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Damian Gorski
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Frank Ramirez
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Andrew Scowcroft
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Sandra Pritzkow
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Claudio Soto
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
- Amprion Inc., San Diego, CA, United States
| |
Collapse
|
12
|
Olech M. Conventional and State-of-the-Art Detection Methods of Bovine Spongiform Encephalopathy (BSE). Int J Mol Sci 2023; 24:ijms24087135. [PMID: 37108297 PMCID: PMC10139118 DOI: 10.3390/ijms24087135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/16/2023] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Bovine spongiform encephalopathy (BSE) is a fatal neurodegenerative disease that belongs to a group of diseases known as transmissible spongiform encephalopathies (TSEs). It is believed that the infectious agent responsible for prion diseases is abnormally folded prion protein (PrPSc), which derives from a normal cellular protein (PrPC), which is a cell surface glycoprotein predominantly expressed in neurons. There are three different types of BSE, the classical BSE (C-type) strain and two atypical strains (H-type and L-type). BSE is primarily a disease of cattle; however, sheep and goats also can be infected with BSE strains and develop a disease clinically and pathogenically indistinguishable from scrapie. Therefore, TSE cases in cattle and small ruminants require discriminatory testing to determine whether the TSE is BSE or scrapie and to discriminate classical BSE from the atypical H- or L-type strains. Many methods have been developed for the detection of BSE and have been reported in numerous studies. Detection of BSE is mainly based on the identification of characteristic lesions or detection of the PrPSc in the brain, often by use of their partial proteinase K resistance properties. The objective of this paper was to summarize the currently available methods, highlight their diagnostic performance, and emphasize the advantages and drawbacks of the application of individual tests.
Collapse
Affiliation(s)
- Monika Olech
- Department of Pathology, National Veterinary Research Institute, 24-100 Puławy, Poland
| |
Collapse
|
13
|
Wang F, Pritzkow S, Soto C. PMCA for ultrasensitive detection of prions and to study disease biology. Cell Tissue Res 2023; 392:307-321. [PMID: 36567368 PMCID: PMC9790818 DOI: 10.1007/s00441-022-03727-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2022] [Accepted: 12/08/2022] [Indexed: 12/27/2022]
Abstract
The emergence of a novel class of infectious agent composed exclusively of a misfolded protein (termed prions) has been a challenge in modern biomedicine. Despite similarities on the behavior of prions with respect to conventional pathogens, the many uncertainties regarding the biology and virulence of prions make them a worrisome paradigm. Since prions do not contain nucleic acids and rely on a very different way of replication and spreading, it was necessary to invent a novel technology to study them. In this article, we provide an overview of such a technology, termed protein misfolding cyclic amplification (PMCA), and summarize its many applications to detect prions and understand prion biology.
Collapse
Affiliation(s)
- Fei Wang
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA.
| |
Collapse
|
14
|
Abstract
Prion diseases are a group of inevitably fatal neurodegenerative disorders affecting numerous mammalian species, including humans. The existence of heritable phenotypes of disease in the natural host suggested that prions exist as distinct strains. Transmission of sheep scrapie to rodent models accelerated prion research, resulting in the isolation and characterization of numerous strains with distinct characteristics. These strains are grouped into categories based on the incubation period of disease in different strains of mice and also by how stable the strain properties were upon serial passage. These classical studies defined the host and agent parameters that affected strain properties, and, prior to the advent of the prion hypothesis, strain properties were hypothesized to be the result of mutations in a nucleic acid genome of a conventional pathogen. The development of the prion hypothesis challenged the paradigm of infectious agents, and, initially, the existence of strains was difficult to reconcile with a protein-only agent. In the decades since, much evidence has revealed how a protein-only infectious agent can perform complex biological functions. The prevailing hypothesis is that strain-specific conformations of PrPSc encode prion strain diversity. This hypothesis can provide a mechanism to explain the observed strain-specific differences in incubation period of disease, biochemical properties of PrPSc, tissue tropism, and subcellular patterns of pathology. This hypothesis also explains how prion strains mutate, evolve, and adapt to new species. These concepts are applicable to prion-like diseases such as Parkinson's and Alzheimer's disease, where evidence of strain diversity is beginning to emerge.
Collapse
Affiliation(s)
- Alyssa J Block
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Jason C Bartz
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
15
|
Igel A, Fornara B, Rezaei H, Béringue V. Prion assemblies: structural heterogeneity, mechanisms of formation, and role in species barrier. Cell Tissue Res 2022; 392:149-166. [PMID: 36399162 PMCID: PMC10113350 DOI: 10.1007/s00441-022-03700-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022]
Abstract
AbstractPrions are proteinaceous pathogens responsible for a wide range of neurodegenerative diseases in animal and human. Prions are formed from misfolded, ß-sheet rich, and aggregated conformers (PrPSc) of the host-encoded prion protein (PrPC). Prion replication stems from the capacity of PrPSc to self-replicate by templating PrPC conversion and polymerization. The question then arises about the molecular mechanisms of prion replication, host invasion, and capacity to contaminate other species. Studying these mechanisms has gained in recent years further complexity with evidence that PrPSc is a pleiomorphic protein. There is indeed compelling evidence for PrPSc structural heterogeneity at different scales: (i) within prion susceptible host populations with the existence of different strains with specific biological features due to different PrPSc conformers, (ii) within a single infected host with the co-propagation of different strains, and (iii) within a single strain with evidence for co-propagation of PrPSc assemblies differing in their secondary to quaternary structure. This review summarizes current knowledge of prion assembly heterogeneity, potential mechanisms of formation during the replication process, and importance when crossing the species barrier.
Collapse
|
16
|
Otero A, Barrio T, Eraña H, Charco JM, Betancor M, Díaz-Domínguez CM, Marín B, Andréoletti O, Torres JM, Kong Q, Badiola JJ, Bolea R, Castilla J. Glycans are not necessary to maintain the pathobiological features of bovine spongiform encephalopathy. PLoS Pathog 2022; 18:e1010900. [PMID: 36206325 PMCID: PMC9581369 DOI: 10.1371/journal.ppat.1010900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2022] [Revised: 10/19/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
The role of the glycosylation status of PrPC in the conversion to its pathological counterpart and on cross-species transmission of prion strains has been widely discussed. Here, we assessed the effect on strain characteristics of bovine spongiform encephalopathy (BSE) isolates with different transmission histories upon propagation on a model expressing a non-glycosylated human PrPC. Bovine, ovine and porcine-passaged BSE, and variant Creutzfeldt-Jakob disease (vCJD) isolates were used as seeds/inocula in both in vitro and in vivo propagation assays using the non-glycosylated human PrPC-expressing mouse model (TgNN6h). After protein misfolding cyclic amplification (PMCA), all isolates maintained the biochemical characteristics of BSE. On bioassay, all PMCA-propagated BSE prions were readily transmitted to TgNN6h mice, in agreement with our previous in vitro results. TgNN6h mice reproduced the characteristic neuropathological and biochemical hallmarks of BSE, suggesting that the absence of glycans did not alter the pathobiological features of BSE prions. Moreover, back-passage of TgNN6h-adapted BSE prions to BoTg110 mice recovered the full BSE phenotype, confirming that the glycosylation of human PrPC is not essential for the preservation of the human transmission barrier for BSE prions or for the maintenance of BSE strain properties.
