1
|
Kim HJ, Kim HJ, Kim SY, Roh J, Yun JH, Kim CH. TBK1 is a signaling hub in coordinating stress-adaptive mechanisms in head and neck cancer progression. Autophagy 2025:1-23. [PMID: 40114316 DOI: 10.1080/15548627.2025.2481661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025] Open
Abstract
Tumorigenesis is closely linked to the ability of cancer cells to activate stress-adaptive mechanisms in response to various cellular stressors. Stress granules (SGs) play a crucial role in promoting cancer cell survival, invasion, and treatment resistance, and influence tumor immune escape by protecting essential mRNAs involved in cell metabolism, signaling, and stress responses. TBK1 (TANK binding kinase 1) functions in antiviral innate immunity, cell survival, and proliferation in both the tumor microenvironment and tumor cells. Here, we report that MUL1 loss results in the hyperactivation of TBK1 in both HNC cells and tissues. Mechanistically, under proteotoxic stress induced by proteasomal inhibition, HSP90 inhibition, or Ub+ stress, MUL1 promotes the degradation of active TBK1 through K48-linked ubiquitination at lysine 584. Furthermore, TBK1 facilitates autophagosome-lysosome fusion and phosphorylates SQSTM1, regulating selective macroautophagic/autophagic clearance in HNC cells. TBK1 is required for SG formation and cellular protection. Moreover, we found that MAP1LC3B is partially localized within SGs. TBK1 depletion enhances the sensitivity of HNC cells to cisplatin-induced cell death. GSK8612, a novel TBK1 inhibitor, significantly inhibits HNC tumorigenesis in xenografts. In summary, our study reveals that TBK1 facilitates the rapid removal of ubiquitinated proteins within the cell through protective autophagy under stress conditions and assists SG formation through the use of the autophagy machinery. These findings highlight the potential of TBK1 as a therapeutic target in HNC treatment.Abbreviations: ALP: autophagy-lysosomal pathway; AMBRA1: autophagy and beclin 1 regulator 1; BaF: bafilomycin A1; CC: coiled-coil; CD274/PDL-1: CD274 molecule; CHX: cycloheximide; CQ: chloroquine; DNP: dinitrophenol; EGFR: epidermal growth factor receptor; ESCC: esophageal squamous cell carcinoma; G3BP1: G3BP stress granule assembly factor 1; HNC: head and neck cancer; HPV: human papillomavirus; IFN: interferon; IGFBP3: insulin like growth factor binding protein 3; IRF: interferon-regulatory factor 3; KO: knockout; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; NPC: nasopharyngeal carcinoma; PABP: poly(A) binding protein; PI: proteasome inhibitor; PQC: protein quality control; PROTAC: proteolysis-targeting chimera; PURA/PURα: purine rich element binding protein A; RIGI: RNA sensor RIG-I; SD: standard deviation; SG: stress granule; SQSTM1: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TBK1: TANK binding kinase 1; UPS: ubiquitin-proteasome system; USP10: ubiquitin specific peptidase 10; VCP: valosin containing protein; VHL: von Hippel-Lindau tumor suppressor; WT: wild type.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Haeng-Jun Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sun-Yong Kim
- Department of New Business Development, Future Business Division, DaehanNupharm Co. Ltd, Seongnam, Republic of Korea
| | - Jin Roh
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ju Hyun Yun
- Department of Otolaryngology, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
2
|
Wang YT, Hsiao WY, Pham TV, Huang BR, Yeh SD, Hsu EC, Wang SW. An enzymatic-independent function of palmitoyl hydrolase in cohesin loading onto chromosome. Nucleic Acids Res 2025; 53:gkaf257. [PMID: 40193710 PMCID: PMC11975282 DOI: 10.1093/nar/gkaf257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/25/2025] [Accepted: 03/21/2025] [Indexed: 04/09/2025] Open
Abstract
Sister chromatid cohesion is mediated by a conserved multiprotein complex called cohesin. The loading of cohesin onto chromosomes involves the RSC (remodels the structure of chromatin) chromatin remodeling complex. Here, we demonstrate that the fission yeast Phi1, a palmitoyl hydrolase inactive protein 1, serves to bridge the interaction between cohesin and the RSC complex. Phi1 interacts with Rad21 in cohesin and Snf21, the RSC complex ATPase, to promote chromosome loading of cohesin. The identified characteristic features of Phi1 are conserved in the human homologues Apt1 and Apt2, which interact with Rad21 and Brg1, the human homologue of Snf21, in an enzymatic-independent manner. Intriguingly, the cohesin-Apt1-Brg1 complex is upregulated in C4-2B prostate cancer cells, and co-depletion of Apt1 and Apt2 by small interfering RNA triggers mitotic catastrophe in these cells. In addition, Apt1 nuclear localization is associated with poor clinical outcomes in prostate cancer. These results suggest a pro-survival function against mitotic stress for the complex.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Institute of Molecular & Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan
| | - Wan-Yi Hsiao
- Institute of Molecular & Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan
| | - Thanh-Vy Pham
- Institute of Molecular & Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan
- Department of Life Sciences, National Central University, Taoyuan City 320, Taiwan
| | - Bo-Ru Huang
- Institute of Molecular & Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan
| | - Shu-Dan Yeh
- Department of Life Sciences, National Central University, Taoyuan City 320, Taiwan
| | - En-Chi Hsu
- Institute of Molecular & Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan
| | - Shao-Win Wang
- Institute of Molecular & Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan
| |
Collapse
|
3
|
Harrer DC, Lüke F, Pukrop T, Ghibelli L, Reichle A, Heudobler D. MEPED as salvage therapy for relapsed/refractory Hodgkin's lymphoma incorporating edited non-oncogene addiction: mTOR as a bottleneck. Front Pharmacol 2025; 16:1553331. [PMID: 40183103 PMCID: PMC11965665 DOI: 10.3389/fphar.2025.1553331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Rescue therapies of relapsed/refractory (r/r) Hodgkin's lymphoma (HL) in the third to sixth-line provide major, yet unresolved problems. The MEPED regimen includes nuclear receptor agonists such as pioglitazone and dexamethasone, which counterbalance HL homeostasis, HL stress response inhibitors, everolimus and COX-2 inhibitor, and a stress response inducer, low-dose metronomic treosulfan. CR (six of seven patients) and long-term cCR in patients receiving no consolidating allogeneic stem cell transplantation highlight MEPED as a potent salvage therapy in advanced refractory HL. MEPED edits everolimus activities in such a way that mTORC1 becomes a non-oncogene addiction bottleneck, hence determining long-term therapy outcome. The implications of the therapeutic paradigm shift toward editing of HL tissue, and particularly mTOR addiction, could prove to be profound for clinical practice, both in terms of outcome and treatment tolerability. The long-term results of MEPED treatment indicate the urgent evaluation of the schedule in a multicenter trial for r/r HL.
Collapse
Affiliation(s)
- Dennis Christoph Harrer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| | - Lina Ghibelli
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Zhang Y, Wang M, Xu W, Zang H, Yan T, Wu T, Huang K, Chen D, Luo Q, Guo R, Qiu J. Analysis of the Expression Patterns of piRNAs in Response to Microsporidian Invasion in Midgut of Workers ( Apis cerana cerana). Int J Mol Sci 2025; 26:2402. [PMID: 40141043 PMCID: PMC11942432 DOI: 10.3390/ijms26062402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Piwi-interacting RNAs (piRNAs) play an essential part in transposon suppression, DNA methylation, and antiviral responses. The current understanding of the roles of piRNAs in honeybees is very limited. This study aims to analyze the expression pattern and regulatory role of piRNAs in the Asian honeybee (Apis cerana) responding to infection by Nosema ceranae, based on previously gained small RNA-seq data. Here, 450 and 422 piRNAs were respectively identified in the midgut tissues of Apis cerana cerana workers at 7 and 10 days post-inoculation (dpi) with N. ceranae, including 539 non-redundant ones. Additionally, one up-regulated (piR-ace-1216942) and one down-regulated (piR-ace-776728) piRNA were detected in the workers' midgut at 7 dpi, targeting 381 mRNAs involved in 31 GO terms, such as metabolic processes, catalytic activity, and organelles, as well as 178 KEGG pathways, including lysosome, MAPK signaling pathway, and purine metabolism. A total of 35 up-regulated and 11 down-regulated piRNAs were screened from the workers' midgut at 10 dpi, targeting 13,511 mRNAs engaged in 50 GO terms, such as biological regulation, transporter activity, and membrane, as well as 389 KEGG pathways, including the JAK-STAT signaling pathway, Hippo signaling pathway, and nitrogen metabolism. Further analysis indicated that 28 differentially expressed piRNAs (DEpiRNAs) in the midgut at 10 dpi could target 299 mRNAs annotated to three cellular immune pathways (lysosome, endocytosis, and phagosome), while 24 DEpiRNAs could target 205 mRNAs relevant to four humoral immune pathways (FoxO, JAK-STAT, NF-κB, and MAPK signaling pathway). Through Sanger sequencing and RT-qPCR, the expression of six randomly selected DEpiRNAs was verified. Moreover, the dual-luciferase reporter gene assay confirmed the binding relationships between piR-ace-446232 and CRT as well as between piR-ace-1008436 and EGFR. Our findings not only contribute to enrich our understanding of the role of piRNAs in honeybees but also provide a basis for exploring the host response to N. ceranae infection mediated by piRNAs.
Collapse
Affiliation(s)
- Yiqiong Zhang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (M.W.); (W.X.); (H.Z.); (T.W.); (K.H.); (D.C.)
| | - Mengyi Wang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (M.W.); (W.X.); (H.Z.); (T.W.); (K.H.); (D.C.)
| | - Wenhua Xu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (M.W.); (W.X.); (H.Z.); (T.W.); (K.H.); (D.C.)
| | - He Zang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (M.W.); (W.X.); (H.Z.); (T.W.); (K.H.); (D.C.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China; (T.Y.); (Q.L.)
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Tizhen Yan
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China; (T.Y.); (Q.L.)
| | - Tao Wu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (M.W.); (W.X.); (H.Z.); (T.W.); (K.H.); (D.C.)
| | - Kaifei Huang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (M.W.); (W.X.); (H.Z.); (T.W.); (K.H.); (D.C.)
| | - Dafu Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (M.W.); (W.X.); (H.Z.); (T.W.); (K.H.); (D.C.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China; (T.Y.); (Q.L.)
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Qingming Luo
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China; (T.Y.); (Q.L.)
| | - Rui Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (M.W.); (W.X.); (H.Z.); (T.W.); (K.H.); (D.C.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China; (T.Y.); (Q.L.)
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Jianfeng Qiu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (M.W.); (W.X.); (H.Z.); (T.W.); (K.H.); (D.C.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China; (T.Y.); (Q.L.)
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| |
Collapse
|
5
|
Ueda Y, Kiyonaka S, Selfors LM, Inoue K, Harada H, Doura T, Onuma K, Uchiyama M, Kurogi R, Yamada Y, Sun JH, Sakaguchi R, Tado Y, Omatsu H, Suzuki H, Aoun M, Nakayama T, Kajimoto T, Yano T, Holmdahl R, Hamachi I, Inoue M, Mori Y, Takahashi N. Intratumour oxidative hotspots provide a niche for cancer cell dissemination. Nat Cell Biol 2025; 27:530-543. [PMID: 39984655 DOI: 10.1038/s41556-025-01617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/10/2025] [Indexed: 02/23/2025]
Abstract
Intratumour heterogeneity represents the hierarchical integration of genetic, phenotypic and microenvironmental heterogeneity. Although single-cell sequencing has clarified genetic and phenotypic variability, the heterogeneity of nongenetic, microenvironmental factors remains elusive. Here, we developed T-AP1, a tumour-targeted probe tracking extracellular H2O2, which allows the visualization and characterization of tumour cells exposed to oxidative stress, a hallmark of cancer. T-AP1 identified actively budding intratumour regions as H2O2-rich microenvironments (H2O2 hotspots), which were primarily established by neutrophils. Mechanistically, tumour cells exposed to H2O2 underwent partial epithelial-mesenchymal transition through p38-MYC axis activation and migrated away from H2O2 hotspots. This escape mechanism was absent in normal epithelial cells but prevalent in most cancers except NRF2-hyperactivated tumours, which exhibited abrogated p38 responses and enhanced antioxidant programmes, thus revealing an intrinsic stress defence programme in cancers. Together, T-AP1 enabled the identification of H2O2 hotspots that provide a niche for cancer cell dissemination, offering insights into metastasis initiation.
Collapse
Affiliation(s)
- Yoshifumi Ueda
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Kyoto, Japan
| | - Shigeki Kiyonaka
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Kyoto, Japan.
- Department of Biomolecular Engineering, Nagoya University, Nagoya, Japan.
