1
|
Hao W, Hu X, Chen Q, Qin B, Tian Z, Li Z, Hou P, Zhao R, Balci H, Cui S, Diao J. Duplex Unwinding Mechanism of Coronavirus MERS-CoV nsp13 Helicase. CHEMICAL & BIOMEDICAL IMAGING 2025; 3:111-122. [PMID: 40018651 PMCID: PMC11863148 DOI: 10.1021/cbmi.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 03/01/2025]
Abstract
The COVID-19 pandemic has underscored the importance of in-depth research into the proteins encoded by coronaviruses (CoV), particularly the highly conserved nonstructural CoV proteins (nsp). Among these, the nsp13 helicase of severe pathogenic MERS-CoV, SARS-CoV-2, and SARS-CoV is one of the most preserved CoV nsp. Utilizing single-molecule FRET, we discovered that MERS-CoV nsp13 unwinds DNA in distinct steps of about 9 bp when ATP is employed. If a different nucleotide is introduced, these steps diminish to 3-4 bp. Dwell-time analysis revealed 3-4 concealed steps within each unwinding process, which suggests the hydrolysis of 3-4 dTTP. Combining our observations with previous studies, we propose an unwinding model of CoV nsp13 helicase. This model suggests that the elongated and adaptable 1B-stalk of nsp13 may enable the 1B remnants to engage with the unwound single-stranded DNA, even as the helicase core domain has advanced over 3-4 bp, thereby inducing accumulated strain on the nsp13-DNA complex. Our findings provide a foundational framework for determining the unwinding mechanism of this unique helicase family.
Collapse
Affiliation(s)
- Wei Hao
- NHC
Key Laboratory of Systems Biology of Pathogens, National Institute
of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiao Hu
- Department
of Cancer Biology, University of Cincinnati
College of Medicine, Cincinnati, Ohio 45267, United States
| | - Qixin Chen
- Department
of Cancer Biology, University of Cincinnati
College of Medicine, Cincinnati, Ohio 45267, United States
| | - Bo Qin
- NHC
Key Laboratory of Systems Biology of Pathogens, National Institute
of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhiqi Tian
- Department
of Cancer Biology, University of Cincinnati
College of Medicine, Cincinnati, Ohio 45267, United States
| | - Ziheng Li
- NHC
Key Laboratory of Systems Biology of Pathogens, National Institute
of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Pengjiao Hou
- NHC
Key Laboratory of Systems Biology of Pathogens, National Institute
of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Rong Zhao
- NHC
Key Laboratory of Systems Biology of Pathogens, National Institute
of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hamza Balci
- Department
of Physics, Kent State University, Kent, Ohio 44242, United States
| | - Sheng Cui
- NHC
Key Laboratory of Systems Biology of Pathogens, National Institute
of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jiajie Diao
- Department
of Cancer Biology, University of Cincinnati
College of Medicine, Cincinnati, Ohio 45267, United States
| |
Collapse
|
2
|
Rengachari S, Hainthaler T, Oberthuer C, Lidschreiber M, Cramer P. Mechanism of polyadenylation-independent RNA polymerase II termination. Nat Struct Mol Biol 2025; 32:339-345. [PMID: 39424994 PMCID: PMC11832416 DOI: 10.1038/s41594-024-01409-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/25/2024] [Indexed: 10/21/2024]
Abstract
The mechanisms underlying the initiation and elongation of RNA polymerase II (Pol II) transcription are well-studied, whereas termination remains poorly understood. Here we analyze the mechanism of polyadenylation-independent Pol II termination mediated by the yeast Sen1 helicase. Cryo-electron microscopy structures of two pretermination intermediates show that Sen1 binds to Pol II and uses its adenosine triphosphatase activity to pull on exiting RNA in the 5' direction. This is predicted to push Pol II forward, induce an unstable hypertranslocated state and destabilize the transcription bubble, thereby facilitating termination. This mechanism of transcription termination may be widely used because it is conceptually conserved in the bacterial transcription system.
Collapse
Affiliation(s)
- Srinivasan Rengachari
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Thomas Hainthaler
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christiane Oberthuer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Michael Lidschreiber
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
3
|
Wever MA, Scommegna F, Egea-Rodriguez S, Dehghani-Tafti S, Brandao-Neto J, Poisson JF, Helfrich I, Antson A, Rodeschini V, Bax B, Roche D, Sanders C. Structure-based discovery of first inhibitors targeting the helicase activity of human PIF1. Nucleic Acids Res 2024; 52:12616-12632. [PMID: 39417423 PMCID: PMC11551755 DOI: 10.1093/nar/gkae897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
PIF1 is a conserved helicase and G4 DNA binding and unwinding enzyme, with roles in genome stability. Human PIF1 (hPIF1) is poorly understood, but its functions can become critical for tumour cell survival during oncogene-driven replication stress. Here we report the discovery, via an X-ray crystallographic fragment screen (XChem), of hPIF1 DNA binding and unwinding inhibitors. A structure was obtained with a 4-phenylthiazol-2-amine fragment bound in a pocket between helicase domains 2A and 2B, with additional contacts to Valine 258 from domain 1A. The compound makes specific interactions, notably through Leucine 548 and Alanine 551, that constrain conformational adjustments between domains 2A and 2B, previously linked to ATP hydrolysis and DNA unwinding. We next synthesized a range of related compounds and characterized their effects on hPIF1 DNA-binding and helicase activity in vitro, expanding the structure activity relationship (SAR) around the initial hit. A systematic analysis of clinical cancer databases is also presented here, supporting the notion that hPIF1 upregulation may represent a specific cancer cell vulnerability. The research demonstrates that hPIF1 is a tractable target through 4-phenylthiazol-2-amine derivatives as inhibitors of its helicase action, setting a foundation for creation of a novel class of anti-cancer therapeutics.
Collapse
Affiliation(s)
- Mark J A Wever
- Edelris, Bioparc, Bioserra 1 Building, 69008 Lyon, France
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | - Francesca R Scommegna
- Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Beech Hill Rd., Sheffield S10 2RX, United Kingdom
| | - Sara Egea-Rodriguez
- Department of Dermatology and Allergy, Ludwig-Maximilians-Universität (LMU) Munich & German Cancer Consortium (DKTK), partner site Munich, Frauenlobstrasse 9-11, D-80337 Munich, Germany
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Saba Dehghani-Tafti
- Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Beech Hill Rd., Sheffield S10 2RX, United Kingdom
| | - Jose Brandao-Neto
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Research Complex at Harwell, Harwell Campus, Didcot, United Kingdom
| | | | - Iris Helfrich
- Department of Dermatology and Allergy, Ludwig-Maximilians-Universität (LMU) Munich & German Cancer Consortium (DKTK), partner site Munich, Frauenlobstrasse 9-11, D-80337 Munich, Germany
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | | | - Ben Bax
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
- Medicines Discovery Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Didier Roche
- Edelris, Bioparc, Bioserra 1 Building, 69008 Lyon, France
| | - Cyril M Sanders
- Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Beech Hill Rd., Sheffield S10 2RX, United Kingdom
| |
Collapse
|
4
|
Cui W, Duan Y, Gao Y, Wang W, Yang H. Structural review of SARS-CoV-2 antiviral targets. Structure 2024; 32:1301-1321. [PMID: 39241763 DOI: 10.1016/j.str.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/09/2024]
Abstract
The coronavirus disease 2019 (COVID-19), the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represents the most disastrous infectious disease pandemic of the past century. As a member of the Betacoronavirus genus, the SARS-CoV-2 genome encodes a total of 29 proteins. The spike protein, RNA-dependent RNA polymerase, and proteases play crucial roles in the virus replication process and are promising targets for drug development. In recent years, structural studies of these viral proteins and of their complexes with antibodies and inhibitors have provided valuable insights into their functions and laid a solid foundation for drug development. In this review, we summarize the structural features of these proteins and discuss recent progress in research regarding therapeutic development, highlighting mechanistically representative molecules and those that have already been approved or are under clinical investigation.
Collapse
Affiliation(s)
- Wen Cui
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yinkai Duan
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201203, China
| | - Wei Wang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201203, China.
| |
Collapse
|
5
|
Hong Z, Byrd AK, Gao J, Das P, Tan VQ, Malone EG, Osei B, Marecki JC, Protacio RU, Wahls WP, Raney KD, Song H. Eukaryotic Pif1 helicase unwinds G-quadruplex and dsDNA using a conserved wedge. Nat Commun 2024; 15:6104. [PMID: 39030241 PMCID: PMC11275212 DOI: 10.1038/s41467-024-50575-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/16/2024] [Indexed: 07/21/2024] Open
Abstract
G-quadruplexes (G4s) formed by guanine-rich nucleic acids induce genome instability through impeding DNA replication fork progression. G4s are stable DNA structures, the unfolding of which require the functions of DNA helicases. Pif1 helicase binds preferentially to G4 DNA and plays multiple roles in maintaining genome stability, but the mechanism by which Pif1 unfolds G4s is poorly understood. Here we report the co-crystal structure of Saccharomyces cerevisiae Pif1 (ScPif1) bound to a G4 DNA with a 5' single-stranded DNA (ssDNA) segment. Unlike the Thermus oshimai Pif1-G4 structure, in which the 1B and 2B domains confer G4 recognition, ScPif1 recognizes G4 mainly through the wedge region in the 1A domain that contacts the 5' most G-tetrad directly. A conserved Arg residue in the wedge is required for Okazaki fragment processing but not for mitochondrial function or for suppression of gross chromosomal rearrangements. Multiple substitutions at this position have similar effects on resolution of DNA duplexes and G4s, suggesting that ScPif1 may use the same wedge to unwind G4 and dsDNA. Our results reveal the mechanism governing dsDNA unwinding and G4 unfolding by ScPif1 helicase that can potentially be generalized to other eukaryotic Pif1 helicases and beyond.
Collapse
Affiliation(s)
- Zebin Hong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore, Republic of Singapore
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Jun Gao
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Poulomi Das
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore, Republic of Singapore
| | - Vanessa Qianmin Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore, Republic of Singapore
| | - Emory G Malone
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Bertha Osei
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - John C Marecki
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Reine U Protacio
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Haiwei Song
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore, Republic of Singapore.
| |
Collapse
|
6
|
Gao J, Proffitt D, Marecki J, Protacio R, Wahls W, Byrd A, Raney K. Two residues in the DNA binding site of Pif1 helicase are essential for nuclear functions but dispensable for mitochondrial respiratory growth. Nucleic Acids Res 2024; 52:6543-6557. [PMID: 38752483 PMCID: PMC11194084 DOI: 10.1093/nar/gkae403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024] Open
Abstract
Pif1 helicase functions in both the nucleus and mitochondria. Pif1 tightly couples ATP hydrolysis, single-stranded DNA translocation, and duplex DNA unwinding. We investigated two Pif1 variants (F723A and T464A) that have each lost one site of interaction of the protein with the DNA substrate. Both variants exhibit minor reductions in affinity for DNA and ATP hydrolysis but have impaired DNA unwinding activity. However, these variants translocate on single-stranded DNA faster than the wildtype enzyme and can slide on the DNA substrate in an ATP-independent manner. This suggests they have lost their grip on the DNA, interfering with coupling ATP hydrolysis to translocation and unwinding. Yeast expressing these variants have increased gross chromosomal rearrangements, increased telomere length, and can overcome the lethality of dna2Δ, similar to phenotypes of yeast lacking Pif1. However, unlike pif1Δ mutants, they are viable on glycerol containing media and maintain similar mitochondrial DNA copy numbers as Pif1 wildtype. Overall, our data indicate that a tight grip of the trailing edge of the Pif1 enzyme on the DNA couples ATP hydrolysis to DNA translocation and DNA unwinding. This tight grip appears to be essential for the Pif1 nuclear functions tested but is dispensable for mitochondrial respiratory growth.
