1
|
Comazzetto S, Cassidy DL, DeVilbiss AW, Jeffery EC, Ottesen BR, Reyes AR, Paul A, Bansal S, Xie SZ, Muh S, Mathews TP, Chen B, Zhao Z, Morrison SJ. Ascorbate deficiency increases quiescence and self-renewal in hematopoietic stem cells and multipotent progenitors. Blood 2025; 145:114-126. [PMID: 39437548 PMCID: PMC11738029 DOI: 10.1182/blood.2024024769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/07/2024] [Accepted: 09/07/2024] [Indexed: 10/25/2024] Open
Abstract
ABSTRACT Ascorbate (vitamin C) limits hematopoietic stem cell (HSC) function and suppresses leukemia development, partly by promoting the function of the Tet2 tumor suppressor. In humans, ascorbate is obtained from the diet, whereas in mice, it is synthesized in the liver. In this study, we show that deletion of the Slc23a2 ascorbate transporter from hematopoietic cells depleted ascorbate to undetectable levels in HSCs and multipotent hematopoietic progenitors (MPPs) without altering the plasma ascorbate levels. Slc23a2 deficiency increased HSC reconstituting potential and self-renewal potential upon transplantation into irradiated mice. Slc23a2 deficiency also increased the reconstituting and self-renewal potentials of MPPs, conferring the ability to reconstitute irradiated mice long term. Slc23a2-deficient HSCs and MPPs divided much less frequently than control HSCs and MPPs. Increased self-renewal and reconstituting potential were observed particularly in quiescent Slc23a2-deficient HSCs and MPPs. The effect of Slc23a2 deficiency on MPP self-renewal was not mediated by reduced Tet2 function. Ascorbate thus regulates quiescence and restricts self-renewal potential in HSCs and MPPs such that ascorbate deficiency confers MPPs with long-term self-renewal potential.
Collapse
Affiliation(s)
- Stefano Comazzetto
- Department of Pediatrics, Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Daniel L. Cassidy
- Department of Pediatrics, Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Andrew W. DeVilbiss
- Department of Pediatrics, Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Elise C. Jeffery
- Department of Pediatrics, Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Bethany R. Ottesen
- Department of Pediatrics, Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Amanda R. Reyes
- Department of Pediatrics, Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Animesh Paul
- Department of Pediatrics, Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Suraj Bansal
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Stephanie Z. Xie
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sarah Muh
- Department of Pediatrics, Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Thomas P. Mathews
- Department of Pediatrics, Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Brandon Chen
- Department of Pediatrics, Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zhiyu Zhao
- Department of Pediatrics, Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Sean J. Morrison
- Department of Pediatrics, Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
2
|
Xu H, Zhang J, Zhang H, Yang M, Zhang W, Wang W, Wang C, Zhang Y, Jiao Z, Gao Y, Li Y. The inhibitory impact of various total body irradiation doses on the hematopoietic system of mice. BLOOD SCIENCE 2025; 7:e00214. [PMID: 39717661 PMCID: PMC11666143 DOI: 10.1097/bs9.0000000000000214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/13/2024] [Indexed: 12/25/2024] Open
Abstract
Irradiation with X-rays has been widely utilized in the clinical treatment of solid tumors and certain hematopoietic malignancies. However, this method fails to completely distinguish between malignant and normal cells. Prolonged or repeated exposure to radiation, whether due to occupational hazards or therapeutical interventions, can cause damage to normal tissues, particularly impacting the hematopoietic system. Therefore, it is important to investigate the effects of total body irradiation on the hematopoietic system of mice and to compare the inhibitory effects of various doses of irradiation on this system. In this study, we primarily employed flow cytometry to analyze mature lineage cells in the peripheral blood, as well as immature hematopoietic stem and progenitor cells (HSPCs) in the bone marrow and spleen. Additionally, we evaluated the multilineage differentiation capacity of HSPCs through colony-forming cell assays. Our results indicated that peripheral B and T cells demonstrated increased sensitivity to irradiation, with significant cell death observed 1-day post-irradiation. Common lymphoid progenitor cells exhibited greater radiotolerance compared to other progenitor cell types, enabling them to maintain a certain population even at elevated doses. Moreover, notable differences were observed between intramedullary and extramedullary hematopoietic stem cells and common lymphoid progenitor cells regarding the extent of damage and recovery rate following irradiation. The multilineage differentiation capacity of HSPCs was also compromised during radiation exposure. In conclusion, different types of mature blood cells, along with immature HSPCs, exhibited varying degrees of sensitivity and tolerance to irradiation, resulting in distinct alterations in cell percentages and numbers.
Collapse
Affiliation(s)
- Hui Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Jinwang Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Hexiao Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Ming Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Wenshan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Wei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Chaoqun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yiran Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Zhongxiang Jiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yingdai Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yinghui Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
3
|
Niazi V, Ghafouri-Fard S. Effect of bone marrow niche on hematopoietic stem cells. Histochem Cell Biol 2024; 163:19. [PMID: 39714560 DOI: 10.1007/s00418-024-02348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2024] [Indexed: 12/24/2024]
Abstract
Hematopoietic stem cells (HSCs) reside in a milieu that supports their functions, differentiation, and survival. This niche consists of several types of cells, including mesenchymal stem/stromal cells, endothelial cells, osteoblasts, megakaryocytes, macrophages, adipocytes, lymphoid cells, and nerve fibers. The interactions between these cells and HSCs have a role in HSC fate. Several studies have focused on identification of the biological and cellular mechanisms contributing to the establishment of this niche. However, the exact mechanisms of the interaction between HSCs and the bone marrow niche have not been elucidated yet. Unraveling these mechanisms would help in the design of effective methods for maintenance and multiplication of HSCs in clinical settings, in addition to establishment of novel therapies for hematopoietic diseases. The current review summarizes the effects of the niche cells on HSC function and underlying mechanisms of interplay between HSCs and their niche.
Collapse
Affiliation(s)
- Vahid Niazi
- Stem Cell Research Center, Golestan University of Medical Science, Gorgan, Iran
- School of Advanced Technologies in Medicine, Golestan University of Medical Science, Gorgan, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Ruffinatto L, Groult Y, Iacono J, Sarrazin S, de Laval B. Hematopoietic stem cell a reservoir of innate immune memory. Front Immunol 2024; 15:1491729. [PMID: 39720722 PMCID: PMC11666435 DOI: 10.3389/fimmu.2024.1491729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/30/2024] [Indexed: 12/26/2024] Open
Abstract
Hematopoietic stem cells (HSCs) are a rare, long-lived and multipotent population that give rise to majority of blood cells and some tissue-resident immune cells. There is growing evidence that inflammatory stimuli can trigger persistent reprogramming in HSCs that enhances or inhibits the cellular functions of these HSCs and their progeny in response to subsequent infections. This newly discovered property makes HSCs a reservoir for innate immune memory. The molecular mechanisms underlying innate immune memory in HSCs are similar to those observed in innate immune cells, although their full elucidation is still pending. In this review, we examine the current state of knowledge on how an inflammatory response leads to reprogramming of HSCs. Understanding the full spectrum of consequences of reshaping early hematopoiesis is critical for assessing the potential benefits and risks under physiological and pathological conditions.
Collapse
Affiliation(s)
| | | | | | | | - Bérengère de Laval
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut
National de la Santé et de la Recherche Médicale (INSERM), Centre d’Immunologie de Marseille-Luminy (CIML), Marseille, France
| |
Collapse
|
5
|
Liu S, Adams SE, Zheng H, Ehnot J, Jung SK, Jeffrey G, Menna T, Purton L, Lee H, Kurre P. Dynamic tracking of native precursors in adult mice. eLife 2024; 13:RP97504. [PMID: 39636670 PMCID: PMC11620740 DOI: 10.7554/elife.97504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Hematopoietic dysfunction has been associated with a reduction in the number of active precursors. However, precursor quantification at homeostasis and under diseased conditions is constrained by the scarcity of available methods. To address this issue, we optimized a method for quantifying a wide range of hematopoietic precursors. Assuming the random induction of a stable label in precursors following a binomial distribution, estimates depend on the inverse correlation between precursor numbers and the variance of precursor labeling among independent samples. Experimentally validated to cover the full dynamic range of hematopoietic precursors in mice (1-105), we utilized this approach to demonstrate that thousands of precursors, which emerge after modest expansion during fetal-to-adult transition, contribute to native and perturbed hematopoiesis. We further estimated the number of precursors in a mouse model of Fanconi Anemia, showcasing how repopulation deficits can be classified as autologous (cell proliferation) and non-autologous (lack of precursor). Our results support an accessible and reliable approach for precursor quantification, emphasizing the contemporary perspective that native hematopoiesis is highly polyclonal.
Collapse
Affiliation(s)
- Suying Liu
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Sarah E Adams
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Haotian Zheng
- Department of Biostatistics, Epidemiology and Informatics, University of PennsylvaniaPhiladelphiaUnited States
| | - Juliana Ehnot
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Seul K Jung
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Greer Jeffrey
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Theresa Menna
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Louise Purton
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical ResearchFitzroyAustralia
- Department of Medicine, The University of MelbourneParkvilleAustralia
| | - Hongzhe Lee
- Department of Biostatistics, Epidemiology and Informatics, University of PennsylvaniaPhiladelphiaUnited States
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
6
|
Johnson RM, Galicia KE, Wang H, Gonzalez R, Choudhry M, Kubasiak JC. BURN INJURY RESULTS IN MYELOID PRIMING DURING EMERGENCY HEMATOPOIESIS. Shock 2024; 62:783-789. [PMID: 39186762 DOI: 10.1097/shk.0000000000002458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
ABSTRACT Introduction: Hematopoiesis proceeds in a tiered pattern of differentiation, beginning with hematopoietic stem cells (HSC) and culminating in erythroid, myeloid, and lymphoid lineages. Pathologically altered lineage commitment can result in inadequate leukocyte production or dysfunctional cell lines. Drivers of emergency hematopoiesis after burn injury are inadequately defined. Burn injury induces a myeloid predominance associated with infection that worsens outcomes. This study aims to further profile bone marrow HSCs following burn injury in a murine model. Methods: C57BL/6 mice received burn or sham injury with ~12% total body surface area scald burn on the dorsal surface with subsequent sacrifice at 1, 2, 3, 7, and 10 days postinjury. Bone marrow from hindlimbs was analyzed for HSC populations via flow cytometry and analyzed using FlowJo Software (version 10.6). Event counts and frequencies were analyzed with multiple unpaired t tests and linear mixed-effect regression. Real-time polymerase chain reaction performed on isolated lineage-negative bone marrow cell RNA targeted PU.1, GATA-1, and GATA-3 with subsequent analysis conducted with QuantStudio 3 software. Statistical analysis and representation were performed on GraphPad software (Prism). Results: Flow cytometry revealed significantly elevated proportions of long-term HSCs at 3 days post-injury ( P < 0.05) and short-term HSCs at days 2, 3, and 10 (all P < 0.05) in burn-injured mice. There was a sustained, but not significant, increase in proportions in the multipotent progenitor (MPP) 2 and 3 subpopulations in the burn cohort compared to sham controls. The common myeloid progenitor (CMP) proportion was significantly higher on days 3 and 10 (both P < 0.01), whereas the granulocyte-macrophage progenitor (GMP) proportion increased on days 1, 2, and 10 ( P < 0.05, P < 0.01, P < 0.01, respectively). Although the megakaryocyte-erythrocyte progenitor (MEP) proportion appeared consistently lower in the burn cohort, this did not reach significance. mRNA analysis resulted in a downregulation of PU.1 on day 1 ( P = 0.0002) with an upregulation by day 7 ( P < 0.01). GATA-1 downregulation occurred by day 7 ( P < 0.05), and GATA3 showed downregulation on days 3 and 7 ( P < 0.05). Discussion: Full-thickness burn results in an emergency hematopoiesis via proportional increase of long-term HSC and short-term HSC/MPP1 subpopulations beginning in the early postinjury period. Subsequent lineage commitment displays a myeloid predominance with a shift toward myeloid progenitors with mRNA analysis corroborating this finding with associated upregulation of PU.1 and downregulation of GATA-1 and GATA-3. Further studies are needed to understand how burn-induced emergency hematopoiesis may predispose to infection by pathologic lineage selection.
