1
|
Wu H, Dong L, Jin S, Zhao Y, Zhu L. Innovative gene delivery systems for retinal disease therapy. Neural Regen Res 2026; 21:542-552. [PMID: 39665817 DOI: 10.4103/nrr.nrr-d-24-00797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/10/2024] [Indexed: 12/13/2024] Open
Abstract
The human retina, a complex and highly specialized structure, includes multiple cell types that work synergistically to generate and transmit visual signals. However, genetic predisposition or age-related degeneration can lead to retinal damage that severely impairs vision or causes blindness. Treatment options for retinal diseases are limited, and there is an urgent need for innovative therapeutic strategies. Cell and gene therapies are promising because of the efficacy of delivery systems that transport therapeutic genes to targeted retinal cells. Gene delivery systems hold great promise for treating retinal diseases by enabling the targeted delivery of therapeutic genes to affected cells or by converting endogenous cells into functional ones to facilitate nerve regeneration, potentially restoring vision. This review focuses on two principal categories of gene delivery vectors used in the treatment of retinal diseases: viral and non-viral systems. Viral vectors, including lentiviruses and adeno-associated viruses, exploit the innate ability of viruses to infiltrate cells, which is followed by the introduction of therapeutic genetic material into target cells for gene correction. Lentiviruses can accommodate exogenous genes up to 8 kb in length, but their mechanism of integration into the host genome presents insertion mutation risks. Conversely, adeno-associated viruses are safer, as they exist as episomes in the nucleus, yet their limited packaging capacity constrains their application to a narrower spectrum of diseases, which necessitates the exploration of alternative delivery methods. In parallel, progress has also occurred in the development of novel non-viral delivery systems, particularly those based on liposomal technology. Manipulation of the ratios of hydrophilic and hydrophobic molecules within liposomes and the development of new lipid formulations have led to the creation of advanced non-viral vectors. These innovative systems include solid lipid nanoparticles, polymer nanoparticles, dendrimers, polymeric micelles, and polymeric nanoparticles. Compared with their viral counterparts, non-viral delivery systems offer markedly enhanced loading capacities that enable the direct delivery of nucleic acids, mRNA, or protein molecules into cells. This bypasses the need for DNA transcription and processing, which significantly enhances therapeutic efficiency. Nevertheless, the immunogenic potential and accumulation toxicity associated with non-viral particulate systems necessitates continued optimization to reduce adverse effects in vivo . This review explores the various delivery systems for retinal therapies and retinal nerve regeneration, and details the characteristics, advantages, limitations, and clinical applications of each vector type. By systematically outlining these factors, our goal is to guide the selection of the optimal delivery tool for a specific retinal disease, which will enhance treatment efficacy and improve patient outcomes while paving the way for more effective and targeted therapeutic interventions.
Collapse
Affiliation(s)
- Hongguang Wu
- Department of Ophthalmology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
2
|
Zhang Y, Zhang S, Zhong L, Liu G, Sui Y, Wang M, Jiang H. The role of cortisol in the acute immune regulation of channel catfish (Ictalurus punctatus) spleen stimulated by Aeromonas hydrophila. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101517. [PMID: 40305903 DOI: 10.1016/j.cbd.2025.101517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/08/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
Channel catfish (Ictalurus punctatus), a significant aquaculture species, occupies a prominent position in the aquaculture industry due to its rapid growth, excellent adaptability, and economic value; however, the hemorrhagic disease caused by Aeromonas hydrophila has had a substantial impact on its cultivation. Researches have indicated that cortisol, the main stress hormone, is essential for regulating immune responses. Therefore, in this study, the immune regulatory effects of cortisol on the spleen tissue under Aeromonas hydrophila stimulation were analyzed. Through transcriptomic (RNA-seq) analysis, we identified 167 differentially expressed genes (DEGs) regulated by cortisol. The KEGG enrichment analysis indicated that the DEGs were predominantly associated with various biological pathways, including antigen processing and presentation, bladder cancer, autophagy in animals, lipid metabolism, and atherosclerosis. Protein-protein interaction network analysis further indicated that these DEGs participate in key signaling pathways, including HIF, JAK-STAT, and NF-KB. Our findings demonstrate that cortisol exerts an immunoregulatory effect by modulating these key signaling pathways in the spleen tissue infected with Aeromonas hydrophila, which is of significant importance for understanding the mechanism of cortisol in fish immune responses.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Siyuan Zhang
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Liqiang Zhong
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; The Low-Temperature Germplasm Bank of Important Economic Fish of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, China
| | - Guoxing Liu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; The Low-Temperature Germplasm Bank of Important Economic Fish of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, China
| | - Yanming Sui
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Minghua Wang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; The Low-Temperature Germplasm Bank of Important Economic Fish of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, China.
| | - Hucheng Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; The Low-Temperature Germplasm Bank of Important Economic Fish of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, China.