Collapse
Affiliation(s)
- Jun Gao
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - David R Proffitt
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - John C Marecki
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - Reine U Protacio
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| |
Collapse
|
7
|
Maio N, Heffner AL, Rouault TA. Iron‑sulfur clusters in viral proteins: Exploring their elusive nature, roles and new avenues for targeting infections. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119723. [PMID: 38599324 PMCID: PMC11139609 DOI: 10.1016/j.bbamcr.2024.119723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Viruses have evolved complex mechanisms to exploit host factors for replication and assembly. In response, host cells have developed strategies to block viruses, engaging in a continuous co-evolutionary battle. This dynamic interaction often revolves around the competition for essential resources necessary for both host cell and virus replication. Notably, iron, required for the biosynthesis of several cofactors, including iron‑sulfur (FeS) clusters, represents a critical element in the ongoing competition for resources between infectious agents and host. Although several recent studies have identified FeS cofactors at the core of virus replication machineries, our understanding of their specific roles and the cellular processes responsible for their incorporation into viral proteins remains limited. This review aims to consolidate our current knowledge of viral components that have been characterized as FeS proteins and elucidate how viruses harness these versatile cofactors to their benefit. Its objective is also to propose that viruses may depend on incorporation of FeS cofactors more extensively than is currently known. This has the potential to revolutionize our understanding of viral replication, thereby carrying significant implications for the development of strategies to target infections.
Collapse
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| | - Audrey L Heffner
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Osei B, May BH, Stiefel CM, West KL, Zafar MK, Thompson MD, Bergstrom E, Leung JW, Enemark EJ, Byrd AK. Rare SNP in the HELB gene interferes with RPA interaction and cellular function of HELB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582415. [PMID: 38464108 PMCID: PMC10925333 DOI: 10.1101/2024.02.27.582415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
HELB is a human helicase involved in initiation of DNA replication, the replication stress response, and regulation of double-strand DNA break repair. rs75770066 is a rare SNP in the HELB gene that affects age at natural menopause. rs75770066 results in a D506G substitution in an acidic patch within the 1A domain of the helicase that is known to interact with RPA. We found that this amino acid change dramatically impairs the cellular function of HELB. D506G-HELB exhibits impaired interaction with RPA, which likely results in the effects of rs75770066 as this reduces recruitment of HELB to sites of DNA damage. Reduced recruitment of D506G-HELB to double-strand DNA breaks and the concomitant increase in homologous recombination likely alters the levels of meiotic recombination, which affects the viability of gametes. Because menopause occurs when oocyte levels drop below a minimum threshold, altered repair of meiotic double-stranded DNA breaks has the potential to directly affect the age at natural menopause.
Collapse
Affiliation(s)
- Bertha Osei
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Benjamin H. May
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Clara M. Stiefel
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Kirk L. West
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
- Winthrop P. Rockefeller Cancer Institute, Little Rock, Arkansas, 72205, USA
| | - Maroof Khan Zafar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Matthew D. Thompson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Erik Bergstrom
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, Missouri, 72205, USA
| | - Justin W. Leung
- Department of Radiation Oncology, University of Texas Health Science Center San Antonio, San Antonio, Texas, 78229, USA
| | - Eric J. Enemark
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
- Winthrop P. Rockefeller Cancer Institute, Little Rock, Arkansas, 72205, USA
| | - Alicia K. Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
- Winthrop P. Rockefeller Cancer Institute, Little Rock, Arkansas, 72205, USA
| |
Collapse
|
9
|
Appel CD, Bermek O, Dandey VP, Wood M, Viverette E, Williams JG, Bouvette J, Riccio AA, Krahn JM, Borgnia MJ, Williams RS. Sen1 architecture: RNA-DNA hybrid resolution, autoregulation, and insights into SETX inactivation in AOA2. Mol Cell 2023; 83:3692-3706.e5. [PMID: 37832548 PMCID: PMC10629462 DOI: 10.1016/j.molcel.2023.09.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/25/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
The senataxin (SETX, Sen1 in yeasts) RNA-DNA hybrid resolving helicase regulates multiple nuclear transactions, including DNA replication, transcription, and DNA repair, but the molecular basis for Sen1 activities is ill defined. Here, Sen1 cryoelectron microscopy (cryo-EM) reconstructions reveal an elongated inchworm-like architecture. Sen1 is composed of an amino terminal helical repeat Sen1 N-terminal (Sen1N) regulatory domain that is flexibly linked to its C-terminal SF1B helicase motor core (Sen1Hel) via an intrinsically disordered tether. In an autoinhibited state, the Sen1Sen1N domain regulates substrate engagement by promoting occlusion of the RNA substrate-binding cleft. The X-ray structure of an activated Sen1Hel engaging single-stranded RNA and ADP-SO4 shows that the enzyme encircles RNA and implicates a single-nucleotide power stroke in the Sen1 RNA translocation mechanism. Together, our data unveil dynamic protein-protein and protein-RNA interfaces underpinning helicase regulation and inactivation of human SETX activity by RNA-binding-deficient mutants in ataxia with oculomotor apraxia 2 neurodegenerative disease.
Collapse
Affiliation(s)
- C Denise Appel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Oya Bermek
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Venkata P Dandey
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Makayla Wood
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Elizabeth Viverette
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Jason G Williams
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Jonathan Bouvette
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Amanda A Riccio
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Juno M Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
10
|
Corona A, Madia VN, De Santis R, Manelfi C, Emmolo R, Ialongo D, Patacchini E, Messore A, Amatore D, Faggioni G, Artico M, Iaconis D, Talarico C, Di Santo R, Lista F, Costi R, Tramontano E. Diketo acid inhibitors of nsp13 of SARS-CoV-2 block viral replication. Antiviral Res 2023; 217:105697. [PMID: 37562607 DOI: 10.1016/j.antiviral.2023.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
For RNA viruses, RNA helicases have long been recognized to play critical roles during virus replication cycles, facilitating proper folding and replication of viral RNAs, therefore representing an ideal target for drug discovery. SARS-CoV-2 helicase, the non-structural protein 13 (nsp13) is a highly conserved protein among all known coronaviruses, and, at the moment, is one of the most explored viral targets to identify new possible antiviral agents. In the present study, we present six diketo acids (DKAs) as nsp13 inhibitors able to block both SARS-CoV-2 nsp13 enzymatic functions. Among them four compounds were able to inhibit viral replication in the low micromolar range, being active also on other human coronaviruses such as HCoV229E and MERS CoV. The experimental investigation of the binding mode revealed ATP-non-competitive kinetics of inhibition, not affected by substrate-displacement effect, suggesting an allosteric binding mode that was further supported by molecular modelling calculations predicting the binding into an allosteric conserved site located in the RecA2 domain.
Collapse
Affiliation(s)
- Angela Corona
- Dipartimento di Scienze della vita e dell'ambiente. Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, SS-554, Monserrato, Cagliari, Italy
| | - Valentina Noemi Madia
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy
| | - Riccardo De Santis
- Defense Institute for Biomedical Sciences, Via Santo Stefano Rotondo 4, 00184, Rome, Italy
| | - Candida Manelfi
- EXSCALATE - Dompé Farmaceutici SpA, via Tommaso De Amicis 95, 80131, Napoli, Italy
| | - Roberta Emmolo
- Dipartimento di Scienze della vita e dell'ambiente. Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, SS-554, Monserrato, Cagliari, Italy
| | - Davide Ialongo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy
| | - Elisa Patacchini
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy
| | - Antonella Messore
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy
| | - Donatella Amatore
- Defense Institute for Biomedical Sciences, Via Santo Stefano Rotondo 4, 00184, Rome, Italy
| | - Giovanni Faggioni
- Defense Institute for Biomedical Sciences, Via Santo Stefano Rotondo 4, 00184, Rome, Italy
| | - Marco Artico
- Department of Sensory Organs, "Sapienza" Università di Roma, V.le Regina Elena 324, I-00161, Rome, Italy
| | - Daniela Iaconis
- EXSCALATE - Dompé Farmaceutici SpA, via Tommaso De Amicis 95, 80131, Napoli, Italy
| | - Carmine Talarico
- EXSCALATE - Dompé Farmaceutici SpA, via Tommaso De Amicis 95, 80131, Napoli, Italy
| | - Roberto Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy
| | - Florigio Lista
- Defense Institute for Biomedical Sciences, Via Santo Stefano Rotondo 4, 00184, Rome, Italy
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy.
| | - Enzo Tramontano
- Dipartimento di Scienze della vita e dell'ambiente. Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, SS-554, Monserrato, Cagliari, Italy.
| |
Collapse
|
11
|
Yu J, Im H, Lee G. Unwinding mechanism of SARS-CoV helicase (nsp13) in the presence of Ca 2+, elucidated by biochemical and single-molecular studies. Biochem Biophys Res Commun 2023; 668:35-41. [PMID: 37235917 PMCID: PMC10193821 DOI: 10.1016/j.bbrc.2023.05.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
The recent outbreak of COVID-19 has created a serious health crisis with fatFal infectious viral diseases, such as Severe Acute Respiratory Syndrome (SARS). The nsp13, a helicase of coronaviruses is an essential element for viral replication that unwinds secondary structures of DNA and RNA, and is thus considered a major therapeutic target for treatment. The replication of coronaviruses and other retroviruses occurs in the cytoplasm of infected cells, in association with viral replication organelles, called virus-induced cytosolic double-membrane vesicles (DMVs). In addition, an increase in cytosolic Ca2+ concentration accelerates viral replication. However, the molecular mechanism of nsp13 in the presence of Ca2+ is not well understood. In this study, we applied biochemical methods and single-molecule techniques to demonstrate how nsp13 achieves its unwinding activity while performing ATP hydrolysis in the presence of Ca2+. Our study found that nsp13 could efficiently unwind double stranded (ds) DNA under physiological concentration of Ca2+ of cytosolic DMVs. These findings provide new insights into the properties of nsp13 in the range of calcium in cytosolic DMVs.