- Research Institute for Quantum and Chemical Innovation, Nagoya University, Nagoya, Japan.
| | - Laura M Selfors
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Keisuke Inoue
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Kyoto, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tomohiro Doura
- Department of Biomolecular Engineering, Nagoya University, Nagoya, Japan
| | - Kunishige Onuma
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Makoto Uchiyama
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Kyoto, Japan
| | - Ryuhei Kurogi
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Kyoto, Japan
| | - Yuji Yamada
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Kyoto, Japan
| | - Jiacheng H Sun
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Kyoto, Japan
| | - Reiko Sakaguchi
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Kyoto, Japan
| | - Yuki Tado
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Kyoto, Japan
| | - Haruki Omatsu
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Kyoto, Japan
| | - Harufumi Suzuki
- Department of Biomolecular Engineering, Nagoya University, Nagoya, Japan
| | - Mike Aoun
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Takahiro Nakayama
- Department of Breast and Endocrine Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Taketoshi Kajimoto
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Kyoto, Japan
| | | | - Rikard Holmdahl
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Kyoto, Japan
| | - Masahiro Inoue
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Kyoto, Japan.
| | - Nobuaki Takahashi
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Kyoto, Japan.
- The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan.
| |
Collapse
|
6
|
Kucharski TJ, Vlasac IM, Lyalina T, Higgs MR, Christensen BC, Bechstedt S, Compton DA. An Aurora kinase A-BOD1L1-PP2A B56 axis promotes chromosome segregation fidelity. Cell Rep 2025; 44:115317. [PMID: 39970043 PMCID: PMC11962599 DOI: 10.1016/j.celrep.2025.115317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/24/2024] [Accepted: 01/23/2025] [Indexed: 02/21/2025] Open
Abstract
Cancer cells are often aneuploid and frequently display elevated rates of chromosome mis-segregation, called chromosomal instability (CIN). CIN is caused by hyperstable kinetochore-microtubule (K-MT) attachments that reduce the correction efficiency of erroneous K-MT attachments. UMK57, a chemical agonist of the protein MCAK (mitotic centromere-associated kinesin), improves chromosome segregation fidelity in CIN cancer cells by destabilizing K-MT attachments, but cells rapidly develop resistance. To determine the mechanism, we performed unbiased screens, which revealed increased phosphorylation in cells adapted to UMK57 at Aurora kinase A phosphoacceptor sites on BOD1L1 (protein biorientation defective 1-like-1). BOD1L1 depletion or Aurora kinase A inhibition eliminated resistance to UMK57. BOD1L1 localizes to spindles/kinetochores during mitosis, interacts with the PP2A phosphatase, and regulates phosphorylation levels of kinetochore proteins, chromosome alignment, mitotic progression, and fidelity. Moreover, the BOD1L1 gene is mutated in a subset of human cancers, and BOD1L1 depletion reduces cell growth in combination with clinically relevant doses of Taxol or Aurora kinase A inhibitor.
Collapse
Affiliation(s)
- Thomas J Kucharski
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7 Canada
| | - Irma M Vlasac
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Tatiana Lyalina
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7 Canada
| | - Martin R Higgs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Susanne Bechstedt
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7 Canada; Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC H3G 0B1 Canada
| | - Duane A Compton
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
7
|
Ueki Y, Naylor RM, Ghozy SA, Thirupathi K, Rinaldo L, Kallmes DF, Kadirvel R. Advances in sporadic brain arteriovenous malformations: Novel genetic insights, innovative animal models, and emerging therapeutic approaches. J Cereb Blood Flow Metab 2025:271678X251319913. [PMID: 39948029 PMCID: PMC11826813 DOI: 10.1177/0271678x251319913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025]
Abstract
Brain arteriovenous malformations (bAVMs) are a notable cause of intracranial hemorrhage, strongly associated with severe morbidity and mortality. Contemporary treatment options include surgery, stereotactic radiosurgery, and endovascular embolization, each of which has limitations. Hence, development of pharmacological interventions is urgently needed. The recent discovery of the presence of activating Kirsten rat sarcoma (KRAS) viral oncogene homologue mutations in most sporadic bAVMs has opened the door for a more comprehensive understanding of the pathogenesis of bAVMs and has pointed to entirely novel possible therapeutic targets. Herein, we review the status quo of genetics, animal models, and therapeutic approaches in bAVMs.
Collapse
Affiliation(s)
- Yasuhito Ueki
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA
- Department of Neurosurgery, Faculty of Medicine, The University of Juntendo, Tokyo, Japan
| | - Ryan M Naylor
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA
| | - Sherief A Ghozy
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA
| | | | - Lorenzo Rinaldo
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA
| | | | - Ramanathan Kadirvel
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA
- Department of Radiology, Mayo Clinic Rochester, MN, USA
| |
Collapse
|
8
|
Diao S, Zou JY, Wang S, Ghaddar N, Chan JE, Kim H, Poulain N, Koumenis C, Hatzoglou M, Walter P, Sonenberg N, Le Quesne J, Tammela T, Koromilas AE. Lineage plasticity of the integrated stress response is a hallmark of cancer evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637516. [PMID: 39990365 PMCID: PMC11844398 DOI: 10.1101/2025.02.10.637516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The link between the "stress phenotype"-a well-established hallmark of cancer-and its role in tumor progression and intratumor heterogeneity remains poorly defined. The integrated stress response (ISR) is a key adaptive pathway that enables tumor survival under oncogenic stress. While ISR has been implicated in promoting tumor growth, its precise role in driving tumor evolution and heterogeneity has not been elucidated. In this study, using a genetically engineered mouse models, we demonstrate that ISR activation-indicated by elevated levels of phosphorylated eIF2 (p-eIF2) and ATF4-is essential for the emergence of dedifferentiated, therapy-resistant cell states. ISR, through the coordinated actions of ATF4 and MYC, facilitates the development of tumor cell populations characterized by high plasticity, stemness, and an epithelial-mesenchymal transition (EMT)-prone phenotype. This process is driven by ISR-mediated expression of genes that maintain mitochondrial integrity and function, critical for sustaining tumor progression. Importantly, genetic, or pharmacological inhibition of the p-eIF2-ATF4 signaling axis leads to mitochondrial dysfunction and significantly impairs tumor growth in mouse models of lung adenocarcinoma (LUAD). Moreover, ISR-driven dedifferentiation is associated with poor prognosis and therapy resistance in advanced human LUAD, underscoring ISR inhibition as a promising therapeutic strategy to disrupt tumor evolution and counteract disease progression.
Collapse
|
9
|
Podolski-Renić A, Chigriai M, Jovanović Stojanov S, Grozdanić M, Lupšić E, Nikolić I, Dragoj M, Dinić J, Pešić M. LB-100 Enhances Drugs Efficacy Through Inhibition of P-Glycoprotein Expression in Multidrug-Resistant Glioblastoma and Non-Small Cell Lung Carcinoma Cellular Models. Pharmaceutics 2025; 17:189. [PMID: 40006556 PMCID: PMC11859366 DOI: 10.3390/pharmaceutics17020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/17/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: This study explores the potential of LB-100 (a protein phosphatase 2A-PP2A inhibitor) combined with adavosertib (a WEE1 kinase inhibitor) and doxorubicin (DOX), to overcome multidrug resistance (MDR) in cancer cells and enhance treatment efficacy. Methods: We evaluated LB-100 combinations with adavosertib and DOX in patient-derived glioblastoma and non-small cell lung carcinoma cells (NSCLCs) using a real-time cell analyzer. Effectiveness was also assessed through immunofluorescence assay, and interactions were analyzed via SynergyFinder+. We also examined P-glycoprotein (P-gp) expression and drug resistance genes' expression in MDR glioblastoma and NSCLCs after LB-100 treatment, as well as LB-100 sensitizing effect on DOX and DOX accumulation. Results: LB-100 significantly boosts the effectiveness of adavosertib and DOX after multiple applications. It also enhances these drugs' cytotoxicity in a single application without acting synergistically. Additionally, LB-100 reduces P-gp expression in MDR glioblastoma and NSCLCs, sensitizing them to DOX and increasing its accumulation. Conclusions: LB-100 enhances the effectiveness of drugs against MDR cancer cells, presenting a promising strategy to overcome drug resistance in glioblastoma and NSCLCs through P-gp modulation.
Collapse
Affiliation(s)
- Ana Podolski-Renić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (A.P.-R.); (S.J.S.); (M.G.); (E.L.); (M.D.); (J.D.)
| | | | - Sofija Jovanović Stojanov
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (A.P.-R.); (S.J.S.); (M.G.); (E.L.); (M.D.); (J.D.)
| | - Marija Grozdanić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (A.P.-R.); (S.J.S.); (M.G.); (E.L.); (M.D.); (J.D.)
| | - Ema Lupšić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (A.P.-R.); (S.J.S.); (M.G.); (E.L.); (M.D.); (J.D.)
| | - Igor Nikolić
- Clinic for Neurosurgery, Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia;
- School of Medicine, University of Belgrade, Doktora Subotića 8, 11000 Belgrade, Serbia
| | - Miodrag Dragoj
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (A.P.-R.); (S.J.S.); (M.G.); (E.L.); (M.D.); (J.D.)
| | - Jelena Dinić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (A.P.-R.); (S.J.S.); (M.G.); (E.L.); (M.D.); (J.D.)
| | - Milica Pešić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (A.P.-R.); (S.J.S.); (M.G.); (E.L.); (M.D.); (J.D.)
| |
Collapse
|
10
|
Karami Fath M, Najafiyan B, Morovatshoar R, Khorsandi M, Dashtizadeh A, Kiani A, Farzam F, Kazemi KS, Nabi Afjadi M. Potential promising of synthetic lethality in cancer research and treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1403-1431. [PMID: 39305329 DOI: 10.1007/s00210-024-03444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/08/2024] [Indexed: 02/14/2025]
Abstract
Cancer is a complex disease driven by multiple genetic changes, including mutations in oncogenes, tumor suppressor genes, DNA repair genes, and genes involved in cancer metabolism. Synthetic lethality (SL) is a promising approach in cancer research and treatment, where the simultaneous dysfunction of specific genes or pathways causes cell death. By targeting vulnerabilities created by these dysfunctions, SL therapies selectively kill cancer cells while sparing normal cells. SL therapies, such as PARP inhibitors, WEE1 inhibitors, ATR and ATM inhibitors, and DNA-PK inhibitors, offer a distinct approach to cancer treatment compared to conventional targeted therapies. Instead of directly inhibiting specific molecules or pathways, SL therapies exploit genetic or molecular vulnerabilities in cancer cells to induce selective cell death, offering benefits such as targeted therapy, enhanced treatment efficacy, and minimized harm to healthy tissues. SL therapies can be personalized based on each patient's unique genetic profile and combined with other treatment modalities to potentially achieve synergistic effects. They also broaden the effectiveness of treatment across different cancer types, potentially overcoming drug resistance and improving patient outcomes. This review offers an overview of the current understanding of SL mechanisms, advancements, and challenges, as well as the preclinical and clinical development of SL. It also discusses new directions and opportunities for utilizing SL in targeted therapy for anticancer treatment.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Behnam Najafiyan
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Morovatshoar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahdieh Khorsandi
- Department of Biotechnology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Arash Kiani
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Kimia Sadat Kazemi
- Faculty of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
11
|
Sundararajan R, Hegde SR, Panda AK, Christie J, Gadewal N, Venkatraman P. Loss of correlated proteasomal subunit expression selectively promotes the 20S High state which underlies luminal breast tumorigenicity. Commun Biol 2025; 8:55. [PMID: 39814910 PMCID: PMC11735796 DOI: 10.1038/s42003-024-07432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 12/19/2024] [Indexed: 01/18/2025] Open
Abstract
Why cancer cells disproportionately accumulate polyubiquitinated proteotoxic proteins despite high proteasomal activity is an outstanding question. While mis-regulated ubiquitination is a contributing factor, here we show that a structurally-perturbed and sub-optimally functioning proteasome is at the core of altered proteostasis in tumors. By integrating the gene coexpression signatures of proteasomal subunits in breast cancer (BrCa) patient tissues with the atomistic details of 26S holocomplex, we find that the transcriptional deregulation induced-stoichiometric imbalances perpetuate with disease severity. As seen in luminal BrCa cell lines, this imbalance limits the number of double-capped 19S-20S-19S holocomplexes (30S) formed and promotes free 20S catalytic core accumulation that is widely-believed to confer survival advantage to tumors. By retaining connectivity with key tumor 19S:20S interface nodes, the PSMD9 19S subunit chaperone emerges as a crucial regulator of 26S/30S:20S ratios sustaining tumor cell proteasome function. Disrupting this connectivity by depleting PSMD9 in MCF7 cells introduces structural anomalies in the proteasome, and shifts dependence from 20SHigh to a deregulated 26SHigh state invoking anti-tumor responses which opens up clinically-relevant therapeutic possibilities.
Collapse
Affiliation(s)
- Rangapriya Sundararajan
- Protein Interactome Laboratory for Structural and Functional Biology, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India.
- Department of Computer Science and Engineering, Indian Institute of Technology, Bombay, Mumbai, India.