Collapse
Affiliation(s)
- Alicia Otero
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, ISS Aragón, Zaragoza, Spain
| | - Tomás Barrio
- UMR INRAE-ENVT 1225 Interactions Hôtes-Agents Pathogènes (IHAP), Institute Nationale de Recherche pour l’Alimentation, l’Agriculture et l’Environnement (INRAE)—École Nationale Vétérinaire de Toulouse (ENVT), Université de Toulouse, Toulouse, France
| | - Hasier Eraña
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Prion Research Lab, Derio, Spain
- Atlas Molecular Pharma S. L., Derio, Spain
| | - Jorge M. Charco
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Prion Research Lab, Derio, Spain
- Atlas Molecular Pharma S. L., Derio, Spain
| | - Marina Betancor
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, ISS Aragón, Zaragoza, Spain
| | - Carlos M. Díaz-Domínguez
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Prion Research Lab, Derio, Spain
| | - Belén Marín
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, ISS Aragón, Zaragoza, Spain
| | - Olivier Andréoletti
- UMR INRAE-ENVT 1225 Interactions Hôtes-Agents Pathogènes (IHAP), Institute Nationale de Recherche pour l’Alimentation, l’Agriculture et l’Environnement (INRAE)—École Nationale Vétérinaire de Toulouse (ENVT), Université de Toulouse, Toulouse, France
| | - Juan M. Torres
- Centro de Investigación en Sanidad Animal, CISA-INIA, Valdeolmos, Madrid, Spain
| | - Qingzhong Kong
- Departments of Pathology and Neurology & National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Juan J. Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, ISS Aragón, Zaragoza, Spain
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, ISS Aragón, Zaragoza, Spain
- * E-mail: (JC); (RB)
| | - Joaquín Castilla
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Prion Research Lab, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain
- * E-mail: (JC); (RB)
| |
Collapse
|
17
|
Ma J, Zhang J, Yan R. Recombinant Mammalian Prions: The “Correctly” Misfolded Prion Protein Conformers. Viruses 2022; 14:v14091940. [PMID: 36146746 PMCID: PMC9504972 DOI: 10.3390/v14091940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Generating a prion with exogenously produced recombinant prion protein is widely accepted as the ultimate proof of the prion hypothesis. Over the years, a plethora of misfolded recPrP conformers have been generated, but despite their seeding capability, many of them have failed to elicit a fatal neurodegenerative disorder in wild-type animals like a naturally occurring prion. The application of the protein misfolding cyclic amplification technique and the inclusion of non-protein cofactors in the reaction mixture have led to the generation of authentic recombinant prions that fully recapitulate the characteristics of native prions. Together, these studies reveal that recPrP can stably exist in a variety of misfolded conformations and when inoculated into wild-type animals, misfolded recPrP conformers cause a wide range of outcomes, from being completely innocuous to lethal. Since all these recPrP conformers possess seeding capabilities, these results clearly suggest that seeding activity alone is not equivalent to prion activity. Instead, authentic prions are those PrP conformers that are not only heritable (the ability to seed the conversion of normal PrP) but also pathogenic (the ability to cause fatal neurodegeneration). The knowledge gained from the studies of the recombinant prion is important for us to understand the pathogenesis of prion disease and the roles of misfolded proteins in other neurodegenerative disorders.
Collapse
|
18
|
Beauchemin KS, Rees JR, Supattapone S. Alternating anti-prion regimens reduce combination drug resistance but do not further extend survival in scrapie-infected mice. J Gen Virol 2021; 102:001705. [PMID: 34904943 PMCID: PMC8744272 DOI: 10.1099/jgv.0.001705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022] Open
Abstract
Prion diseases are fatal and infectious neurodegenerative diseases in humans and other mammals caused by templated misfolding of the endogenous prion protein (PrP). Although there is currently no vaccine or therapy against prion disease, several classes of small-molecule compounds have been shown to increase disease-free incubation time in prion-infected mice. An apparent obstacle to effective anti-prion therapy is the emergence of drug-resistant strains during static therapy with either single compounds or multi-drug combination regimens. Here, we treated scrapie-infected mice with dynamic regimens that alternate between different classes of anti-prion drugs. The results show that alternating regimens containing various combinations of Anle138b, IND24 and IND116135 reduce the incidence of combination drug resistance, but do not significantly increase long-term disease-free survival compared to monotherapy. Furthermore, the alternating regimens induced regional vacuolation profiles resembling those generated by a single component of the alternating regimen, suggesting the emergence of strain dominance.
Collapse
Affiliation(s)
- Kathryn S. Beauchemin
- Departments of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Judy R. Rees
- Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA,Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Surachai Supattapone
- Departments of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA,Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA,*Correspondence: Surachai Supattapone,
| |
Collapse
|
19
|
Wang Z, Qin K, Camacho MV, Cali I, Yuan J, Shen P, Greenlee J, Kong Q, Mastrianni JA, Zou WQ. Generation of human chronic wasting disease in transgenic mice. Acta Neuropathol Commun 2021; 9:158. [PMID: 34565488 PMCID: PMC8474769 DOI: 10.1186/s40478-021-01262-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2021] [Accepted: 09/08/2021] [Indexed: 12/23/2022] Open
Abstract
Chronic wasting disease (CWD) is a cervid prion disease caused by the accumulation of an infectious misfolded conformer (PrPSc) of cellular prion protein (PrPC). It has been spreading rapidly in North America and also found in Asia and Europe. Although bovine spongiform encephalopathy (i.e. mad cow disease) is the only animal prion disease known to be zoonotic, the transmissibility of CWD to humans remains uncertain. Here we report the generation of the first CWD-derived infectious human PrPSc by elk CWD PrPSc-seeded conversion of PrPC in normal human brain homogenates using in vitro protein misfolding cyclic amplification (PMCA). Western blotting with human PrP selective antibody confirmed that the PMCA-generated protease-resistant PrPSc was derived from the human PrPC substrate. Two lines of humanized transgenic mice expressing human PrP with either Val or Met at the polymorphic codon 129 developed clinical prion disease following intracerebral inoculation with the PMCA-generated CWD-derived human PrPSc. Diseased mice exhibited distinct PrPSc patterns and neuropathological changes in the brain. Our study, using PMCA and animal bioassays, provides the first evidence that CWD PrPSc can cross the species barrier to convert human PrPC into infectious PrPSc that can produce bona fide prion disease when inoculated into humanized transgenic mice.
Collapse
|
20
|
Sundaria N, Upadhyay A, Prasad A, Prajapati VK, Poluri KM, Mishra A. Neurodegeneration & imperfect ageing: Technological limitations and challenges? Mech Ageing Dev 2021; 200:111574. [PMID: 34562507 DOI: 10.1016/j.mad.2021.111574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2021] [Revised: 08/29/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022]
Abstract
Cellular homeostasis is regulated by the protein quality control (PQC) machinery, comprising multiple chaperones and enzymes. Studies suggest that the loss of the PQC mechanisms in neurons may lead to the formation of abnormal inclusions that may lead to neurological disorders and defective aging. The questions could be raised how protein aggregate formation precisely engenders multifactorial molecular pathomechanism in neuronal cells and affects different brain regions? Such questions await thorough investigation that may help us understand how aberrant proteinaceous bodies lead to neurodegeneration and imperfect aging. However, these studies face multiple technological challenges in utilizing available tools for detailed characterizations of the protein aggregates or amyloids and developing new techniques to understand the biology and pathology of proteopathies. The lack of detection and analysis methods has decelerated the pace of the research in amyloid biology. Here, we address the significance of aggregation and inclusion formation, followed by exploring the evolutionary contribution of these structures. We also provide a detailed overview of current state-of-the-art techniques and advances in studying amyloids in the diseased brain. A comprehensive understanding of the structural, pathological, and clinical characteristics of different types of aggregates (inclusions, fibrils, plaques, etc.) will aid in developing future therapies.
Collapse
Affiliation(s)
- Naveen Sundaria
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH‑8 Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
21
|
Peden AH, Suleiman S, Barria MA. Understanding Intra-Species and Inter-Species Prion Conversion and Zoonotic Potential Using Protein Misfolding Cyclic Amplification. Front Aging Neurosci 2021; 13:716452. [PMID: 34413769 PMCID: PMC8368127 DOI: 10.3389/fnagi.2021.716452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/28/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Prion diseases are fatal neurodegenerative disorders that affect humans and animals, and can also be transmitted from animals to humans. A fundamental event in prion disease pathogenesis is the conversion of normal host prion protein (PrPC) to a disease-associated misfolded form (PrPSc). Whether or not an animal prion disease can infect humans cannot be determined a priori. There is a consensus that classical bovine spongiform encephalopathy (C-type BSE) in cattle transmits to humans, and that classical sheep scrapie is of little or no risk to human health. However, the zoonotic potential of more recently identified animal prion diseases, such as atypical scrapie, H-type and L-type BSE and chronic wasting disease (CWD) in cervids, remains an open question. Important components of the zoonotic barrier are (i) physiological differences between humans and the animal in question, (ii) amino acid sequence differences of the animal and human PrPC, and (iii) the animal prion strain, enciphered in the conformation of PrPSc. Historically, the direct inoculation of experimental animals has provided essential information on the transmissibility and compatibility of prion strains. More recently, cell-free molecular conversion assays have been used to examine the molecular compatibility on prion replication and zoonotic potential. One such assay is Protein Misfolding Cyclic Amplification (PMCA), in which a small amount of infected tissue homogenate, containing PrPSc, is added as a seed to an excess of normal tissue homogenate containing PrPC, and prion conversion is accelerated by cycles of incubation and ultrasonication. PMCA has been used to measure the molecular feasibility of prion transmission in a range of scenarios using genotypically homologous and heterologous combinations of PrPSc seed and PrPC substrate. Furthermore, this method can be used to speculate on the molecular profile of PrPSc that might arise from a zoonotic transmission. We discuss the experimental approaches that have been used to model both the intra- and inter-species molecular compatibility of prions, and the factors affecting PrPc to PrPSc conversion and zoonotic potential. We conclude that cell-free prion protein conversion assays, especially PMCA, are useful, rapid and low-cost approaches for elucidating the mechanisms of prion propagation and assessing the risk of animal prions to humans.