Collapse
Affiliation(s)
- Jeongmin Yu
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Hyeryeon Im
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Gwangrog Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea.
| |
Collapse
|
12
|
Cui N, Zhang JT, Liu Y, Liu Y, Liu XY, Wang C, Huang H, Jia N. Type IV-A CRISPR-Csf complex: Assembly, dsDNA targeting, and CasDinG recruitment. Mol Cell 2023:S1097-2765(23)00420-3. [PMID: 37343553 DOI: 10.1016/j.molcel.2023.05.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/19/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023]
Abstract
Type IV CRISPR-Cas systems, which are primarily found on plasmids and exhibit a strong plasmid-targeting preference, are the only one of the six known CRISPR-Cas types for which the mechanistic details of their function remain unknown. Here, we provide high-resolution functional snapshots of type IV-A Csf complexes before and after target dsDNA binding, either in the absence or presence of CasDinG, revealing the mechanisms underlying CsfcrRNA complex assembly, "DWN" PAM-dependent dsDNA targeting, R-loop formation, and CasDinG recruitment. Furthermore, we establish that CasDinG, a signature DinG family helicase, harbors ssDNA-stimulated ATPase activity and ATP-dependent 5'-3' DNA helicase activity. In addition, we show that CasDinG unwinds the non-target strand (NTS) and target strand (TS) of target dsDNA from the CsfcrRNA complex. These molecular details advance our mechanistic understanding of type IV-A CRISPR-Csf function and should enable Csf complexes to be harnessed as genome-engineering tools for biotechnological applications.
Collapse
Affiliation(s)
- Ning Cui
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun-Tao Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yongrui Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanhong Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiao-Yu Liu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chongyuan Wang
- Faculty of Pharmaceutical Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China; Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China
| | - Hongda Huang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Ning Jia
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China; Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
13
|
Islam F, Purkait D, Mishra PP. Insights into the Dynamics and Helicase Activity of RecD2 of Deinococcus radiodurans during DNA Repair: A Single-Molecule Perspective. J Phys Chem B 2023; 127:4351-4363. [PMID: 37163679 DOI: 10.1021/acs.jpcb.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
While the double helix is the most stable conformation of DNA inside cells, its transient unwinding and subsequent partial separation of the two complementary strands yields an intermediate single-stranded DNA (ssDNA). The ssDNA is involved in all major DNA transactions such as replication, transcription, recombination, and repair. The process of DNA unwinding and translocation is shouldered by helicases that transduce the chemical energy derived from nucleotide triphosphate (NTP) hydrolysis to mechanical energy and utilize it to destabilize hydrogen bonds between complementary base pairs. Consequently, a comprehensive understanding of the molecular mechanisms of these enzymes is essential. In the last few decades, a combination of single-molecule techniques (force-based manipulation and visualization) have been employed to study helicase action. These approaches have allowed researchers to study the single helicase-DNA complex in real-time and the free energy landscape of their interaction together with the detection of conformational intermediates and molecular heterogeneity during the course of helicase action. Furthermore, the unique ability of these techniques to resolve helicase motion at nanometer and millisecond spatial and temporal resolutions, respectively, provided surprising insights into their mechanism of action. This perspective outlines the contribution of single-molecule methods in deciphering molecular details of helicase activities. It also exemplifies how each technique was or can be used to study the helicase action of RecD2 in recombination DNA repair.
Collapse
Affiliation(s)
- Farhana Islam
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Debayan Purkait
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Padmaja Prasad Mishra
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
14
|
Purkait D, Islam F, Mishra PP. A single-molecule approach to unravel the molecular mechanism of the action of Deinococcus radiodurans RecD2 and its interaction with SSB and RecA in DNA repair. Int J Biol Macromol 2022; 221:653-664. [PMID: 36096248 DOI: 10.1016/j.ijbiomac.2022.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022]
Abstract
Helicases are ATP-driven molecular machines that directionally remodel nucleic acid polymers in all three domains of life. They are responsible for resolving double-stranded DNA (dsDNA) into single-strands, which is essential for DNA replication, nucleotide excision repair, and homologous recombination. RecD2 from Deinococcus radiodurans (DrRecD2) has important contributions to the organism's unusually high tolerance to gamma radiation and hydrogen peroxide. Although the results from X-ray Crystallography studies have revealed the structural characteristics of the protein, direct experimental evidence regarding the dynamics of the DNA unwinding process by DrRecD2 in the context of other accessory proteins is yet to be found. In this study, we have probed the exact binding event and processivity of DrRecD2 at single-molecule resolution using Protein-induced fluorescence enhancement (smPIFE) and Forster resonance energy transfer (smFRET). We have found that the protein prefers to bind at the 5' terminal end of the single-stranded DNA (ssDNA) by Drift and has helicase activity even in absence of ATP. However, a faster and iterative mode of DNA unwinding was evident in presence of ATP. The rate of translocation of the protein was found to be slower on dsDNA compared to ssDNA. We also showed that DrRecD2 is recruited at the binding site by the single-strand binding protein (SSB) and during the unwinding, it can displace RecA from ssDNA.
Collapse
Affiliation(s)
- Debayan Purkait
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhaba National Institute, Mumbai, India
| | - Farhana Islam
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhaba National Institute, Mumbai, India
| | - Padmaja P Mishra
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhaba National Institute, Mumbai, India.
| |
Collapse
|
15
|
Ozaslan D, Byrd AK, Belachew B, Raney KD. Alignment of helicases on single-stranded DNA increases activity. Methods Enzymol 2022; 672:29-54. [PMID: 35934480 PMCID: PMC9421817 DOI: 10.1016/bs.mie.2022.03.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Helicases function in most biological processes that utilize RNA or DNA nucleic acids including replication, recombination, repair, transcription, splicing, and translation. They are motor proteins that bind ATP and then catalyze hydrolysis to release energy which is transduced for conformational changes. Different conformations correspond to different steps in a process that results in movement of the enzyme along the nucleic acid track in a unidirectional manner. Some helicases such as DEAD-box helicases do not translocate, but these enzymes transduce chemical energy from ATP hydrolysis to unwind secondary structure in DNA or RNA. Some helicases function as monomers while others assemble into defined structures, either dimers or higher order oligomers. Dda helicase from bacteriophage T4 and NS3 helicase domain from the hepatitis C virus are examples of monomeric helicases. These helicases can bind to single-stranded DNA in a manner that appears like train engines on a track. When monomeric helicases align on DNA, the activity of the enzymes increases. Helicase activity can include the rate of duplex unwinding and the total number of base pairs melted during a single binding event or processivity. Dda and NS3h are considered as having low processivity, unwinding fewer than 50 base pairs per binding event. Here, we report fusing two molecules of NS3h molecules together through genetically linking the C-terminus of one molecule to the N-terminus of a second NS3h molecule. We observed increased processivity relative to NS3h possibly arising from the increased probability that at least one of the helicases will completely unwind the DNA prior to dissociation. The dimeric enzyme also binds DNA more like the full-length NS3 helicase. Finally, the dimer can displace streptavidin from biotin-labeled oligonucleotide, whereas monomeric NS3h cannot.
Collapse
Affiliation(s)
- Deniz Ozaslan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| | - Binyam Belachew
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
16
|
Hormeno S, Wilkinson OJ, Aicart-Ramos C, Kuppa S, Antony E, Dillingham MS, Moreno-Herrero F. Human HELB is a processive motor protein that catalyzes RPA clearance from single-stranded DNA. Proc Natl Acad Sci U S A 2022; 119:e2112376119. [PMID: 35385349 PMCID: PMC9169624 DOI: 10.1073/pnas.2112376119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/01/2022] [Indexed: 01/17/2023] Open
Abstract
Human DNA helicase B (HELB) is a poorly characterized helicase suggested to play both positive and negative regulatory roles in DNA replication and recombination. In this work, we used bulk and single-molecule approaches to characterize the biochemical activities of HELB protein with a particular focus on its interactions with Replication Protein A (RPA) and RPA–single-stranded DNA (ssDNA) filaments. HELB is a monomeric protein that binds tightly to ssDNA with a site size of ∼20 nucleotides. It couples ATP hydrolysis to translocation along ssDNA in the 5′ to 3′ direction accompanied by the formation of DNA loops. HELB also displays classical helicase activity, but this is very weak in the absence of an assisting force. HELB binds specifically to human RPA, which enhances its ATPase and ssDNA translocase activities but inhibits DNA unwinding. Direct observation of HELB on RPA nucleoprotein filaments shows that translocating HELB concomitantly clears RPA from ssDNA. This activity, which can allow other proteins access to ssDNA intermediates despite their shielding by RPA, may underpin the diverse roles of HELB in cellular DNA transactions.
Collapse
Affiliation(s)
- Silvia Hormeno
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Oliver J. Wilkinson
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Sahiti Kuppa
- Department of Biochemistry, Saint Louis University, St. Louis, MO 63104
| | - Edwin Antony
- Department of Biochemistry, Saint Louis University, St. Louis, MO 63104
| | - Mark S. Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| |
Collapse
|
17
|
Corona A, Wycisk K, Talarico C, Manelfi C, Milia J, Cannalire R, Esposito F, Gribbon P, Zaliani A, Iaconis D, Beccari AR, Summa V, Nowotny M, Tramontano E. Natural Compounds Inhibit SARS-CoV-2 nsp13 Unwinding and ATPase Enzyme Activities. ACS Pharmacol Transl Sci 2022; 5:226-239. [PMID: 35434533 PMCID: PMC9003574 DOI: 10.1021/acsptsci.1c00253] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 12/27/2022]
Abstract
![]()
SARS-CoV-2 infection
is still spreading worldwide, and new antiviral
therapies are an urgent need to complement the approved vaccine preparations.
SARS-CoV-2 nps13 helicase is a validated drug target participating
in the viral replication complex and possessing two associated activities:
RNA unwinding and 5′-triphosphatase. In the search of SARS-CoV-2
direct antiviral agents, we established biochemical assays for both
SARS-CoV-2 nps13-associated enzyme activities and screened both in silico and in vitro a small in-house
library of natural compounds. Myricetin, quercetin, kaempferol, and
flavanone were found to inhibit the SARS-CoV-2 nps13 unwinding activity
at nanomolar concentrations, while licoflavone C was shown to block
both SARS-CoV-2 nps13 activities at micromolar concentrations. Mode
of action studies showed that all compounds are nsp13 noncompetitive
inhibitors versus ATP, while computational studies suggested that
they can bind both nucleotide and 5′-RNA nsp13 binding sites,
with licoflavone C showing a unique pattern of interaction with nsp13
amino acid residues. Overall, we report for the first time natural
flavonoids as selective inhibitors of SARS-CoV-2 nps13 helicase with
low micromolar activity.