- Center for Cell and Gene Therapy, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
| | - Shubhada R Hegde
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
- School of Biosciences, Chanakya University, Bangalore, India
| | - Ashish Kumar Panda
- Protein Interactome Laboratory for Structural and Functional Biology, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Joel Christie
- Protein Interactome Laboratory for Structural and Functional Biology, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Nikhil Gadewal
- Bioinformatics Center, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
| | - Prasanna Venkatraman
- Protein Interactome Laboratory for Structural and Functional Biology, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
12
|
Ghai S, Shrestha R, Su KH. HSF1 at the crossroads of chemoresistance: from current insights to future horizons in cell death mechanisms. Front Cell Dev Biol 2025; 12:1500880. [PMID: 39850800 PMCID: PMC11754285 DOI: 10.3389/fcell.2024.1500880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/18/2024] [Indexed: 01/25/2025] Open
Abstract
Heat Shock Factor 1 (HSF1) is a major transcriptional factor regulating the heat shock response and has become a potential target for overcoming cancer chemoresistance. This review comprehensively examines HSF1's role in chemoresistance and its potential as a therapeutic target in cancer. We explore the complex, intricate mechanism that regulates the activation of HSF1, HSF1's function in promoting resistance to chemotherapy, and the strategies used to manipulate HSF1 for therapeutic benefit. In addition, we discuss emerging research implicating HSF1's roles in autophagy, apoptosis, DNA damage repair, drug efflux, and thus chemoresistance. This article highlights the significance of HSF1 in cancer chemoresistance and its potential as a target for enhancing cancer treatment efficacy.
Collapse
Affiliation(s)
| | | | - Kuo-Hui Su
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, United States
| |
Collapse
|
13
|
Przanowska RK, Labban N, Przanowski P, Hawes RB, Atkins KA, Showalter SL, Janes KA. Patient-derived response estimates from zero-passage organoids of luminal breast cancer. Breast Cancer Res 2024; 26:192. [PMID: 39741344 DOI: 10.1186/s13058-024-01931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Primary luminal breast cancer cells lose their identity rapidly in standard tissue culture, which is problematic for testing hormone interventions and molecular pathways specific to the luminal subtype. Breast cancer organoids are thought to retain tumor characteristics better, but long-term viability of luminal-subtype cases is a persistent challenge. Our goal was to adapt short-term organoids of luminal breast cancer for parallel testing of genetic and pharmacologic perturbations. METHODS We freshly isolated patient-derived cells from luminal tumor scrapes, miniaturized the organoid format into 5 µl replicates for increased throughput, and set an endpoint of 14 days to minimize drift. Therapeutic hormone targeting was mimicked in these "zero-passage" organoids by withdrawing β-estradiol and adding 4-hydroxytamoxifen. We also examined sulforaphane as an electrophilic stress and commercial nutraceutical with reported anti-cancer properties. Downstream mechanisms were tested genetically by lentiviral transduction of two complementary sgRNAs and Cas9 stabilization for the first week of organoid culture. Transcriptional changes were measured by RT-qPCR or RNA sequencing (RNA-seq), and organoid phenotypes were quantified by serial brightfield imaging, digital image segmentation, and regression modeling of volumetric growth rates. RESULTS We achieved > 50% success in initiating luminal breast cancer organoids from tumor scrapes and maintaining them to the 14-day zero-passage endpoint. Success was mostly independent of clinical parameters, supporting general applicability of the approach. Abundance of ESR1 and PGR in zero-passage organoids consistently remained within the range of patient variability at the endpoint. However, responsiveness to hormone withdrawal and blockade was highly variable among luminal breast cancer cases tested. Combining sulforaphane with knockout of NQO1 (a phase II antioxidant response gene and downstream effector of sulforaphane) also yielded a breadth of organoid growth phenotypes, including growth inhibition with sulforaphane, growth promotion with NQO1 knockout, and growth antagonism when combined. CONCLUSIONS Zero-passage organoids are a rapid and scalable way to interrogate properties of luminal breast cancer cells from patient-derived material. This includes testing drug mechanisms of action in different clinical cohorts. A future goal is to relate inter-patient variability of zero-passage organoids to long-term outcomes.
Collapse
Affiliation(s)
- Róża K Przanowska
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Najwa Labban
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Piotr Przanowski
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Russell B Hawes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Kristen A Atkins
- Department of Pathology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Shayna L Showalter
- Division of Surgical Oncology, Department of Surgery, University of Virginia Health System, Charlottesville, VA, 22908, USA.
- Comprehensive Cancer Center, University of Virginia, University of Virginia, Charlottesville, VA, 22908, USA.
| | - Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA.
- Comprehensive Cancer Center, University of Virginia, University of Virginia, Charlottesville, VA, 22908, USA.
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
14
|
Fayyaz A, Haqqi A, Khan R, Irfan M, Khan K, Reiner Ž, Sharifi-Rad J, Calina D. Revolutionizing cancer treatment: the rise of personalized immunotherapies. Discov Oncol 2024; 15:756. [PMID: 39692978 DOI: 10.1007/s12672-024-01638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Interest in biological therapy for cancer has surged due to its precise targeting of cancer cells and minimized impact on surrounding healthy tissues. This review discusses various biological cancer therapies, highlighting advanced alternatives over conventional chemotherapy alone. It explores DNA and RNA-based vaccines, T-cell modifications, adoptive cell transfer, CAR T cell therapy, angiogenesis inhibitors, and the combination of immunotherapy with chemotherapy, offering a holistic view of the potential in cancer treatment. Additionally, it discusses the role of nanotechnology in increasing the efficacy of cancer-targeting drugs, as well as cytokine and immunoconjugate therapies for bolstering immune system effectiveness against neoplastic cells. The potential of gene potential for precise targeting of cancer-linked genes and the application of oncolytic viruses against virus-associated cancers are also discussed. The review identifies significant advancements in the targeted treatment of cancer by biological methods. It acknowledges the challenges, including drug resistance and the need for high specificity in certain therapies, while also highlighting the effectiveness of cancer vaccines, modified T-cells, and oncolytic viruses. Biological therapies are a promising frontier in cancer treatment, offering the potential for more personalized and effective therapeutic strategies. Despite existing challenges, ongoing research and clinical trials are fundamental for overcoming current limitations and enhancing the efficacy of biological therapies in cancer care.
Collapse
Affiliation(s)
- Amna Fayyaz
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Aleena Haqqi
- School of Medical Laboratory Technology, Faculty of Allied Health Sciences, Minhaj University Lahore (MUL), Lahore, 54000, Pakistan
| | - Rashid Khan
- Department of Pharmacy, Punjab University College of Pharmacy University of Punjab Lahore, Lahore, 54000, Pakistan
| | - Muhammad Irfan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Khushbukhat Khan
- Cancer Clinical Research Unit, Trials360, Lahore, 54000, Pakistan.
| | - Željko Reiner
- Department for Metabolic Diseases, University Hospital Center Zagreb, Zagreb, Croatia
- Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
- Centro de Estudios Tecnológicos, Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
15
|
Abawi A, Trunfio-Sfarghiu AM, Thomann C, Petiot E, Lollo G, Granjon T, Girard-Egrot A, Maniti O. Tailor-made vincristine-liposomes for tumor targeting. Biochimie 2024; 227:35-46. [PMID: 39094823 DOI: 10.1016/j.biochi.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
To ensure selective targeting based on membrane fluidity and physico-chemical compatibility between the biological membrane of the target cell and the lipid membrane of the liposomes carriers. Lipid-based carriers as liposomes with varying membrane fluidities were designed for delivering vincristine, an anti-tumor compound derived from Madagascar's periwinkle. Liposomes, loaded with vincristine, were tested on prostate, colon, and breast cancer cell lines alongside non-tumor controls. Results showed that vincristine-loaded liposomes with fluid membranes significantly decreased the viability of cancer cell lines compared to controls. Confocal microscopy revealed the intracellular release of vincristine, evidenced by disrupted mitosis-specific labeling of actin filaments in metastatic prostate cell lines. This highlights the crucial role of membrane fluidity in the development of lipid-based drug carriers, offering a promising and cost-effective option for targeting cancer cells as an alternative to conventional strategies.
Collapse
Affiliation(s)
- Ariana Abawi
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, Univ. Lyon, University Lyon 1, CNRS, 69622, Lyon, France.
| | | | - Céline Thomann
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, Univ. Lyon, University Lyon 1, CNRS, 69622, Lyon, France.
| | - Emma Petiot
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, Univ. Lyon, University Lyon 1, CNRS, 69622, Lyon, France.
| | - Giovanna Lollo
- Laboratoire D'Automatique, de Génie des Procédés et de Génie Pharmaceutique, LAGEPP UMR 5007, University Lyon 1, CNRS, 69622, Lyon, France.
| | - Thierry Granjon
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, Univ. Lyon, University Lyon 1, CNRS, 69622, Lyon, France.
| | - Agnès Girard-Egrot
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, Univ. Lyon, University Lyon 1, CNRS, 69622, Lyon, France.
| | - Ofelia Maniti
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, Univ. Lyon, University Lyon 1, CNRS, 69622, Lyon, France.
| |
Collapse
|
16
|
Gorse M, Bianchi C, Proudhon C. [Epigenetics and cancer: the role of DNA methylation]. Med Sci (Paris) 2024; 40:925-934. [PMID: 39705563 DOI: 10.1051/medsci/2024180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
Alterations in DNA methylation profiles are typically found in cancer cells, combining genome-wide hypomethylation with hypermethylation of specific regions, such as CpG islands, which are normally unmethylated. Driving effects in cancer development have been associated with alteration of DNA methylation in certain regions, inducing, for example, the repression of tumor suppressor genes or the activation of oncogenes and retrotransposons. These alterations represent prime candidates for the development of specific markers for the detection, diagnosis and prognosis of cancer. In particular, these markers, distributed along the genome, provide a wealth of information that offers potential for innovation in the field of liquid biopsy, in particular thanks to the emergence of artificial intelligence for diagnostic purposes. This could overcome the limitations related to sensitivities and specificities, which remain too low for the most difficult applications in oncology: the detection of cancers at an early stage, the monitoring of residual disease and the analysis of brain tumors. In addition, targeting the enzymatic processes that control the epigenome offers new therapeutic strategies that could reverse the regulatory anomalies of these altered epigenomes.
Collapse
Affiliation(s)
- Marine Gorse
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| | - Charline Bianchi
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| | - Charlotte Proudhon
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| |
Collapse
|
17
|
Dejeu IL, Vicaș LG, Marian E, Ganea M, Frenț OD, Maghiar PB, Bodea FI, Dejeu GE. Innovative Approaches to Enhancing the Biomedical Properties of Liposomes. Pharmaceutics 2024; 16:1525. [PMID: 39771504 PMCID: PMC11728823 DOI: 10.3390/pharmaceutics16121525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Liposomes represent a promising class of drug delivery systems that enhance the therapeutic efficacy and safety of various pharmaceutical agents. Also, they offer numerous advantages compared to traditional drug delivery methods, including targeted delivery to specific sites, controlled release, and fewer side effects. This review meticulously examines the methodologies employed in the preparation and characterization of liposomal formulations. With the rising incidence of adverse drug reactions, there is a pressing need for innovative delivery strategies that prioritize selectivity, specificity, and safety. Nanomedicine promises to revolutionize diagnostics and treatments, addressing current limitations and improving disease management, including cancer, which remains a major global health challenge. This paper aims to conduct a comprehensive study on the interest of biomedical research regarding nanotechnology and its implications for further applications.
Collapse
Affiliation(s)
- Ioana Lavinia Dejeu
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Mariana Ganea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Olimpia Daniela Frenț
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Paula Bianca Maghiar
- Doctoral School of Biomedical Science, University of Oradea, 1 University Street, 410087 Oradea, Romania; (P.B.M.); (F.I.B.)
| | - Flaviu Ionut Bodea
- Doctoral School of Biomedical Science, University of Oradea, 1 University Street, 410087 Oradea, Romania; (P.B.M.); (F.I.B.)
| | - George Emanuiel Dejeu
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 Piata 1 Decembrie Street, 410073 Oradea, Romania;
| |
Collapse
|
18
|
Guo D, Chen J, Wang Y, Liu X. Survival prediction and molecular subtyping of squamous cell lung cancer based on network embedding. Sci Rep 2024; 14:29474. [PMID: 39604473 PMCID: PMC11603150 DOI: 10.1038/s41598-024-81199-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
Squamous cell lung cancer (SQCLC), which is fatal to humans, is heterogeneous with different genetic and histological features. We used SBMOI, a multi-omics data integration method from previous study, to integrate clinical, gene expression, and somatic mutation data of SQCLC to construct new patient features. Next, random survival forest (RSF) model and SimpleMKL model were constructed to predict the survival of SQCLC patients, and K-means model was constructed to perform molecular subtyping. The results of the RSF model showed that when the dimension of the patient features were 11 × 364 and the hard threshold was 0.2, we obtained the best results, and the AUC value of the 1-year time-dependent ROC curve was 0.706. The SimpleMKL model, constructed using the same patient features, performed exceptionally well, with 1-year, 5-year, and 10-year survival prediction AUC values of 0.944, 0.947 and 0.950, respectively. We used K-means analysis to identify three SQCLC molecular subtypes with significant survival differences. The patient features constructed by SBMOI were used to effectively predict the survival and molecular subtyping of SQCLC patients. In addition, our study further confirmed the effectiveness in multi-omics data integration task and broad applicability of SBMOI.