Collapse
Affiliation(s)
- Alexander H Peden
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Suzanne Suleiman
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Marcelo A Barria
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
22
|
Pritzkow S, Gorski D, Ramirez F, Telling GC, Benestad SL, Soto C. North American and Norwegian Chronic Wasting Disease prions exhibit different potential for interspecies transmission and zoonotic risk. J Infect Dis 2021; 225:542-551. [PMID: 34302479 DOI: 10.1093/infdis/jiab385] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic wasting disease (CWD) is a rapidly spreading prion disorder affecting various species of wild and captive cervids. The risk that CWD poses to co-habiting animals or more importantly to humans is largely unknown. In this study we investigated differences in the capacity of CWD isolates obtained from six different cervid species to induce prion conversion in vitro by PMCA. We define and quantify spillover and zoonotic potential indices as the efficiency by which CWD prions sustain prion generation in vitro at expenses of normal prion proteins from various mammals and human, respectively. Our data suggest that reindeer and red deer from Norway could be the most transmissible CWD prions to other mammals, whereas North American CWD prions were more prone to generate human prions in vitro. Our results suggest that Norway and North American CWD prions correspond to different strains with distinct spillover and zoonotic potentials.
Collapse
Affiliation(s)
- Sandra Pritzkow
- Mitchell Center for Alzheimer's disease and related Brain disorders, Department of Neurology, University of Texas McGovern Medical School at Houston, Texas, USA
| | - Damian Gorski
- Mitchell Center for Alzheimer's disease and related Brain disorders, Department of Neurology, University of Texas McGovern Medical School at Houston, Texas, USA
| | - Frank Ramirez
- Mitchell Center for Alzheimer's disease and related Brain disorders, Department of Neurology, University of Texas McGovern Medical School at Houston, Texas, USA
| | - Glenn C Telling
- Prion Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Sylvie L Benestad
- Norwegian Veterinary Institute, OIE Reference Laboratory for CWD, Oslo, Norway
| | - Claudio Soto
- Mitchell Center for Alzheimer's disease and related Brain disorders, Department of Neurology, University of Texas McGovern Medical School at Houston, Texas, USA
| |
Collapse
|
23
|
Bovine adapted transmissible mink encephalopathy is similar to L-BSE after passage through sheep with the VRQ/VRQ genotype but not VRQ/ARQ. BMC Vet Res 2020; 16:383. [PMID: 33032590 PMCID: PMC7545885 DOI: 10.1186/s12917-020-02611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/26/2020] [Accepted: 10/05/2020] [Indexed: 11/24/2022] Open
Abstract
Background Transmissible mink encephalopathy (TME) is a fatal neurologic disease of farmed mink. Evidence indicates that TME and L-BSE are similar and may be linked in some outbreaks of TME. We previously transmitted bovine adapted TME (bTME) to sheep. The present study compared ovine passaged bTME (o-bTME) to C-BSE and L-BSE in transgenic mice expressing wild type bovine prion protein (TgBovXV). To directly compare the transmission efficiency of all prion strains in this study, we considered the attack rates and mean incubation periods. Additional methods for strain comparison were utilized including lesion profiles, fibril stability, and western blotting. Results Sheep donor genotype elicited variable disease phenotypes in bovinized mice. Inoculum derived from a sheep with the VRQ/VRQ genotype (o-bTMEVV) resulted in an attack rate, incubation period, western blot profile, and neuropathology most similar to bTME and L-BSE. Conversely, donor material from a sheep with the VRQ/ARQ genotype (o-bTMEAV) elicited a phenotype distinct from o-bTMEVV, bTME and L-BSE. The TSE with the highest transmission efficiency in bovinized mice was L-BSE. The tendency to efficiently transmit to TgBovXV mice decreased in the order bTME, C-BSE, o-bTMEVV, and o-bTMEAV. The transmission efficiency of L-BSE was approximately 1.3 times higher than o-bTMEVV and 3.2 times higher than o-bTMEAV. Conclusions Our findings provide insight on how sheep host genotype modulates strain genesis and influences interspecies transmission characteristics. Given that the transmission efficiencies of L-BSE and bTME are higher than C-BSE, coupled with previous reports of L-BSE transmission to mice expressing the human prion protein, continued monitoring for atypical BSE is advisable in order to prevent occurrences of interspecies transmission that may affect humans or other species.
Collapse
|
24
|
Arshad H, Bourkas MEC, Watts JC. The utility of bank voles for studying prion disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:179-211. [PMID: 32958232 DOI: 10.1016/bs.pmbts.2020.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Abstract
The transmission of prions between species is typically an inefficient process due to the species barrier, which represents incompatibility between prion seed and substrate molecules. Bank voles (Myodes glareolus) are an exception to this rule, as they are susceptible to a diverse range of prion strains from many different animal species. In particular, bank voles can be efficiently infected with most types of human prions and have played a critical role in validating variably protease-sensitive prionopathy (VPSPr) and certain forms of Gerstmann-Sträussler-Scheinker (GSS) disease as bona fide prion disorders rather than non-transmissible proteinopathies. The bank vole prion protein (BVPrP) confers a "universal prion acceptor" phenotype when expressed in mice and when used as a substrate for in vitro prion amplification assays, indicating that the unique prion transmission properties of bank voles are mediated by BVPrP. Over-expression of BVPrP in mice can also promote the spontaneous development of prion disease, indicating that BVPrP is intrinsically prone to both spontaneous and template-directed misfolding. Here, we discuss the utility of bank voles and BVPrP for prion research and how they have provided new tools for establishing rapid animal bioassays, modeling spontaneous prion disease, standardizing prion diagnostics, and understanding the molecular basis of the species barrier.
Collapse
Affiliation(s)
- Hamza Arshad
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Matthew E C Bourkas
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
25
|
Identification of a homology-independent linchpin domain controlling mouse and bank vole prion protein conversion. PLoS Pathog 2020; 16:e1008875. [PMID: 32898162 PMCID: PMC7508373 DOI: 10.1371/journal.ppat.1008875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2020] [Revised: 09/22/2020] [Accepted: 08/11/2020] [Indexed: 11/19/2022] Open
Abstract
Prions are unorthodox pathogens that cause fatal neurodegenerative diseases in humans and other mammals. Prion propagation occurs through the self-templating of the pathogenic conformer PrPSc, onto the cell-expressed conformer, PrPC. Here we study the conversion of PrPC to PrPSc using a recombinant mouse PrPSc conformer (mouse protein-only recPrPSc) as a unique tool that can convert bank vole but not mouse PrPC substrates in vitro. Thus, its templating ability is not dependent on sequence homology with the substrate. In the present study, we used chimeric bank vole/mouse PrPC substrates to systematically determine the domain that allows for conversion by Mo protein-only recPrPSc. Our results show that that either the presence of the bank vole amino acid residues E227 and S230 or the absence of the second N-linked glycan are sufficient to allow PrPC substrates to be converted by Mo protein-only recPrPSc and several native infectious prion strains. We propose that residues 227 and 230 and the second glycan are part of a C-terminal domain that acts as a linchpin for bank vole and mouse prion conversion. Prions are unconventional infectious agents that lack nucleic acids such as DNA and RNA, and the mechanism by which prions replicate is not fully understood. It has been established that a central feature of the replication mechanism involves the misfolding of a host protein (PrPC) into an infectious shape termed PrPSc, but it is unclear how this misfolding occurs. Interestingly, it has been observed that a particular animal species, the European bank vole, is unusually susceptible to prion infection and that this near-universal susceptibility is caused by the specific PrPC sequence of this protein. Here we use a powerful and unique biochemical system to determine the specific region of bank vole PrPC that is primarily responsible for its propensity to misfold into PrPSc. This critical region, which is located at the extreme C-terminal end of the protein, appears to act as a linchpin domain that normally stabilizes the shape of PrPC and thereby regulates its misfolding into PrPSc.