Collapse
Affiliation(s)
| | | | - Huashan Wang
- Burn and Shock Trauma Research Institute, Loyola University Chicago, Maywood, Illinois
| | | | - Mashkoor Choudhry
- Burn and Shock Trauma Research Institute, Loyola University Chicago, Maywood, Illinois
| | | |
Collapse
|
7
|
Wirth F, Zoeller C, Lubosch A, Schroeder-Braunstein J, Wabnitz G, Nakchbandi IA. Insights into the metastatic bone marrow niche gained from fibronectin and β1 integrin transgenic mice. Neoplasia 2024; 58:101058. [PMID: 39413671 PMCID: PMC11530925 DOI: 10.1016/j.neo.2024.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 10/18/2024]
Abstract
Tumor cells can migrate from a primary cancer and form metastases by localizing to niches within other organs including the bone marrow, where tumor cells may exploit the hematopoietic stem cell niche. The precise composition of the premetastatic and the hematopoietic niches and the degree of overlap between them remain elusive. Because the extracellular matrix protein fibronectin is expressed in the pre-metastatic lung microenvironment, we evaluated the implications of its loss, as well as those of loss of its primary receptor subunit, β1 integrin, in various bone marrow cell types both in breast cancer bone metastasis and hematopoiesis. Using eight transgenic mouse models, we established that fibronectin production by osterix-expressing marrow cells, or β1 integrin expression (on vav, mx, or leptin receptor expressing cells), affects MDA-MB-231 breast cancer cell numbers in the bone marrow. Additionally, we identified stromal subpopulations that modulate transmigration through blood vessel walls. Not the number of tumor cells, but rather the changes in the microenvironment dictated whether the tumor progresses. Furthermore, hematopoiesis, particularly myelopoiesis, was affected in some of the models showing changes in tumor homing. In conclusion, there is partial overlap between the pre-metastatic and the hematopoietic niches in the bone marrow. Moreover, we have delineated a cascade starting with fibronectin secreted by pre-osteoblastic cells, which potentially acts on β1 integrin in specific stromal cell subsets, thereby inhibiting the formation of new breast cancer lesions in the bone marrow. This work therefore sheds light on the role of various stromal cell subpopulations that influence tumor behavior and affect hematopoiesis.
Collapse
Affiliation(s)
- Franziska Wirth
- Institute of Immunology, Heidelberg University, 69120, Heidelberg, Germany
| | - Caren Zoeller
- Institute of Immunology, Heidelberg University, 69120, Heidelberg, Germany
| | - Alexander Lubosch
- Institute of Immunology, Heidelberg University, 69120, Heidelberg, Germany
| | | | - Guido Wabnitz
- Institute of Immunology, Heidelberg University, 69120, Heidelberg, Germany
| | - Inaam A Nakchbandi
- Institute of Immunology, Heidelberg University, 69120, Heidelberg, Germany; Max-Planck Institute for Biochemistry, 82152, Martinsried, Germany; Max-Planck Institute for Medical Research, 69120, Heidelberg, Germany.
| |
Collapse
|
8
|
Della Volpe L, Midena F, Vacca R, Tavella T, Alessandrini L, Farina G, Brandas C, Lo Furno E, Giannetti K, Carsana E, Naldini MM, Barcella M, Ferrari S, Beretta S, Santoro A, Porcellini S, Varesi A, Gilioli D, Conti A, Merelli I, Gentner B, Villa A, Naldini L, Di Micco R. A p38 MAPK-ROS axis fuels proliferation stress and DNA damage during CRISPR-Cas9 gene editing in hematopoietic stem and progenitor cells. Cell Rep Med 2024; 5:101823. [PMID: 39536752 PMCID: PMC11604517 DOI: 10.1016/j.xcrm.2024.101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/26/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Ex vivo activation is a prerequisite to reaching adequate levels of gene editing by homology-directed repair (HDR) for hematopoietic stem and progenitor cell (HSPC)-based clinical applications. Here, we show that shortening culture time mitigates the p53-mediated DNA damage response to CRISPR-Cas9-induced DNA double-strand breaks, enhancing the reconstitution capacity of edited HSPCs. However, this results in lower HDR efficiency, rendering ex vivo culture necessary yet detrimental. Mechanistically, ex vivo activation triggers a multi-step process initiated by p38 mitogen-activated protein kinase (MAPK) phosphorylation, which generates mitogenic reactive oxygen species (ROS), promoting fast cell-cycle progression and subsequent proliferation-induced DNA damage. Thus, p38 inhibition before gene editing delays G1/S transition and expands transcriptionally defined HSCs, ultimately endowing edited cells with superior multi-lineage differentiation, persistence throughout serial transplantation, enhanced polyclonal repertoire, and better-preserved genome integrity. Our data identify proliferative stress as a driver of HSPC dysfunction with fundamental implications for designing more effective and safer gene correction strategies for clinical applications.
Collapse
Affiliation(s)
- Lucrezia Della Volpe
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Federico Midena
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Roberta Vacca
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Teresa Tavella
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Alessandrini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Giacomo Farina
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; University of Milan-Bicocca, 20126 Milan, Italy
| | - Chiara Brandas
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Elena Lo Furno
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Kety Giannetti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Edoardo Carsana
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Matteo M Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Matteo Barcella
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Antonella Santoro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Simona Porcellini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Angelica Varesi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Diego Gilioli
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Anastasia Conti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ivan Merelli
- National Research Council, Institute for Biomedical Technologies, 20054 Segrate, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1066 Lausanne, Switzerland
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; National Research Council, Institute for Biomedical Technologies, 20054 Segrate, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; University School of Advanced Studies IUSS, 27100 Pavia, Italy.
| |
Collapse
|
9
|
Kim MJ. Tracing Quiescent Cancer Cells In Vivo. Cancers (Basel) 2024; 16:3822. [PMID: 39594777 PMCID: PMC11593267 DOI: 10.3390/cancers16223822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
QCCs have long gained significant interest as potential "seeds" for recurrent cancers. Clinical evidence suggests that a subset of cancer cells exits the cell cycle and enters a quiescent state following anti-cancer treatment. These microscopic-residual QCCs are extremely challenging to trace and detect within patients. Additionally, QCCs resist conventional anti-cancer therapies due to the lack of cell activity. Notably, upon the unknown environmental cues in unknown time points, sometimes decades later, QCCs can reactivate, triggering cancer relapse at primary or secondary sites. Currently, no targeted therapies or diagnostic tools exist for QCCs, and their molecular regulatory mechanisms remain largely unknown. The major challenge in understanding QCCs lies in the limited availability of human-relevant pre-clinical models that trace and collect QCCs in vivo. This review provides an overview of existing QCC tracing systems and analyzes their limitations. It also cautiously proposes potential improvements for tracing QCCs in vivo based on recent advancements in QCC studies and lineage-tracing techniques. Developing human-relevant and easily accessible in vivo tracing systems will be a crucial step in advancing QCC diagnostics and therapeutic strategies.
Collapse
Affiliation(s)
- Moon Jong Kim
- Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Health Science and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Incheon 21999, Republic of Korea
| |
Collapse
|
10
|
Mills TS, Kain B, Burchill MA, Danis E, Lucas ED, Culp-Hill R, Cowan CM, Schleicher WE, Patel SB, Tran BT, Cao R, Goodspeed A, Ferrara S, Bevers S, Jirón Tamburini BA, Roede JR, D'Alessandro A, King KY, Pietras EM. A distinct metabolic and epigenetic state drives trained immunity in HSC-derived macrophages from autoimmune mice. Cell Stem Cell 2024; 31:1630-1649.e8. [PMID: 39413777 PMCID: PMC11560650 DOI: 10.1016/j.stem.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/18/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
Here, we investigate the contribution of long-term hematopoietic stem cells (HSCsLT) to trained immunity (TI) in the setting of chronic autoimmune disease. Using a mouse model of systemic lupus erythematosus (SLE), we show that bone marrow-derived macrophages (BMDMs) from autoimmune mice exhibit hallmark features of TI, including increased Mycobacterium avium killing and inflammatory cytokine production, which are mechanistically linked to increased glycolytic metabolism. We show that HSCs from autoimmune mice constitute a transplantable, long-term reservoir for macrophages that exhibit the functional properties of TI. However, these BMDMs exhibit reduced glycolytic activity and chromatin accessibility at metabolic genes while retaining elevated expression of TI-associated transcriptional regulators. Hence, HSC exposed to autoimmune inflammation can give rise to macrophages in which the functional and metabolic properties of TI are decoupled. Our data support a model in which TI is characterized by a spectrum of molecular and metabolic states driving augmented immune function.
Collapse
Affiliation(s)
- Taylor S Mills
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Immunology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bailee Kain
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matt A Burchill
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Etienne Danis
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Erin D Lucas
- Immunology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Courtney M Cowan
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Immunology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Wolfgang E Schleicher
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sweta B Patel
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brandon T Tran
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruoqiong Cao
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrew Goodspeed
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarah Ferrara
- University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Shaun Bevers
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Beth A Jirón Tamburini
- Immunology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katherine Y King
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric M Pietras
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
11
|
Kemna K, van der Burg M, Lankester A, Giera M. Hematopoietic stem cell metabolism within the bone marrow niche - insights and opportunities. Bioessays 2024:e2400154. [PMID: 39506498 DOI: 10.1002/bies.202400154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Hematopoiesis unfolds within the bone marrow niche where hematopoietic stem cells (HSCs) play a central role in continually replenishing blood cells. The hypoxic bone marrow environment imparts peculiar metabolic characteristics to hematopoietic processes. Here, we discuss the internal metabolism of HSCs and describe external influences exerted on HSC metabolism by the bone marrow niche environment. Importantly, we suggest that the metabolic environment and metabolic cues are intertwined with HSC cell fate, and are crucial for hematopoietic processes. Metabolic dysregulation within the bone marrow niche during acute stress, inflammation, and chronic inflammatory conditions can lead to reduced HSC vitality. Additionally, we raise questions regarding metabolic stresses imposed on HSCs during implementation of stem cell protocols such as allo-SCT and gene therapy, and the potential ramifications. Enhancing our comprehension of metabolic influences on HSCs will expand our understanding of pathophysiology in the bone marrow and improve the application of stem cell therapies.
Collapse
Affiliation(s)
- Koen Kemna
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Arjan Lankester
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
12
|
Lu Z, Chen D, Zhang N, Zheng Z, Zhou Z, Liu G, An J, Wang Y, Su Y, Chen W, Wang F. Transient HR enhancement by RAD51-stimulatory compound confers protection on intestinal rather than hematopoietic tissue against irradiation in mice. DNA Repair (Amst) 2024; 144:103781. [PMID: 39520854 DOI: 10.1016/j.dnarep.2024.103781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/13/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
DNA double-strand breaks (DSBs) are cytotoxic lesions that compromise genomic integrity and trigger cell death. Homologous recombination (HR) is a major pathway for repairing DSBs in cycling cells. However, it remains unclear whether transient modulation of HR could confer protection to adult stem cells against lethal irradiation exposure. In this study, we investigated the radio-protective effect of the RAD51-stimulatory compound RS-1 on adult stem cells and progenitor cells with varying cycling rates in intestinal and hematopoietic tissues. Treatment with RS-1 even at high doses did not induce noticeable cell death or proliferation of intestinal crypt cells in vivo. Pretreatment with RS-1 before irradiation significantly decreased mitotic death, promoted DNA repair and enhanced the survival of intestinal stem cells and progenitor cells and increased the number of regenerative crypt colonies thereby mitigating IR-induced gastrointestinal syndrome. Moreover, RS-1 pretreatment could increase the survival and regeneration of irradiated intestinal organoids in vitro, which can be rescued by RAD51 inhibitor. However, pretreatment with RS-1 in vivo did not elevate nucleated cell count or HSPCs in bone marrow after 6 Gy irradiation. Additionally, there was no impact on mouse survival due to drug treatment observed. Thus, our data suggest that targeting HR as a strategy to prevent tissue damage from acute irradiation exposure may depend on cell cycling rates and intrinsic DNA repair mechanisms.