Collapse
Affiliation(s)
- Dingjie Guo
- Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Jing Chen
- Academy for Advanced Interdisciplinary Studies, Northeast Normal University, Changchun, 130024, China
| | - Yixian Wang
- Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Xin Liu
- Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
19
|
Cherkasova V, Kovalchuk O, Kovalchuk I. Targeting carbohydrate metabolism in colorectal cancer - synergy between DNA-damaging agents, cannabinoids, and intermittent serum starvation. Oncoscience 2024; 11:99-105. [PMID: 39534512 PMCID: PMC11556254 DOI: 10.18632/oncoscience.611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Chemotherapy is a therapy of choice for many cancers. However, it is often inefficient for long-term patient survival and is usually accompanied by multiple adverse effects. The adverse effects are mainly associated with toxicity to normal cells, frequently resulting in immune system depression, nausea, loss of appetite and metabolic changes. In this respect, the combination of chemotherapy with cannabinoids, especially non-psychoactive, such as cannabidiol, cannabinol and other minor cannabinoids, as well as terpenes, may become very useful. This is especially pertinent because the mechanisms of anticancer effects of cannabinoids on cancer cells are often different from conventional chemotherapeutics. In addition, cannabinoids help alleviate chemotherapy-induced adverse effects, regulate sleep and appetite, and are shown to have analgesic properties. Another component for achieving potential anti-cancer synergism is regulating nutrient availability and metabolism by calorie restriction and intermittent fasting in cancer cells. As tumours require a lot of energy to grow and because glucose is constantly available, malignant cells often opt to use glucose as a primary source of ATP production through substrate-level phosphorylation (fermentation) rather than through oxidative phosphorylation. Thus, periodic depletion of cancer cells of primary fuel, glucose, could result in a strong synergy in killing cancer cells by chemo- and possibly radiotherapy when combined with cannabinoids. This commentary will discuss what is known about such combinatorial treatments, including potential mechanisms and future protocols.
Collapse
Affiliation(s)
- Viktoriia Cherkasova
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
20
|
Sebastian RM, Patrick JE, Hui T, Amici DR, Giacomelli AO, Butty VL, Hahn WC, Mendillo ML, Lin YS, Shoulders MD. Dominant-negative TP53 mutations potentiated by the HSF1-regulated proteostasis network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621414. [PMID: 39554167 PMCID: PMC11565964 DOI: 10.1101/2024.11.01.621414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Protein mutational landscapes are sculpted by the impacts of the resulting amino acid substitutions on the protein's stability and folding or aggregation kinetics. These properties can, in turn, be modulated by the composition and activities of the cellular proteostasis network. Heat shock factor 1 (HSF1) is the master regulator of the cytosolic and nuclear proteostasis networks, dynamically tuning the expression of cytosolic and nuclear chaperones and quality control factors to meet demand. Chronic increases in HSF1 levels and activity are prominent hallmarks of cancer cells. One plausible explanation for this observation is that the consequent upregulation of proteostasis factors could biophysically facilitate the acquisition of oncogenic mutations. Here, we experimentally evaluate the impacts of chronic HSF1 activation on the mutational landscape accessible to the quintessential oncoprotein p53. Specifically, we apply quantitative deep mutational scanning of p53 to assess how HSF1 activation shapes the mutational pathways by which p53 can escape cytotoxic pressure conferred by the small molecule nutlin-3, which is a potent antagonist of the p53 negative regulator MDM2. We find that activation of HSF1 broadly increases the fitness of dominant-negative substitutions within p53. This effect of HSF1 activation was particularly notable for non-conservative, biophysically unfavorable amino acid substitutions within buried regions of the p53 DNA-binding domain. These results indicate that chronic HSF1 activation profoundly shapes the oncogenic mutational landscape, preferentially supporting the acquisition of cancer-associated substitutions that are biophysically destabilizing. Along with providing the first experimental and quantitative insights into how HSF1 influences oncoprotein mutational spectra, these findings also implicate HSF1 inhibition as a strategy to reduce the accessibility of mutations that drive chemotherapeutic resistance and metastasis.
Collapse
Affiliation(s)
- Rebecca M. Sebastian
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jessica E. Patrick
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tiffani Hui
- Department of Chemistry, Tufts University, Medford, MA, USA
| | - David R. Amici
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Vincent L. Butty
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William C. Hahn
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marc L. Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, MA, USA
| | - Matthew D. Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
21
|
Xu D, Liang SQ, Su M, Yang H, Bruggmann R, Oberhaensli S, Yang Z, Gao Y, Marti TM, Wang W, Schmid RA, Shu Y, Dorn P, Peng RW. Crispr-mediated genome editing reveals a preponderance of non-oncogene addictions as targetable vulnerabilities in pleural mesothelioma. Lung Cancer 2024; 197:107986. [PMID: 39383772 DOI: 10.1016/j.lungcan.2024.107986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Pleural mesothelioma (PM) is an aggressive cancer with limited treatment options. In particular, the frequent loss of tumor suppressors, a key oncogenic driver of the disease that is therapeutically intractable, has hampered the development of targeted cancer therapies. Here, we interrogate the PM genome using CRISPR-mediated gene editing to systematically uncover PM cell susceptibilities and provide an evidence-based rationale for targeted cancer drug discovery. This analysis has allowed us to identify with high confidence numerous known and novel gene dependencies that are surprisingly highly enriched for non-oncogenic pathways involved in response to various stress stimuli, in particular DNA damage and transcriptional dysregulation. By integrating genomic analysis with a series of in vitro and in vivo functional studies, we validate and prioritize several non-oncogene addictions conferred by CDK7, CHK1, HDAC3, RAD51, TPX2, and UBA1 as targetable vulnerabilities, revealing previously unappreciated aspects of PM biology. Our findings support the growing consensus that stress-responsive non-oncogenic signaling plays a key role in the initiation and progression of PM and provide a functional blueprint for the development of unprecedented targeted therapies to combat this formidable disease.
Collapse
Affiliation(s)
- Duo Xu
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shun-Qing Liang
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Min Su
- Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Haitang Yang
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | | | - Zhang Yang
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yanyun Gao
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas M Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Wenxiang Wang
- Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ralph A Schmid
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Ren-Wang Peng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
22
|
Li X, Wang Z, Gao B, Dai K, Wu J, Shen K, Li G, Niu X, Wu X, Li L, Shen H, Li H, Yu Z, Wang Z, Chen G. Unveiling the impact of SUMOylation at K298 site of heat shock factor 1 on glioblastoma malignant progression. Neoplasia 2024; 57:101055. [PMID: 39260131 PMCID: PMC11415976 DOI: 10.1016/j.neo.2024.101055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Glioblastoma (GBM) poses a significant medical challenge due to its aggressive nature and poor prognosis. Mitochondrial unfolded protein response (UPRmt) and the heat shock factor 1 (HSF1) pathway play crucial roles in GBM pathogenesis. Post-translational modifications, such as SUMOylation, regulate the mechanism of action of HSF1 and may influence the progression of GBM. Understanding the interplay between SUMOylation-modified HSF1 and GBM pathophysiology is essential for developing targeted therapies. METHODS We conducted a comprehensive investigation using cellular, molecular, and in vivo techniques. Cell culture experiments involved establishing stable cell lines, protein extraction, Western blotting, co-immunoprecipitation, and immunofluorescence analysis. Mass spectrometry was utilized for protein interaction studies. Computational modeling techniques were employed for protein structure analysis. Plasmid construction and lentiviral transfection facilitated the manipulation of HSF1 SUMOylation. In vivo studies employed xenograft models for tumor growth assessment. RESULTS Our research findings indicate that HSF1 primarily undergoes SUMOylation at the lysine residue K298, enhancing its nuclear translocation, stability, and downstream heat shock protein expression, while having no effect on its trimer conformation. SUMOylated HSF1 promoted the UPRmt pathway, leading to increased GBM cell proliferation, migration, invasion, and reduced apoptosis. In vivo studies have confirmed that SUMOylation of HSF1 enhances its oncogenic effect in promoting tumor growth in GBM xenograft models. CONCLUSION This study elucidates the significance of SUMOylation modification of HSF1 in driving GBM progression. Targeting SUMOylated HSF1 may offer a novel therapeutic approach for GBM treatment. Further investigation into the specific molecular mechanisms influenced by SUMOylated HSF1 is warranted for the development of effective targeted therapies to improve outcomes for GBM patients.
Collapse
Affiliation(s)
- Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China; Department of Neurosurgery, Xinghua People's Hospital Affiliated to Yangzhou University, Xinghua 225700, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Bixi Gao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Kun Dai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Kecheng Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Guangzhao Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Xiaowang Niu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Xin Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Longyuan Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| |
Collapse
|
23
|
Zhang J, Chen M, Yang Y, Liu Z, Guo W, Xiang P, Zeng Z, Wang D, Xiong W. Amino acid metabolic reprogramming in the tumor microenvironment and its implication for cancer therapy. J Cell Physiol 2024; 239:e31349. [PMID: 38946173 DOI: 10.1002/jcp.31349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Amino acids are essential building blocks for proteins, crucial energy sources for cell survival, and key signaling molecules supporting the resistant growth of tumor cells. In tumor cells, amino acid metabolic reprogramming is characterized by the enhanced uptake of amino acids as well as their aberrant synthesis, breakdown, and transport, leading to immune evasion and malignant progression of tumor cells. This article reviews the altered amino acid metabolism in tumor cells and its impact on tumor microenvironment, and also provides an overview of the current clinical applications of amino acid metabolism. Innovative drugs targeting amino acid metabolism hold great promise for precision and personalized cancer therapy.
Collapse
Affiliation(s)
- Jiarong Zhang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Mingjian Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yuxin Yang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Ziqi Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wanni Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Pingjuan Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Dan Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
24
|
Hockemeyer K, Sakellaropoulos T, Chen X, Ivashkiv O, Sirenko M, Zhou H, Gambi G, Battistello E, Avrampou K, Sun Z, Guillamot M, Chiriboga L, Jour G, Dolgalev I, Corrigan K, Bhatt K, Osman I, Tsirigos A, Kourtis N, Aifantis I. The stress response regulator HSF1 modulates natural killer cell anti-tumour immunity. Nat Cell Biol 2024; 26:1734-1744. [PMID: 39223375 DOI: 10.1038/s41556-024-01490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Diverse cellular insults converge on activation of the heat shock factor 1 (HSF1), which regulates the proteotoxic stress response to maintain protein homoeostasis. HSF1 regulates numerous gene programmes beyond the proteotoxic stress response in a cell-type- and context-specific manner to promote malignancy. However, the role(s) of HSF1 in immune populations of the tumour microenvironment remain elusive. Here, we leverage an in vivo model of HSF1 activation and single-cell transcriptomic tumour profiling to show that augmented HSF1 activity in natural killer (NK) cells impairs cytotoxicity, cytokine production and subsequent anti-tumour immunity. Mechanistically, HSF1 directly binds and regulates the expression of key mediators of NK cell effector function. This work demonstrates that HSF1 regulates the immune response under the stress conditions of the tumour microenvironment. These findings have important implications for enhancing the efficacy of adoptive NK cell therapies and for designing combinatorial strategies including modulators of NK cell-mediated tumour killing.
Collapse
Affiliation(s)
- Kathryn Hockemeyer
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Theodore Sakellaropoulos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, NYU Langone Medical Center, New York, NY, USA
| | - Xufeng Chen
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Olha Ivashkiv
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Maria Sirenko
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Hua Zhou
- Applied Bioinformatics Laboratories, NYU Langone Medical Center, New York, NY, USA
| | - Giovanni Gambi
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Elena Battistello
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Kleopatra Avrampou
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Zhengxi Sun
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Maria Guillamot
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Luis Chiriboga
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - George Jour
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Igor Dolgalev
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, NYU Langone Medical Center, New York, NY, USA
| | - Kate Corrigan
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Kamala Bhatt
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Iman Osman
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Urology, NYU Grossman School of Medicine, New York, NY, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Langone Medical Center, New York, NY, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, NYU Langone Medical Center, New York, NY, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Nikos Kourtis
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA.
- Regeneron Pharmaceuticals, Tarrytown, NY, USA.
| | - Iannis Aifantis
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
25
|
Di Marco T, Mazzoni M, Greco A, Cassinelli G. Non-oncogene dependencies: Novel opportunities for cancer therapy. Biochem Pharmacol 2024; 228:116254. [PMID: 38704100 DOI: 10.1016/j.bcp.2024.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Targeting oncogene addictions have changed the history of subsets of malignancies and continues to represent an excellent therapeutic opportunity. Nonetheless, alternative strategies are required to treat malignancies driven by undruggable oncogenes or loss of tumor suppressor genes and to overcome drug resistance also occurring in cancers addicted to actionable drivers. The discovery of non-oncogene addiction (NOA) uncovered novel therapeutically exploitable "Achilles' heels". NOA refers to genes/pathways not oncogenic per sé but essential for the tumor cell growth/survival while dispensable for normal cells. The clinical success of several classes of conventional and molecular targeted agents can be ascribed to their impact on both tumor cell-associated intrinsic as well as microenvironment-related extrinsic NOA. The integration of genetic, computational and pharmacological high-throughput approaches led to the identification of an expanded repertoire of synthetic lethality interactions implicating NOA targets. Only a few of them have been translated into the clinics as most NOA vulnerabilities are not easily druggable or appealing targets. Nonetheless, their identification has provided in-depth knowledge of tumor pathobiology and suggested novel therapeutic opportunities. Here, we summarize conceptual framework of intrinsic and extrinsic NOA providing exploitable vulnerabilities. Conventional and emerging methodological approaches used to disclose NOA dependencies are reported together with their limits. We illustrate NOA paradigmatic and peculiar examples and outline the functional/mechanistic aspects, potential druggability and translational interest. Finally, we comment on difficulties in exploiting the NOA-generated knowledge to develop novel therapeutic approaches to be translated into the clinics and to fully harness the potential of clinically available drugs.