Collapse
|
26
|
Makarava N, Chang JCY, Molesworth K, Baskakov IV. Posttranslational modifications define course of prion strain adaptation and disease phenotype. J Clin Invest 2020; 130:4382-4395. [PMID: 32484800 PMCID: PMC7410085 DOI: 10.1172/jci138677] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
Posttranslational modifications are a common feature of proteins associated with neurodegenerative diseases including prion protein (PrPC), tau, and α-synuclein. Alternative self-propagating protein states or strains give rise to different disease phenotypes and display strain-specific subsets of posttranslational modifications. The relationships between strain-specific structure, posttranslational modifications, and disease phenotype are poorly understood. We previously reported that among hundreds of PrPC sialoglycoforms expressed by a cell, individual prion strains recruited PrPC molecules selectively, according to the sialylation status of their N-linked glycans. Here we report that transmission of a prion strain to a new host is accompanied by a dramatic shift in the selectivity of recruitment of PrPC sialoglycoforms, giving rise to a self-propagating scrapie isoform (PrPSc) with a unique sialoglycoform signature and disease phenotype. The newly emerged strain has the shortest incubation time to disease and is characterized by colocalization of PrPSc with microglia and a very profound proinflammatory response, features that are linked to a unique sialoglycoform composition of PrPSc. The current work provides experimental support for the hypothesis that strain-specific patterns of PrPSc sialoglycoforms formed as a result of selective recruitment dictate strain-specific disease phenotypes. This work suggests a causative relationship between a strain-specific structure, posttranslational modifications, and disease phenotype.
Collapse
Affiliation(s)
- Natallia Makarava
- Center for Biomedical Engineering and Technology and
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jennifer Chen-Yu Chang
- Center for Biomedical Engineering and Technology and
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kara Molesworth
- Center for Biomedical Engineering and Technology and
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and Technology and
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
27
|
Abstract
Atypical/Nor98 scrapie (AS) is a prion disease of small ruminants. Currently there are no efficient measures to control this form of prion disease, and, importantly, the zoonotic potential and the risk that AS might represent for other farmed animal species remains largely unknown. In this study, we investigated the capacity of AS to propagate in bovine PrP transgenic mice. Unexpectedly, the transmission of AS isolates originating from 5 different European countries to bovine PrP mice resulted in the propagation of the classical BSE (c-BSE) agent. Detection of prion seeding activity in vitro by protein misfolding cyclic amplification (PMCA) demonstrated that low levels of the c-BSE agent were present in the original AS isolates. C-BSE prion seeding activity was also detected in brain tissue of ovine PrP mice inoculated with limiting dilutions (endpoint titration) of ovine AS isolates. These results are consistent with the emergence and replication of c-BSE prions during the in vivo propagation of AS isolates in the natural host. These data also indicate that c-BSE prions, a known zonotic agent in humans, can emerge as a dominant prion strain during passage of AS between different species. These findings provide an unprecedented insight into the evolution of mammalian prion strain properties triggered by intra- and interspecies passage. From a public health perspective, the presence of c-BSE in AS isolates suggest that cattle exposure to small ruminant tissues and products could lead to new occurrences of c-BSE.
Collapse
|
28
|
Hackl S, Becker CFW. Prion protein-Semisynthetic prion protein (PrP) variants with posttranslational modifications. J Pept Sci 2019; 25:e3216. [PMID: 31713950 PMCID: PMC6899880 DOI: 10.1002/psc.3216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
Abstract
Deciphering the pathophysiologic events in prion diseases is challenging, and the role of posttranslational modifications (PTMs) such as glypidation and glycosylation remains elusive due to the lack of homogeneous protein preparations. So far, experimental studies have been limited in directly analyzing the earliest events of the conformational change of cellular prion protein (PrPC ) into scrapie prion protein (PrPSc ) that further propagates PrPC misfolding and aggregation at the cellular membrane, the initial site of prion infection, and PrP misfolding, by a lack of suitably modified PrP variants. PTMs of PrP, especially attachment of the glycosylphosphatidylinositol (GPI) anchor, have been shown to be crucially involved in the PrPSc formation. To this end, semisynthesis offers a unique possibility to understand PrP behavior invitro and invivo as it provides access to defined site-selectively modified PrP variants. This approach relies on the production and chemoselective linkage of peptide segments, amenable to chemical modifications, with recombinantly produced protein segments. In this article, advances in understanding PrP conversion using semisynthesis as a tool to obtain homogeneous posttranslationally modified PrP will be discussed.
Collapse
Affiliation(s)
- Stefanie Hackl
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Vienna, Austria
| | - Christian F W Becker
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Vienna, Austria
| |
Collapse
|
29
|
Brandel JP, Culeux A, Grznarova K, Levavasseur E, Lamy P, Privat N, Welaratne A, Denouel A, Laplanche JL, Haik S. Amplification techniques and diagnosis of prion diseases. Rev Neurol (Paris) 2019; 175:458-463. [PMID: 31296398 DOI: 10.1016/j.neurol.2019.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/13/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
Abstract
Protein misfolding cyclic amplification assay (PMCA) and real-time quaking-induced conversion (RT-QuIC) are two amplification techniques based on the ability of PrPsc to induce a conformational change in PrP allowing the detection of minute amounts of PrPsc in body fluids or tissues. PMCA and RT-QuIC have different ability to amplify PrPsc from sporadic, variant and genetic forms of Creutzfeldt-Jakob disease (CJD). PMCA readily amplifies PrPsc from variant CJD (vCJD) tissue while RT-QuIC easily amplifies PrPsc from sporadic CJD (sCJD) patient tissues. In terms of diagnosis, this implies the possibility of distinguishing vCJD from sCJD and explains the wider use of RT-QuIC given the respective frequencies of vCJD and sCJD. The sensitivity values of RT-QuIC for the diagnosis of sCJD are comparable or higher than those of the other tests (EEG, MRI, detection of 14-3-3 or tau proteins in cerebrospinal fluid) but with a specificity close to 100%. These new diagnostic methods could also be useful for the diagnosis of other neurodegenerative diseases.
Collapse
Affiliation(s)
- J-P Brandel
- Sorbonne Université, Inserm, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, 47, boulevard de l'Hôpital, 75013 Paris, France; AP-HP, Cellule Nationale de Référence des maladies de Creutzfeldt-Jakob, Groupe Hospitalier Pitié-Salpêtrière, 47, boulevard de l'Hôpital, 75013 Paris, France.
| | - A Culeux
- Sorbonne Université, Inserm, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, 47, boulevard de l'Hôpital, 75013 Paris, France
| | - K Grznarova
- Sorbonne Université, Inserm, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, 47, boulevard de l'Hôpital, 75013 Paris, France
| | - E Levavasseur
- Sorbonne Université, Inserm, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, 47, boulevard de l'Hôpital, 75013 Paris, France
| | - P Lamy
- Sorbonne Université, Inserm, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, 47, boulevard de l'Hôpital, 75013 Paris, France
| | - N Privat
- Sorbonne Université, Inserm, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, 47, boulevard de l'Hôpital, 75013 Paris, France
| | - A Welaratne
- AP-HP, Cellule Nationale de Référence des maladies de Creutzfeldt-Jakob, Groupe Hospitalier Pitié-Salpêtrière, 47, boulevard de l'Hôpital, 75013 Paris, France
| | - A Denouel
- Sorbonne Université, Inserm, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, 47, boulevard de l'Hôpital, 75013 Paris, France
| | - J-L Laplanche
- AP-HP, Service de Biochimie et Biologie Moléculaire, Hôpital Lariboisière, Université Paris Descartes, 2, rue Ambroise-Paré 75010 Paris, France
| | - S Haik
- Sorbonne Université, Inserm, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, 47, boulevard de l'Hôpital, 75013 Paris, France; AP-HP, Cellule Nationale de Référence des maladies de Creutzfeldt-Jakob, Groupe Hospitalier Pitié-Salpêtrière, 47, boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
30
|
Moda F, Bolognesi ML, Legname G. Novel screening approaches for human prion diseases drug discovery. Expert Opin Drug Discov 2019; 14:983-993. [PMID: 31271065 DOI: 10.1080/17460441.2019.1637851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023]
Abstract
Introduction: Human prion diseases are rare fatal neurodegenerative diseases caused by the misfolding and aggregation of the prion protein in the form of infectious prions. So far, these diseases are incurable. One of the major difficulties in identifying suitable drugs is the availability of robust preclinical screening methods. All molecules identified have been screened using cell-based assays and in vivo murine models. The existence of a continuum of prion strains has hampered the identification of efficacious molecules modulating the progression of different forms of the disease. Areas covered: The advent of new in vitro screening methodologies is allowing for novel strategies to develop new compounds that could interfere with a broad range of diseases. In particular, two innovative techniques named Real Time Quaking Induced Conversion (RT-QuIC) and Protein Misfolding Cyclic Amplification (PMCA) have opened new venues for testing compounds in a rapid a reproducible way. These are discussed within. Expert opinion: For human prion diseases, one major hurdle has been a well-defined screening methodology. In other animal species, cell-based assays have been employed that could replicate animal prions indefinitely. Such a tool for human prion diseases is still missing. Therefore, the advent of RT-QuIC and PMCA has proven instrumental to overcome this limitation.