Collapse
Affiliation(s)
- Zhiyu Lu
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital) to Army Medical University (Third Military Medical University), Chongqing, 400038, China; State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Dong Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ning Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhiyuan Zheng
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zimo Zhou
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Guochen Liu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jiawei An
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yong Wang
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yongping Su
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wensheng Chen
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital) to Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Fengchao Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
13
|
Kushinsky S, Puccetti MV, Adams CM, Shkundina I, James N, Mahon BM, Michener P, Eischen CM. DNA fork remodeling proteins, Zranb3 and Smarcal1, are uniquely essential for aging hematopoiesis. Aging Cell 2024; 23:e14281. [PMID: 39044358 PMCID: PMC11561652 DOI: 10.1111/acel.14281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/25/2024] Open
Abstract
Over a lifetime, hematopoietic stem and progenitor cells (HSPCs) are forced to repeatedly proliferate to maintain hematopoiesis, increasing their susceptibility to DNA damaging replication stress. However, the proteins that mitigate this stress, protect HSPC replication, and prevent aging-driven dysregulation are unknown. We report two evolutionarily conserved, ubiquitously expressed chromatin remodeling enzymes with similar DNA replication fork reversal biochemical functions, Zranb3 and Smarcal1, have surprisingly specialized roles in distinct HSPC populations. While both proteins actively mitigate replication stress and prevent DNA damage and breaks during lifelong hematopoiesis, the loss of either resulted in distinct biochemical and biological consequences. Notably, defective long-term HSC function, revealed with bone marrow transplantation, caused hematopoiesis abnormalities in young mice lacking Zranb3. Aging significantly worsened these hematopoiesis defects in Zranb3-deficient mice, including accelerating the onset of myeloid-biased hematopoietic dysregulation to early in life. Such Zranb3-deficient HSPC abnormalities with age were driven by accumulated DNA damage and replication stress. Conversely, Smarcal1 loss primarily negatively affected progenitor cell functions that were exacerbated with aging, resulting in a lymphoid bias. Simultaneous loss of both Zranb3 and Smarcal1 compounded HSPC defects. Additionally, HSPC DNA replication fork dynamics had unanticipated HSPC type and age plasticity that depended on the stress and Zranb3 and/or Smarcal1. Our data reveal both Zranb3 and Smarcal1 have essential HSPC cell intrinsic functions in lifelong hematopoiesis that protect HSPCs from replication stress and DNA damage in unexpected, unique ways.
Collapse
Affiliation(s)
- Saul Kushinsky
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Matthew V. Puccetti
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Department of NeurologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Clare M. Adams
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Irina Shkundina
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Nikkole James
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Brittany M. Mahon
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Peter Michener
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Christine M. Eischen
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
14
|
Gulino ME, Ordóñez-Morán P, Mahida YR. Establishment of a 3D organoid culture model for the investigation of adult slow-cycling putative intestinal stem cells. Histochem Cell Biol 2024; 162:351-362. [PMID: 39073425 DOI: 10.1007/s00418-024-02312-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
The study of intestinal stem cells is a prerequisite for the development of therapies aimed at regenerating the gut. To enable investigation of adult slow-cycling H2B-GFP-retaining putative small intestinal (SI) stem cells in vitro, we have developed a three-dimensional (3D) SI organoid culture model based on the Tet-Op histone 2 B (H2B)-green fluorescent protein (GFP) fusion protein (Tet-Op-H2B-GFP) transgenic mouse. SI crypts were isolated from 6- to 12-week-old Tet-Op-H2B-GFP transgenic mice and cultured with appropriate growth factors and an animal-derived matrix (Matrigel). For in vitro transgene expression, doxycycline was added to the culture medium for 24 h. By pulse-chase experiments, H2B-GFP expression and retention were assessed through direct GFP fluorescence observations, both by confocal and fluorescence microscopy and by immunohistochemistry. The percentages of H2B-GFP-retaining putative SI stem cells and H2B-GFP-retaining Paneth cells persisting in organoids were determined by scoring relevant GFP-positive cells. Our results indicate that 24 h exposure to doxycycline (pulse) induced ubiquitous expression of H2B-GFP in the SI organoids. During subsequent culture, in the absence of doxycycline (chase), there was a gradual loss (due to cell division) of H2B-GFP. At 6-day chase, slow-cycling H2B-GFP-retaining putative SI stem cells and H2B-GFP-retaining Paneth cells were detected in the SI organoids. The developed culture model allows detection of slow-cycling H2B-GFP-retaining putative SI stem cells and will enable the study of self-renewal and regeneration for further characterization of these cells.
Collapse
Affiliation(s)
- Maria Eugenia Gulino
- Translational Medical Sciences, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK.
| | - Paloma Ordóñez-Morán
- Translational Medical Sciences Unit, School of Medicine, Centre for Cancer Sciences, Biodiscovery Institute-3, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Yashwant R Mahida
- Translational Medical Sciences, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| |
Collapse
|
15
|
Popravko A, Mackintosh L, Dzierzak E. A life-time of hematopoietic cell function: ascent, stability, and decline. FEBS Lett 2024; 598:2755-2764. [PMID: 38439688 PMCID: PMC11586595 DOI: 10.1002/1873-3468.14843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
Aging is a set of complex processes that occur temporally and continuously. It is generally a unidirectional progression of cellular and molecular changes occurring during the life stages of cells, tissues and ultimately the whole organism. In vertebrate organisms, this begins at conception from the first steps in blastocyst formation, gastrulation, germ layer differentiation, and organogenesis to a continuum of embryonic, fetal, adolescent, adult, and geriatric stages. Tales of the "fountain of youth" and songs of being "forever young" are dominant ideas informing us that growing old is something science should strive to counteract. Here, we discuss the normal life stages of the blood system, particularly the historical recognition of its importance in the early growth stages of vertebrates, and what this means with respect to progressive gain and loss of hematopoietic function in the adult.
Collapse
Affiliation(s)
- Anna Popravko
- Institute for Regeneration and RepairUniversity of EdinburghUK
| | | | - Elaine Dzierzak
- Institute for Regeneration and RepairUniversity of EdinburghUK
| |
Collapse
|
16
|
Wang N, Yang S, Li Y, Gou F, Lv Y, Zhao X, Wang Y, Xu C, Zhou B, Dong F, Ju Z, Cheng T, Cheng H. p21/Zbtb18 repress the expression of cKit to regulate the self-renewal of hematopoietic stem cells. Protein Cell 2024; 15:840-857. [PMID: 38721703 PMCID: PMC11528518 DOI: 10.1093/procel/pwae022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/01/2024] [Indexed: 11/03/2024] Open
Abstract
The maintenance of hematopoietic stem cells (HSCs) is a complex process involving numerous cell-extrinsic and -intrinsic regulators. The first member of the cyclin-dependent kinase family of inhibitors to be identified, p21, has been reported to perform a wide range of critical biological functions, including cell cycle regulation, transcription, differentiation, and so on. Given the previous inconsistent results regarding the functions of p21 in HSCs in a p21-knockout mouse model, we employed p21-tdTomato (tdT) mice to further elucidate its role in HSCs during homeostasis. The results showed that p21-tdT+ HSCs exhibited increased self-renewal capacity compared to p21-tdT- HSCs. Zbtb18, a transcriptional repressor, was upregulated in p21-tdT+ HSCs, and its knockdown significantly impaired the reconstitution capability of HSCs. Furthermore, p21 interacted with ZBTB18 to co-repress the expression of cKit in HSCs and thus regulated the self-renewal of HSCs. Our data provide novel insights into the physiological role and mechanisms of p21 in HSCs during homeostasis independent of its conventional role as a cell cycle inhibitor.
Collapse
Affiliation(s)
- Nini Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Shangda Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Yu Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Fanglin Gou
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300270, China
| | - Yanling Lv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Xiangnan Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Yifei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Chang Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Bin Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Fang Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| |
Collapse
|
17
|
Rondeau V, Kalogeraki M, Roland L, Nader ZA, Gourhand V, Bonaud A, Lemos J, Khamyath M, Moulin C, Schell B, Delord M, Bidaut G, Lecourt S, Freitas C, Anginot A, Mazure N, McDermott DH, Parietti V, Setterblad N, Dulphy N, Bachelerie F, Aurrand-Lions M, Stockholm D, Lobry C, Murphy PM, Espéli M, Mancini SJC, Balabanian K. CXCR4 signaling determines the fate of hematopoietic multipotent progenitors by stimulating mTOR activity and mitochondrial metabolism. Sci Signal 2024; 17:eadl5100. [PMID: 39471249 DOI: 10.1126/scisignal.adl5100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/23/2024] [Accepted: 09/30/2024] [Indexed: 11/01/2024]
Abstract
Both cell-intrinsic and niche-derived, cell-extrinsic cues drive the specification of hematopoietic multipotent progenitors (MPPs) in the bone marrow, which comprise multipotent MPP1 cells and lineage-restricted MPP2, MPP3, and MPP4 subsets. Patients with WHIM syndrome, a rare congenital immunodeficiency caused by mutations that prevent desensitization of the chemokine receptor CXCR4, have an excess of myeloid cells in the bone marrow. Here, we investigated the effects of increased CXCR4 signaling on the localization and fate of MPPs. Knock-in mice bearing a WHIM syndrome-associated CXCR4 mutation (CXCR41013) phenocopied the myeloid skewing of bone marrow in patients. Whereas MPP4 cells in wild-type mice differentiated into lymphoid cells, MPP4s in CXCR41013 knock-in mice differentiated into myeloid cells. This myeloid rewiring of MPP4s in CXCR41013 knock-in mice was associated with enhanced signaling mediated by the kinase mTOR and increased oxidative phosphorylation (OXPHOS). MPP4s also localized further from arterioles in the bone marrow of knock-in mice compared with wild-type mice, suggesting that the loss of extrinsic cues from the perivascular niche may also contribute to their myeloid skewing. Chronic treatment with the CXCR4 antagonist AMD3100 or the mTOR inhibitor rapamycin restored the lymphoid potential of MPP4s in knock-in mice. Thus, CXCR4 desensitization drives the lymphoid potential of MPP4 cells by dampening the mTOR-dependent metabolic changes that promote myeloid differentiation.
Collapse
Affiliation(s)
- Vincent Rondeau
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Maria Kalogeraki
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Lilian Roland
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Zeina Abou Nader
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Vanessa Gourhand
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Amélie Bonaud
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Julia Lemos
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Mélanie Khamyath
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Clémentine Moulin
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Bérénice Schell
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Marc Delord
- Direction à la Recherche Clinique et à l'Innovation, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Ghislain Bidaut
- Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Séverine Lecourt
- INSERM U1279, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Christelle Freitas
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Adrienne Anginot
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Nathalie Mazure
- Centre Méditerranéen de Médecine Moléculaire, INSERM U1065, Nice, France
| | - David H McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Véronique Parietti
- Université Paris Cité, UMS Saint-Louis INSERM U53/UAR2030, Paris, France
| | - Niclas Setterblad
- Université Paris Cité, UMS Saint-Louis INSERM U53/UAR2030, Paris, France
| | - Nicolas Dulphy
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Françoise Bachelerie
- Université Paris-Saclay, INSERM, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | - Michel Aurrand-Lions
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
- Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Daniel Stockholm
- PSL Research University, EPHE, Paris, France
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Camille Lobry
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U944, Paris, France
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Marion Espéli
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | | | - Karl Balabanian
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
18
|
Li HY, Wang M, Jiang X, Jing Y, Wu Z, He Y, Yan K, Sun S, Ma S, Ji Z, Wang S, Belmonte JC, Qu J, Zhang W, Wei T, Liu GH. CRISPR screening uncovers nucleolar RPL22 as a heterochromatin destabilizer and senescence driver. Nucleic Acids Res 2024; 52:11481-11499. [PMID: 39258545 PMCID: PMC11514463 DOI: 10.1093/nar/gkae740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Dysfunction of the ribosome manifests during cellular senescence and contributes to tissue aging, functional decline, and development of aging-related disorders in ways that have remained enigmatic. Here, we conducted a comprehensive CRISPR-based loss-of-function (LOF) screen of ribosome-associated genes (RAGs) in human mesenchymal progenitor cells (hMPCs). Through this approach, we identified ribosomal protein L22 (RPL22) as the foremost RAG whose deficiency mitigates the effects of cellular senescence. Consequently, absence of RPL22 delays hMPCs from becoming senescent, while an excess of RPL22 accelerates the senescence process. Mechanistically, we found in senescent hMPCs, RPL22 accumulates within the nucleolus. This accumulation triggers a cascade of events, including heterochromatin decompaction with concomitant degradation of key heterochromatin proteins, specifically heterochromatin protein 1γ (HP1γ) and heterochromatin protein KRAB-associated protein 1 (KAP1). Subsequently, RPL22-dependent breakdown of heterochromatin stimulates the transcription of ribosomal RNAs (rRNAs), triggering cellular senescence. In summary, our findings unveil a novel role for nucleolar RPL22 as a destabilizer of heterochromatin and a driver of cellular senescence, shedding new light on the intricate mechanisms underlying the aging process.