Collapse
Affiliation(s)
- Tiziana Di Marco
- Integrated Biology of Rare Tumors Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Mara Mazzoni
- Integrated Biology of Rare Tumors Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Angela Greco
- Integrated Biology of Rare Tumors Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy.
| |
Collapse
|
26
|
Zhang Y, Pan R, Li K, Cheang LH, Zhao J, Zhong Z, Li S, Wang J, Zhang X, Cheng Y, Zheng X, He R, Wang H. HSPD1 Supports Osteosarcoma Progression through Stabilizing ATP5A1 and thus Activation of AKT/mTOR Signaling. Int J Biol Sci 2024; 20:5162-5190. [PMID: 39430254 PMCID: PMC11489178 DOI: 10.7150/ijbs.100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024] Open
Abstract
Malignant transformation is concomitant with excessive activation of stress response pathways. Heat shock proteins (HSPs) are stress-inducible proteins that play a role in folding and processing proteins, contributing to the non-oncogene addiction of stressed tumor cells. However, the detailed role of the HSP family in osteosarcoma has not been investigated. Bulk and single-cell transcriptomic data from the GEO and TARGET databases were used to identify HSPs associated with prognosis in osteosarcoma patients. The expression level of HSPD1 was markedly increased in osteosarcoma, correlating with a negative prognosis. Through in vitro and in vivo experiments, we systematically identified HSPD1 as an important contributor to the regulation of proliferation, metastasis, and apoptosis in osteosarcoma by promoting the epithelial-mesenchymal transition (EMT) and activating AKT/mTOR signaling. Subsequently, ATP5A1 was determined as a potential target of HSPD1 using immunoprecipitation followed by mass spectrometry. Mechanistically, HSPD1 may interact with ATP5A1 to reduce the K48-linked ubiquitination and degradation of ATP5A1, which ultimately activates the AKT/mTOR pathway to ensure osteosarcoma progression and EMT process. These findings expand the potential mechanisms by which HSPD1 exerts biological effects and provide strong evidence for its inclusion as a potential therapeutic target in osteosarcoma.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Ruilin Pan
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Kun Li
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Drug Ability Assessment, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Lek Hang Cheang
- Department of Orthopedic Surgery, Centro Hospitalar Conde de Sao Januario, Macau, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, China
| | - Shaoping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, China
| | - Jinghao Wang
- Department of Pharmacy, the First Affiliated Hospital, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Jinan University, Guangzhou, China
- Department of Orthopedics, NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaofang Zhang
- Department of Pharmacy, the First Affiliated Hospital, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Jinan University, Guangzhou, China
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Yanmei Cheng
- Department of Cardiothoracic Surgery ICU, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Xiaofei Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Rongrong He
- State Key Laboratory of Bioactive Molecules and Drug Ability Assessment, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Huajun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
27
|
Li Q, Yang W, Zhang Q, Zhang D, Deng J, Chen B, Li P, Zhang H, Jiang Y, Li Y, Zhang B, Lin N. Wee1 inhibitor PD0166285 sensitized TP53 mutant lung squamous cell carcinoma to cisplatin via STAT1. Cancer Cell Int 2024; 24:315. [PMID: 39272147 PMCID: PMC11396119 DOI: 10.1186/s12935-024-03489-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Lung squamous cell carcinoma (LUSCs) is associated with high mortality (20-30%) and lacks of effective treatments. Almost all LUSC exhibit somatic mutations in TP53. Wee1, a tyrosine kinase, regulates the cell cycle at the G2/M checkpoint. In TP53-deficient cells, the dependence on G2/M checkpoints increases. PD0166285 is the first reported drug with inhibitory activity against both Wee1 and PKMYT1. METHODS Protein expression was determined by Western blot analysis. Cell proliferation was assessed using cell colony formation and CCK-8 assays. Cell cycle was performed by PI staining with flow cytometry. Apoptosis was evaluated using Annexin V-Phycoerythrin double staining and flow cytometry. DNA damage was detected through comet assay and immunofluorescence assay. In vivo, apoptosis and anti-tumor effects were assessed using the TUNEL assay, a nude mouse model, and immunohistochemistry (IHC). Co-immunoprecipitation assay was used to detect protein-protein interactions. We analyzed Wee1, PKMYT1, and Stat1 expression in pan-cancer studies using the Ualcan public database and assessed their prognostic implications with Kaplan-Meier curves. RESULT PD0166285, a Wee1 inhibitor, effectively inhibits Wee1 activity, promoting cell entry into a mitotic crisis. Moreover, PD0166285 sensitizes cells to cisplatin, enhancing clinical outcomes. Our study demonstrated that PD016628 regulates the cell cycle through Rad51 and results in cell cycle arrest at the G2/M phase. We observed increased apoptosis in tumor cells treated with PD0166285, particularly when combined with cisplatin, indicating an enhanced apoptotic response. The upregulation of γ-H2AX serves as an indicator of mitotic catastrophe. Co-immunoprecipitation and data analysis revealed that apoptosis in LUSC is mediated through the Stat1 pathway, accompanied by decreased levels of Socs3. Furthermore, IHC staining confirmed significant differences in the expression of Phospho-CDK1 and γ-H2AX in LUSCs, suggesting involvement in DNA damage. CONCLUSIONS In summary, our study suggests that PD0166285, an inhibitor of Wee1, sensitizes LUSC cells to cisplatin and modulates DNA damage and apoptosis pathways through Rad51 and Stat1, respectively. These findings highlight the combination of PD0166285 and cisplatin as a promising therapeutic approach for treating LUSC.
Collapse
Affiliation(s)
- Qi Li
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Wenjie Yang
- The Fourth Clinical College of Zhejiang, First People's Hospital, Chinese Medicine University, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Qingyi Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Daoming Zhang
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Deng
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Guangxi, 530021, China
| | - Binxin Chen
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Ping Li
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Huanqi Zhang
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yiming Jiang
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yangling Li
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Nengming Lin
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China.
| |
Collapse
|
28
|
Meena JK, Wang JH, Neill NJ, Keough D, Putluri N, Katsonis P, Koire AM, Lee H, Bowling EA, Tyagi S, Orellana M, Dominguez-Vidaña R, Li H, Eagle K, Danan C, Chung HC, Yang AD, Wu W, Kurley SJ, Ho BM, Zoeller JR, Olson CM, Meerbrey KL, Lichtarge O, Sreekumar A, Dacso CC, Guddat LW, Rejman D, Hocková D, Janeba Z, Simon LM, Lin CY, Pillon MC, Westbrook TF. MYC Induces Oncogenic Stress through RNA Decay and Ribonucleotide Catabolism in Breast Cancer. Cancer Discov 2024; 14:1699-1716. [PMID: 39193992 PMCID: PMC11372365 DOI: 10.1158/2159-8290.cd-22-0649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2023] [Accepted: 05/06/2024] [Indexed: 08/29/2024]
Abstract
Upregulation of MYC is a hallmark of cancer, wherein MYC drives oncogenic gene expression and elevates total RNA synthesis across cancer cell transcriptomes. Although this transcriptional anabolism fuels cancer growth and survival, the consequences and metabolic stresses induced by excess cellular RNA are poorly understood. Herein, we discover that RNA degradation and downstream ribonucleotide catabolism is a novel mechanism of MYC-induced cancer cell death. Combining genetics and metabolomics, we find that MYC increases RNA decay through the cytoplasmic exosome, resulting in the accumulation of cytotoxic RNA catabolites and reactive oxygen species. Notably, tumor-derived exosome mutations abrogate MYC-induced cell death, suggesting excess RNA decay may be toxic to human cancers. In agreement, purine salvage acts as a compensatory pathway that mitigates MYC-induced ribonucleotide catabolism, and inhibitors of purine salvage impair MYC+ tumor progression. Together, these data suggest that MYC-induced RNA decay is an oncogenic stress that can be exploited therapeutically. Significance: MYC is the most common oncogenic driver of poor-prognosis cancers but has been recalcitrant to therapeutic inhibition. We discovered a new vulnerability in MYC+ cancer where MYC induces cell death through excess RNA decay. Therapeutics that exacerbate downstream ribonucleotide catabolism provide a therapeutically tractable approach to TNBC (Triple-negative Breast Cancer) and other MYC-driven cancers.
Collapse
Affiliation(s)
- Jitendra K. Meena
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Jarey H. Wang
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas.
| | - Nicholas J. Neill
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
| | - Dianne Keough
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
| | - Amanda M. Koire
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
| | - Hyemin Lee
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Elizabeth A. Bowling
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Siddhartha Tyagi
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Mayra Orellana
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Rocio Dominguez-Vidaña
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Heyuan Li
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Kenneth Eagle
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
| | - Charles Danan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
| | - Hsiang-Ching Chung
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Andrew D. Yang
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas.
| | - William Wu
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas.
| | - Sarah J. Kurley
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Brian M. Ho
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas.
| | - Joseph R. Zoeller
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas.
| | - Calla M. Olson
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Kristen L. Meerbrey
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| | - Clifford C. Dacso
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| | - Luke W. Guddat
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Dana Hocková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Lukas M. Simon
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
| | - Charles Y. Lin
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.
| | - Monica C. Pillon
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Thomas F. Westbrook
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
29
|
Witherspoon JG, Hall JR, Jima D, Atkins HM, Wamsley NT, Major MB, Weissman BE, Smart RC. Mutant Nrf2 E79Q enhances the promotion and progression of a subset of oncogenic Ras keratinocytes and skin tumors. Redox Biol 2024; 75:103261. [PMID: 38963974 PMCID: PMC11269801 DOI: 10.1016/j.redox.2024.103261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024] Open
Abstract
Squamous cell carcinomas (SCCs), including lung, head & neck, bladder, and skin SCCs often display constitutive activation of the KEAP1-NRF2 pathway. Constitutive activation is achieved through multiple mechanisms, including activating mutations in NFE2L2 (NRF2). To determine the functional consequences of Nrf2 activation on skin SCC development, we assessed the effects of mutant Nrf2E79Q expression, one of the most common activating mutations in human SCCs, on tumor promotion and progression in the mouse skin multistage carcinogenesis model using a DMBA-initiation/TPA-promotion protocol where the Hras A->T mutation (Q61L) is the canonical driver mutation. Nrf2E79Q expression was temporally and conditionally activated in the epidermis at two stages of tumor development: 1) after DMBA initiation in the epidermis but before cutaneous tumor development and 2) in pre-existing DMBA-initiated/TPA-promoted squamous papillomas. Expression of Nrf2E79Q in the epidermis after DMBA initiation but before tumor occurrence inhibited the development/promotion of 70% of squamous papillomas. However, the remaining papillomas often displayed non-canonical Hras and Kras mutations and enhanced progression to SCCs compared to control mice expressing wildtype Nrf2. Nrf2E79Q expression in pre-existing tumors caused rapid regression of 60% of papillomas. The remaining papillomas displayed the expected canonical Hras A->T mutation (Q61L) and enhanced progression to SCCs. These results demonstrate that mutant Nrf2E79Q enhances the promotion and progression of a subset of skin tumors and alters the frequency and diversity of oncogenic Ras mutations when expressed early after initiation.