Collapse
Affiliation(s)
- Fabio Moda
- Division of Neurology 5 - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta , Milano , Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna , Bologna , Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA) , Trieste , Italy
| |
Collapse
|
31
|
Huang YW, King CY. A complete catalog of wild-type Sup35 prion variants and their protein-only propagation. Curr Genet 2019; 66:97-122. [DOI: 10.1007/s00294-019-01003-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/18/2019] [Revised: 05/28/2019] [Accepted: 06/01/2019] [Indexed: 10/26/2022]
|
32
|
Scialò C, De Cecco E, Manganotti P, Legname G. Prion and Prion-Like Protein Strains: Deciphering the Molecular Basis of Heterogeneity in Neurodegeneration. Viruses 2019; 11:E261. [PMID: 30875755 PMCID: PMC6466326 DOI: 10.3390/v11030261] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggests that neurodegenerative disorders share a common pathogenic feature: the presence of deposits of misfolded proteins with altered physicochemical properties in the Central Nervous System. Despite a lack of infectivity, experimental data show that the replication and propagation of neurodegenerative disease-related proteins including amyloid-β (Aβ), tau, α-synuclein and the transactive response DNA-binding protein of 43 kDa (TDP-43) share a similar pathological mechanism with prions. These observations have led to the terminology of "prion-like" to distinguish between conditions with noninfectious characteristics but similarities with the prion replication and propagation process. Prions are considered to adapt their conformation to changes in the context of the environment of replication. This process is known as either prion selection or adaptation, where a distinct conformer present in the initial prion population with higher propensity to propagate in the new environment is able to prevail over the others during the replication process. In the last years, many studies have shown that prion-like proteins share not only the prion replication paradigm but also the specific ability to aggregate in different conformations, i.e., strains, with relevant clinical, diagnostic and therapeutic implications. This review focuses on the molecular basis of the strain phenomenon in prion and prion-like proteins.
Collapse
Affiliation(s)
- Carlo Scialò
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy.
| | - Elena De Cecco
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy.
| | - Paolo Manganotti
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, University of Trieste, 34149 Trieste, Italy.
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy.
- ELETTRA Sincrotrone Trieste S.C.p.A, Basovizza, 34149 Trieste, Italy.
| |
Collapse
|
33
|
Vorberg I, Chiesa R. Experimental models to study prion disease pathogenesis and identify potential therapeutic compounds. Curr Opin Pharmacol 2019; 44:28-38. [PMID: 30878006 DOI: 10.1016/j.coph.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/09/2019] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 01/02/2023]
Abstract
Prion diseases are devastating neurodegenerative disorders for which no drugs are available. The successful development of therapeutics depends on drug screening platforms and preclinical models that recapitulate key molecular and pathological features of the disease. Innovative experimental tools have been developed over the last few years that might facilitate drug discovery, including cell-free prion replication assays and prion-infected flies. However, there is still room for improvement. Animal models of genetic prion disease are few, and only partially recapitulate the complexity of the human disorder. Moreover, we still lack a human cell culture model suitable for high-content anti-prion drug screening. This review provides an overview of the models currently used in prion research, and discusses their promise and limitations for drug discovery.
Collapse
Affiliation(s)
- Ina Vorberg
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany; Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany.
| | - Roberto Chiesa
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy.
| |
Collapse
|
34
|
Abstract
Prions are atypical infectious agents lacking genetic material. Yet, various strains have been isolated from animals and humans using experimental models. They are distinguished by the resulting pattern of disease, including the localization of PrPsc deposits and the spongiform changes they induce in the brain of affected individuals. In this paper, we discuss the emerging use of cellular and acellular models to decipher the mechanisms involved in the strain-specific targeting of distinct brain regions. Recent studies suggest that neuronal cultures, protein misfolding cyclic amplification, and combination of both approaches may be useful to explore this under-investigated but central domain of the prion field.
Collapse
|
35
|
Shah SZA, Zhao D, Taglialatela G, Hussain T, Dong H, Sabir N, Mangi MH, Wu W, Lai M, Zhang X, Duan Y, Wang L, Zhou X, Yang L. Combinatory FK506 and Minocycline Treatment Alleviates Prion-Induced Neurodegenerative Events via Caspase-Mediated MAPK-NRF2 Pathway. Int J Mol Sci 2019; 20:E1144. [PMID: 30845718 PMCID: PMC6429086 DOI: 10.3390/ijms20051144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/13/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 01/04/2023] Open
Abstract
Transcription factors play a significant role during the symptomatic onset and progression of prion diseases. We previously showed the immunomodulatory and nuclear factor of activated T cells' (NFAT) suppressive effects of an immunosuppressant, FK506, in the symptomatic stage and an antibiotic, minocycline, in the pre-symptomatic stage of prion infection in hamsters. Here we used for the first time, a combinatory FK506+minocycline treatment to test its transcriptional modulating effects in the symptomatic stage of prion infection. Our results indicate that prolonged treatment with FK506+minocycline was effective in alleviating astrogliosis and neuronal death triggered by misfolded prions. Specifically, the combinatory therapy with FK506+minocycline lowered the expression of the astrocytes activation marker GFAP and of the microglial activation marker IBA-1, subsequently reducing the level of pro-inflammatory cytokines interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α), and increasing the levels of anti-inflammatory cytokines IL-10 and IL-27. We further found that FK506+minocycline treatment inhibited mitogen-activated protein kinase (MAPK) p38 phosphorylation, NF-kB nuclear translocation, caspase expression, and enhanced phosphorylated cAMP response element-binding protein (pCREB) and phosphorylated Bcl2-associated death promoter (pBAD) levels to reduce cognitive impairment and apoptosis. Interestingly, FK506+minocycline reduced mitochondrial fragmentation and promoted nuclear factor⁻erythroid2-related factor-2 (NRF2)-heme oxygenase 1 (HO-1) pathway to enhance survival. Taken together, our results show that a therapeutic cocktail of FK506+minocycline is an attractive candidate for prolonged use in prion diseases and we encourage its further clinical development as a possible treatment for this disease.
Collapse
Affiliation(s)
- Syed Zahid Ali Shah
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
- Department of Pathology, Faculty of Veterinary Science, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan.
| | - Deming Zhao
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Giulio Taglialatela
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch at Galveston, Texas, TX 77555-1044, USA.
| | - Tariq Hussain
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Haodi Dong
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Naveed Sabir
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Mazhar Hussain Mangi
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Wei Wu
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Mengyu Lai
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Xixi Zhang
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Yuhan Duan
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Lu Wang
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Xiangmei Zhou
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Lifeng Yang
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
36
|
Burke CM, Walsh DJ, Steele AD, Agrimi U, Di Bari MA, Watts JC, Supattapone S. Full restoration of specific infectivity and strain properties from pure mammalian prion protein. PLoS Pathog 2019; 15:e1007662. [PMID: 30908557 PMCID: PMC6448948 DOI: 10.1371/journal.ppat.1007662] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2018] [Revised: 04/04/2019] [Accepted: 02/27/2019] [Indexed: 12/26/2022] Open
Abstract
The protein-only hypothesis predicts that infectious mammalian prions are composed solely of PrPSc, a misfolded conformer of the normal prion protein, PrPC. However, protein-only PrPSc preparations lack significant levels of prion infectivity, leading to the alternative hypothesis that cofactor molecules are required to form infectious prions. Here, we show that prions with parental strain properties and full specific infectivity can be restored from protein-only PrPSc in vitro. The restoration reaction is rapid, potent, and requires bank vole PrPC substrate, post-translational modifications, and cofactor molecules. To our knowledge, this represents the first report in which the essential properties of an infectious mammalian prion have been restored from pure PrP without adaptation. These findings provide evidence for a unified hypothesis of prion infectivity in which the global structure of protein-only PrPSc accurately stores latent infectious and strain information, but cofactor molecules control a reversible switch that unmasks biological infectivity.