Collapse
Affiliation(s)
- Hong-Yu Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaobin Jing
- International center for Aging and Cancer, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yifang He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Zhejun Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Biomarker Consortium, Beijing 100101, China
| | | | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Weiqi Zhang
- CAS key laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Taotao Wei
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- International center for Aging and Cancer, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Biomarker Consortium, Beijing 100101, China
| |
Collapse
|
19
|
Wang Y, Thottappillil N, Gomez-Salazar M, Tower RJ, Qin Q, Del Rosario Alvia IC, Xu M, Cherief M, Cheng R, Archer M, Arondekar S, Reddy S, Broderick K, Péault B, James AW. Integrated transcriptomics of human blood vessels defines a spatially controlled niche for early mesenchymal progenitor cells. Dev Cell 2024; 59:2687-2703.e6. [PMID: 39025061 PMCID: PMC11496018 DOI: 10.1016/j.devcel.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/28/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024]
Abstract
Human blood vessel walls show concentric layers, with the outermost tunica adventitia harboring mesenchymal progenitor cells. These progenitor cells maintain vessel homeostasis and provide a robust cell source for cell-based therapies. However, human adventitial stem cell niche has not been studied in detail. Here, using spatial and single-cell transcriptomics, we characterized the phenotype, potential, and microanatomic distribution of human perivascular progenitors. Initially, spatial transcriptomics identified heterogeneity between perivascular layers of arteries and veins and delineated the tunica adventitia into inner and outer layers. From this spatial atlas, we inferred a hierarchy of mesenchymal progenitors dictated by a more primitive cell with a high surface expression of CD201 (PROCR). When isolated from humans and mice, CD201Low expression typified a mesodermal committed subset with higher osteogenesis and less proliferation than CD201High cells, with a downstream effect on canonical Wnt signaling through DACT2. CD201Low cells also displayed high translational potential for bone tissue generation.
Collapse
Affiliation(s)
- Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | - Robert J Tower
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Mingxin Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ray Cheng
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mary Archer
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Shreya Arondekar
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sashank Reddy
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kristen Broderick
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Bruno Péault
- Department of Orthopedic Surgery and Orthopedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
20
|
Zuo H, Liu J, Shen B, Sheng Y, Ju Z, Wang H. YTHDC1-mediated microRNA maturation is essential for hematopoietic stem cells maintenance. Cell Death Discov 2024; 10:439. [PMID: 39414764 PMCID: PMC11484846 DOI: 10.1038/s41420-024-02203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
YTHDC1, a reader of N6-methyladenosine (m6A) modifications on RNA, is posited to exert significant influence over RNA metabolism. Despite its recognized importance, the precise function and underlying mechanisms of YTHDC1 in the preservation of normal hematopoietic stem cell (HSCs) homeostasis remain elusive. Here, we investigated the role of YTHDC1 in normal hematopoiesis and HSCs maintenance in vivo. Utilizing conditional Ythdc1 knockout mice and Ythdc1/Mettl3 double knockout mice, we demonstrated that YTHDC1 is required for HSCs maintenance and self-renewal by regulating microRNA maturation. YTHDC1 deficiency resulted in HSCs apoptosis. Furthermore, we uncovered that YTHDC1 interacts with HP1BP3, a nuclear RNA binding protein involved in microRNA maturation. Deletion of YTHDC1 brought about significant alterations in microRNA levels. However, over-expression of mir-125b, mir-99b, and let-7e partially rescued the functional defect of YTHDC1-null HSCs. Taken together, these findings indicated that the nuclear protein YTHDC1-HP1BP3-microRNA maturation axis is essential for the long-term maintenance of HSCs.
Collapse
Affiliation(s)
- Hongna Zuo
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Jin Liu
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Bin Shen
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Yue Sheng
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhenyu Ju
- MOE Key Laboratory of Regenerative Medicine, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China.
| | - Hu Wang
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
21
|
Yanai H, McNeely T, Ayyar S, Leone M, Zong L, Park B, Beerman I. DNA methylation drives hematopoietic stem cell aging phenotypes after proliferative stress. GeroScience 2024:10.1007/s11357-024-01360-4. [PMID: 39390312 DOI: 10.1007/s11357-024-01360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Aging of hematopoietic stem cells (HSCs) is implicated in various aging phenotypes, including immune dysfunction, anemia, and malignancies. The role of HSC proliferation in driving these aging phenotypes, particularly under stress conditions, remains unclear. Therefore, we induced forced replications of HSCs in vivo by a cyclical treatment with low-dose fluorouracil (5FU) and examined the impact on HSC aging. Our findings show that proliferative stress induces several aging phenotypes, including altered leukocyte counts, decreased lymphoid progenitors, accumulation of HSCs with high expression of Slamf1, and reduced reconstitution potential, without affecting stem cell self-renewal capacity. The divisional history of HSCs was imprinted in the DNA methylome, consistent with functional decline. Specifically, DNA methylation changes included global hypermethylation in non-coding regions and similar frequencies of hypo- and hyper-methylation at promoter regions, particularly affecting genes targeted by the PRC2 complex. Importantly, initial forced replication promoted DNA damage repair accumulated with age, but continuous proliferative stress led to the accumulation of double-strand breaks, independent of functional decline. Overall, our results suggest that HSC proliferation can drive some aging phenotypes primarily through epigenetic mechanisms, including DNA methylation changes.
Collapse
Affiliation(s)
- Hagai Yanai
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute On Aging, NIH, 251 Bayview Blvd, Suite 100/10C220, Baltimore, MD, 21224, USA
| | - Taylor McNeely
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute On Aging, NIH, 251 Bayview Blvd, Suite 100/10C220, Baltimore, MD, 21224, USA
| | - Saipriya Ayyar
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute On Aging, NIH, 251 Bayview Blvd, Suite 100/10C220, Baltimore, MD, 21224, USA
| | - Michael Leone
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute On Aging, NIH, 251 Bayview Blvd, Suite 100/10C220, Baltimore, MD, 21224, USA
| | - Le Zong
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute On Aging, NIH, 251 Bayview Blvd, Suite 100/10C220, Baltimore, MD, 21224, USA
| | - Bongsoo Park
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute On Aging, NIH, 251 Bayview Blvd, Suite 100/10C220, Baltimore, MD, 21224, USA
| | - Isabel Beerman
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute On Aging, NIH, 251 Bayview Blvd, Suite 100/10C220, Baltimore, MD, 21224, USA.
| |
Collapse
|
22
|
Sánchez-Lanzas R, Jiménez-Pompa A, Ganuza M. The evolving hematopoietic niche during development. Front Mol Biosci 2024; 11:1488199. [PMID: 39417006 PMCID: PMC11480086 DOI: 10.3389/fmolb.2024.1488199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Mammalian hematopoietic stem cells (HSCs) emerge from the hemogenic endothelium in the major embryonic arteries. HSCs undergo a complex journey first migrating to the fetal liver (FL) and from there to the fetal bone marrow (FBM), where they mostly remain during adult life. In this process, a pool of adult HSCs is produced, which sustains lifelong hematopoiesis. Multiple cellular components support HSC maturation and expansion and modulate their response to environmental and developmental cues. While the adult HSC niche has been extensively studied over the last two decades, the niches present in the major embryonic arteries, FL, FBM and perinatal bone marrow (BM) are poorly described. Recent investigations highlight important differences among FL, FBM and adult BM niches and emphasize the important role that inflammation, microbiota and hormonal factors play regulating HSCs and their niches. We provide a review on our current understanding of these important cellular microenvironments across ontogeny. We mainly focused on mice, as the most widely used research model, and, when possible, include relevant insights from other vertebrates including birds, zebrafish, and human. Developing a comprehensive picture on these processes is critical to understand the earliest origins of childhood leukemia and to achieve multiple goals in regenerative medicine, such as mimicking HSC development in vitro to produce HSCs for broad transplantation purposes in leukemia, following chemotherapy, bone marrow failure, and in HSC-based gene therapy.
Collapse
Affiliation(s)
| | | | - Miguel Ganuza
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
23
|
Man CH, Li C, Xu X, Zhao M. Metabolic regulation in normal and leukemic stem cells. Trends Pharmacol Sci 2024; 45:919-930. [PMID: 39306527 DOI: 10.1016/j.tips.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 10/06/2024]
Abstract
Hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs) are crucial for ensuring hematopoietic homeostasis and driving leukemia progression, respectively. Recent research has revealed that metabolic adaptations significantly regulate the function and survival of these stem cells. In this review, we provide an overview of how metabolic pathways regulate oxidative and proteostatic stresses in HSCs during homeostasis and aging. Furthermore, we highlight targetable metabolic pathways and explore their interactions with epigenetics and the microenvironment in addressing the chemoresistance and immune evasion capacities of LSCs. The metabolic differences between HSCs and LSCs have profound implications for therapeutic strategies.
Collapse
Affiliation(s)
- Cheuk-Him Man
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Changzheng Li
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xi Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510030, China
| | - Meng Zhao
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
24
|
Leung CWB, Wall J, Esashi F. From rest to repair: Safeguarding genomic integrity in quiescent cells. DNA Repair (Amst) 2024; 142:103752. [PMID: 39167890 DOI: 10.1016/j.dnarep.2024.103752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Quiescence is an important non-pathological state in which cells pause cell cycle progression temporarily, sometimes for decades, until they receive appropriate proliferative stimuli. Quiescent cells make up a significant proportion of the body, and maintaining genomic integrity during quiescence is crucial for tissue structure and function. While cells in quiescence are spared from DNA damage associated with DNA replication or mitosis, they are still exposed to various sources of endogenous DNA damage, including those induced by normal transcription and metabolism. As such, it is vital that cells retain their capacity to effectively repair lesions that may occur and return to the cell cycle without losing their cellular properties. Notably, while DNA repair pathways are often found to be downregulated in quiescent cells, emerging evidence suggests the presence of active or differentially regulated repair mechanisms. This review aims to provide a current understanding of DNA repair processes during quiescence in mammalian systems and sheds light on the potential pathological consequences of inefficient or inaccurate repair in quiescent cells.
Collapse
Affiliation(s)
| | - Jacob Wall
- Sir William Dunn School of Pathology, South Parks Road, Oxford, UK
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, South Parks Road, Oxford, UK.
| |
Collapse
|
25
|
Li X, Zhu G, Zhao B. Chromatin remodeling in tissue stem cell fate determination. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:18. [PMID: 39348027 PMCID: PMC11442411 DOI: 10.1186/s13619-024-00203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Tissue stem cells (TSCs), which reside in specialized tissues, constitute the major cell sources for tissue homeostasis and regeneration, and the contribution of transcriptional or epigenetic regulation of distinct biological processes in TSCs has been discussed in the past few decades. Meanwhile, ATP-dependent chromatin remodelers use the energy from ATP hydrolysis to remodel nucleosomes, thereby affecting chromatin dynamics and the regulation of gene expression programs in each cell type. However, the role of chromatin remodelers in tissue stem cell fate determination is less well understood. In this review, we systematically discuss recent advances in epigenetic control by chromatin remodelers of hematopoietic stem cells, intestinal epithelial stem cells, neural stem cells, and skin stem cells in their fate determination and highlight the importance of their essential role in tissue homeostasis, development, and regeneration. Moreover, the exploration of the molecular and cellular mechanisms of TSCs is crucial for advancing our understanding of tissue maintenance and for the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Xinyang Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Z Lab, bioGenous BIOTECH, Shanghai, 200438, China
| | - Gaoxiang Zhu
- School of Basic Medical Sciences, Jiangxi Medical College, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330031, China
| | - Bing Zhao
- School of Basic Medical Sciences, Jiangxi Medical College, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330031, China.
- Z Lab, bioGenous BIOTECH, Shanghai, 200438, China.
| |
Collapse
|
26
|
Kapadia CD, Williams N, Dawson KJ, Watson C, Yousefzadeh MJ, Le D, Nyamondo K, Cagan A, Waldvogel S, De La Fuente J, Leongamornlert D, Mitchell E, Florez MA, Aguilar R, Martell A, Guzman A, Harrison D, Niedernhofer LJ, King KY, Campbell PJ, Blundell J, Goodell MA, Nangalia J. Clonal dynamics and somatic evolution of haematopoiesis in mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613129. [PMID: 39345649 PMCID: PMC11429886 DOI: 10.1101/2024.09.17.613129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Haematopoietic stem cells maintain blood production throughout life. While extensively characterised using the laboratory mouse, little is known about how the population is sustained and evolves with age. We isolated stem cells and progenitors from young and old mice, identifying 221,890 somatic mutations genome-wide in 1845 single cell-derived colonies, and used phylogenetic analysis to infer the ontogeny and population dynamics of the stem cell pool. Mouse stem cells and progenitors accrue ~45 somatic mutations per year, a rate only about 2-fold greater than human progenitors despite the vastly different organismal sizes and lifespans. Phylogenetic patterns reveal that stem and multipotent progenitor cell pools are both established during embryogenesis, after which they independently self-renew in parallel over life. The stem cell pool grows steadily over the mouse lifespan to approximately 70,000 cells, self-renewing about every six weeks. Aged mice did not display the profound loss of stem cell clonal diversity characteristic of human haematopoietic ageing. However, targeted sequencing revealed small, expanded clones in the context of murine ageing, which were larger and more numerous following haematological perturbations and exhibited a selection landscape similar to humans. Our data illustrate both conserved features of population dynamics of blood and distinct patterns of age-associated somatic evolution in the short-lived mouse.