Collapse
Affiliation(s)
| | - Jonathan R Hall
- Department of Biological Sciences, North Carolina State University, USA; Toxicology Graduate Program, North Carolina State University, USA; Center for Human Health and the Environment, North Carolina State University, USA
| | - Dereje Jima
- Center for Human Health and the Environment, North Carolina State University, USA
| | - Hannah M Atkins
- Center for Human Health and the Environment, North Carolina State University, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, USA
| | - Nathan T Wamsley
- Department of Cell Biology and Physiology, Washington University at St Louis, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, Washington University at St Louis, USA
| | - Bernard E Weissman
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, USA.
| | - Robert C Smart
- Department of Biological Sciences, North Carolina State University, USA; Toxicology Graduate Program, North Carolina State University, USA; Center for Human Health and the Environment, North Carolina State University, USA.
| |
Collapse
|
30
|
Yang H, Zhan X, Zhao J, Shi W, Liu T, Wei Z, Li H, Hou X, Mu W, Chen Y, Zheng C, Wang Z, Wei S, Xiao X, Bai Z. Schisandrin C enhances type I IFN response activation to reduce tumor growth and sensitize chemotherapy through antitumor immunity. Front Pharmacol 2024; 15:1369563. [PMID: 39170700 PMCID: PMC11337024 DOI: 10.3389/fphar.2024.1369563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/29/2024] [Indexed: 08/23/2024] Open
Abstract
With the advancing comprehension of immunology, an increasing number of immunotherapies are being explored and implemented in the field of cancer treatment. The cGAS-STING pathway, a crucial element of the innate immune response, has been identified as pivotal in cancer immunotherapy. We evaluated the antitumor effects of Schisandra chinensis lignan component Schisandrin C (SC) in 4T1 and MC38 tumor-bearing mice, and studied the enhancing effects of SC on the cGAS-STING pathway and antitumor immunity through RNA sequencing, qRT-PCR, and flow cytometry. Our findings revealed that SC significantly inhibited tumor growth in models of both breast and colon cancer. This suppression of tumor growth was attributed to the activation of type I IFN response and the augmented presence of T cells and NK cells within the tumor. Additionally, SC markedly promoted the cGAS-STING pathway activation induced by cisplatin. In comparison to cisplatin monotherapy, the combined treatment of SC and cisplatin exhibited a greater inhibitory effect on tumor growth. The amplified chemotherapeutic efficacy was associated with an enhanced type I IFN response and strengthened antitumor immunity. SC was shown to reduce tumor growth and increase chemotherapy sensitivity by enhancing the type I IFN response activation and boosting antitumor immunity, which enriched the research into the antitumor immunity of S. chinensis and laid a theoretical basis for its application in combating breast and colon cancer.
Collapse
Affiliation(s)
- Huijie Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaoyan Zhan
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- National Key Laboratory of Kidney Diseases, Beijing, China
| | - Jia Zhao
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Wei Shi
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Liu
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, China
| | - Ziying Wei
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Hui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaorong Hou
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Wenqing Mu
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yuanyuan Chen
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Congyang Zheng
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhongxia Wang
- Department of Nutrition, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Shengli Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohe Xiao
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- National Key Laboratory of Kidney Diseases, Beijing, China
| | - Zhaofang Bai
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- National Key Laboratory of Kidney Diseases, Beijing, China
| |
Collapse
|
31
|
Kim Y, Jang Y, Kim MS, Kang C. Metabolic remodeling in cancer and senescence and its therapeutic implications. Trends Endocrinol Metab 2024; 35:732-744. [PMID: 38453603 DOI: 10.1016/j.tem.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Cellular metabolism is a flexible and plastic network that often dictates physiological and pathological states of the cell, including differentiation, cancer, and aging. Recent advances in cancer metabolism represent a tremendous opportunity to treat cancer by targeting its altered metabolism. Interestingly, despite their stable growth arrest, senescent cells - a critical component of the aging process - undergo metabolic changes similar to cancer metabolism. A deeper understanding of the similarities and differences between these disparate pathological conditions will help identify which metabolic reprogramming is most relevant to the therapeutic liabilities of senescence. Here, we compare and contrast cancer and senescence metabolism and discuss how metabolic therapies can be established as a new modality of senotherapy for healthy aging.
Collapse
Affiliation(s)
- Yeonju Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea
| | - Yeji Jang
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea
| | - Mi-Sung Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea
| | - Chanhee Kang
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
32
|
Lim JS, Kim E, Song JS, Ahn S. Energy‑stress‑mediated activation of AMPK sensitizes MPS1 kinase inhibition in triple‑negative breast cancer. Oncol Rep 2024; 52:101. [PMID: 38904203 PMCID: PMC11223027 DOI: 10.3892/or.2024.8760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/26/2024] [Indexed: 06/22/2024] Open
Abstract
Monopolar spindle 1 kinase (Mps1, also known as TTK protein kinase) inhibitors exert marked anticancer effects against triple‑negative breast cancer (TNBC) by causing genomic instability and cell death. As aneuploid cells are vulnerable to compounds that induce energy stress through adenosine monophosphate‑activated protein kinase (AMPK) activation, the synergistic effect of Mps1/TTK inhibition and AMPK activation was investigated in the present study. The combined effects of CFI‑402257, an Mps1/TTK inhibitor, and AICAR, an AMPK agonist, were evaluated in terms of cytotoxicity, cell‑cycle distribution, and in vivo xenograft models. Additional molecular mechanistic studies were conducted to elucidate the mechanisms underlying apoptosis and autophagic cell death. The combination of CFI‑402257 and AICAR showed selective cytotoxicity in a TNBC cell line. The formation of polyploid cells was attenuated, and apoptosis was increased by the combination treatment, which also induced autophagy through dual inhibition of the PI3K/Akt/mTOR and mitogen‑activated protein kinase (MAPK) signaling pathways. Additionally, the combination therapy showed strongly improved efficacy in comparison with CFI‑402257 and AICAR monotherapy in the MDA‑MB‑231 xenograft model. The present study suggested that the combination of CFI‑402257 and AICAR is a promising therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Jong Seung Lim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eunkyoung Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jin-Sook Song
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Sunjoo Ahn
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
33
|
Yu Y, Lyu C, Li X, Yang L, Wang J, Li H, Xin Z, Xu X, Ren C, Yang G. Remodeling of tumor microenvironment by extracellular matrix protein 1a differentially regulates ovarian cancer metastasis. Cancer Lett 2024; 596:217022. [PMID: 38849014 DOI: 10.1016/j.canlet.2024.217022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
We previously reported that extracellular matrix protein 1 isoform a (ECM1a) promotes epithelial ovarian cancer (EOC) through autocrine signaling by binding to cell surface receptors αXβ2. However, the role of ECM1a as a secretory molecule in the tumor microenvironment is rarely reported. In this study, we constructed murine Ecm1-knockout mice and human ECM1a-knockin mice and further generated orthotopic or peritoneal xenograft tumor models to mimic the different metastatic stages of EOC. We show that ECM1a induces oncogenic metastasis of orthotopic xenograft tumors, but inhibits early-metastasis of peritoneal xenograft tumors. ECM1a remodels extracellular matrices (ECM) and promotes remote metastases by recruiting and transforming bone marrow mesenchymal stem cells (BMSCs) into platelet-derived growth factor receptor beta (PDGFRβ+) cancer-associated fibroblasts (CAFs) and facilitating the secretion of angiopoietin-like protein 2 (ANGPTL2). Competing with ECM1a, ANGPTL2 also binds to integrin αX through the P1/P2 peptides, resulting in negative effects on BMSC differentiation. Collectively, this study reveals the dual functions of ECM1a in remodeling of TME during tumor progression, emphasizing the complexity of EOC phenotypic heterogeneity and metastasis.
Collapse
Affiliation(s)
- Yinjue Yu
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200140, China; Department of Radiotherapy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Cuiting Lyu
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200140, China
| | - Xiaojing Li
- Department of Pathology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200140, China
| | - Lina Yang
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200140, China
| | - Jingshu Wang
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200140, China
| | - Hui Li
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200140, China
| | - Zhaochen Xin
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200140, China
| | - Xinyi Xu
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200140, China; Department of Pathology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200140, China
| | - Chunxia Ren
- Center for Reproductive Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Gong Yang
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200140, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
34
|
Toye E, Chehrazi-Raffle A, Hwang J, Antonarakis ES. Targeting the multifaceted BRAF in cancer: New directions. Oncotarget 2024; 15:486-492. [PMID: 39018217 PMCID: PMC11254297 DOI: 10.18632/oncotarget.28612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024] Open
Abstract
Activating mutations in the mitogen-activated protein kinase (MAPK) pathway represent driver alterations governing tumorigenesis, metastasis, and therapy resistance. MAPK activation predominantly occurs through genomic alterations in RAS and BRAF. BRAF is an effector kinase that functions downstream of RAS and propagates this oncogenic activity through MEK and ERK. Across cancers, BRAF alterations include gain-of-function mutations, copy-number alterations, and structural rearrangements. In cancer patients, BRAF-targeting precision therapeutics are effective against Class I BRAF alterations (p.V600 hotspot mutations) in tumors such as melanomas, thyroid cancers, and colorectal cancers. However, numerous non-Class I BRAF inhibitors are also in development and have been explored in some cancers. Here we discuss the diverse forms of BRAF alterations found in human cancers and the strategies to inhibit them in patients harboring cancers of distinct origins.
Collapse
Affiliation(s)
- Eamon Toye
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA
| | | | - Justin Hwang
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Emmanuel S. Antonarakis
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
35
|
Dias MH, Friskes A, Wang S, Fernandes Neto JM, van Gemert F, Mourragui S, Papagianni C, Kuiken HJ, Mainardi S, Alvarez-Villanueva D, Lieftink C, Morris B, Dekker A, van Dijk E, Wilms LH, da Silva MS, Jansen RA, Mulero-Sánchez A, Malzer E, Vidal A, Santos C, Salazar R, Wailemann RA, Torres TE, De Conti G, Raaijmakers JA, Snaebjornsson P, Yuan S, Qin W, Kovach JS, Armelin HA, te Riele H, van Oudenaarden A, Jin H, Beijersbergen RL, Villanueva A, Medema RH, Bernards R. Paradoxical Activation of Oncogenic Signaling as a Cancer Treatment Strategy. Cancer Discov 2024; 14:1276-1301. [PMID: 38533987 PMCID: PMC11215412 DOI: 10.1158/2159-8290.cd-23-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 12/06/2023] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Cancer homeostasis depends on a balance between activated oncogenic pathways driving tumorigenesis and engagement of stress response programs that counteract the inherent toxicity of such aberrant signaling. Although inhibition of oncogenic signaling pathways has been explored extensively, there is increasing evidence that overactivation of the same pathways can also disrupt cancer homeostasis and cause lethality. We show here that inhibition of protein phosphatase 2A (PP2A) hyperactivates multiple oncogenic pathways and engages stress responses in colon cancer cells. Genetic and compound screens identify combined inhibition of PP2A and WEE1 as synergistic in multiple cancer models by collapsing DNA replication and triggering premature mitosis followed by cell death. This combination also suppressed the growth of patient-derived tumors in vivo. Remarkably, acquired resistance to this drug combination suppressed the ability of colon cancer cells to form tumors in vivo. Our data suggest that paradoxical activation of oncogenic signaling can result in tumor-suppressive resistance. Significance: A therapy consisting of deliberate hyperactivation of oncogenic signaling combined with perturbation of the stress responses that result from this is very effective in animal models of colon cancer. Resistance to this therapy is associated with loss of oncogenic signaling and reduced oncogenic capacity, indicative of tumor-suppressive drug resistance.
Collapse
Affiliation(s)
- Matheus Henrique Dias
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Anoek Friskes
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Siying Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Joao M. Fernandes Neto
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Frank van Gemert
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Soufiane Mourragui
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, the Netherlands.
| | - Chrysa Papagianni
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Hendrik J. Kuiken
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Sara Mainardi
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Daniel Alvarez-Villanueva
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet del Llobregat, Barcelona, Spain.
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, NKI Robotic and Screening Center, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Ben Morris
- Division of Molecular Carcinogenesis, NKI Robotic and Screening Center, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Anna Dekker
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Emma van Dijk
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Lieke H.S. Wilms
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Marcelo S. da Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Robin A. Jansen
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Antonio Mulero-Sánchez
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Elke Malzer
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - August Vidal
- Department of Pathology, University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain.
- Xenopat S.L., Parc Cientific de Barcelona (PCB), Barcelona, Spain.
| | - Cristina Santos
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), CIBERONC, Barcelona, Spain.
| | - Ramón Salazar
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), CIBERONC, Barcelona, Spain.
| | | | - Thompson E.P. Torres
- Center of Toxins, Immune-response and Cell Signaling, Instituto Butantan, São Paulo, Brazil.
- Department of Clinical and Experimental Oncology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil.
| | - Giulia De Conti
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Jonne A. Raaijmakers
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Petur Snaebjornsson
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
- University of Iceland, Faculty of Medicine, Reykjavik, Iceland.
| | - Shengxian Yuan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China.
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - John S. Kovach
- Lixte Biotechnology Holdings, Inc., Pasadena, California.
| | - Hugo A. Armelin
- Center of Toxins, Immune-response and Cell Signaling, Instituto Butantan, São Paulo, Brazil.
| | - Hein te Riele
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Alexander van Oudenaarden
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, the Netherlands.
| | - Haojie Jin
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Roderick L. Beijersbergen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Division of Molecular Carcinogenesis, NKI Robotic and Screening Center, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Alberto Villanueva
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet del Llobregat, Barcelona, Spain.