Collapse
Affiliation(s)
- Angela Corona
- Dipartimento di Scienze della vita e dell'ambiente, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, SS-554, 09042 Monserrato, Cagliari, Italy
| | - Krzysztof Wycisk
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, Warsaw 02-109, Poland
| | - Carmine Talarico
- Dompé Farmaceutici SpA, via Campo di Pile, 67100 L'Aquila, Italy
| | - Candida Manelfi
- Dompé Farmaceutici SpA, via Campo di Pile, 67100 L'Aquila, Italy
| | - Jessica Milia
- Dipartimento di Scienze della vita e dell'ambiente, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, SS-554, 09042 Monserrato, Cagliari, Italy
| | - Rolando Cannalire
- Department of Pharmacy, University of Napoli "Federico II", via D. Montesano 49, Napoli 80131, Italy
| | - Francesca Esposito
- Dipartimento di Scienze della vita e dell'ambiente, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, SS-554, 09042 Monserrato, Cagliari, Italy
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany.,Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany.,Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Daniela Iaconis
- Dompé Farmaceutici SpA, via Campo di Pile, 67100 L'Aquila, Italy
| | - Andrea R Beccari
- Dompé Farmaceutici SpA, via Campo di Pile, 67100 L'Aquila, Italy
| | - Vincenzo Summa
- Department of Pharmacy, University of Napoli "Federico II", via D. Montesano 49, Napoli 80131, Italy
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, Warsaw 02-109, Poland
| | - Enzo Tramontano
- Dipartimento di Scienze della vita e dell'ambiente, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, SS-554, 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
18
|
Developmental energetics: Energy expenditure, budgets and metabolism during animal embryogenesis. Semin Cell Dev Biol 2022; 138:83-93. [PMID: 35317962 DOI: 10.1016/j.semcdb.2022.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/07/2022] [Accepted: 03/05/2022] [Indexed: 11/22/2022]
Abstract
Developing embryos are metabolically active, open systems that constantly exchange matter and energy with their environment. They function out of thermodynamic equilibrium and continuously use metabolic pathways to obtain energy from maternal nutrients, in order to fulfill the energetic requirements of growth and development. While an increasing number of studies highlight the role of metabolism in different developmental contexts, the physicochemical basis of embryogenesis, or how cellular processes use energy and matter to act together and transform a zygote into an adult organism, remains unknown. As we obtain a better understanding of metabolism, and benefit from current technology development, it is a promising time to revisit the energetic cost of development and how energetic principles may govern embryogenesis. Here, we review recent advances in methodology to measure and infer energetic parameters in developing embryos. We highlight a potential common pattern in embryonic energy expenditure and metabolic strategy across animal embryogenesis, and discuss challenges and open questions in developmental energetics.
Collapse
|
19
|
Ramos C, Hernández-Tamayo R, López-Sanz M, Carrasco B, Serrano E, Alonso JC, Graumann PL, Ayora S. The RecD2 helicase balances RecA activities. Nucleic Acids Res 2022; 50:3432-3444. [PMID: 35234892 PMCID: PMC8989531 DOI: 10.1093/nar/gkac131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022] Open
Abstract
DNA helicases of the RecD2 family are ubiquitous. Bacillus subtilis RecD2 in association with the single-stranded binding protein SsbA may contribute to replication fork progression, but its detailed action remains unknown. In this work, we explore the role of RecD2 during DNA replication and its interaction with the RecA recombinase. RecD2 inhibits replication restart, but this effect is not observed in the absence of SsbA. RecD2 slightly affects replication elongation. RecA inhibits leading and lagging strand synthesis, and RecD2, which physically interacts with RecA, counteracts this negative effect. In vivo results show that recD2 inactivation promotes RecA–ssDNA accumulation at low mitomycin C levels, and that RecA threads persist for a longer time after induction of DNA damage. In vitro, RecD2 modulates RecA-mediated DNA strand-exchange and catalyzes branch migration. These findings contribute to our understanding of how RecD2 may contribute to overcome a replicative stress, removing RecA from the ssDNA and, thus, it may act as a negative modulator of RecA filament growth.
Collapse
Affiliation(s)
- Cristina Ramos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| | - Rogelio Hernández-Tamayo
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße 6, 35043 Marburg, Germany.,Fachbereich Chemie, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - María López-Sanz
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| | - Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| | - Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| | - Peter L Graumann
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße 6, 35043 Marburg, Germany.,Fachbereich Chemie, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| |
Collapse
|
20
|
Ensemble cryo-EM reveals conformational states of the nsp13 helicase in the SARS-CoV-2 helicase replication-transcription complex. Nat Struct Mol Biol 2022; 29:250-260. [PMID: 35260847 DOI: 10.1038/s41594-022-00734-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 nonstructural proteins coordinate genome replication and gene expression. Structural analyses revealed the basis for coupling of the essential nsp13 helicase with the RNA-dependent RNA polymerase (RdRp) where the holo-RdRp and RNA substrate (the replication-transcription complex or RTC) associated with two copies of nsp13 (nsp132-RTC). One copy of nsp13 interacts with the template-RNA in an opposing polarity to the RdRp and is envisaged to drive the RdRp backward on the RNA template (backtracking), prompting questions as to how the RdRp can efficiently synthesize RNA in the presence of nsp13. Here we use cryogenic-electron microscopy and molecular dynamics simulations to analyze the nsp132-RTC, revealing four distinct conformational states of the helicases. The results indicate a mechanism for the nsp132-RTC to turn backtracking on and off, using an allosteric mechanism to switch between RNA synthesis or backtracking in response to stimuli at the RdRp active site.
Collapse
|
21
|
Byrd AK, Malone EG, Hazeslip L, Zafar MK, Harrison DK, Thompson MD, Gao J, Perumal SK, Marecki JC, Raney KD. A structural feature of Dda helicase which enhances displacement of streptavidin and trp repressor from DNA. Protein Sci 2022; 31:407-421. [PMID: 34761452 PMCID: PMC8819844 DOI: 10.1002/pro.4232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 02/03/2023]
Abstract
Helicases are molecular motors with many activities. They use the energy from ATP hydrolysis to unwind double-stranded nucleic acids while translocating on the single-stranded DNA. In addition to unwinding, many helicases are able to remove proteins from nucleic acids. Bacteriophage T4 Dda is able to displace a variety of DNA binding proteins and streptavidin bound to biotinylated oligonucleotides. We have identified a subdomain of Dda that when deleted, results in a protein variant that has nearly wild type activity for unwinding double-stranded DNA but exhibits greatly reduced streptavidin displacement activity. Interestingly, this domain has little effect on displacement of either gp32 or BamHI bound to DNA but does affect displacement of trp repressor from DNA. With this variant, we have identified residues which enhance displacement of some proteins from DNA.
Collapse
Affiliation(s)
- Alicia K. Byrd
- Department of Biochemistry and Molecular BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA,Winthrop P. Rockefeller Cancer InstituteUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Emory G. Malone
- Department of Biochemistry and Molecular BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Lindsey Hazeslip
- Department of Biochemistry and Molecular BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Maroof Khan Zafar
- Department of Biochemistry and Molecular BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - David K. Harrison
- Department of Biochemistry and Molecular BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Matthew D. Thompson
- Department of Biochemistry and Molecular BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Jun Gao
- Department of Biochemistry and Molecular BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Senthil K. Perumal
- Department of ChemistryThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - John C. Marecki
- Department of Biochemistry and Molecular BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Kevin D. Raney
- Department of Biochemistry and Molecular BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA,Winthrop P. Rockefeller Cancer InstituteUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| |
Collapse
|
22
|
Thompson MD, Malone EG, Byrd AK. Monitoring helicase-catalyzed unwinding of multiple duplexes simultaneously. Methods Enzymol 2022; 672:1-27. [PMID: 35934470 PMCID: PMC9397138 DOI: 10.1016/bs.mie.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Helicases catalyze the unwinding of duplex nucleic acids to aid a variety of cellular processes. Although helicases unwind duplex DNA in the same direction that they translocate on single-stranded DNA, forked duplexes provide opportunities to monitor unwinding by helicase monomers bound to each arm of the fork. The activity of the helicase bound to the displaced strand can be discerned alongside the helicase bound to the translocase strand using a forked substrate with accessible duplexes on both strands labeled with different fluorophores. In order to quantify the effect of protein-protein interactions on the activity of multiple monomers of the Bacteroides fragilis Pif1 helicase bound to separate strands of a forked DNA junction, an ensemble gel-based assay for monitoring simultaneous duplex unwinding was developed (Su et al., 2019). Here, the use of that assay is described for measuring the total product formation and rate constants of product formation of multiple duplexes on a single nucleic acid substrate. Use of this assay may aid characterization of protein-protein interactions between multiple helicase monomers at forked nucleic acid junctions and can assist with the characterization of helicase action on the displaced strand of forked duplexes.
Collapse
Affiliation(s)
- Matthew D Thompson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Emory G Malone
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
23
|
De S, Edwards DM, Dwivedi V, Wang J, Varsally W, Dixon HL, Singh AK, Owuamalam PO, Wright MT, Summers RP, Hossain MN, Price EM, Wojewodzic MW, Falciani F, Hodges NJ, Saponaro M, Tanaka K, Azzalin CM, Baumann P, Hebenstreit D, Brogna S. Genome-wide chromosomal association of Upf1 is linked to Pol II transcription in Schizosaccharomyces pombe. Nucleic Acids Res 2021; 50:350-367. [PMID: 34928380 PMCID: PMC8754637 DOI: 10.1093/nar/gkab1249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
Although the RNA helicase Upf1 has hitherto been examined mostly in relation to its cytoplasmic role in nonsense mediated mRNA decay (NMD), here we report high-throughput ChIP data indicating genome-wide association of Upf1 with active genes in Schizosaccharomyces pombe. This association is RNase sensitive, correlates with Pol II transcription and mRNA expression levels. Changes in Pol II occupancy were detected in a Upf1 deficient (upf1Δ) strain, prevalently at genes showing a high Upf1 relative to Pol II association in wild-type. Additionally, an increased Ser2 Pol II signal was detected at all highly transcribed genes examined by ChIP-qPCR. Furthermore, upf1Δ cells are hypersensitive to the transcription elongation inhibitor 6-azauracil. A significant proportion of the genes associated with Upf1 in wild-type conditions are also mis-regulated in upf1Δ. These data envisage that by operating on the nascent transcript, Upf1 might influence Pol II phosphorylation and transcription.