Collapse
Affiliation(s)
- Chiraag D. Kapadia
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Kevin J. Dawson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Caroline Watson
- Early Cancer Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Matthew J. Yousefzadeh
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Columbia Center for Translational Immunology, Columbia Center for Human Longevity, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Duy Le
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Kudzai Nyamondo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Alex Cagan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Departments of Genetics, Pathology & Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Sarah Waldvogel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Josephine De La Fuente
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Emily Mitchell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Marcus A. Florez
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Rogelio Aguilar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Alejandra Martell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Anna Guzman
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Katherine Y. King
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | | | - Jamie Blundell
- Early Cancer Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Margaret A. Goodell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| |
Collapse
|
27
|
Karatepe K, Mafra de Faria B, Zhang J, Chen X, Pinto H, Fyodorov D, Sefik E, Willcockson M, Flavell R, Skoultchi A, Guo S. Linker histone regulates the myeloid versus lymphoid bifurcation of multipotent hematopoietic stem and progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613227. [PMID: 39345411 PMCID: PMC11429722 DOI: 10.1101/2024.09.16.613227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Myeloid-biased differentiation of multipotent hematopoietic stem and progenitor cells (HSPCs) occurs with aging or exhaustion. The molecular mechanism(s) responsible for this fate bias remain unclear. Here we report that linker histone regulates HSPC fate choice at the lymphoid versus myeloid bifurcation. HSPCs expressing H1.0 from a doxycycline (dox) inducible transgene favor the lymphoid fate, display strengthened nucleosome organization and reduced chromatin accessibility at genomic regions hosting key myeloid fate drivers. The transcription factor Hlf is located in one of such regions, where chromatin accessibility and gene expression is reduced in H1.0 high HSPCs. Furthermore, H1.0 protein in HSPCs decreases in an aspartyl protease dependent manner, a process enhanced in response to interferon alpha (IFNα) signaling. Aspartyl protease inhibitors preserve endogenous H1.0 levels and promote the lymphoid fate of wild type HSPCs. Thus, our work uncovers a point of intervention to mitigate myeloid skewed hematopoiesis.
Collapse
|
28
|
Liu S, Adams SE, Zheng H, Ehnot J, Jung SK, Jeffrey G, Menna T, Purton LE, Lee H, Kurre P. Dynamic Tracking of Native Precursors in Adult Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587737. [PMID: 38617223 PMCID: PMC11014561 DOI: 10.1101/2024.04.02.587737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Hematopoietic dysfunction has been associated with a reduction in the number of active precursors. However, precursor quantification at homeostasis and under diseased conditions is constrained by the scarcity of available methods. To address this issue, we optimized a method for quantifying a wide range of hematopoietic precursors. Assuming the random induction of a stable label in precursors following a binomial distribution, estimates depend on the inverse correlation between precursor numbers and the variance of precursor labeling among independent samples. Experimentally validated to cover the full dynamic range of hematopoietic precursors in mice (1 to 105), we utilized this approach to demonstrate that thousands of precursors, which emerge after modest expansion during fetal-to-adult transition, contribute to native and perturbed hematopoiesis. We further estimated the number of precursors in a mouse model of Fanconi Anemia, showcasing how repopulation deficits can be classified as autologous (cell proliferation) and non-autologous (lack of precursor). Our results support an accessible and reliable approach for precursor quantification, emphasizing the contemporary perspective that native hematopoiesis is highly polyclonal.
Collapse
Affiliation(s)
- Suying Liu
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah E. Adams
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Haotian Zheng
- Department of Biostatistics, Epidemiology and informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juliana Ehnot
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seul K. Jung
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greer Jeffrey
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Theresa Menna
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Louise E. Purton
- Stem Cell Regulation Unit, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Hongzhe Lee
- Department of Biostatistics, Epidemiology and informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Ugale A, Shunmugam D, Pimpale LG, Rebhan E, Baccarini M. Signaling proteins in HSC fate determination are unequally segregated during asymmetric cell division. J Cell Biol 2024; 223:e202310137. [PMID: 38874393 PMCID: PMC11178505 DOI: 10.1083/jcb.202310137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/21/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Hematopoietic stem cells (HSCs) continuously replenish mature blood cells with limited lifespans. To maintain the HSC compartment while ensuring output of differentiated cells, HSCs undergo asymmetric cell division (ACD), generating two daughter cells with different fates: one will proliferate and give rise to the differentiated cells' progeny, and one will return to quiescence to maintain the HSC compartment. A balance between MEK/ERK and mTORC1 pathways is needed to ensure HSC homeostasis. Here, we show that activation of these pathways is spatially segregated in premitotic HSCs and unequally inherited during ACD. A combination of genetic and chemical perturbations shows that an ERK-dependent mechanism determines the balance between pathways affecting polarity, proliferation, and metabolism, and thus determines the frequency of asymmetrically dividing HSCs. Our data identify druggable targets that modulate HSC fate determination at the level of asymmetric division.
Collapse
Affiliation(s)
- Amol Ugale
- Department of Microbiology, Max Perutz Labs Vienna, University of Vienna, Immunobiology and Genetics, Vienna, Austria
| | - Dhanlakshmi Shunmugam
- Department of Microbiology, Max Perutz Labs Vienna, University of Vienna, Immunobiology and Genetics, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna , Vienna, Austria
| | | | - Elisabeth Rebhan
- Department of Microbiology, Max Perutz Labs Vienna, University of Vienna, Immunobiology and Genetics, Vienna, Austria
| | - Manuela Baccarini
- Department of Microbiology, Max Perutz Labs Vienna, University of Vienna, Immunobiology and Genetics, Vienna, Austria
| |
Collapse
|
30
|
Johnson CS, Williams M, Sham K, Belluschi S, Ma W, Wang X, Lau WWY, Kaufmann KB, Krivdova G, Calderbank EF, Mende N, McLeod J, Mantica G, Li J, Grey-Wilson C, Drakopoulos M, Basheer S, Sinha S, Diamanti E, Basford C, Wilson NK, Howe SJ, Dick JE, Göttgens B, Green AR, Francis N, Laurenti E. Adaptation to ex vivo culture reduces human hematopoietic stem cell activity independently of the cell cycle. Blood 2024; 144:729-741. [PMID: 38805639 PMCID: PMC7616366 DOI: 10.1182/blood.2023021426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
ABSTRACT Loss of long-term hematopoietic stem cell (LT-HSC) function ex vivo hampers the success of clinical protocols that rely on culture. However, the kinetics and mechanisms through which this occurs remain incompletely characterized. In this study, through time-resolved single-cell RNA sequencing, matched in vivo functional analysis, and the use of a reversible in vitro system of early G1 arrest, we defined the sequence of transcriptional and functional events that occur during the first ex vivo division of human LT-HSCs. We demonstrated that the sharpest loss in LT-HSC repopulation capacity happens early on, between 6 and 24 hours of culture, before LT-HSCs commit to cell cycle progression. During this time window, LT-HSCs adapt to the culture environment, limit the global variability in gene expression, and transiently upregulate gene networks involved in signaling and stress responses. From 24 hours, LT-HSC progression past early G1 contributes to the establishment of differentiation programs in culture. However, contrary to the current assumptions, we demonstrated that the loss of HSC function ex vivo is independent of cell cycle progression. Finally, we showed that targeting LT-HSC adaptation to culture by inhibiting the early activation of JAK/STAT signaling improves HSC long-term repopulating function ex vivo. Collectively, our study demonstrated that controlling early LT-HSC adaptation to ex vivo culture, for example, via JAK inhibition, is critically important to improve HSC gene therapy and expansion protocols.
Collapse
Affiliation(s)
- Carys S. Johnson
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Cell Process Development, Cell and Gene Therapy, GlaxoSmithKline, Stevenage, United Kingdom
| | - Matthew Williams
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Kendig Sham
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Serena Belluschi
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Wenjuan Ma
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Xiaonan Wang
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Winnie W. Y. Lau
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | | | - Gabriela Krivdova
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Emily F. Calderbank
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Nicole Mende
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Jessica McLeod
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Giovanna Mantica
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Juan Li
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Charlotte Grey-Wilson
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Michael Drakopoulos
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Shaaezmeen Basheer
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Shubhankar Sinha
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Evangelia Diamanti
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Christina Basford
- Cell Process Development, Cell and Gene Therapy, GlaxoSmithKline, Stevenage, United Kingdom
| | - Nicola K. Wilson
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Steven J. Howe
- Cell Process Development, Cell and Gene Therapy, GlaxoSmithKline, Stevenage, United Kingdom
| | - John E. Dick
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Berthold Göttgens
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Anthony R. Green
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Natalie Francis
- Cell Process Development, Cell and Gene Therapy, GlaxoSmithKline, Stevenage, United Kingdom
- Department of Gene Therapy and Regenerative Medicine, King’s College London, London, United Kingdom
| | - Elisa Laurenti
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
31
|
Ochiai T, Nacher JC. Determining cellular lineage directed networks in hematopoiesis using single-cell transcriptomic data and volatility-constrained correlation. Biosystems 2024; 242:105248. [PMID: 38871242 DOI: 10.1016/j.biosystems.2024.105248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024]
Abstract
Single-cell transcriptome sequencing (scRNA-seq) has revolutionized our understanding of cellular processes by enabling the analysis of expression profiles at an individual cell level. This technology has shown promise in uncovering new cell types, gene functions, cell differentiation, and trajectory inference through the study of various biological processes, such as hematopoiesis. Recent scRNA-seq analysis of mouse bone marrow cells has provided a network model of hematopoietic lineage. However, all data analyses have predicted undirected network maps for the associated cell trajectories. Moreover, the debate regarding the origin of basophil cells still persists. In this work, we apply the Volatility Constrained (VC) correlation method to predict not only the network structure but also the causality or directionality between the cell types present in the hematopoietic process. Our findings suggest a dual origin of basophils, from both granulocyte/macrophage and erythrocyte progenitors, the latter being a trajectory less explored in previous research. The proposed approach and predictions may assist in developing a complete hematopoietic process map, impacting our understanding of hematopoiesis and providing a robust directional network framework for further biomedical research.
Collapse
Affiliation(s)
- Tomoshiro Ochiai
- Faculty of Social Information Studies, Otsuma Women's University, 12 Sanban-cho, Chiyoda-ku, Tokyo 102-8357, Japan.
| | - Jose C Nacher
- Department of Information Science, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan.
| |
Collapse
|
32
|
Smith JT, Chai RC. Bone niches in the regulation of tumour cell dormancy. J Bone Oncol 2024; 47:100621. [PMID: 39157742 PMCID: PMC11326946 DOI: 10.1016/j.jbo.2024.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/19/2024] [Accepted: 07/02/2024] [Indexed: 08/20/2024] Open
Abstract
Secondary metastases, accounting for 90 % of cancer-related deaths, pose a formidable challenge in cancer treatment, with bone being a prevalent site. Importantly, tumours may relapse, often in the skeleton even after successful eradication of the primary tumour, indicating that tumour cells may lay dormant within bone for extended periods of time. This review summarises recent findings in the mechanisms underlying tumour cell dormancy and the role of bone cells in this process. Hematopoietic stem cell (HSC) niches in bone provide a model for understanding regulatory microenvironments. Dormant tumour cells have been shown to exploit similar niches, with evidence suggesting interactions with osteoblast-lineage cells and other stromal cells via CXCL12-CXCR4, integrins, and TAM receptor signalling, especially through GAS6-AXL, led to dormancy, with exit of dormancy potentially regulated by osteoclastic bone resorption and neuronal signalling. A comprehensive understanding of dormant tumour cell niches and their regulatory mechanisms is essential for developing targeted therapies, a critical step towards eradicating metastatic tumours and stopping disease relapse.