- Xenopat S.L., Parc Cientific de Barcelona (PCB), Barcelona, Spain.
| | - Rene H. Medema
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Rene Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
36
|
Yu X, Cai L, Yao J, Li C, Wang X. Agonists and Inhibitors of the cGAS-STING Pathway. Molecules 2024; 29:3121. [PMID: 38999073 PMCID: PMC11243509 DOI: 10.3390/molecules29133121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is pivotal in immunotherapy. Several agonists and inhibitors of the cGAS-STING pathway have been developed and evaluated for the treatment of various diseases. The agonists aim to activate STING, with cyclic dinucleotides (CDNs) being the most common, while the inhibitors aim to block the enzymatic activity or DNA binding ability of cGAS. Meanwhile, non-CDN compounds and cGAS agonists are also gaining attention. The omnipresence of the cGAS-STING pathway in vivo indicates that its overactivation could lead to undesired inflammatory responses and autoimmune diseases, which underscores the necessity of developing both agonists and inhibitors of the cGAS-STING pathway. This review describes the molecular traits and roles of the cGAS-STING pathway and summarizes the development of cGAS-STING agonists and inhibitors. The information is supposed to be conducive to the design of novel drugs for targeting the cGAS-STING pathway.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Linxiang Cai
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingyue Yao
- Department of Pharmacy, Fourth Military Medical University, Xi’an 710032, China;
| | - Cenming Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
37
|
Dias MH, Papagianni C, Bernards R. The case for therapeutic overactivation of oncogenic signaling as a potential cancer treatment strategy. Cancer Cell 2024; 42:919-922. [PMID: 38788721 DOI: 10.1016/j.ccell.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024]
Abstract
Most targeted cancer drugs inhibit the oncogenic signals to which cancer cells are addicted. We discuss here a counterintuitive approach to cancer therapy, which consists of deliberate overactivation of the oncogenic signals to overload the stress responses of cancer cells. We discuss why such overactivation of oncogenic signaling, combined with perturbation of the stress response pathways, can be potentially effective in killing cancer cells, aiming to inspire further discussion and consideration.
Collapse
Affiliation(s)
- Matheus Henrique Dias
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Chrysa Papagianni
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Rene Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
38
|
Yaya-Candela AP, Ravagnani FG, Dietrich N, Sousa R, Baptista MS. Specific photodamage on HT-29 cancer cells leads to endolysosomal failure and autophagy blockage by cathepsin depletion. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112919. [PMID: 38677261 DOI: 10.1016/j.jphotobiol.2024.112919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Endolysosomes perform a wide range of cellular functions, including nutrient sensing, macromolecule digestion and recycling, as well as plasma membrane repair. Because of their high activity in cancerous cells, endolysosomes are attractive targets for the development of novel cancer treatments. Light-activated compounds termed photosensitizers (PS) can catalyze the oxidation of specific biomolecules and intracellular organelles. To selectively damage endosomes and lysosomes, HT-29 colorectal cancer cells were incubated with nanomolar concentrations of meso-tetraphenylporphine disulfonate (TPPS2a), an amphiphilic PS taken up via endocytosis and activated by green light (522 nm, 2.1 J.cm-1). Several cellular responses were characterized by a combination of immunofluorescence and immunoblotting assays. We showed that TPPS2a photosensitization blocked autophagic flux without extensive endolysosomal membrane rupture. Nevertheless, there was a severe functional failure of endolysosomes due to a decrease in CTSD (cathepsin D, 55%) and CTSB (cathepsin B, 52%) maturation. PSAP (prosaposin) processing (into saposins) was also considerably impaired, a fact that could be detrimental to glycosphingolipid homeostasis. Therefore, photosensitization of HT-29 cells previously incubated with a low concentration of TPPS2a promotes endolysosomal dysfunction, an effect that can be used to improve cancer therapies.
Collapse
Affiliation(s)
| | | | - Natasha Dietrich
- Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Rafaela Sousa
- Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
39
|
Guo D, Wang Y, Chen J, Liu X. Integration of multi-omics data for survival prediction of lung adenocarcinoma. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 250:108192. [PMID: 38701699 DOI: 10.1016/j.cmpb.2024.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/08/2024] [Accepted: 04/20/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND AND OBJECTIVE The morbidity of lung adenocarcinoma (LUAD) has been increasing year by year and the prognosis is poor. This has prompted researchers to study the survival of LUAD patients to ensure that patients can be cured in time or survive after appropriate treatment. There is still no fully valid model that can be applied to clinical practice. METHODS We introduced struc2vec-based multi-omics data integration (SBMOI), which could integrate gene expression, somatic mutations and clinical data to construct mutation gene vectors representing LUAD patient features. Based on the patient features, the random survival forest (RSF) model was used to predict the long- and short-term survival of LUAD patients. To further demonstrate the superiority of SBMOI, we simultaneously replaced scale-free gene co-expression network (FCN) with a protein-protein interaction (PPI) network and a significant co-expression network (SCN) to compare accuracy in predicting LUAD patient survival under the same conditions. RESULTS Our results suggested that compared with SCN and PPI network, the FCN based SBMOI combined with RSF model had better performance in long- and short-term survival prediction tasks for LUAD patients. The AUC of 1-year, 5-year, and 10-year survival in the validation dataset were 0.791, 0.825, and 0.917, respectively. CONCLUSIONS This study provided a powerful network-based method to multi-omics data integration. SBMOI combined with RSF successfully predicted long- and short-term survival of LUAD patients, especially with high accuracy on long-term survival. Besides, SBMOI algorithm has the potential to combine with other machine learning models to complete clustering or stratificational tasks, and being applied to other diseases.
Collapse
Affiliation(s)
- Dingjie Guo
- Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Yixian Wang
- Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Jing Chen
- Academy for Advanced Interdisciplinary Studies, Northeast Normal University, Changchun, 130024, China
| | - Xin Liu
- Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
40
|
Hemagirri M, Chen Y, Gopinath SCB, Sahreen S, Adnan M, Sasidharan S. Crosstalk between protein misfolding and endoplasmic reticulum stress during ageing and their role in age-related disorders. Biochimie 2024; 221:159-181. [PMID: 37918463 DOI: 10.1016/j.biochi.2023.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Maintaining the proteome is crucial to retaining cell functionality and response to multiple intrinsic and extrinsic stressors. Protein misfolding increased the endoplasmic reticulum (ER) stress and activated the adaptive unfolded protein response (UPR) to restore cell homeostasis. Apoptosis occurs when ER stress is prolonged or the adaptive response fails. In healthy young cells, the ratio of protein folding machinery to quantities of misfolded proteins is balanced under normal circumstances. However, the age-related deterioration of the complex systems for handling protein misfolding is accompanied by ageing-related disruption of protein homeostasis, which results in the build-up of misfolded and aggregated proteins. This ultimately results in decreased cell viability and forms the basis of common age-related diseases called protein misfolding diseases. Proteins or protein fragments convert from their ordinarily soluble forms to insoluble fibrils or plaques in many of these disorders, which build up in various organs such as the liver, brain, or spleen. Alzheimer's, Parkinson's, type II diabetes, and cancer are diseases in this group commonly manifest in later life. Thus, protein misfolding and its prevention by chaperones and different degradation paths are becoming understood from molecular perspectives. Proteodynamics information will likely affect future interventional techniques to combat cellular stress and support healthy ageing by avoiding and treating protein conformational disorders. This review provides an overview of the diverse proteostasis machinery, protein misfolding, and ER stress involvement, which activates the UPR sensors. Here, we will discuss the crosstalk between protein misfolding and ER stress and their role in developing age-related diseases.
Collapse
Affiliation(s)
- Manisekaran Hemagirri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Subash C B Gopinath
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis, Arau, 02600, Malaysia
| | - Sumaira Sahreen
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P. O. Box 2440, Saudi Arabia.
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia.
| |
Collapse
|
41
|
Wu TKH, Hui RWH, Mak LY, Fung J, Seto WK, Yuen MF. Hepatocellular carcinoma: Advances in systemic therapies. F1000Res 2024; 13:104. [PMID: 38766497 PMCID: PMC11099512 DOI: 10.12688/f1000research.145493.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
Advanced hepatocellular carcinoma (HCC) is traditionally associated with limited treatment options and a poor prognosis. Sorafenib, a multiple tyrosine kinase inhibitor, was introduced in 2007 as a first-in-class systemic agent for advanced HCC. After sorafenib, a range of targeted therapies and immunotherapies have demonstrated survival benefits in the past 5 years, revolutionizing the treatment landscape of advanced HCC. More recently, evidence of novel combinations of systemic agents with distinct mechanisms has emerged. In particular, combination trials on atezolizumab plus bevacizumab and durvalumab plus tremelimumab have shown encouraging efficacy. Hence, international societies have revamped their guidelines to incorporate new recommendations for these novel systemic agents. Aside from treatment in advanced HCC, the indications for systemic therapy are expanding. For example, the combination of systemic therapeutics with locoregional therapy (trans-arterial chemoembolization or stereotactic body radiation therapy) has demonstrated promising early results in downstaging HCC. Recent trials have also explored the role of systemic therapy as neoadjuvant treatment for borderline-resectable HCC or as adjuvant treatment to reduce recurrence risk after curative resection. Despite encouraging results from clinical trials, the real-world efficacy of systemic agents in specific patient subgroups (such as patients with advanced cirrhosis, high bleeding risk, renal impairment, or cardiometabolic diseases) remains uncertain. The effect of liver disease etiology on systemic treatment efficacy warrants further research. With an increased understanding of the pathophysiological pathways and accumulation of clinical data, personalized treatment decisions will be possible, and the field of systemic treatment for HCC will continue to evolve.
Collapse
Affiliation(s)
- Trevor Kwan-Hung Wu
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Rex Wan-Hin Hui
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Lung-Yi Mak
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - James Fung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
42
|
Perurena N, Situ L, Cichowski K. Combinatorial strategies to target RAS-driven cancers. Nat Rev Cancer 2024; 24:316-337. [PMID: 38627557 DOI: 10.1038/s41568-024-00679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 05/01/2024]
Abstract
Although RAS was formerly considered undruggable, various agents that inhibit RAS or specific RAS oncoproteins have now been developed. Indeed, the importance of directly targeting RAS has recently been illustrated by the clinical success of mutant-selective KRAS inhibitors. Nevertheless, responses to these agents are typically incomplete and restricted to a subset of patients, highlighting the need to develop more effective treatments, which will likely require a combinatorial approach. Vertical strategies that target multiple nodes within the RAS pathway to achieve deeper suppression are being investigated and have precedence in other contexts. However, alternative strategies that co-target RAS and other therapeutic vulnerabilities have been identified, which may mitigate the requirement for profound pathway suppression. Regardless, the efficacy of any given approach will likely be dictated by genetic, epigenetic and tumour-specific variables. Here we discuss various combinatorial strategies to treat KRAS-driven cancers, highlighting mechanistic concepts that may extend to tumours harbouring other RAS mutations. Although many promising combinations have been identified, clinical responses will ultimately depend on whether a therapeutic window can be achieved and our ability to prospectively select responsive patients. Therefore, we must continue to develop and understand biologically diverse strategies to maximize our likelihood of success.
Collapse
Affiliation(s)
- Naiara Perurena
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Lisa Situ
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Ludwig Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
43
|
Meher RK, Mir SA, Anisetti SS. In silico and in vitro investigation of dual targeting Prima-1 MET as precision therapeutic against lungs cancer. J Biomol Struct Dyn 2024; 42:4169-4184. [PMID: 37272907 DOI: 10.1080/07391102.2023.2219323] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
This study emphasizes the explorations of binding of Prima-1MET with two targets, p53 a tumor suppressor protein, and tyrosine kinase of epidermal growth factor receptor. In silico investigations reveal that Prima-1MET showed robust binding with both targets. Molecular docking simulations demonstrated the binding affinity of Prima-1MET with p53 and tyrosine kinase was found to be -38.601 kJ/mol and -38.976 kJ/mol. In addition, the stability of Prima-1MET was explored by molecular dynamics simulation. Prima-1MET attains stability in the binding site of the respective protein till the simulation period is over. Moreover, the free binding energy ΔGbind was calculated by the molecular mechanics Poisson Boltzmann surface area method. The ΔGbind of Prima-1MET with tyrosine kinase was found to be -58.585 ± 0.327 kJ/mol and with p53 it was -35.910 ± 0.335 kJ/mol. Next, cytotoxicity of the Prima-1MET was evaluated using multiple cancer cell lines and the IC50 value were ranging between 4.5 and 30 μM. The cell death was identified by apoptosis assay. Further, the p53 and tyrosine kinase expression was monitored using immunofluorescence techniques, it was found Prima-1MET induces the expression of p53 protein and mimics the level of tyrosine kinase oncogenic target. Also, reactive oxygen species (ROS) and membrane potential activity of Prima-1MET was evaluated by using a lung cancer cell line. A significant decrease in intracellular ROS was observed and resulted in disruption of mitochondrial transmembrane potential. This study uncovers the underlying mechanism of Prima-1MET and could be helpful to design further leads against lung cancers.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rajesh Kumar Meher
- Advance Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai, India
- Department of Biotechnology and Bioinformatics, Sambalpur University, Burla, Odisha, India
| | | | | |
Collapse
|
44
|
Katoch M, Singh G, Bijarnia E, Gupta AP, Azeem M, Rani P, Kumar J. Biodiversity of endosymbiont fungi associated with a marine sponge Lamellodysidea herbacea and their potential as antioxidant producers. 3 Biotech 2024; 14:146. [PMID: 38706926 PMCID: PMC11068721 DOI: 10.1007/s13205-024-03972-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 03/01/2024] [Indexed: 05/07/2024] Open
Abstract
This study aims to isolate endosymbiontic fungi from the marine sponge Lamellodysidea herbacea and to explore their antioxidant potential. Marine-derived fungi, with their vast biodiversity, are considered a promising source of novel antioxidants which can replace synthetic ones. Marine sponges have previously reported bioactive properties that could ameliorate oxidative stress, particularly their associated fungi, producing high-frequency bioactive molecules (adaptogenic molecules) in response to stressors. 19 endosymbiont fungi associated with marine sponges were isolated, and their extracts were evaluated for their antioxidant capacities. Extract of an endosymbiont fungus, isolate SPG6, identified as Alternaria destruens, through surface electron microscopy (SEM) and ITS gene sequencing, showed broad range antioxidant activities (EC50 values) (free radical scavenging 32.54 mg L-1, Hydroxyl radical scavenging activity < 0.078 g L-1, total reducing power 0.114 g L-1, Chelating power 0.262 g L-1, H2O2 scavenging activity < 0.078 g L-1, and Superoxide radical scavenging activity > 5.0 g L-1). The extract of isolate SPG6 was fractioned and analyzed through GC-MS. Marine sponge-associated endosymbiont fungi are a rich source of antioxidant molecules. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03972-1.