Collapse
Affiliation(s)
- Sandip De
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK.,Division of Cellular and Gene Therapies, Tumor Vaccines and Biotechnology Branch, Center for Biologics and Evaluation Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - David M Edwards
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Vibha Dwivedi
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Jianming Wang
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Wazeer Varsally
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Hannah L Dixon
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Anand K Singh
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK.,Interdisciplinary School of Life Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Precious O Owuamalam
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Matthew T Wright
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Reece P Summers
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Md Nazmul Hossain
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK.,Department of Microbial Biotechnology, Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Emily M Price
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Marcin W Wojewodzic
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK.,Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway & Department of Research, Cancer Registry of Norway, Oslo University Hospital, Oslo, Norway & Environmental Genomics, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Francesco Falciani
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Nikolas J Hodges
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Marco Saponaro
- Institute of Cancer and Genomic Sciences, University of Birmingham, UK
| | - Kayoko Tanaka
- Department of Molecular and Cell Biology, University of Leicester, UK
| | - Claus M Azzalin
- Instituto de Medicina Molecular João Lobo Antunes (iMM), Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | | | | | - Saverio Brogna
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| |
Collapse
|
24
|
The large bat Helitron DNA transposase forms a compact monomeric assembly that buries and protects its covalently bound 5'-transposon end. Mol Cell 2021; 81:4271-4286.e4. [PMID: 34403695 DOI: 10.1016/j.molcel.2021.07.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022]
Abstract
Helitrons are widespread eukaryotic DNA transposons that have significantly contributed to genome variability and evolution, in part because of their distinctive, replicative rolling-circle mechanism, which often mobilizes adjacent genes. Although most eukaryotic transposases form oligomers and use RNase H-like domains to break and rejoin double-stranded DNA (dsDNA), Helitron transposases contain a single-stranded DNA (ssDNA)-specific HUH endonuclease domain. Here, we report the cryo-electron microscopy structure of a Helitron transposase bound to the 5'-transposon end, providing insight into its multidomain architecture and function. The monomeric transposase forms a tightly packed assembly that buries the covalently attached cleaved end, protecting it until the second end becomes available. The structure reveals unexpected architectural similarity to TraI, a bacterial relaxase that also catalyzes ssDNA movement. The HUH active site suggests how two juxtaposed tyrosines, a feature of many replication initiators that use HUH nucleases, couple the conformational shift of an α-helix to control strand cleavage and ligation reactions.
Collapse
|
25
|
Meir A, Greene EC. Srs2 and Pif1 as Model Systems for Understanding Sf1a and Sf1b Helicase Structure and Function. Genes (Basel) 2021; 12:1319. [PMID: 34573298 PMCID: PMC8469786 DOI: 10.3390/genes12091319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/19/2023] Open
Abstract
Helicases are enzymes that convert the chemical energy stored in ATP into mechanical work, allowing them to move along and manipulate nucleic acids. The helicase superfamily 1 (Sf1) is one of the largest subgroups of helicases and they are required for a range of cellular activities across all domains of life. Sf1 helicases can be further subdivided into two classes called the Sf1a and Sf1b helicases, which move in opposite directions on nucleic acids. The results of this movement can range from the separation of strands within duplex nucleic acids to the physical remodeling or removal of nucleoprotein complexes. Here, we describe the characteristics of the Sf1a helicase Srs2 and the Sf1b helicase Pif1, both from the model organism Saccharomyces cerevisiae, focusing on the roles that they play in homologous recombination, a DNA repair pathway that is necessary for maintaining genome integrity.
Collapse
Affiliation(s)
| | - Eric C. Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA;
| |
Collapse
|
26
|
Newman JA, Douangamath A, Yadzani S, Yosaatmadja Y, Aimon A, Brandão-Neto J, Dunnett L, Gorrie-Stone T, Skyner R, Fearon D, Schapira M, von Delft F, Gileadi O. Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase. Nat Commun 2021; 12:4848. [PMID: 34381037 DOI: 10.1101/2021.03.15.435326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/28/2021] [Indexed: 05/25/2023] Open
Abstract
There is currently a lack of effective drugs to treat people infected with SARS-CoV-2, the cause of the global COVID-19 pandemic. The SARS-CoV-2 Non-structural protein 13 (NSP13) has been identified as a target for anti-virals due to its high sequence conservation and essential role in viral replication. Structural analysis reveals two "druggable" pockets on NSP13 that are among the most conserved sites in the entire SARS-CoV-2 proteome. Here we present crystal structures of SARS-CoV-2 NSP13 solved in the APO form and in the presence of both phosphate and a non-hydrolysable ATP analog. Comparisons of these structures reveal details of conformational changes that provide insights into the helicase mechanism and possible modes of inhibition. To identify starting points for drug development we have performed a crystallographic fragment screen against NSP13. The screen reveals 65 fragment hits across 52 datasets opening the way to structure guided development of novel antiviral agents.
Collapse
Affiliation(s)
- Joseph A Newman
- Centre for Medicines Discovery, University of Oxford, Oxford, UK.
| | - Alice Douangamath
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Setayesh Yadzani
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | | | - Antony Aimon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - José Brandão-Neto
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Louise Dunnett
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Tyler Gorrie-Stone
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Rachael Skyner
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Daren Fearon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Frank von Delft
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
- Faculty of Science, University of Johannesburg, Johannesburg, South Africa
| | - Opher Gileadi
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Newman JA, Douangamath A, Yadzani S, Yosaatmadja Y, Aimon A, Brandão-Neto J, Dunnett L, Gorrie-Stone T, Skyner R, Fearon D, Schapira M, von Delft F, Gileadi O. Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase. Nat Commun 2021; 12:4848. [PMID: 34381037 PMCID: PMC8358061 DOI: 10.1038/s41467-021-25166-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022] Open
Abstract
There is currently a lack of effective drugs to treat people infected with SARS-CoV-2, the cause of the global COVID-19 pandemic. The SARS-CoV-2 Non-structural protein 13 (NSP13) has been identified as a target for anti-virals due to its high sequence conservation and essential role in viral replication. Structural analysis reveals two "druggable" pockets on NSP13 that are among the most conserved sites in the entire SARS-CoV-2 proteome. Here we present crystal structures of SARS-CoV-2 NSP13 solved in the APO form and in the presence of both phosphate and a non-hydrolysable ATP analog. Comparisons of these structures reveal details of conformational changes that provide insights into the helicase mechanism and possible modes of inhibition. To identify starting points for drug development we have performed a crystallographic fragment screen against NSP13. The screen reveals 65 fragment hits across 52 datasets opening the way to structure guided development of novel antiviral agents.
Collapse
Affiliation(s)
- Joseph A Newman
- Centre for Medicines Discovery, University of Oxford, Oxford, UK.
| | - Alice Douangamath
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Setayesh Yadzani
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | | | - Antony Aimon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - José Brandão-Neto
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Louise Dunnett
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Tyler Gorrie-Stone
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Rachael Skyner
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Daren Fearon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Frank von Delft
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
- Faculty of Science, University of Johannesburg, Johannesburg, South Africa
| | - Opher Gileadi
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Lu KY, Xin BG, Zhang T, Liu NN, Li D, Rety S, Xi XG. Structural study of the function of Candida Albicans Pif1. Biochem Biophys Res Commun 2021; 567:190-194. [PMID: 34166917 DOI: 10.1016/j.bbrc.2021.06.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
Pif1 helicases, conserved in eukaryotes, are involved in maintaining genome stability in both the nucleus and mitochondria. Here, we report the crystal structure of a truncated Candida Albicans Pif1 (CaPif1368-883) in complex with ssDNA and an ATP analog. Our results show that the Q-motif is responsible for identifying adenine bases, and CaPif1 preferentially utilizes ATP/dATP during dsDNA unwinding. Although CaPif1 shares structural similarities with Saccharomyces cerevisiae Pif1, CaPif1 can contact the thymidine bases of DNA by hydrogen bonds, whereas ScPif1 cannot. More importantly, the crosslinking and mutant experiments have demonstrated that the conformational change of domain 2B is necessary for CaPif1 to unwind dsDNA. These findings contribute to further the understanding of the unwinding mechanism of Pif1.
Collapse
Affiliation(s)
- Ke-Yu Lu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ben-Ge Xin
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Teng Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Na-Nv Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dan Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Stephane Rety
- Univ. Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS UMR 5239, INSERM U1210, LBMC, 46 allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; LBPA, Ecole Normale Supérieure Paris-Saclay, CNRS, Université Paris Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
29
|
Bermek O, Williams RS. The three-component helicase/primase complex of herpes simplex virus-1. Open Biol 2021; 11:210011. [PMID: 34102080 PMCID: PMC8187027 DOI: 10.1098/rsob.210011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is one of the nine herpesviruses that infect humans. HSV-1 encodes seven proteins to replicate its genome in the hijacked human cell. Among these are the herpes virus DNA helicase and primase that are essential components of its replication machinery. In the HSV-1 replisome, the helicase-primase complex is composed of three components including UL5 (helicase), UL52 (primase) and UL8 (non-catalytic subunit). UL5 and UL52 subunits are functionally interdependent, and the UL8 component is required for the coordination of UL5 and UL52 activities proceeding in opposite directions with respect to the viral replication fork. Anti-viral compounds currently under development target the functions of UL5 and UL52. Here, we review the structural and functional properties of the UL5/UL8/UL52 complex and highlight the gaps in knowledge to be filled to facilitate molecular characterization of the structure and function of the helicase-primase complex for development of alternative anti-viral treatments.
Collapse
Affiliation(s)
- Oya Bermek
- Genome Integrity and Structural Biology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
30
|
Dai YX, Chen WF, Liu NN, Teng FY, Guo HL, Hou XM, Dou SX, Rety S, Xi XG. Structural and functional studies of SF1B Pif1 from Thermus oshimai reveal dimerization-induced helicase inhibition. Nucleic Acids Res 2021; 49:4129-4143. [PMID: 33784404 PMCID: PMC8053095 DOI: 10.1093/nar/gkab188] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 01/06/2023] Open
Abstract
Pif1 is an SF1B helicase that is evolutionarily conserved from bacteria to humans and plays multiple roles in maintaining genome stability in both nucleus and mitochondria. Though highly conserved, Pif1 family harbors a large mechanistic diversity. Here, we report crystal structures of Thermus oshimai Pif1 (ToPif1) alone and complexed with partial duplex or single-stranded DNA. In the apo state and in complex with a partial duplex DNA, ToPif1 is monomeric with its domain 2B/loop3 adopting a closed and an open conformation, respectively. When complexed with a single-stranded DNA, ToPif1 forms a stable dimer with domain 2B/loop3 shifting to a more open conformation. Single-molecule and biochemical assays show that domain 2B/loop3 switches repetitively between the closed and open conformations when a ToPif1 monomer unwinds DNA and, in contrast with other typical dimeric SF1A helicases, dimerization has an inhibitory effect on its helicase activity. This mechanism is not general for all Pif1 helicases but illustrates the diversity of regulation mechanisms among different helicases. It also raises the possibility that although dimerization results in activation for SF1A helicases, it may lead to inhibition for some of the other uncharacterized SF1B helicases, an interesting subject warranting further studies.