Collapse
Affiliation(s)
- James T. Smith
- Bone Biology Lab, Cancer Plasticity and Dormancy Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Ryan C. Chai
- Bone Biology Lab, Cancer Plasticity and Dormancy Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia
| |
Collapse
|
33
|
Schirmacher D, Armagan Ü, Zhang Y, Kull T, Auler M, Schroeder T. aiSEGcell: User-friendly deep learning-based segmentation of nuclei in transmitted light images. PLoS Comput Biol 2024; 20:e1012361. [PMID: 39178193 PMCID: PMC11343410 DOI: 10.1371/journal.pcbi.1012361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/24/2024] [Indexed: 08/25/2024] Open
Abstract
Segmentation is required to quantify cellular structures in microscopic images. This typically requires their fluorescent labeling. Convolutional neural networks (CNNs) can detect these structures also in only transmitted light images. This eliminates the need for transgenic or dye fluorescent labeling, frees up imaging channels, reduces phototoxicity and speeds up imaging. However, this approach currently requires optimized experimental conditions and computational specialists. Here, we introduce "aiSEGcell" a user-friendly CNN-based software to segment nuclei and cells in bright field images. We extensively evaluated it for nucleus segmentation in different primary cell types in 2D cultures from different imaging modalities in hand-curated published and novel imaging data sets. We provide this curated ground-truth data with 1.1 million nuclei in 20,000 images. aiSEGcell accurately segments nuclei from even challenging bright field images, very similar to manual segmentation. It retains biologically relevant information, e.g. for demanding quantification of noisy biosensors reporting signaling pathway activity dynamics. aiSEGcell is readily adaptable to new use cases with only 32 images required for retraining. aiSEGcell is accessible through both a command line, and a napari graphical user interface. It is agnostic to computational environments and does not require user expert coding experience.
Collapse
Affiliation(s)
- Daniel Schirmacher
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ümmünur Armagan
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Yang Zhang
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Tobias Kull
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Markus Auler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| |
Collapse
|
34
|
Dermitzakis I, Kampitsi DD, Manthou ME, Evangelidis P, Vakirlis E, Meditskou S, Theotokis P. Ontogeny of Skin Stem Cells and Molecular Underpinnings. Curr Issues Mol Biol 2024; 46:8118-8147. [PMID: 39194698 DOI: 10.3390/cimb46080481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Skin stem cells (SCs) play a pivotal role in supporting tissue homeostasis. Several types of SCs are responsible for maintaining and regenerating skin tissue. These include bulge SCs and others residing in the interfollicular epidermis, infundibulum, isthmus, sebaceous glands, and sweat glands. The emergence of skin SCs commences during embryogenesis, where multipotent SCs arise from various precursor populations. These early events set the foundation for the diverse pool of SCs that will reside in the adult skin, ready to respond to tissue repair and regeneration demands. A network of molecular cues regulates skin SC behavior, balancing quiescence, self-renewal, and differentiation. The disruption of this delicate equilibrium can lead to SC exhaustion, impaired wound healing, and pathological conditions such as skin cancer. The present review explores the intricate mechanisms governing the development, activation, and differentiation of skin SCs, shedding light on the molecular signaling pathways that drive their fate decisions and skin homeostasis. Unraveling the complexities of these molecular drivers not only enhances our fundamental knowledge of skin biology but also holds promise for developing novel strategies to modulate skin SC fate for regenerative medicine applications, ultimately benefiting patients with skin disorders and injuries.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Dimitria Kampitsi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Evangelidis
- Hematology Unit-Hemophilia Centre, 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
35
|
Pendse S, Loeffler D. Decoding Clonal Hematopoiesis: Emerging Themes and Novel Mechanistic Insights. Cancers (Basel) 2024; 16:2634. [PMID: 39123361 PMCID: PMC11311828 DOI: 10.3390/cancers16152634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Clonal hematopoiesis (CH), the relative expansion of mutant clones, is derived from hematopoietic stem cells (HSCs) with acquired somatic or cytogenetic alterations that improve cellular fitness. Individuals with CH have a higher risk for hematological and non-hematological diseases, such as cardiovascular disease, and have an overall higher mortality rate. Originally thought to be restricted to a small fraction of elderly people, recent advances in single-cell sequencing and bioinformatics have revealed that CH with multiple expanded mutant clones is universal in the elderly population. Just a few years ago, phylogenetic reconstruction across the human lifespan and novel sensitive sequencing techniques showed that CH can start earlier in life, decades before it was thought possible. These studies also suggest that environmental factors acting through aberrant inflammation might be a common theme promoting clonal expansion and disease progression. However, numerous aspects of this phenomenon remain to be elucidated and the precise mechanisms, context-specific drivers, and pathways of clonal expansion remain to be established. Here, we review our current understanding of the cellular mechanisms driving CH and specifically focus on how pro-inflammatory factors affect normal and mutant HSC fates to promote clonal selection.
Collapse
Affiliation(s)
- Shalmali Pendse
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Comprehensive Cancer Center, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Pathology & Laboratory Medicine, The University of Tennessee, Memphis, TN 37996, USA
| | - Dirk Loeffler
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Comprehensive Cancer Center, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Pathology & Laboratory Medicine, The University of Tennessee, Memphis, TN 37996, USA
| |
Collapse
|
36
|
Engelhard S, Estruch M, Qin S, Engelhard CA, Rodriguez-Gonzalez FG, Drilsvik M, Martin-Gonzalez J, Lu JW, Bryder D, Nerlov C, Weischenfeldt J, Reckzeh K, Theilgaard-Mönch K. Endomucin marks quiescent long-term multi-lineage repopulating hematopoietic stem cells and is essential for their transendothelial migration. Cell Rep 2024; 43:114475. [PMID: 38996072 DOI: 10.1016/j.celrep.2024.114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/20/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Endomucin (EMCN) currently represents the only hematopoietic stem cell (HSC) marker expressed by both murine and human HSCs. Here, we report that EMCN+ long-term repopulating HSCs (LT-HSCs; CD150+CD48-LSK) have a higher long-term multi-lineage repopulating capacity compared to EMCN- LT-HSCs. Cell cycle analyses and transcriptional profiling demonstrated that EMCN+ LT-HSCs were more quiescent compared to EMCN- LT-HSCs. Emcn-/- and Emcn+/+ mice displayed comparable steady-state hematopoiesis, as well as frequencies, transcriptional programs, and long-term multi-lineage repopulating capacity of their LT-HSCs. Complementary functional analyses further revealed increased cell cycle entry upon treatment with 5-fluorouracil and reduced granulocyte colony-stimulating factor (GCSF) mobilization of Emcn-/- LT-HSCs, demonstrating that EMCN expression by LT-HSCs associates with quiescence in response to hematopoietic stress and is indispensable for effective LT-HSC mobilization. Transplantation of wild-type bone marrow cells into Emcn-/- or Emcn+/+ recipients demonstrated that EMCN is essential for endothelial cell-dependent maintenance/self-renewal of the LT-HSC pool and sustained blood cell production post-transplant.
Collapse
Affiliation(s)
- Sophia Engelhard
- Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Montserrat Estruch
- Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Shuyu Qin
- Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Christoph A Engelhard
- Center for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department for Biochemistry and Molecular Biology (BMB), University of Southern Denmark, Odense, Denmark
| | - Francisco G Rodriguez-Gonzalez
- Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Martine Drilsvik
- Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Javier Martin-Gonzalez
- Core Facility for Transgenic Mice, Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jeng-Wei Lu
- Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - David Bryder
- Division of Molecular Hematology, Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Claus Nerlov
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, UK
| | - Joachim Weischenfeldt
- Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Kristian Reckzeh
- Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Symphogen, Ballerup, Denmark.
| | - Kim Theilgaard-Mönch
- Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Hematology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
37
|
Chang VY, He Y, Grohe S, Brady MR, Chan A, Kadam RS, Fang T, Pang A, Pohl K, Tran E, Li M, Kan J, Zhang Y, Lu JJ, Sasine JP, Himburg HA, Yue P, Chute JP. Epidermal growth factor augments the self-renewal capacity of aged hematopoietic stem cells. iScience 2024; 27:110306. [PMID: 39055915 PMCID: PMC11269946 DOI: 10.1016/j.isci.2024.110306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/19/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Hematopoietic aging is associated with decreased hematopoietic stem cell (HSC) self-renewal capacity and myeloid skewing. We report that culture of bone marrow (BM) HSCs from aged mice with epidermal growth factor (EGF) suppressed myeloid skewing, increased multipotent colony formation, and increased HSC repopulation in primary and secondary transplantation assays. Mice transplanted with aged, EGF-treated HSCs displayed increased donor cell engraftment within BM HSCs and systemic administration of EGF to aged mice increased HSC self-renewal capacity in primary and secondary transplantation assays. Expression of a dominant negative EGFR in Scl/Tal1+ hematopoietic cells caused increased myeloid skewing and depletion of long term-HSCs in 15-month-old mice. EGF treatment decreased DNA damage in aged HSCs and shifted the transcriptome of aged HSCs from genes regulating cell death to genes involved in HSC self-renewal and DNA repair but had no effect on HSC senescence. These data suggest that EGFR signaling regulates the repopulating capacity of aged HSCs.
Collapse
Affiliation(s)
- Vivian Y. Chang
- Division of Hematology-Oncology, Department of Pediatrics, UCLA, Los Angeles, CA, USA
- Children’s Discovery and Innovation Institute, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Yuwei He
- Division of Hematology & Cellular Therapy, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Samantha Grohe
- Division of Hematology & Cellular Therapy, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Morgan R. Brady
- Division of Hematology & Cellular Therapy, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Aldi Chan
- Division of Hematology & Cellular Therapy, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Rucha S. Kadam
- Division of Hematology & Cellular Therapy, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Tiancheng Fang
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USA
| | - Amara Pang
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Katherine Pohl
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Evelyn Tran
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michelle Li
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jenny Kan
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yurun Zhang
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Josie J. Lu
- Applied Genomics, Computation and Translational Core, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Joshua P. Sasine
- Division of Hematology & Cellular Therapy, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Heather A. Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Peibin Yue
- Division of Hematology & Cellular Therapy, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - John P. Chute
- Division of Hematology & Cellular Therapy, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, Los Angeles, CA 90095, USA
- Samuel Oschin Cancer Center, Cedars Sinai Medical Center, Los Angeles, CA 90095, USA
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA 91361, USA
| |
Collapse
|
38
|
Dong R, Li H, He XC, Wang C, Perera A, Malloy S, Russell J, Li W, Petentler K, Mao X, Yang Z, Epp M, Hall K, Scott A, McKinney MC, Huang S, Smith SE, Hembree M, Wang Y, Yu Z, Haug JS, Unruh J, Slaughter B, Kang X, Li L. Characterization of Multicellular Niches Supporting Hematopoietic Stem Cells Within Distinct Zones. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601225. [PMID: 39071430 PMCID: PMC11275884 DOI: 10.1101/2024.06.28.601225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Previous studies of hematopoietic stem cells (HSCs) primarily focused on single cell-based niche models, yielding fruitful but conflicting findings 1-5 . Here we report our investigation on the fetal liver (FL) as the primary fetal hematopoietic site using spatial transcriptomics. Our study reveals two distinct niches: the portal-vessel (PV) niche and the sinusoidal niche. The PV niche, composing N-cadherin (N-cad) Hi Pdgfrα + mesenchymal stromal cells (MSCs), endothelial cells (ECs), and N-cad Lo Albumin + hepatoblasts, maintains quiescent and multipotential FL-HSCs. Conversely, the sinusoidal niche, comprising ECs, hepatoblasts and hepatocytes, as well as potential macrophages and megakaryocytes, supports proliferative FL-HSCs biased towards myeloid lineages. Unlike prior reports on the role of Cxcl12, with its depletion from vessel-associated stromal cells leading to 80% of HSCs' reduction in the adult bone marrow (BM) 6,7 , depletion of Cxcl12 via Cdh2 CreERT (encoding N-cad) induces altered localization of HSCs from the PV to the sinusoidal niches, resulting in an increase of HSC number but with myeloid-bias. Similarly, we discovered that adult BM encompasses two niches within different zones, each composed of multi-cellular components: trabecular bone area (TBA, or metaphysis) supporting deep-quiescent HSCs, and central marrow (CM, or diaphysis) fostering heterogenous proliferative HSCs. This study transforms our understanding of niches by shifting from single cell-based to multicellular components within distinct zones, illuminating the intricate regulation of HSCs tailored to their different cycling states.