Collapse
Affiliation(s)
- Cassandra M. Burke
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
| | - Daniel J. Walsh
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
| | - Alexander D. Steele
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
| | - Umberto Agrimi
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Michele Angelo Di Bari
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Joel C. Watts
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Surachai Supattapone
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
37
|
Houston F, Andréoletti O. Animal prion diseases: the risks to human health. Brain Pathol 2019; 29:248-262. [PMID: 30588682 DOI: 10.1111/bpa.12696] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/24/2018] [Accepted: 11/23/2018] [Indexed: 01/02/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases of animals notably include scrapie in small ruminants, chronic wasting disease (CWD) in cervids and classical bovine spongiform encephalopathy (C-BSE). As the transmission barrier phenomenon naturally limits the propagation of prions from one species to another, and the lack of epidemiological evidence for an association with human prion diseases, the zoonotic potential of these diseases was for a long time considered negligible. However, in 1996, C-BSE was recognized as the cause of a new human prion disease, variant Creutzfeldt-Jakob disease (vCJD), which triggered an unprecedented public health crisis in Europe. Large-scale epidemio-surveillance programs for scrapie and C-BSE that were implemented in the EU after the BSE crisis revealed that the distribution and prevalence of prion diseases in the ruminant population had previously been underestimated. They also led to the recognition of new forms of TSEs (named atypical) in cattle and small ruminants and to the recent identification of CWD in Europe. At this stage, the characterization of the strain diversity and zoonotic abilities associated with animal prion diseases remains largely incomplete. However, transmission experiments in nonhuman primates and transgenic mice expressing human PrP clearly indicate that classical scrapie, and certain forms of atypical BSE (L-BSE) or CWD may have the potential to infect humans. The remaining uncertainties about the origins and relationships between animal prion diseases emphasize the importance of the measures implemented to limit human exposure to these potentially zoonotic agents, and of continued surveillance for both animal and human prion diseases.
Collapse
Affiliation(s)
- Fiona Houston
- Infection and Immunity Division, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Olivier Andréoletti
- UMR INRA ENVT 1225-IHAP, École Nationale Vétérinaire de Toulouse, Toulouse, France
| |
Collapse
|
38
|
Harrathi C, Fernández-Borges N, Eraña H, Elezgarai SR, Venegas V, Charco JM, Castilla J. Insights into the Bidirectional Properties of the Sheep-Deer Prion Transmission Barrier. Mol Neurobiol 2018; 56:5287-5303. [PMID: 30592012 PMCID: PMC6614146 DOI: 10.1007/s12035-018-1443-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/11/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023]
Abstract
The large chronic wasting disease (CWD)-affected cervid population in the USA and Canada, and the risk of the disease being transmitted to humans through intermediate species, is a highly worrying issue that is still poorly understood. In this case, recombinant protein misfolding cyclic amplification was used to determine, in vitro, the relevance of each individual amino acid on cross-species prion transmission. Others and we have found that the β2-α2 loop is a key modulator of transmission barriers between species and markedly influences infection by sheep scrapie, bovine spongiform encephalopathy (BSE), or elk CWD. Amino acids that differentiate ovine and deer normal host prion protein (PrPC) and associated with structural rigidity of the loop β2-α2 (S173N, N177T) appear to confer resistance to some prion diseases. However, addition of methionine at codon 208 together with the previously described rigid loop substitutions seems to hide a key in this species barrier, as it makes sheep recombinant prion protein highly susceptible to CWD-induced misfolding. These studies indicate that interspecies prion transmission is not only governed just by the β2-α2 loop amino acid sequence but also by its interactions with the α3-helix as shown by substitution I208M. Transmissible spongiform encephalopathies, characterized by long incubation periods and spongiform changes associated with neuronal loss in the brain, have been described in several mammalian species appearing either naturally (scrapie in sheep and goats, bovine spongiform encephalopathy in cattle, chronic wasting disease in cervids, Creutzfeldt-Jakob disease in humans) or by experimental transmission studies (scrapie in mice and hamsters). Much of the pathogenesis of the prion diseases has been determined in the last 40 years, such as the etiological agent or the fact that prions occur as different strains that show distinct biological and physicochemical properties. However, there are many unanswered questions regarding the strain phenomenon and interspecies transmissibility. To assess the risk of interspecies transmission between scrapie and chronic wasting disease, an in vitro prion propagation method has been used. This technique allows to predict the amino acids preventing the transmission between sheep and deer prion diseases.
Collapse
Affiliation(s)
- Chafik Harrathi
- CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain
| | | | - Hasier Eraña
- CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Saioa R Elezgarai
- CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Vanessa Venegas
- CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Jorge M Charco
- CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain. .,IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Bizkaia, Spain.
| |
Collapse
|
39
|
Abstract
Many unrelated proteins and peptides have been found spontaneously to form amyloid fibers above a critical concentration. Even for a single sequence, however, the amyloid fold is not a single well-defined structure. Although the cross-β hydrogen bonding pattern is common to all amyloids, all other aspects of amyloid fiber structures are sensitive to both the sequence of the aggregating peptides and the solvent conditions under which the aggregation occurs. Amyloid fibers are easy to identify and grossly characterize using microscopy, but their insolubility and aperiodicity along the dimensions transverse to the fiber axis have complicated detailed experimental structural characterization. In this paper, we explore the landscape of possibilities for amyloid protofilament structures that are made up of a single stack of peptides associated in a parallel in-register manner. We view this landscape as a two-dimensional version of the usual three-dimensional protein folding problem: the survey of the two-dimensional folds of protein ribbons. Adopting this view leads to a practical method of predicting stable protofilament structures of arbitrary sequences. We apply this scheme to variants of Aβ, the amyloid forming peptide that is characteristically associated with Alzheimer's disease. Consistent with what is known from experiment, we find that Aβ protofibrils are polymorphic. To our surprise, however, the ribbon-folding landscape of Aβ turned out to be strikingly simple. We confirm that, at the level of the monomeric protofilament, the landscape for the Aβ sequence is reasonably well funneled toward structures that are similar to those that have been determined by experiment. The landscape has more distinct minima than does a typical globular protein landscape but fewer and deeper minima than the landscape of a randomly shuffled sequence having the same overall composition. It is tempting to consider the possibility that the significant degree of funneling of Aβ's ribbon-folding landscape has arisen as a result of natural selection. More likely, however, the intermediate complexity of Aβ's ribbon-folding landscape has come from the post facto selection of the Aβ sequence as an object of study by researchers because only by having a landscape with some degree of funneling can ordered aggregation of such a peptide occur at in vivo concentrations. In addition to predicting polymorph structures, we show that predicted solubilities of polymorphs correlate with experiment and with their elongation free energies computed by coarse-grained molecular dynamics.
Collapse
Affiliation(s)
- Mingchen Chen
- Center for Theoretical Biological Physics , Rice University , Houston , Texas 77005 , United States.,Department of Bioengineering , Rice University , Houston , Texas 77005 , United States
| | - Nicholas P Schafer
- Center for Theoretical Biological Physics , Rice University , Houston , Texas 77005 , United States.,Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | - Peter G Wolynes
- Center for Theoretical Biological Physics , Rice University , Houston , Texas 77005 , United States.,Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| |
Collapse
|
40
|
Bistaffa E, Moda F, Virgilio T, Campagnani I, De Luca CMG, Rossi M, Salzano G, Giaccone G, Tagliavini F, Legname G. Synthetic Prion Selection and Adaptation. Mol Neurobiol 2018; 56:2978-2989. [PMID: 30074230 DOI: 10.1007/s12035-018-1279-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/04/2018] [Accepted: 07/23/2018] [Indexed: 12/31/2022]
Abstract
Prion pathologies are characterized by the conformational conversion of the cellular prion protein (PrPC) into a pathological infectious isoform, known as PrPSc. The latter acquires different abnormal conformations, which are associated with specific pathological phenotypes. Recent evidence suggests that prions adapt their conformation to changes in the context of replication. This phenomenon is known as either prion selection or adaptation, where distinct conformations of PrPSc with higher propensity to propagate in the new environment prevail over the others. Here, we show that a synthetically generated prion isolate, previously subjected to protein misfolding cyclic amplification (PMCA) and then injected in animals, is able to change its biochemical and biophysical properties according to the context of replication. In particular, in second transmission passage in vivo, two different prion isolates were found: one characterized by a predominance of the monoglycosylated band (PrPSc-M) and the other characterized by a predominance of the diglycosylated one (PrPSc-D). Neuropathological, biochemical, and biophysical assays confirmed that these PrPSc possess distinctive characteristics. Finally, PMCA analysis of PrPSc-M and PrPSc-D generated PrPSc (PrPSc-PMCA) whose biophysical properties were different from those of both inocula, suggesting that PMCA selectively amplified a third PrPSc isolate. Taken together, these results indicate that the context of replication plays a pivotal role in either prion selection or adaptation. By exploiting the ability of PMCA to mimic the process of prion replication in vitro, it might be possible to assess how changes in the replication environment influence the phenomenon of prion selection and adaptation.
Collapse
Affiliation(s)
- Edoardo Bistaffa
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
- Unit of Neuropathology and Neurology 5, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Fabio Moda
- Unit of Neuropathology and Neurology 5, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Tommaso Virgilio
- Unit of Neuropathology and Neurology 5, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Ilaria Campagnani
- Unit of Neuropathology and Neurology 5, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Martina Rossi
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Giulia Salzano
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Giorgio Giaccone
- Unit of Neuropathology and Neurology 5, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Fabrizio Tagliavini
- Unit of Neuropathology and Neurology 5, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.