Collapse
Affiliation(s)
- Yang-Xue Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei-Fei Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na-Nv Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fang-Yuan Teng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hai-Lei Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xi-Miao Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuo-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Stephane Rety
- Univ. Lyon, ENS de Lyon, Univ. Claude Bernard CNRS UMR 5239, INSERM U1210, LBMC, 46 allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Xu-Guang Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.,Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), UMR 8113 CNRS, Institut D'Alembert, École Normale Supérieure Paris-Saclay, Université Paris-Saclay, 4, Avenue des Sciences, 91190 Gif sur Yvette, France
| |
Collapse
|
31
|
Lu H, Zhan Y, Li X, Bai X, Yuan F, Ma L, Wang X, Xie M, Wu W, Chen Z. Novel insights into the function of an N-terminal region of DENV2 NS4B for the optimal helicase activity of NS3. Virus Res 2021; 295:198318. [PMID: 33485995 DOI: 10.1016/j.virusres.2021.198318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/19/2020] [Accepted: 01/17/2021] [Indexed: 10/22/2022]
Abstract
Dengue virus NS3 is a prototypical DEx(H/D) helicase that binds and hydrolyzes NTP to translocate along and unwind double-stranded nucleic acids. NS3 and NS4B are essential components of the flavivirus replication complex. Evidences showed that NS4B interacted with NS3 and modulated the helicase activity of NS3. Despite important insights into structural, mechanistic, and cellular aspects of the NS3 function, there is still a gap in understanding how it coordinates the helicase activities within the replicase complex for efficient replication. Here, using the DENV2 as a model, we redefined the critical region of NS4B required for NS3 function by pull-down and MST assays. The FRET-based unwinding assay showed that NS3 would accelerate unwinding duplex nucleic acids in the presence of NS4B (51-83). The simulated NS3-NS4B complex models based on the rigid-body docking delineated the potential interaction sites located in the conserved motif within the core domain of NS3. Mutations in motif I (I190A) and motif III (P319L) of NS3 interfered with the unwinding activity stimulated by NS4B. Upon binding to the NS3 helicase, NS4B assisted NS3 to dissociate from single-stranded nucleic acid and enabled NS3 helicase to keep high activity at high ATP concentrations. These results suggest that NS4B probably serves as an essential cofactor for NS3 to coordinate the ATP cycles and nucleic acid binding during viral genome replication.
Collapse
Affiliation(s)
- Hongyun Lu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yumeng Zhan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaorong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuehui Bai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Feifei Yuan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lulu Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xue Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Mengjia Xie
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wei Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhongzhou Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
32
|
Abstract
As primary carriers of epigenetic information and gatekeepers of genomic DNA, nucleosomes are essential for proper growth and development of all eukaryotic cells. Although they are intrinsically dynamic, nucleosomes are actively reorganized by ATP-dependent chromatin remodelers. Chromatin remodelers contain helicase-like ATPase motor domains that can translocate along DNA, and a long-standing question in the field is how this activity is used to reposition or slide nucleosomes. In addition to ratcheting along DNA like their helicase ancestors, remodeler ATPases appear to dictate specific alternating geometries of the DNA duplex, providing an unexpected means for moving DNA past the histone core. Emerging evidence supports twist-based mechanisms for ATP-driven repositioning of nucleosomes along DNA. In this review, we discuss core experimental findings and ideas that have shaped the view of how nucleosome sliding may be achieved.
Collapse
Affiliation(s)
- Ilana M Nodelman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| | - Gregory D Bowman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| |
Collapse
|
33
|
Yang H, Rao Z. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat Rev Microbiol 2021; 19:685-700. [PMID: 34535791 PMCID: PMC8447893 DOI: 10.1038/s41579-021-00630-8] [Citation(s) in RCA: 289] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 02/04/2023]
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an unprecedented global health crisis. However, therapeutic options for treatment are still very limited. The development of drugs that target vital proteins in the viral life cycle is a feasible approach for treating COVID-19. Belonging to the subfamily Orthocoronavirinae with the largest RNA genome, SARS-CoV-2 encodes a total of 29 proteins. These non-structural, structural and accessory proteins participate in entry into host cells, genome replication and transcription, and viral assembly and release. SARS-CoV-2 proteins can individually perform essential physiological roles, be components of the viral replication machinery or interact with numerous host cellular factors. In this Review, we delineate the structural features of SARS-CoV-2 from the whole viral particle to the individual viral proteins and discuss their functions as well as their potential as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Haitao Yang
- grid.440637.20000 0004 4657 8879Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zihe Rao
- grid.440637.20000 0004 4657 8879Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China ,grid.12527.330000 0001 0662 3178Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China ,grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy, Nankai University, Tianjin, China ,grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Chen J, Malone B, Llewellyn E, Grasso M, Shelton PM, Olinares PDB, Maruthi K, Eng ET, Vatandaslar H, Chait BT, Kapoor TM, Darst SA, Campbell EA. Structural Basis for Helicase-Polymerase Coupling in the SARS-CoV-2 Replication-Transcription Complex. Cell 2020; 182:1560-1573.e13. [PMID: 32783916 PMCID: PMC7386476 DOI: 10.1016/j.cell.2020.07.033] [Citation(s) in RCA: 321] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 01/21/2023]
Abstract
SARS-CoV-2 is the causative agent of the 2019-2020 pandemic. The SARS-CoV-2 genome is replicated and transcribed by the RNA-dependent RNA polymerase holoenzyme (subunits nsp7/nsp82/nsp12) along with a cast of accessory factors. One of these factors is the nsp13 helicase. Both the holo-RdRp and nsp13 are essential for viral replication and are targets for treating the disease COVID-19. Here we present cryoelectron microscopic structures of the SARS-CoV-2 holo-RdRp with an RNA template product in complex with two molecules of the nsp13 helicase. The Nidovirales order-specific N-terminal domains of each nsp13 interact with the N-terminal extension of each copy of nsp8. One nsp13 also contacts the nsp12 thumb. The structure places the nucleic acid-binding ATPase domains of the helicase directly in front of the replicating-transcribing holo-RdRp, constraining models for nsp13 function. We also observe ADP-Mg2+ bound in the nsp12 N-terminal nidovirus RdRp-associated nucleotidyltransferase domain, detailing a new pocket for anti-viral therapy development.
Collapse
Affiliation(s)
- James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Brandon Malone
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Eliza Llewellyn
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Michael Grasso
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Patrick M.M. Shelton
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Paul Dominic B. Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Kashyap Maruthi
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Edward T. Eng
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Hasan Vatandaslar
- Institute of Molecular Health Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Tarun M. Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Seth A. Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA,Corresponding author
| | - Elizabeth A. Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA,Corresponding author
| |
Collapse
|
35
|
Ononye OE, Sausen CW, Balakrishnan L, Bochman ML. Lysine acetylation regulates the activity of nuclear Pif1. J Biol Chem 2020; 295:15482-15497. [PMID: 32878983 DOI: 10.1074/jbc.ra120.015164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/28/2020] [Indexed: 12/16/2022] Open
Abstract
In Saccharomyces cerevisiae, the Pif1 helicase functions in both nuclear and mitochondrial DNA replication and repair processes, preferentially unwinding RNA:DNA hybrids and resolving G-quadruplex structures. We sought to determine how the various activities of Pif1 are regulated in vivo Here, we report lysine acetylation of nuclear Pif1 and demonstrate that it influences both Pif1's cellular roles and core biochemical activities. Using Pif1 overexpression toxicity assays, we determined that the acetyltransferase NuA4 and deacetylase Rpd3 are primarily responsible for the dynamic acetylation of nuclear Pif1. MS analysis revealed that Pif1 was modified in several domains throughout the protein's sequence on the N terminus (Lys-118 and Lys-129), helicase domain (Lys-525, Lys-639, and Lys-725), and C terminus (Lys-800). Acetylation of Pif1 exacerbated its overexpression toxicity phenotype, which was alleviated upon deletion of its N terminus. Biochemical assays demonstrated that acetylation of Pif1 stimulated its helicase, ATPase, and DNA-binding activities, whereas maintaining its substrate preferences. Limited proteolysis assays indicate that acetylation of Pif1 induces a conformational change that may account for its altered enzymatic properties. We propose that acetylation is involved in regulating of Pif1 activities, influencing a multitude of DNA transactions vital to the maintenance of genome integrity.
Collapse
Affiliation(s)
- Onyekachi E Ononye
- Department of Biology, School of Science, Indiana University, Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Christopher W Sausen
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| | - Lata Balakrishnan
- Department of Biology, School of Science, Indiana University, Purdue University Indianapolis, Indianapolis, Indiana, USA.
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA.
| |
Collapse
|
36
|
Xue ZY, Wu WQ, Zhao XC, Kumar A, Ran X, Zhang XH, Zhang Y, Guo LJ. Single-molecule probing the duplex and G4 unwinding patterns of a RecD family helicase. Int J Biol Macromol 2020; 164:902-910. [PMID: 32693146 DOI: 10.1016/j.ijbiomac.2020.07.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
RecD family helicases play an important role in prokaryotic genome stability and serve as the structural models for studying superfamily 1B (SF1B) helicases. However, RecD-catalyzed duplex DNA unwinding behavior and the underlying mechanism are still elusive. RecD family helicases share a common proto-helicase with eukaryotic Pif1 family helicases, which are well known for their outstanding G-quadruplex (G4) unwinding ability. However, there are still controversial points as to whether and how RecD helicases unfold G4 structures. Here, single-molecule fluorescence resonance energy transfer (smFRET) and magnetic tweezers (MT) were used to study Deinococcus radiodurans RecD2 (DrRecD2)-mediated duplex DNA unwinding and resolution of G4 structures. A symmetric, repetitive unwinding phenomenon was observed on duplex DNA, revealed from the strand switch and translocation of one monomer. Furthermore, we found that DrRecD2 was able to unwind both parallel and antiparallel G4 structures without obvious topological preferences. Surprisingly, the unwinding properties of RecD on duplex and G4 DNA are different from those of Pif1. The findings provide an example, in which the patterns of two molecules derived from a common ancestor deviate during evolution, and they are of significance for understanding the unwinding mechanism and function of SF1B helicases.
Collapse
Affiliation(s)
- Zhen-Yong Xue
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475001, China
| | - Wen-Qiang Wu
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475001, China.
| | - Xiao-Cong Zhao
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Arvind Kumar
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475001, China
| | - Xia Ran
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475001, China
| | - Xing-Hua Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Yu Zhang
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475001, China
| | - Li-Jun Guo
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475001, China.
| |
Collapse
|
37
|
Chen J, Malone B, Llewellyn E, Grasso M, Shelton PMM, Olinares PDB, Maruthi K, Eng E, Vatandaslar H, Chait BT, Kapoor T, Darst SA, Campbell EA. Structural basis for helicase-polymerase coupling in the SARS-CoV-2 replication-transcription complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32676607 PMCID: PMC7359531 DOI: 10.1101/2020.07.08.194084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
SARS-CoV-2 is the causative agent of the 2019-2020 pandemic. The SARS-CoV-2 genome is replicated-transcribed by the RNA-dependent RNA polymerase holoenzyme (subunits nsp7/nsp82/nsp12) along with a cast of accessory factors. One of these factors is the nsp13 helicase. Both the holo-RdRp and nsp13 are essential for viral replication and are targets for treating the disease COVID-19. Here we present cryo-electron microscopic structures of the SARS-CoV-2 holo-RdRp with an RNA template-product in complex with two molecules of the nsp13 helicase. The Nidovirus-order-specific N-terminal domains of each nsp13 interact with the N-terminal extension of each copy of nsp8. One nsp13 also contacts the nsp12-thumb. The structure places the nucleic acid-binding ATPase domains of the helicase directly in front of the replicating-transcribing holo-RdRp, constraining models for nsp13 function. We also observe ADP-Mg2+ bound in the nsp12 N-terminal nidovirus RdRp-associated nucleotidyltransferase domain, detailing a new pocket for anti-viral therapeutic development.