Collapse
|
39
|
Mayer IM, Doma E, Klampfl T, Prchal-Murphy M, Kollmann S, Schirripa A, Scheiblecker L, Zojer M, Kunowska N, Gebrail L, Shaw LE, Mann U, Farr A, Grausenburger R, Heller G, Zebedin-Brandl E, Farlik M, Malumbres M, Sexl V, Kollmann K. Kinase-inactivated CDK6 preserves the long-term functionality of adult hematopoietic stem cells. Blood 2024; 144:156-170. [PMID: 38684032 PMCID: PMC11302456 DOI: 10.1182/blood.2023021985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
ABSTRACT Hematopoietic stem cells (HSCs) are characterized by the ability to self-renew and to replenish the hematopoietic system. The cell-cycle kinase cyclin-dependent kinase 6 (CDK6) regulates transcription, whereby it has both kinase-dependent and kinase-independent functions. Herein, we describe the complex role of CDK6, balancing quiescence, proliferation, self-renewal, and differentiation in activated HSCs. Mouse HSCs expressing kinase-inactivated CDK6 show enhanced long-term repopulation and homing, whereas HSCs lacking CDK6 have impaired functionality. The transcriptomes of basal and serially transplanted HSCs expressing kinase-inactivated CDK6 exhibit an expression pattern dominated by HSC quiescence and self-renewal, supporting a concept, in which myc-associated zinc finger protein (MAZ) and nuclear transcription factor Y subunit alpha (NFY-A) are critical CDK6 interactors. Pharmacologic kinase inhibition with a clinically used CDK4/6 inhibitor in murine and human HSCs validated our findings and resulted in increased repopulation capability and enhanced stemness. Our findings highlight a kinase-independent role of CDK6 in long-term HSC functionality. CDK6 kinase inhibition represents a possible strategy to improve HSC fitness.
Collapse
Affiliation(s)
| | - Eszter Doma
- University of Veterinary Medicine, Vienna, Vienna, Austria
| | | | | | | | | | | | - Markus Zojer
- University of Veterinary Medicine, Vienna, Vienna, Austria
| | - Natalia Kunowska
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Lea Gebrail
- University of Veterinary Medicine, Vienna, Vienna, Austria
| | - Lisa E. Shaw
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Ulrike Mann
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Alex Farr
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | | | - Gerwin Heller
- Clinical Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Eva Zebedin-Brandl
- Institute of Pharmacology, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Marcos Malumbres
- Cancer Cell Cycle Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
- Cell Division and Cancer Group, Spanish National Cancer Research Center, Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Veronika Sexl
- University of Veterinary Medicine, Vienna, Vienna, Austria
- University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
40
|
Donnelly H, Ross E, Xiao Y, Hermantara R, Taqi AF, Doherty-Boyd WS, Cassels J, Tsimbouri PM, Dunn KM, Hay J, Cheng A, Meek RMD, Jain N, West C, Wheadon H, Michie AM, Peault B, West AG, Salmeron-Sanchez M, Dalby MJ. Bioengineered niches that recreate physiological extracellular matrix organisation to support long-term haematopoietic stem cells. Nat Commun 2024; 15:5791. [PMID: 38987295 PMCID: PMC11237034 DOI: 10.1038/s41467-024-50054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
Long-term reconstituting haematopoietic stem cells (LT-HSCs) are used to treat blood disorders via stem cell transplantation. The very low abundance of LT-HSCs and their rapid differentiation during in vitro culture hinders their clinical utility. Previous developments using stromal feeder layers, defined media cocktails, and bioengineering have enabled HSC expansion in culture, but of mostly short-term HSCs and progenitor populations at the expense of naive LT-HSCs. Here, we report the creation of a bioengineered LT-HSC maintenance niche that recreates physiological extracellular matrix organisation, using soft collagen type-I hydrogels to drive nestin expression in perivascular stromal cells (PerSCs). We demonstrate that nestin, which is expressed by HSC-supportive bone marrow stromal cells, is cytoprotective and, via regulation of metabolism, is important for HIF-1α expression in PerSCs. When CD34+ve HSCs were added to the bioengineered niches comprising nestin/HIF-1α expressing PerSCs, LT-HSC numbers were maintained with normal clonal and in vivo reconstitution potential, without media supplementation. We provide proof-of-concept that our bioengineered niches can support the survival of CRISPR edited HSCs. Successful editing of LT-HSCs ex vivo can have potential impact on the treatment of blood disorders.
Collapse
Affiliation(s)
- Hannah Donnelly
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom
| | - Ewan Ross
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom
| | - Yinbo Xiao
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom
| | - Rio Hermantara
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Aqeel F Taqi
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - W Sebastian Doherty-Boyd
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom
| | - Jennifer Cassels
- School of Cancer Sciences, Paul O'Gorman Leukaemia Research Centre, Gartnavel General Hospital, University of Glasgow, Glasgow, G12 0YN, United Kingdom
| | - Penelope M Tsimbouri
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom
| | - Karen M Dunn
- School of Cancer Sciences, Paul O'Gorman Leukaemia Research Centre, Gartnavel General Hospital, University of Glasgow, Glasgow, G12 0YN, United Kingdom
| | - Jodie Hay
- School of Cancer Sciences, Paul O'Gorman Leukaemia Research Centre, Gartnavel General Hospital, University of Glasgow, Glasgow, G12 0YN, United Kingdom
| | - Annie Cheng
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom
| | - R M Dominic Meek
- Department of Trauma and Orthopaedics, Queen Elizabeth University Hospital, Glasgow, G51 4TF, United Kingdom
| | - Nikhil Jain
- Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital, Birmingham, B15 2WB, United Kingdom
| | - Christopher West
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Helen Wheadon
- School of Cancer Sciences, Paul O'Gorman Leukaemia Research Centre, Gartnavel General Hospital, University of Glasgow, Glasgow, G12 0YN, United Kingdom
| | - Alison M Michie
- School of Cancer Sciences, Paul O'Gorman Leukaemia Research Centre, Gartnavel General Hospital, University of Glasgow, Glasgow, G12 0YN, United Kingdom
| | - Bruno Peault
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Adam G West
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom.
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom.
| |
Collapse
|
41
|
Nitz AA, Giraldez Chavez JH, Eliason ZG, Payne SH. Are We There Yet? Assessing the Readiness of Single-Cell Proteomics to Answer Biological Hypotheses. J Proteome Res 2024. [PMID: 38981598 DOI: 10.1021/acs.jproteome.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Single-cell analysis is an active area of research in many fields of biology. Measurements at single-cell resolution allow researchers to study diverse populations without losing biologically meaningful information to sample averages. Many technologies have been used to study single cells, including mass spectrometry-based single-cell proteomics (SCP). SCP has seen a lot of growth over the past couple of years through improvements in data acquisition and analysis, leading to greater proteomic depth. Because method development has been the main focus in SCP, biological applications have been sprinkled in only as proof-of-concept. However, SCP methods now provide significant coverage of the proteome and have been implemented in many laboratories. Thus, a primary question to address in our community is whether the current state of technology is ready for widespread adoption for biological inquiry. In this Perspective, we examine the potential for SCP in three thematic areas of biological investigation: cell annotation, developmental trajectories, and spatial mapping. We identify that the primary limitation of SCP is sample throughput. As proteome depth has been the primary target for method development to date, we advocate for a change in focus to facilitate measuring tens of thousands of single-cell proteomes to enable biological applications beyond proof-of-concept.
Collapse
Affiliation(s)
- Alyssa A Nitz
- Biology Department, Brigham Young University, Provo, Utah 84602, United States
| | | | - Zachary G Eliason
- Biology Department, Brigham Young University, Provo, Utah 84602, United States
| | - Samuel H Payne
- Biology Department, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
42
|
Beeraka NM, Basappa B, Nikolenko VN, Mahesh PA. Role of Neurotransmitters in Steady State Hematopoiesis, Aging, and Leukemia. Stem Cell Rev Rep 2024:10.1007/s12015-024-10761-z. [PMID: 38976142 DOI: 10.1007/s12015-024-10761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Haematopoiesis within the bone marrow (BM) represents a complex and dynamic process intricately regulated by neural signaling pathways. This delicate orchestration is susceptible to disruption by factors such as aging, diabetes, and obesity, which can impair the BM niche and consequently affect haematopoiesis. Genetic mutations in Tet2, Dnmt3a, Asxl1, and Jak2 are known to give rise to clonal haematopoiesis of intermediate potential (CHIP), a condition linked to age-related haematological malignancies. Despite these insights, the exact roles of circadian rhythms, sphingosine-1-phosphate (S1P), stromal cell-derived factor-1 (SDF-1), sterile inflammation, and the complement cascade on various BM niche cells remain inadequately understood. Further research is needed to elucidate how BM niche cells contribute to these malignancies through neural regulation and their potential in the development of gene-corrected stem cells. This literature review describes the updated functional aspects of BM niche cells in haematopoiesis within the context of haematological malignancies, with a particular focus on neural signaling and the potential of radiomitigators in acute radiation syndrome. Additionally, it underscores the pressing need for technological advancements in stem cell-based therapies to alleviate the impacts of immunological stressors. Recent studies have illuminated the microheterogeneity and temporal stochasticity of niche cells within the BM during haematopoiesis, emphasizing the updated roles of neural signaling and immunosurveillance. The development of gene-corrected stem cells capable of producing blood, immune cells, and tissue-resident progeny is essential for combating age-related haematological malignancies and overcoming immunological challenges. This review aims to provide a comprehensive overview of these evolving insights and their implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA.
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia.
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India.
| | - Basappa Basappa
- Department of Studies in Organic Chemistry, Laboratory of Chemical Biology, University of Mysore, Mysore, Karnataka, 570006, India
| | - Vladimir N Nikolenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia
| | - P A Mahesh
- Department of Pulmonary Medicine, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| |
Collapse
|
43
|
Hofmann J, Kokkaliaris KD. Bone marrow niches for hematopoietic stem cells: life span dynamics and adaptation to acute stress. Blood 2024; 144:21-34. [PMID: 38579285 DOI: 10.1182/blood.2023023788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024] Open
Abstract
ABSTRACT Hematopoietic stem cells (HSCs) are instrumental for organismal survival because they are responsible for lifelong production of mature blood lineages in homeostasis and response to external stress. To fulfill their function, HSCs rely on reciprocal interactions with specialized tissue microenvironments, termed HSC niches. From embryonic development to advanced aging, HSCs transition through several hematopoietic organs in which they are supported by distinct extrinsic cues. Here, we describe recent discoveries on how HSC niches collectively adapt to ensure robust hematopoietic function during biological aging and after exposure to acute stress. We also discuss the latest strategies leveraging niche-derived signals to revert aging-associated phenotypes and enhance hematopoietic recovery after myeloablation.
Collapse
Affiliation(s)
- Johanna Hofmann
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
- Department 15, Biosciences, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Konstantinos D Kokkaliaris
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Quantitative Spatial Cancer Biology Laboratory, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany
- University Cancer Center, Frankfurt am Main, Germany
| |
Collapse
|
44
|
Sinha S, Dhankani P, Nahiyera M, Singh KB, Singh D, Mugale MN, Sharma S, Kumaravelu J, Dikshit M, Kumar S. iNOS regulates hematopoietic stem and progenitor cells via mitochondrial signaling and is critical for bone marrow regeneration. Free Radic Biol Med 2024; 219:184-194. [PMID: 38636716 DOI: 10.1016/j.freeradbiomed.2024.04.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/24/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
Hematopoietic stem cells (HSCs) replenish blood cells under steady state and on demand, that exhibit therapeutic potential for Bone marrow failures and leukemia. Redox signaling plays key role in immune cells and hematopoiesis. However, the role of reactive nitrogen species in hematopoiesis remains unclear and requires further investigation. We investigated the significance of inducible nitric oxide synthase/nitric oxide (iNOS/NO) signaling in hematopoietic stem and progenitor cells (HSPCs) and hematopoiesis under steady-state and stress conditions. HSCs contain low levels of NO and iNOS under normal conditions, but these increase upon bone marrow stress. iNOS-deficient mice showed subtle changes in peripheral blood cells but significant alterations in HSPCs, including increased HSCs and multipotent progenitors. Surprisingly, iNOS-deficient mice displayed heightened susceptibility and delayed recovery of blood progeny following 5-Fluorouracil (5-FU) induced hematopoietic stress. Loss of quiescence and increased mitochondrial stress, indicated by elevated MitoSOX and MMPhi HSCs, were observed in iNOS-deficient mice. Furthermore, pharmacological approaches to mitigate mitochondrial stress rescued 5-FU-induced HSC death. Conversely, iNOS-NO signaling was required for demand-driven mitochondrial activity and proliferation during hematopoietic recovery, as iNOS-deficient mice and NO signaling inhibitors exhibit reduced mitochondrial activity. In conclusion, our study challenges the conventional view of iNOS-derived NO as a cytotoxic molecule and highlights its intriguing role in HSPCs. Together, our findings provide insights into the crucial role of the iNOS-NO-mitochondrial axis in regulating HSPCs and hematopoiesis.