- ELETTRA Laboratory, Sincrotrone Trieste S.C.p.A, Basovizza, Trieste, Italy.
| |
Collapse
|
41
|
Cali I, Mikhail F, Qin K, Gregory C, Solanki A, Martinez MC, Zhao L, Appleby B, Gambetti P, Norstrom E, Mastrianni JA. Impaired transmissibility of atypical prions from genetic CJD G114V. Neurol Genet 2018; 4:e253. [PMID: 30109268 PMCID: PMC6089695 DOI: 10.1212/nxg.0000000000000253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2018] [Accepted: 05/14/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To describe the clinicopathologic, molecular, and transmissible characteristics of genetic prion disease in a young man carrying the PRNP-G114V variant. METHODS We performed genetic, histologic, and molecular studies, combined with in vivo transmission studies and in vitro replication studies, to characterize this genetic prion disease. RESULTS A 24-year-old American man of Polish descent developed progressive dementia, aphasia, and ataxia, leading to his death 5 years later. Histologic features included widespread spongiform degeneration, gliosis, and infrequent PrP plaque-like deposits within the cerebellum and putamen, best classifying this as a Creutzfeldt-Jakob disease (CJD) subtype. Molecular typing of proteinase K-resistant PrP (resPrPSc) revealed a mixture of type 1 (∼21 kDa) and type 2 (∼19 kDa) conformations with only 2, rather than the usual 3, PrPSc glycoforms. Brain homogenates from the proband failed to transmit prion disease to transgenic Tg(HuPrP) mice that overexpress human PrP and are typically susceptible to sporadic and genetic forms of CJD. When subjected to protein misfolding cyclic amplification, the PrPSc type 2 (∼19 kDa) was selectively amplified. CONCLUSIONS The features of genetic CJDG114V suggest that residue 114 within the highly conserved palindromic region (113-AGAAAAGA-120) plays an important role in prion conformation and propagation.
Collapse
Affiliation(s)
- Ignazio Cali
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Fadi Mikhail
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Kefeng Qin
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Crystal Gregory
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Ani Solanki
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Manuel Camacho Martinez
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Lili Zhao
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Brian Appleby
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Pierluigi Gambetti
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Eric Norstrom
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - James A Mastrianni
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| |
Collapse
|
42
|
Katorcha E, Gonzalez-Montalban N, Makarava N, Kovacs GG, Baskakov IV. Prion replication environment defines the fate of prion strain adaptation. PLoS Pathog 2018; 14:e1007093. [PMID: 29928047 PMCID: PMC6013019 DOI: 10.1371/journal.ppat.1007093] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/21/2018] [Accepted: 05/14/2018] [Indexed: 11/18/2022] Open
Abstract
The main risk of emergence of prion diseases in humans is associated with a cross-species transmission of prions of zoonotic origin. Prion transmission between species is regulated by a species barrier. Successful cross-species transmission is often accompanied by strain adaptation and result in stable changes of strain-specific disease phenotype. Amino acid sequences of host PrPC and donor PrPSc as well as strain-specific structure of PrPSc are believed to be the main factors that control species barrier and strain adaptation. Yet, despite our knowledge of the primary structures of mammalian prions, predicting the fate of prion strain adaptation is very difficult if possible at all. The current study asked the question whether changes in cofactor environment affect the fate of prions adaptation. To address this question, hamster strain 263K was propagated under normal or RNA-depleted conditions using serial Protein Misfolding Cyclic Amplification (PMCA) conducted first in mouse and then hamster substrates. We found that 263K propagated under normal conditions in mouse and then hamster substrates induced the disease phenotype similar to the original 263K. Surprisingly, 263K that propagated first in RNA-depleted mouse substrate and then normal hamster substrate produced a new disease phenotype upon serial transmission. Moreover, 263K that propagated in RNA-depleted mouse and then RNA-depleted hamster substrates failed to induce clinical diseases for three serial passages despite a gradual increase of PrPSc in animals. To summarize, depletion of RNA in prion replication reactions changed the rate of strain adaptation and the disease phenotype upon subsequent serial passaging of PMCA-derived materials in animals. The current studies suggest that replication environment plays an important role in determining the fate of prion strain adaptation. The main risk of emergence of prion diseases in humans is associated with a cross-species transmission of prions of zoonotic origin. Prion transmission between species is regulated by a species barrier. Amino acid sequences of host prion protein and donor prions are believed to be the main factors that control species barrier and strain adaptation. Yet, despite our knowledge of the primary structures of mammalian prions, predicting the fate of prion strain adaptation is very difficult. The current study asked the question whether changes in cofactor environment affect the fate of prions adaptation. To address this question, hamster prion strain was propagated under normal or RNA-depleted conditions in vitro first using mouse and then hamster substrates. This work demonstrated that depletion of RNA in prion replication reactions changed the rate of strain adaptation and the disease phenotype upon subsequent serial passaging in animals. The current studies suggest that replication environment plays an important role in determining the fate of prion strain adaptation.
Collapse
Affiliation(s)
- Elizaveta Katorcha
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Nuria Gonzalez-Montalban
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Gabor G. Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
43
|
Fernández-Borges N, Eraña H, Elezgarai SR, Harrathi C, Venegas V, Castilla J. A Quick Method to Evaluate the Effect of the Amino Acid Sequence in the Misfolding Proneness of the Prion Protein. Methods Mol Biol 2018; 1658:205-216. [PMID: 28861792 DOI: 10.1007/978-1-4939-7244-9_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 04/20/2023]
Abstract
Prion diseases or transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative diseases where the misfolding of the prion protein (PrP) is a crucial event. Based on studies in TSE-affected humans and the generation of transgenic mouse models overexpressing different mutated versions of the PrP, we conclude that both wild-type and mutated PrPs exhibit differential propensity to misfold in vivo. Here, we describe a new method in vitro to assess and quantify the PrP misfolding phenomenon in order to better understand the molecular mechanisms involved in this process.
Collapse
Affiliation(s)
| | - Hasier Eraña
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, 48160, Bizkaia, Spain
| | - Saioa R Elezgarai
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, 48160, Bizkaia, Spain
| | - Chafik Harrathi
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, 48160, Bizkaia, Spain
| | - Vanesa Venegas
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, 48160, Bizkaia, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, 48160, Bizkaia, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Bizkaia, Spain.
| |
Collapse
|
44
|
Shah SZA, Zhao D, Hussain T, Sabir N, Yang L. Regulation of MicroRNAs-Mediated Autophagic Flux: A New Regulatory Avenue for Neurodegenerative Diseases With Focus on Prion Diseases. Front Aging Neurosci 2018; 10:139. [PMID: 29867448 PMCID: PMC5962651 DOI: 10.3389/fnagi.2018.00139] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/05/2017] [Accepted: 04/25/2018] [Indexed: 02/06/2023] Open
Abstract
Prion diseases are fatal neurological disorders affecting various mammalian species including humans. Lack of proper diagnostic tools and non-availability of therapeutic remedies are hindering the control strategies for prion diseases. MicroRNAs (miRNAs) are abundant endogenous short non-coding essential RNA molecules that negatively regulate the target genes after transcription. Several biological processes depend on miRNAs, and altered profiles of these miRNAs are potential biomarkers for various neurodegenerative diseases, including prion diseases. Autophagic flux degrades the misfolded prion proteins to reduce chronic endoplasmic reticulum stress and enhance cell survival. Recent evidence suggests that specific miRNAs target and regulate the autophagic mechanism, which is critical for alleviating cellular stress. miRNAs-mediated regulation of these specific proteins involved in the autophagy represents a new target with highly significant therapeutic prospects. Here, we will briefly describe the biology of miRNAs, the use of miRNAs as potential biomarkers with their credibility, the regulatory mechanism of miRNAs in major neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and prion diseases, degradation pathways for aggregated prion proteins, the role of autophagy in prion diseases. Finally, we will discuss the miRNAs-modulated autophagic flux in neurodegenerative diseases and employ them as potential therapeutic intervention strategy in prion diseases.