Collapse
Affiliation(s)
- James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, 10065 USA
| | - Brandon Malone
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, 10065 USA
| | - Eliza Llewellyn
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, 10065 USA
| | - Michael Grasso
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, 10065 USA
| | - Patrick M M Shelton
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, 10065 USA
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, 10065 USA
| | - Kashyap Maruthi
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, 10027 USA
| | - Ed Eng
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, 10027 USA
| | - Hasan Vatandaslar
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zürich, Switzerland
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, 10065 USA
| | - Tarun Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, 10065 USA
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, 10065 USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, 10065 USA
| |
Collapse
|
38
|
Jang KJ, Jeong S, Kang DY, Sp N, Yang YM, Kim DE. A high ATP concentration enhances the cooperative translocation of the SARS coronavirus helicase nsP13 in the unwinding of duplex RNA. Sci Rep 2020; 10:4481. [PMID: 32161317 PMCID: PMC7066239 DOI: 10.1038/s41598-020-61432-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus nonstructural protein 13 (SCV nsP13), a superfamily 1 helicase, plays a central role in viral RNA replication through the unwinding of duplex RNA and DNA with a 5' single-stranded tail in a 5' to 3' direction. Despite its putative role in viral RNA replication, nsP13 readily unwinds duplex DNA by cooperative translocation. Herein, nsP13 exhibited different characteristics in duplex RNA unwinding than that in duplex DNA. nsP13 showed very poor processivity on duplex RNA compared with that on duplex DNA. More importantly, nsP13 inefficiently unwinds duplex RNA by increasing the 5'-ss tail length. As the concentration of nsP13 increased, the amount of unwound duplex DNA increased and that of unwound duplex RNA decreased. The accumulation of duplex RNA/nsP13 complexes increased as the concentration of nsP13 increased. An increased ATP concentration in the unwinding of duplex RNA relieved the decrease in duplex RNA unwinding. Thus, nsP13 has a strong affinity for duplex RNA as a substrate for the unwinding reaction, which requires increased ATPs to processively unwind duplex RNA. Our results suggest that duplex RNA is a preferred substrate for the helicase activity of nsP13 than duplex DNA at high ATP concentrations.
Collapse
Affiliation(s)
- Kyoung-Jin Jang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.,Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology (IBST), Konkuk University, Seoul, 05029, Republic of Korea
| | - Seonghwan Jeong
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology (IBST), Konkuk University, Seoul, 05029, Republic of Korea
| | - Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology (IBST), Konkuk University, Seoul, 05029, Republic of Korea
| | - Young Mok Yang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology (IBST), Konkuk University, Seoul, 05029, Republic of Korea.
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
39
|
Brosh RM, Matson SW. History of DNA Helicases. Genes (Basel) 2020; 11:genes11030255. [PMID: 32120966 PMCID: PMC7140857 DOI: 10.3390/genes11030255] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the DNA double helix, there has been a fascination in understanding the molecular mechanisms and cellular processes that account for: (i) the transmission of genetic information from one generation to the next and (ii) the remarkable stability of the genome. Nucleic acid biologists have endeavored to unravel the mysteries of DNA not only to understand the processes of DNA replication, repair, recombination, and transcription but to also characterize the underlying basis of genetic diseases characterized by chromosomal instability. Perhaps unexpectedly at first, DNA helicases have arisen as a key class of enzymes to study in this latter capacity. From the first discovery of ATP-dependent DNA unwinding enzymes in the mid 1970's to the burgeoning of helicase-dependent pathways found to be prevalent in all kingdoms of life, the story of scientific discovery in helicase research is rich and informative. Over four decades after their discovery, we take this opportunity to provide a history of DNA helicases. No doubt, many chapters are left to be written. Nonetheless, at this juncture we are privileged to share our perspective on the DNA helicase field - where it has been, its current state, and where it is headed.
Collapse
Affiliation(s)
- Robert M. Brosh
- Section on DNA Helicases, Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Correspondence: (R.M.B.J.); (S.W.M.); Tel.: +1-410-558-8578 (R.M.B.J.); +1-919-962-0005 (S.W.M.)
| | - Steven W. Matson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (R.M.B.J.); (S.W.M.); Tel.: +1-410-558-8578 (R.M.B.J.); +1-919-962-0005 (S.W.M.)
| |
Collapse
|
40
|
Jia Z, Yan L, Ren Z, Wu L, Wang J, Guo J, Zheng L, Ming Z, Zhang L, Lou Z, Rao Z. Delicate structural coordination of the Severe Acute Respiratory Syndrome coronavirus Nsp13 upon ATP hydrolysis. Nucleic Acids Res 2020; 47:6538-6550. [PMID: 31131400 PMCID: PMC6614802 DOI: 10.1093/nar/gkz409] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/01/2019] [Accepted: 05/25/2019] [Indexed: 02/05/2023] Open
Abstract
To date, an effective therapeutic treatment that confers strong attenuation toward coronaviruses (CoVs) remains elusive. Of all the potential drug targets, the helicase of CoVs is considered to be one of the most important. Here, we first present the structure of the full-length Nsp13 helicase of SARS-CoV (SARS-Nsp13) and investigate the structural coordination of its five domains and how these contribute to its translocation and unwinding activity. A translocation model is proposed for the Upf1-like helicase members according to three different structural conditions in solution characterized through H/D exchange assay, including substrate state (SARS-Nsp13-dsDNA bound with AMPPNP), transition state (bound with ADP-AlF4−) and product state (bound with ADP). We observed that the β19–β20 loop on the 1A domain is involved in unwinding process directly. Furthermore, we have shown that the RNA dependent RNA polymerase (RdRp), SARS-Nsp12, can enhance the helicase activity of SARS-Nsp13 through interacting with it directly. The interacting regions were identified and can be considered common across CoVs, which provides new insights into the Replication and Transcription Complex (RTC) of CoVs.
Collapse
Affiliation(s)
- Zhihui Jia
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Liming Yan
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhilin Ren
- State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300353, China
| | - Lijie Wu
- Shanghai Institute for Advanced Immunochemical Studies and iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Jin Wang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Guo
- Protein Chemistry Facility, Center for Biomedical Analysis of Tsinghua University, Beijing 100084, China
| | - Litao Zheng
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhenhua Ming
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Lianqi Zhang
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhiyong Lou
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zihe Rao
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300353, China.,Shanghai Institute for Advanced Immunochemical Studies and iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
41
|
Serrano E, Ramos C, Ayora S, Alonso JC. Viral SPP1 DNA is infectious in naturally competent Bacillus subtilis cells: inter- and intramolecular recombination pathways. Environ Microbiol 2020; 22:714-725. [PMID: 31876108 DOI: 10.1111/1462-2920.14908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 01/09/2023]
Abstract
A proteolyzed bacteriophage (phage) might release its DNA into the environment. Here, we define the recombination functions required to resurrect an infective lytic phage from inactive environmental viral DNA in naturally competent Bacillus subtilis cells. Using phage SPP1 DNA, a model that accounts for the obtained data is proposed (i) the DNA uptake apparatus takes up environmental SPP1 DNA, fragments it, and incorporates into the cytosol different linear single-stranded (ss) DNA molecules shorter than genome-length; (ii) the SsbA-DprA mediator loads RecA onto any fragmented linear SPP1 ssDNA, but negative modulators (RecX and RecU) promote a net RecA disassembly from these ssDNAs not homologous to the host genome; (iii) single strand annealing (SSA) proteins, DprA and RecO, anneal the SsbA- or SsbB-coated complementary strands, yielding tailed SPP1 duplex intermediates; (iv) RecA polymerized on these tailed intermediates invades a homologous region in another incomplete molecule, and in concert with RecD2 helicase, reconstitutes a complete linear phage genome with redundant regions at the ends of the molecule; and (v) DprA, RecO or viral G35P SSA, may catalyze the annealing of these terminally redundant regions, alone or with the help of an exonuclease, to produce a circular unit-length duplex viral genome ready to initiate replication.
Collapse
Affiliation(s)
- Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Street, 28049, Madrid, Spain
| | - Cristina Ramos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Street, 28049, Madrid, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Street, 28049, Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Street, 28049, Madrid, Spain
| |
Collapse
|
42
|
Gao Y, Yang W. Different mechanisms for translocation by monomeric and hexameric helicases. Curr Opin Struct Biol 2019; 61:25-32. [PMID: 31783299 DOI: 10.1016/j.sbi.2019.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 11/24/2022]
Abstract
Helicases are ATP-dependent motor proteins that translocate along single-stranded or double-stranded nucleic acids to alter base-pairing structures or molecular interactions. Helicases can be divided to monomeric and hexameric types, each with distinct ternary structures, nucleic acid-binding modes, and translocation mechanisms. It is well established that monomeric helicases translocate by the inchworm mechanism. Recent structures of different superfamilies of hexameric helicases reveal that they use a hand-over hand mechanism for translocation. Structures of bacteriophage T7 replisome illustrate how helicase and polymerase cooperatively catalyze DNA unwinding. In this review, we survey structures of monomeric and hexameric helicases and compare different mechanisms for translocation.
Collapse
Affiliation(s)
- Yang Gao
- Department of Biosciences, Rice University, Houston, TX 77030, USA.
| | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
43
|
Mohapatra S, Lin CT, Feng XA, Basu A, Ha T. Single-Molecule Analysis and Engineering of DNA Motors. Chem Rev 2019; 120:36-78. [DOI: 10.1021/acs.chemrev.9b00361] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | | | | | - Taekjip Ha
- Howard Hughes Medical Institute, Baltimore, Maryland 21205, United States
| |
Collapse
|
44
|
McKitterick AC, Hays SG, Johura FT, Alam M, Seed KD. Viral Satellites Exploit Phage Proteins to Escape Degradation of the Bacterial Host Chromosome. Cell Host Microbe 2019; 26:504-514.e4. [PMID: 31600502 PMCID: PMC6910227 DOI: 10.1016/j.chom.2019.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/06/2019] [Accepted: 09/12/2019] [Indexed: 01/10/2023]
Abstract
Phage defense systems are often found on mobile genetic elements (MGEs), where they constitutively defend against invaders or are induced to respond to new assaults. Phage satellites, one type of MGE, are induced during phage infection to promote their own transmission, reducing phage production and protecting their hosts in the process. One such satellite in Vibrio cholerae, phage-inducible chromosomal island-like element (PLE), sabotages the lytic phage ICP1, which triggers PLE excision from the bacterial chromosome, replication, and transduction to neighboring cells. Analysis of patient stool samples from different geographic regions revealed that ICP1 has evolved to possess one of two syntenic loci encoding an SF1B-type helicase, either of which PLE exploits to drive replication. Further, loss of PLE mobilization limits anti-phage activity because of phage-mediated degradation of the bacterial genome. Our work provides insight into the unique challenges facing parasites of lytic phages and underscores the adaptions of satellites to their ever-evolving target phage.