Collapse
Affiliation(s)
- Supriya Sinha
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Priyanka Dhankani
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Milind Nahiyera
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Krishna Bhan Singh
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Divya Singh
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Madhav Nilakanth Mugale
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Sharad Sharma
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Jagavelu Kumaravelu
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sachin Kumar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India.
| |
Collapse
|
45
|
Doherty-Boyd WS, Donnelly H, Tsimbouri MP, Dalby MJ. Building bones for blood and beyond: the growing field of bone marrow niche model development. Exp Hematol 2024; 135:104232. [PMID: 38729553 DOI: 10.1016/j.exphem.2024.104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
The bone marrow (BM) niche is a complex microenvironment that provides the signals required for regulation of hematopoietic stem cells (HSCs) and the process of hematopoiesis they are responsible for. Bioengineered models of the BM niche incorporate various elements of the in vivo BM microenvironment, including cellular components, soluble factors, a three-dimensional environment, mechanical stimulation of included cells, and perfusion. Recent advances in the bioengineering field have resulted in a spate of new models that shed light on BM function and are approaching precise imitation of the BM niche. These models promise to improve our understanding of the in vivo microenvironment in health and disease. They also aim to serve as platforms for HSC manipulation or as preclinical models for screening novel therapies for BM-associated disorders and diseases.
Collapse
Affiliation(s)
- W Sebastian Doherty-Boyd
- The Centre for the Cellular Microenvironment (CeMi), University of Glasgow, Glasgow, United Kingdom.
| | - Hannah Donnelly
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Monica P Tsimbouri
- The Centre for the Cellular Microenvironment (CeMi), University of Glasgow, Glasgow, United Kingdom
| | - Matthew J Dalby
- The Centre for the Cellular Microenvironment (CeMi), University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
46
|
Yahagi A, Mochizuki-Kashio M, Sorimachi Y, Takubo K, Nakamura-Ishizu A. Abcb10 regulates murine hematopoietic stem cell potential and erythroid differentiation. Exp Hematol 2024; 135:104191. [PMID: 38493949 DOI: 10.1016/j.exphem.2024.104191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Erythropoiesis in the adult bone marrow relies on mitochondrial membrane transporters to facilitate heme and hemoglobin production. Erythrocytes in the bone marrow are produced although the differentiation of erythroid progenitor cells that originate from hematopoietic stem cells (HSCs). Whether and how mitochondria transporters potentiate HSCs and affect their differentiation toward erythroid lineage remains unclear. Here, we show that the ATP-binding cassette (ABC) transporter 10 (Abcb10), located on the inner mitochondrial membrane, is essential for HSC maintenance and erythroid-lineage differentiation. Induced deletion of Abcb10 in adult mice significantly increased erythroid progenitor cell and decreased HSC number within the bone marrow (BM). Functionally, Abcb10-deficient HSCs exhibited significant decreases in stem cell potential but with a skew toward erythroid-lineage differentiation. Mechanistically, deletion of Abcb10 rendered HSCs with excess mitochondrial iron accumulation and oxidative stress yet without alteration in mitochondrial bioenergetic function. However, impaired hematopoiesis could not be rescued through the in vivo administration of a mitochondrial iron chelator or antioxidant to Abcb10-deficient mice. Abcb10-mediated mitochondrial iron transfer is thus pivotal for the regulation of physiologic HSC potential and erythroid-lineage differentiation.
Collapse
Affiliation(s)
- Ayano Yahagi
- Department of Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo, Japan
| | - Makiko Mochizuki-Kashio
- Department of Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo, Japan
| | - Yuriko Sorimachi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Ayako Nakamura-Ishizu
- Department of Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
47
|
Najima Y, Maeda T, Kamiyama Y, Nakao S, Ozaki Y, Nishio H, Tsuchihashi K, Ichihara E, Miumra Y, Endo M, Maruyama D, Yoshinami T, Susumu N, Takekuma M, Motohashi T, Ito M, Baba E, Ochi N, Kubo T, Uchino K, Kimura T, Tamura S, Nishimoto H, Kato Y, Sato A, Takano T, Yano S. Effectiveness and safety of granulocyte colony-stimulating factor priming regimen for acute myeloid leukemia: A systematic review and meta-analysis of the Clinical Practice Guideline for the use of G-CSF 2022 from the Japan Society of Clinical Oncology. Int J Clin Oncol 2024; 29:899-910. [PMID: 38755516 DOI: 10.1007/s10147-023-02461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/14/2023] [Indexed: 05/18/2024]
Abstract
BACKGROUND The outcomes of relapsed or refractory acute myeloid leukemia (AML) remain poor. Although the concomitant use of granulocyte colony-stimulating factor (G-CSF) and anti-chemotherapeutic agents has been investigated to improve the antileukemic effect on AML, its usefulness remains controversial. This study aimed to investigate the effects of G-CSF priming as a remission induction therapy or salvage chemotherapy. METHODS We performed a thorough literature search for studies related to the priming effect of G-CSF using PubMed, Ichushi-Web, and the Cochrane Library. A qualitative analysis of the pooled data was performed, and risk ratios (RRs) with confidence intervals (CIs) were calculated and summarized. RESULTS Two reviewers independently extracted and accessed the 278 records identified during the initial screening, and 62 full-text articles were assessed for eligibility in second screening. Eleven studies were included in the qualitative analysis and 10 in the meta-analysis. A systematic review revealed that priming with G-CSF did not correlate with an improvement in response rate and overall survival (OS). The result of the meta-analysis revealed the tendency for lower relapse rate in the G-CSF priming groups without inter-study heterogeneity [RR, 0.91 (95% CI 0.82-1.01), p = 0.08; I2 = 4%, p = 0.35]. In specific populations, including patients with intermediate cytogenetic risk and those receiving high-dose cytarabine, the G-CSF priming regimen prolonged OS. CONCLUSIONS G-CSF priming in combination with intensive remission induction treatment is not universally effective in patients with AML. Further studies are required to identify the patient cohort for which G-CSF priming is recommended.
Collapse
Affiliation(s)
- Yuho Najima
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-8-22 Honkomagome, Bunkyo-Ku, Tokyo, 113-8677, Japan.
| | - Tomoya Maeda
- Department of Hemato-Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Yutaro Kamiyama
- Department of Clinical Oncology/Hematology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shinji Nakao
- Department of Hematology, Faculty of Medicine, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Yukinori Ozaki
- Department of Breast Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroshi Nishio
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Tsuchihashi
- Department of Hematology, Oncology and Cardiovascular Medicine, Fukuoka, Japan
| | - Eiki Ichihara
- Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan
| | - Yuji Miumra
- Department of Medical Oncology, Toranomon Hospital, Tokyo, Japan
| | - Makoto Endo
- Department of Orthopaedic Surgery, Kyushu University, Fukuoka, Japan
| | - Dai Maruyama
- Department of Hematology Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tetsuhiro Yoshinami
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Nobuyuki Susumu
- Department of Obstetrics and Gynecology, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | | | - Takashi Motohashi
- Department of Obstetrics and Gynecology, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Mamoru Ito
- Department of Hematology, Oncology and Cardiovascular Medicine, Fukuoka, Japan
| | - Eishi Baba
- Department of Oncology and Social Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuaki Ochi
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama, Japan
| | - Toshio Kubo
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Keita Uchino
- Department of Medical Oncology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Takahiro Kimura
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shinobu Tamura
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Hitomi Nishimoto
- Department of Nursing, Okayama University Hospital, Okayama, Japan
| | - Yasuhisa Kato
- Department of Drug Information, Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, Kanagawa, Japan
| | - Atsushi Sato
- Department of Medical Oncology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Toshimi Takano
- Department of Breast Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shingo Yano
- Department of Clinical Oncology/Hematology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
48
|
Cho CJ, Brown JW, Mills JC. Origins of cancer: ain't it just mature cells misbehaving? EMBO J 2024; 43:2530-2551. [PMID: 38773319 PMCID: PMC11217308 DOI: 10.1038/s44318-024-00099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 05/23/2024] Open
Abstract
A pervasive view is that undifferentiated stem cells are alone responsible for generating all other cells and are the origins of cancer. However, emerging evidence demonstrates fully differentiated cells are plastic, can be coaxed to proliferate, and also play essential roles in tissue maintenance, regeneration, and tumorigenesis. Here, we review the mechanisms governing how differentiated cells become cancer cells. First, we examine the unique characteristics of differentiated cell division, focusing on why differentiated cells are more susceptible than stem cells to accumulating mutations. Next, we investigate why the evolution of multicellularity in animals likely required plastic differentiated cells that maintain the capacity to return to the cell cycle and required the tumor suppressor p53. Finally, we examine an example of an evolutionarily conserved program for the plasticity of differentiated cells, paligenosis, which helps explain the origins of cancers that arise in adults. Altogether, we highlight new perspectives for understanding the development of cancer and new strategies for preventing carcinogenic cellular transformations from occurring.
Collapse
Affiliation(s)
- Charles J Cho
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey W Brown
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
49
|
Nwosu GO, Ross DM, Powell JA, Pitson SM. Venetoclax therapy and emerging resistance mechanisms in acute myeloid leukaemia. Cell Death Dis 2024; 15:413. [PMID: 38866760 PMCID: PMC11169396 DOI: 10.1038/s41419-024-06810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Acute myeloid leukaemia (AML) is a highly aggressive and devastating malignancy of the bone marrow and blood. For decades, intensive chemotherapy has been the frontline treatment for AML but has yielded only poor patient outcomes as exemplified by a 5-year survival rate of < 30%, even in younger adults. As knowledge of the molecular underpinnings of AML has advanced, so too has the development new strategies with potential to improve the treatment of AML patients. To date the most promising of these targeted agents is the BH3-mimetic venetoclax which in combination with standard of care therapies, has manageable non-haematological toxicity and exhibits impressive efficacy. However, approximately 30% of AML patients fail to respond to venetoclax-based regimens and almost all treatment responders eventually relapse. Here, we review the emerging mechanisms of intrinsic and acquired venetoclax resistance in AML and highlight recent efforts to identify novel strategies to overcome resistance to venetoclax.
Collapse
Affiliation(s)
- Gus O Nwosu
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - David M Ross
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
- Department of Haematology, Flinders University and Medical Centre, Adelaide, SA, Australia
| | - Jason A Powell
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
- Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
- Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia.
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
50
|
Guglielmi V, Lam D, D’Angelo MA. Nucleoporin Nup358 drives the differentiation of myeloid-biased multipotent progenitors by modulating HDAC3 nuclear translocation. SCIENCE ADVANCES 2024; 10:eadn8963. [PMID: 38838144 PMCID: PMC11152124 DOI: 10.1126/sciadv.adn8963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Nucleoporins, the components of nuclear pore complexes (NPCs), can play cell type- and tissue-specific functions. Yet, the physiological roles and mechanisms of action for most NPC components have not yet been established. We report that Nup358, a nucleoporin linked to several myeloid disorders, is required for the developmental progression of early myeloid progenitors. We found that Nup358 ablation in mice results in the loss of myeloid-committed progenitors and mature myeloid cells and the accumulation of myeloid-primed multipotent progenitors (MPPs) in bone marrow. Accumulated MPPs in Nup358 knockout mice are greatly restricted to megakaryocyte/erythrocyte-biased MPP2, which fail to progress into committed myeloid progenitors. Mechanistically, we found that Nup358 is required for histone deacetylase 3 (HDAC3) nuclear import and function in MPP2 cells and established that this nucleoporin regulates HDAC3 nuclear translocation in a SUMOylation-independent manner. Our study identifies a critical function for Nup358 in myeloid-primed MPP2 differentiation and uncovers an unexpected role for NPCs in the early steps of myelopoiesis.
Collapse
Affiliation(s)
- Valeria Guglielmi
- Cancer Metabolism and Microenvironment Program, NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Davina Lam
- Cancer Metabolism and Microenvironment Program, NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Maximiliano A. D’Angelo
- Cancer Metabolism and Microenvironment Program, NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|