Collapse
Affiliation(s)
- Meenu Katoch
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR, New Delhi, 110025 India
| | - Gurpreet Singh
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR, New Delhi, 110025 India
| | - Ekta Bijarnia
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001 India
| | - A. P. Gupta
- Quality Control Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001 India
| | - Mohd. Azeem
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001 India
| | - Pragya Rani
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001 India
| | - J. Kumar
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR, New Delhi, 110025 India
| |
Collapse
|
45
|
Lee R, Lee WY, Park HJ. Anticancer Effects of Mitoquinone via Cell Cycle Arrest and Apoptosis in Canine Mammary Gland Tumor Cells. Int J Mol Sci 2024; 25:4923. [PMID: 38732133 PMCID: PMC11084895 DOI: 10.3390/ijms25094923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Treating female canine mammary gland tumors is crucial owing to their propensity for rapid progression and metastasis, significantly impacting the overall health and well-being of dogs. Mitoquinone (MitoQ), an antioxidant, has shown promise in inhibiting the migration, invasion, and clonogenicity of human breast cancer cells. Thus, we investigated MitoQ's potential anticancer properties against canine mammary gland tumor cells, CMT-U27 and CF41.Mg. MitoQ markedly suppressed the proliferation and migration of both CMT-U27 and CF41.Mg cells and induced apoptotic cell death in a dose-dependent manner. Furthermore, treatment with MitoQ led to increased levels of pro-apoptotic proteins, including cleaved-caspase3, BAX, and phospho-p53. Cell cycle analysis revealed that MitoQ hindered cell progression in the G1 and S phases in CMT-U27 and CF41.Mg cells. These findings were supported using western blot analysis, demonstrating elevated levels of cleaved caspase-3, a hallmark of apoptosis, and decreased expression of cyclin-dependent kinase (CDK) 2 and cyclin D4, pivotal regulators of the cell cycle. In conclusion, MitoQ exhibits in vitro antitumor effects by inducing apoptosis and arresting the cell cycle in canine mammary gland tumors, suggesting its potential as a preventive or therapeutic agent against canine mammary cancer.
Collapse
Affiliation(s)
- Ran Lee
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonju-si 54874, Republic of Korea; (R.L.); (W.-Y.L.)
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea
| | - Won-Young Lee
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonju-si 54874, Republic of Korea; (R.L.); (W.-Y.L.)
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea
- Department Smart Life Science, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea
| |
Collapse
|
46
|
Moon JW, Hong BJ, Kim SK, Park MS, Lee H, Lee J, Kim MY. Systematic identification of a synthetic lethal interaction in brain-metastatic lung adenocarcinoma. Cancer Lett 2024; 588:216781. [PMID: 38494150 DOI: 10.1016/j.canlet.2024.216781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
Metastatic lung adenocarcinoma (LuAC) presents a significant clinical challenge due to the short latency and the lack of efficient treatment options. Therefore, identification of molecular vulnerabilities in metastatic LuAC holds great importance in the development of therapeutic drugs against this disease. In this study, we performed a genome-wide siRNA screening using poorly and highly brain-metastatic LuAC cell lines. Using this approach, we discovered that compared to poorly metastatic LuAC (LuAC-Par) cells, brain-metastatic LuAC (LuAC-BrM) cells exhibited a significantly higher vulnerability to c-FLIP (an inhibitor of caspase-8)-depletion-induced apoptosis. Furthermore, in vivo studies demonstrated that c-FLIP knockdown specifically inhibited growth of LuAC-BrM, but not the LuAC-Par, tumors, suggesting the addiction of LuAC-BrM to the function of c-FLIP for their survival. Our in vitro and in vivo analyses also demonstrated that LuAC-BrM is more sensitive to c-FLIP-depletion due to ER stress-induced activation of the c-JUN and subsequent induction of stress genes including ATF4 and DDIT3. Finally, we found that c-JUN not only sensitized LuAC-BrM to c-FLIP-depletion-induced cell death but also promoted brain metastasis in vivo, providing strong evidence for c-JUN's function as a double-edged sword in LuAC-BrM. Collectively, our findings not only reveal a novel link between c-JUN, brain metastasis, and c-FLIP addiction in LuAC-BrM but also present an opportunity for potential therapeutic intervention.
Collapse
Affiliation(s)
- Jin Woo Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | | | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea
| | - Min-Seok Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hohyeon Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - JiWon Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Mi-Young Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea; KAIST Institute for the BioCentury, Cancer Metastasis Control Center, Daejeon, South Korea.
| |
Collapse
|
47
|
Wang X, Cornish AE, Do MH, Brunner JS, Hsu TW, Xu Z, Malik I, Edwards C, Capistrano KJ, Zhang X, Ginsberg MH, Finley LWS, Lim MS, Horwitz SM, Li MO. Onco-Circuit Addiction and Onco-Nutrient mTORC1 Signaling Vulnerability in a Model of Aggressive T Cell Malignancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587917. [PMID: 38617314 PMCID: PMC11014592 DOI: 10.1101/2024.04.03.587917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
How genetic lesions drive cell transformation and whether they can be circumvented without compromising function of non-transformed cells are enduring questions in oncology. Here we show that in mature T cells-in which physiologic clonal proliferation is a cardinal feature- constitutive MYC transcription and Tsc1 loss in mice modeled aggressive human malignancy by reinforcing each other's oncogenic programs. This cooperation was supported by MYC-induced large neutral amino acid transporter chaperone SLC3A2 and dietary leucine, which in synergy with Tsc1 deletion overstimulated mTORC1 to promote mitochondrial fitness and MYC protein overexpression in a positive feedback circuit. A low leucine diet was therapeutic even in late-stage disease but did not hinder T cell immunity to infectious challenge, nor impede T cell transformation driven by constitutive nutrient mTORC1 signaling via Depdc5 loss. Thus, mTORC1 signaling hypersensitivity to leucine as an onco-nutrient enables an onco-circuit, decoupling pathologic from physiologic utilization of nutrient acquisition pathways.
Collapse
|
48
|
Li Q, Wu P, Du Q, Hanif U, Hu H, Li K. cGAS-STING, an important signaling pathway in diseases and their therapy. MedComm (Beijing) 2024; 5:e511. [PMID: 38525112 PMCID: PMC10960729 DOI: 10.1002/mco2.511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Since cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway was discovered in 2013, great progress has been made to elucidate the origin, function, and regulating mechanism of cGAS-STING signaling pathway in the past decade. Meanwhile, the triggering and transduction mechanisms have been continuously illuminated. cGAS-STING plays a key role in human diseases, particularly DNA-triggered inflammatory diseases, making it a potentially effective therapeutic target for inflammation-related diseases. Here, we aim to summarize the ancient origin of the cGAS-STING defense mechanism, as well as the triggers, transduction, and regulating mechanisms of the cGAS-STING. We will also focus on the important roles of cGAS-STING signal under pathological conditions, such as infections, cancers, autoimmune diseases, neurological diseases, and visceral inflammations, and review the progress in drug development targeting cGAS-STING signaling pathway. The main directions and potential obstacles in the regulating mechanism research and therapeutic drug development of the cGAS-STING signaling pathway for inflammatory diseases and cancers will be discussed. These research advancements expand our understanding of cGAS-STING, provide a theoretical basis for further exploration of the roles of cGAS-STING in diseases, and open up new strategies for targeting cGAS-STING as a promising therapeutic intervention in multiple diseases.
Collapse
Affiliation(s)
- Qijie Li
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Ping Wu
- Department of Occupational DiseasesThe Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital)ChengduSichuanChina
| | - Qiujing Du
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Ullah Hanif
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Hongbo Hu
- Center for Immunology and HematologyState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ka Li
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| |
Collapse
|
49
|
Yu Y, Liu S, Yang L, Song P, Liu Z, Liu X, Yan X, Dong Q. Roles of reactive oxygen species in inflammation and cancer. MedComm (Beijing) 2024; 5:e519. [PMID: 38576456 PMCID: PMC10993368 DOI: 10.1002/mco2.519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/21/2024] [Accepted: 02/23/2024] [Indexed: 04/06/2024] Open
Abstract
Reactive oxygen species (ROS) constitute a spectrum of oxygenic metabolites crucial in modulating pathological organism functions. Disruptions in ROS equilibrium span various diseases, and current insights suggest a dual role for ROS in tumorigenesis and the immune response within cancer. This review rigorously examines ROS production and its role in normal cells, elucidating the subsequent regulatory network in inflammation and cancer. Comprehensive synthesis details the documented impacts of ROS on diverse immune cells. Exploring the intricate relationship between ROS and cancer immunity, we highlight its influence on existing immunotherapies, including immune checkpoint blockade, chimeric antigen receptors, and cancer vaccines. Additionally, we underscore the promising prospects of utilizing ROS and targeting ROS modulators as novel immunotherapeutic interventions for cancer. This review discusses the complex interplay between ROS, inflammation, and tumorigenesis, emphasizing the multifaceted functions of ROS in both physiological and pathological conditions. It also underscores the potential implications of ROS in cancer immunotherapy and suggests future research directions, including the development of targeted therapies and precision oncology approaches. In summary, this review emphasizes the significance of understanding ROS-mediated mechanisms for advancing cancer therapy and developing personalized treatments.
Collapse
Affiliation(s)
- Yunfei Yu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Shengzhuo Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Luchen Yang
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Pan Song
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Zhenghuan Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Xiaoyang Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Xin Yan
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Qiang Dong
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
50
|
Przanowska RK, Labban N, Przanowski P, Hawes RB, Atkins KA, Showalter SL, Janes KA. Patient-derived response estimates from zero-passage organoids of luminal breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.24.586432. [PMID: 38585922 PMCID: PMC10996455 DOI: 10.1101/2024.03.24.586432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Background Primary luminal breast cancer cells lose their identity rapidly in standard tissue culture, which is problematic for testing hormone interventions and molecular pathways specific to the luminal subtype. Breast cancer organoids are thought to retain tumor characteristics better, but long-term viability of luminal-subtype cases is a persistent challenge. Our goal was to adapt short-term organoids of luminal breast cancer for parallel testing of genetic and pharmacologic perturbations. Methods We freshly isolated patient-derived cells from luminal tumor scrapes, miniaturized the organoid format into 5 μl replicates for increased throughput, and set an endpoint of 14 days to minimize drift. Therapeutic hormone targeting was mimicked in these "zero-passage" organoids by withdrawing β-estradiol and adding 4-hydroxytamoxifen. We also examined sulforaphane as an electrophilic stress and commercial neutraceutical with reported anti-cancer properties. Downstream mechanisms were tested genetically by lentiviral transduction of two complementary sgRNAs and Cas9 stabilization for the first week of organoid culture. Transcriptional changes were measured by RT-qPCR or RNA sequencing, and organoid phenotypes were quantified by serial brightfield imaging, digital image segmentation, and regression modeling of cellular doubling times. Results We achieved >50% success in initiating luminal breast cancer organoids from tumor scrapes and maintaining them to the 14-day zero-passage endpoint. Success was mostly independent of clinical parameters, supporting general applicability of the approach. Abundance of ESR1 and PGR in zero-passage organoids consistently remained within the range of patient variability at the endpoint. However, responsiveness to hormone withdrawal and blockade was highly variable among luminal breast cancer cases tested. Combining sulforaphane with knockout of NQO1 (a phase II antioxidant response gene and downstream effector of sulforaphane) also yielded a breadth of organoid growth phenotypes, including growth inhibition with sulforaphane, growth promotion with NQO1 knockout, and growth antagonism when combined. Conclusions Zero-passage organoids are a rapid and scalable way to interrogate properties of luminal breast cancer cells from patient-derived material. This includes testing drug mechanisms of action in different clinical cohorts. A future goal is to relate inter-patient variability of zero-passage organoids to long-term outcomes.
Collapse
Affiliation(s)
- Róża K Przanowska
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Najwa Labban
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Piotr Przanowski
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Russell B Hawes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Kristen A Atkins
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Shayna L Showalter
- Department of Surgery, University of Virginia Health System, Charlottesville, VA 22908, USA
- University of Virginia Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- University of Virginia Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|