Collapse
Affiliation(s)
- Amelia C McKitterick
- Department of Plant and Microbial Biology, University of California, Berkeley, 271 Koshland Hall, Berkeley, CA 94720, USA
| | - Stephanie G Hays
- Department of Plant and Microbial Biology, University of California, Berkeley, 271 Koshland Hall, Berkeley, CA 94720, USA
| | - Fatema-Tuz Johura
- ICDDR,B, formerly known as International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Munirul Alam
- ICDDR,B, formerly known as International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, 271 Koshland Hall, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
45
|
Lu KY, Chen WF, Rety S, Liu NN, Wu WQ, Dai YX, Li D, Ma HY, Dou SX, Xi XG. Insights into the structural and mechanistic basis of multifunctional S. cerevisiae Pif1p helicase. Nucleic Acids Res 2019; 46:1486-1500. [PMID: 29202194 PMCID: PMC5814829 DOI: 10.1093/nar/gkx1217] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/23/2017] [Indexed: 12/23/2022] Open
Abstract
The Saccharomyces cerevisiae Pif1 protein (ScPif1p) is the prototypical member of the Pif1 family of DNA helicases. ScPif1p is involved in the maintenance of mitochondrial, ribosomal and telomeric DNA and suppresses genome instability at G-quadruplex motifs. Here, we report the crystal structures of a truncated ScPif1p (ScPif1p237−780) in complex with different ssDNAs. Our results have revealed that a yeast-specific insertion domain protruding from the 2B domain folds as a bundle bearing an α-helix, α16. The α16 helix regulates the helicase activities of ScPif1p through interactions with the previously identified loop3. Furthermore, a biologically relevant dimeric structure has been identified, which can be further specifically stabilized by G-quadruplex DNA. Basing on structural analyses and mutational studies with DNA binding and unwinding assays, a potential G-quadruplex DNA binding site in ScPif1p monomers is suggested. Our results also show that ScPif1p uses the Q-motif to preferentially hydrolyze ATP, and a G-rich tract is preferentially recognized by more residues, consistent with previous biochemical observations. These findings provide a structural and mechanistic basis for understanding the multifunctional ScPif1p.
Collapse
Affiliation(s)
- Ke-Yu Lu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei-Fei Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Stephane Rety
- Univ. Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS UMR 5239, INSERM U1210, LBMC, 46 allée d'Italie Site Jacques Monod, F-69007 Lyon, France
| | - Na-Nv Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wen-Qiang Wu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang-Xue Dai
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dan Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hai-Yun Ma
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuo-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.,Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, Université Paris-Saclay, Centre National de la Recherche Scientifique, 61 Avenue du Président Wilson, 94235 Cachan, France
| |
Collapse
|
46
|
Gao Y, Cui Y, Fox T, Lin S, Wang H, de Val N, Zhou ZH, Yang W. Structures and operating principles of the replisome. Science 2019; 363:science.aav7003. [PMID: 30679383 DOI: 10.1126/science.aav7003] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/13/2019] [Indexed: 12/12/2022]
Abstract
Visualization in atomic detail of the replisome that performs concerted leading- and lagging-DNA strand synthesis at a replication fork has not been reported. Using bacteriophage T7 as a model system, we determined cryo-electron microscopy structures up to 3.2-angstroms resolution of helicase translocating along DNA and of helicase-polymerase-primase complexes engaging in synthesis of both DNA strands. Each domain of the spiral-shaped hexameric helicase translocates sequentially hand-over-hand along a single-stranded DNA coil, akin to the way AAA+ ATPases (adenosine triphosphatases) unfold peptides. Two lagging-strand polymerases are attached to the primase, ready for Okazaki fragment synthesis in tandem. A β hairpin from the leading-strand polymerase separates two parental DNA strands into a T-shaped fork, thus enabling the closely coupled helicase to advance perpendicular to the downstream DNA duplex. These structures reveal the molecular organization and operating principles of a replisome.
Collapse
Affiliation(s)
- Yang Gao
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yanxiang Cui
- The California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Tara Fox
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21701, USA
| | - Shiqiang Lin
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huaibin Wang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natalia de Val
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21701, USA
| | - Z Hong Zhou
- The California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
47
|
Cheng K, Wigley DB. DNA translocation mechanism of an XPD family helicase. eLife 2018; 7:42400. [PMID: 30520735 PMCID: PMC6300356 DOI: 10.7554/elife.42400] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022] Open
Abstract
The XPD family of helicases, that includes human disease-related FANCJ, DDX11 and RTEL1, are Superfamily two helicases that contain an iron-sulphur cluster domain, translocate on ssDNA in a 5’−3’ direction and play important roles in genome stability. Consequently, mutations in several of these family members in eukaryotes cause human diseases. Family members in bacteria, such as the DinG helicase from Escherichia coli, are also involved in DNA repair. Here we present crystal structures of complexes of DinG bound to single-stranded DNA (ssDNA) in the presence and absence of an ATP analogue (ADP•BeF3), that suggest a mechanism for 5’−3’ translocation along the ssDNA substrate. This proposed mechanism has implications for how those enzymes of the XPD family that recognise bulky DNA lesions might stall at these as the first step in initiating DNA repair. Biochemical data reveal roles for conserved residues that are mutated in human diseases.
Collapse
Affiliation(s)
- Kaiying Cheng
- Section of Structural Biology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Dale B Wigley
- Section of Structural Biology, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
48
|
Hidese R, Kawato K, Nakura Y, Fujiwara A, Yasukawa K, Yanagihara I, Fujiwara S. Thermostable DNA helicase improves the sensitivity of digital PCR. Biochem Biophys Res Commun 2017; 495:2189-2194. [PMID: 29233693 DOI: 10.1016/j.bbrc.2017.12.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
DNA/RNA helicases, which catalyze the unwinding of duplex nucleic acids using the energy of ATP hydrolysis, contribute to various biological functions involving DNA or RNA. Euryarchaeota-specific helicase Tk-EshA (superfamily 2) from the hyperthermophilic archaeon Thermococcus kodakarensis has been used to decrease generation of mis-amplified products (noise DNAs) during PCR. In this study, we focused on another type (superfamily 1B) of helicase, Tk-Upf1 (TK0178) from T. kodakarensis, and compared its effectiveness in PCR and digital PCR with that of Tk-EshA. For this purpose, we obtained Tk-Upf1 as a recombinant protein and assessed its enzymatic characteristics. Among various double-stranded DNA (dsDNA) substrates (forked, 5' overhung, 3' overhung, and blunt-ended duplex), Tk-Upf1 had the highest unwinding activity toward 5' overhung DNAs. Noise DNAs were also eliminated in the presence of Tk-Upf1 at concentrations 10-fold lower than those required to yield a comparable reduction with Tk-EshA. When a 5' or 3' overhung mis-annealed primer was included as a competitive primer along with specific primers, noise DNAs derived from the mis-annealed primer were eliminated in the presence of Tk-Upf1. In digital PCR, addition of Tk-EshA or Tk-Upf1 increased fluorescent intensities and improved separation between common and risk allele clusters, indicating that both helicases functioned as signal enhancers. In comparison with Tk-EshA, a smaller amount of Tk-Upf1 was required to improve the performance of digital PCR.
Collapse
Affiliation(s)
- Ryota Hidese
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Katsuhiro Kawato
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Yukiko Nakura
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Osaka 594-1101, Japan
| | - Ayako Fujiwara
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Itaru Yanagihara
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Osaka 594-1101, Japan
| | - Shinsuke Fujiwara
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan.
| |
Collapse
|
49
|
Tomko EJ, Lohman TM. Modulation of Escherichia coli UvrD Single-Stranded DNA Translocation by DNA Base Composition. Biophys J 2017; 113:1405-1415. [PMID: 28978435 DOI: 10.1016/j.bpj.2017.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 10/18/2022] Open
Abstract
Escherichia coli UvrD is an SF1A DNA helicase/translocase that functions in chromosomal DNA repair and replication of some plasmids. UvrD can also displace proteins such as RecA from DNA in its capacity as an anti-recombinase. Central to all of these activities is its ATP-driven 3'-5' single-stranded (ss) DNA translocation activity. Previous ensemble transient kinetic studies have estimated the average translocation rate of a UvrD monomer on ssDNA composed solely of deoxythymidylates. Here we show that the rate of UvrD monomer translocation along ssDNA is influenced by DNA base composition, with UvrD having the fastest rate along polypyrimidines although decreasing nearly twofold on ssDNA containing equal amounts of the four bases. Experiments with DNA containing abasic sites and polyethylene glycol spacers show that the ssDNA base also influences translocation processivity. These results indicate that changes in base composition and backbone insertions influence the translocation rates, with increased ssDNA base stacking correlated with decreased translocation rates, supporting the proposal that base-stacking interactions are involved in the translocation mechanism.
Collapse
Affiliation(s)
- Eric J Tomko
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
50
|
Robert-Paganin J, Halladjian M, Blaud M, Lebaron S, Delbos L, Chardon F, Capeyrou R, Humbert O, Henry Y, Henras AK, Réty S, Leulliot N. Functional link between DEAH/RHA helicase Prp43 activation and ATP base binding. Nucleic Acids Res 2017; 45:1539-1552. [PMID: 28180308 PMCID: PMC5388414 DOI: 10.1093/nar/gkw1233] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 11/17/2016] [Accepted: 11/26/2016] [Indexed: 02/05/2023] Open
Abstract
The DEAH box helicase Prp43 is a bifunctional enzyme from the DEAH/RHA helicase family required both for the maturation of ribosomes and for lariat intron release during splicing. It interacts with G-patch domain containing proteins which activate the enzymatic activity of Prp43 in vitro by an unknown mechanism. In this work, we show that the activation by G-patch domains is linked to the unique nucleotide binding mode of this helicase family. The base of the ATP molecule is stacked between two residues, R159 of the RecA1 domain (R-motif) and F357 of the RecA2 domain (F-motif). Using Prp43 F357A mutants or pyrimidine nucleotides, we show that the lack of stacking of the nucleotide base to the F-motif decouples the NTPase and helicase activities of Prp43. In contrast the R159A mutant (R-motif) showed reduced ATPase and helicase activities. We show that the Prp43 R-motif mutant induces the same phenotype as the absence of the G-patch protein Gno1, strongly suggesting that the processing defects observed in the absence of Gno1 result from a failure to activate the Prp43 helicase. Overall we propose that the stacking between the R- and F-motifs and the nucleotide base is important for the activity and regulation of this helicase family.
Collapse
Affiliation(s)
- Julien Robert-Paganin
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France
| | - Maral Halladjian
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Magali Blaud
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France
| | - Simon Lebaron
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France
| | - Lila Delbos
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France
| | - Florian Chardon
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France
| | - Régine Capeyrou
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Odile Humbert
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Yves Henry
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Anthony K Henras
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Stéphane Réty
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France
| | - Nicolas Leulliot
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France
| |
Collapse
|