Collapse
Affiliation(s)
- Syed Zahid Ali Shah
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Tariq Hussain
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Naveed Sabir
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
45
|
Abstract
Transmissible spongiform encephalopathies (TSEs) are fatal neurological disorders caused by prions, which are composed of a misfolded protein (PrPSc) that self-propagates in the brain of infected individuals by converting the normal prion protein (PrPC) into the pathological isoform. Here, we report a novel experimental strategy for preventing prion disease based on producing a self-replicating, but innocuous PrPSc-like form, termed anti-prion, which can compete with the replication of pathogenic prions. Our results show that a prophylactic inoculation of prion-infected animals with an anti-prion delays the onset of the disease and in some animals completely prevents the development of clinical symptoms and brain damage. The data indicate that a single injection of the anti-prion eliminated ~99% of the infectivity associated to pathogenic prions. Furthermore, this treatment caused significant changes in the profile of regional PrPSc deposition in the brains of animals that were treated, but still succumbed to the disease. Our findings provide new insights for a mechanistic understanding of prion replication and support the concept that prion replication can be separated from toxicity, providing a novel target for therapeutic intervention.
Collapse
|
46
|
Cofactors influence the biological properties of infectious recombinant prions. Acta Neuropathol 2018; 135:179-199. [PMID: 29094186 DOI: 10.1007/s00401-017-1782-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2017] [Revised: 10/20/2017] [Accepted: 10/21/2017] [Indexed: 12/23/2022]
Abstract
Prion diseases are caused by a misfolding of the cellular prion protein (PrP) to a pathogenic isoform named PrPSc. Prions exist as strains, which are characterized by specific pathological and biochemical properties likely encoded in the three-dimensional structure of PrPSc. However, whether cofactors determine these different PrPSc conformations and how this relates to their specific biological properties is largely unknown. To understand how different cofactors modulate prion strain generation and selection, Protein Misfolding Cyclic Amplification was used to create a diversity of infectious recombinant prion strains by propagation in the presence of brain homogenate. Brain homogenate is known to contain these mentioned cofactors, whose identity is only partially known, and which facilitate conversion of PrPC to PrPSc. We thus obtained a mix of distinguishable infectious prion strains. Subsequently, we replaced brain homogenate, by different polyanionic cofactors that were able to drive the evolution of mixed prion populations toward specific strains. Thus, our results show that a variety of infectious recombinant prions can be generated in vitro and that their specific type of conformation, i.e., the strain, is dependent on the cofactors available during the propagation process. These observations have significant implications for understanding the pathogenesis of prion diseases and their ability to replicate in different tissues and hosts. Importantly, these considerations might apply to other neurodegenerative diseases for which different conformations of misfolded proteins have been described.
Collapse
|
47
|
Pritzkow S, Morales R, Lyon A, Concha-Marambio L, Urayama A, Soto C. Efficient prion disease transmission through common environmental materials. J Biol Chem 2018; 293:3363-3373. [PMID: 29330304 DOI: 10.1074/jbc.m117.810747] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2017] [Revised: 01/05/2018] [Indexed: 11/06/2022] Open
Abstract
Prion diseases are a group of fatal neurodegenerative diseases associated with a protein-based infectious agent, termed prion. Compelling evidence suggests that natural transmission of prion diseases is mediated by environmental contamination with infectious prions. We hypothesized that several natural and man-made materials, commonly found in the environments of wild and captive animals, can bind prions and may act as vectors for disease transmission. To test our hypothesis, we exposed surfaces composed of various common environmental materials (i.e. wood, rocks, plastic, glass, cement, stainless steel, aluminum, and brass) to hamster-adapted 263K scrapie prions and studied their attachment and retention of infectivity in vitro and in vivo Our results indicated that these surfaces, with the sole exception of brass, efficiently bind, retain, and release prions. Prion replication was studied in vitro using the protein misfolding cyclic amplification technology, and infectivity of surface-bound prions was analyzed by intracerebrally challenging hamsters with contaminated implants. Our results revealed that virtually all prion-contaminated materials transmitted the disease at high rates. To investigate a more natural form of exposure to environmental contamination, we simply housed animals with large contaminated spheres made of the different materials under study. Strikingly, most of the hamsters developed classical clinical signs of prion disease and typical disease-associated brain changes. Our findings suggest that prion contamination of surfaces commonly present in the environment can be a source of disease transmission, thus expanding our understanding of the mechanisms for prion spreading in nature.
Collapse
Affiliation(s)
- Sandra Pritzkow
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas 77030 and
| | - Rodrigo Morales
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas 77030 and
| | - Adam Lyon
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas 77030 and
| | - Luis Concha-Marambio
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas 77030 and.,Universidad de los Andes, Facultad de Medicina, Avenida San Carlos de Apoquindo 2200, Las Condes, Santiago 2, Chile
| | - Akihiko Urayama
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas 77030 and
| | - Claudio Soto
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas 77030 and .,Universidad de los Andes, Facultad de Medicina, Avenida San Carlos de Apoquindo 2200, Las Condes, Santiago 2, Chile
| |
Collapse
|
48
|
Igel-Egalon A, Béringue V, Rezaei H, Sibille P. Prion Strains and Transmission Barrier Phenomena. Pathogens 2018; 7:E5. [PMID: 29301257 PMCID: PMC5874731 DOI: 10.3390/pathogens7010005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/23/2017] [Revised: 12/25/2017] [Accepted: 12/26/2017] [Indexed: 11/30/2022] Open
Abstract
Several experimental evidences show that prions are non-conventional pathogens, which physical support consists only in proteins. This finding raised questions regarding the observed prion strain-to-strain variations and the species barrier that happened to be crossed with dramatic consequences on human health and veterinary policies during the last 3 decades. This review presents a focus on a few advances in the field of prion structure and prion strains characterization: from the historical approaches that allowed the concept of prion strains to emerge, to the last results demonstrating that a prion strain may in fact be a combination of a few quasi species with subtle biophysical specificities. Then, we will focus on the current knowledge on the factors that impact species barrier strength and species barrier crossing. Finally, we present probable scenarios on how the interaction of strain properties with host characteristics may account for differential selection of new conformer variants and eventually species barrier crossing.
Collapse
Affiliation(s)
- Angélique Igel-Egalon
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Vincent Béringue
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Human Rezaei
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Pierre Sibille
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| |
Collapse
|
49
|
Abstract
Protein amplification techniques exploit the ability of PrPTSE to induce a conformational change in prion protein (PrP) in a continuous fashion, so that the small amount of PrPTSE found in tissues and biologic fluids in prion diseases can be amplified to a point where they are detectable by conventional laboratory techniques. The most widely used protein aggregation assays are protein misfolding cyclic amplification assay (PMCA) and real-time quaking-induced conversion (RT-QuIC). These assays have been used extensively in both animal and human prion disease in studies ranging from the development of diagnostics, understanding disease transmission potential, to investigating mechanisms underlying neurodegeneration. In human prion disease, cerebrospinal fluid (CSF) RT-QuIC analysis has been shown to be a highly sensitive and specific test for sporadic Creutzfeldt-Jakob disease (sCJD) and has now been included in the diagnostic criteria. It is also a useful investigation for some genetic forms of prion disease where other cerebrospinal fluid tests may be negative. PMCA shows great potential for the diagnosis of variant CJD (vCJD) and has the ability to distinguish vCJD from sCJD, which may become increasingly important with emergence of a patient with neuropathologically confirmed vCJD associated with PRNP codon129MV, which indicates that a new wave of vCJD cases is likely and that these may be difficult to distinguish from sCJD.
Collapse
Affiliation(s)
- Alison J E Green
- National CJD Research and Surveillance Unit, University of Edinburgh, Edinburgh, United Kingdom.
| | - Gianluigi Zanusso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
50
|
Abstract
Bovine spongiform encephalopathy (BSE) is the only animal prion disease that has been demonstrated to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans. The link between BSE and vCJD was established by careful surveillance, epidemiologic investigations, and experimental studies using in vivo and in vitro models of cross-species transmission. Similar approaches have been used to assess the zoonotic potential of other animal prion diseases, including atypical forms identified through active surveillance. There is no epidemiologic evidence that classical or atypical scrapie, atypical forms of BSE, or chronic wasting disease (CWD) is associated with human prion disease, but the limitations of the epidemiologic data should be taken into account when interpreting these results. Transmission experiments in nonhuman primates and human PrP transgenic mice suggest that classic scrapie, L-type atypical BSE (L-BSE), and CWD may have zoonotic potential, which for L-BSE appears to be equal to or greater than that of classic BSE. The results of in vitro conversion assays to analyze the human transmission barrier correlate well with the in vivo data. However, it is still difficult to predict the likelihood that an animal prion disease will transmit to humans under conditions of field exposure from the results of in vivo or in vitro experiments. This emphasizes the importance of continuing systematic surveillance for both human and animal prion diseases in identifying zoonotic transmission of diseases other than classic BSE.
Collapse
Affiliation(s)
- Fiona Houston
- Neurobiology Division, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, United Kingdom.
| | | |
Collapse
|