| |
Collapse
|
3
|
Takita S, Harikrishnan H, Miyagi M, Imanishi Y. Transcriptional downregulation of rhodopsin is associated with desensitization of rods to light-induced damage in a murine model of retinitis pigmentosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.646684. [PMID: 40236225 PMCID: PMC11996569 DOI: 10.1101/2025.04.03.646684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Class I rhodopsin mutations are known for some of the most severe forms of vision impairments in dominantly inherited rhodopsin retinitis pigmentosa. They disrupt the VxPx transport signal, which is required for the proper localization of rhodopsin to the outer segments. While various studies have focused on the light-dependent toxicity of mutant rhodopsin, it remains unclear whether and how these mutations exert dominant-negative effects. Using the class I Rho Q344X rhodopsin knock-in mouse model, we characterized the expression of rhodopsin and other genes by RNA sequencing and qPCR. Those studies indicated that rhodopsin is the most prominently downregulated photoreceptor-specific gene in Rho Q344X/+ mice. Rhodopsin is downregulated significantly prior to the onset of rod degeneration, whereas downregulation of other phototransduction genes, transducin α , and Pde6α, occurs after the onset and correlate with the degree of rod cell loss. Those studies indicated that the mutant rhodopsin gene causes downregulation of wild-type rhodopsin, imposing an mRNA-level dominant negative effect. Moreover, it causes downregulation of the mutant mRNA itself, mitigating the toxicity. The observed dominant effect is likely common among rhodopsin retinitis pigmentosa as we found a similar rhodopsin downregulation in the major class II rhodopsin mutant model, Rho P23H/+ mice, in which mutant rhodopsin is prone to misfold. Potentially due to mitigated toxicity by reduced rhodopsin expression, Rho Q344X/+ mice did not exhibit light-dependent exacerbation of rod degeneration, even after continuous exposure of mice for 5 days at 3000 lux. Thus, this study describes a novel form of dominant negative effect in inherited neurodegenerative disorders.
Collapse
|
4
|
Zheng R, Zhang S, Chen S, Zha W, Li X, Li Q, He J, He S, Feng M, Shen Y. Sunlight-mediated environmental risks of tinidazole in seawater: A neglected ocular toxicity of photolysis mixtures. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137217. [PMID: 39823881 DOI: 10.1016/j.jhazmat.2025.137217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/26/2024] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
Tinidazole (TNZ), a common nitroimidazole antibiotic, is pervasive in aquatic ecosystems, posing potential threats to marine organisms. The environmental fate of TNZ, particularly under solar irradiation, and the associated secondary risks are not well characterized. Herein, the photochemical reactivity of TNZ and four other typical nitroimidazoles (i.e., metronidazole, ornidazole, dimetridazole, and secnidazole) were quantified for multiple photoreactive species. The photolysis products of these nitroimidazoles were identified under solar irradiation, from which the reaction pathways were tentatively proposed. Furthermore, the photo-induced toxicity evolution mechanisms of TNZ were investigated by comparing phenotypic, transcriptomic, and metabolomic changes in marine medaka embryos (Oryzias melastigma) after exposure to TNZ and its photo-irradiated mixtures. Our results indicated that the photo-irradiated TNZ enhanced visual toxicity to marine medaka embryos compared to the parent compound. The photolysis mixtures induced embryonic ocular malformation and significantly affected the expression of the associated genes with the initiation/termination of the phototransduction cascade, leading to metabolite changes related to visual impairment. This work reported the first comprehensive assessment of the photolysis-mediated environmental fate and secondary risks of TNZ in seawater. The findings highlighted the necessity of including complex photolysis mixtures under solar irradiation in future chemical risk assessments of marine environments.
Collapse
Affiliation(s)
- Ruping Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shengqi Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shengyue Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Wenqi Zha
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xinyue Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Qiuru Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jinlin He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shanshan He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
5
|
Yang Z, Zhou SH, Zhang QY, Song ZC, Liu WW, Sun Y, Wang MW, Fu XL, Zhu KK, Guan Y, Qi JY, Wang XH, Sun YN, Lu Y, Ping YQ, Xi YT, Teng ZX, Xu L, Xiao P, Xu ZG, Xiong W, Qin W, Yang W, Yi F, Chai RJ, Yu X, Sun JP. A force-sensitive adhesion GPCR is required for equilibrioception. Cell Res 2025; 35:243-264. [PMID: 39966628 PMCID: PMC11958651 DOI: 10.1038/s41422-025-01075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Equilibrioception (sensing of balance) is essential for mammals to perceive and navigate the three-dimensional world. A rapid mechanoelectrical transduction (MET) response in vestibular hair cells is crucial for detecting position and motion. Here, we identify the G protein-coupled receptor (GPCR) LPHN2/ADGRL2, expressed on the apical membrane of utricular hair cells, as essential for maintaining normal balance. Loss of LPHN2 specifically in hair cells impaired both balance behavior and the MET response in mice. Functional analyses using hair-cell-specific Lphn2-knockout mice and an LPHN2-specific inhibitor suggest that LPHN2 regulates tip-link-independent MET currents at the apical surface of utricular hair cells. Mechanistic studies in a heterologous system show that LPHN2 converts force stimuli into increased open probability of transmembrane channel-like protein 1 (TMC1). LPHN2-mediated force sensation triggers glutamate release and calcium signaling in utricular hair cells. Importantly, reintroducing LPHN2 into the hair cells of Lphn2-deficient mice restores vestibular function and MET response. Our data reveal that a mechanosensitive GPCR is required for equilibrioception.
Collapse
Affiliation(s)
- Zhao Yang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shu-Hua Zhou
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu, China
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qi-Yue Zhang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhi-Chen Song
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wen-Wen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming-Wei Wang
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiao-Long Fu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Kong-Kai Zhu
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ying Guan
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jie-Yu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu, China
| | - Xiao-Hui Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu-Nan Sun
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yan Lu
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu-Qi Ping
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yue-Tong Xi
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhen-Xiao Teng
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Peng Xiao
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhi-Gang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Qingdao, Shandong, China
| | - Wei Xiong
- Chinese Institute for Brain Research, Beijing, China
| | - Wei Qin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, China
| | - Wei Yang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.
| | - Ren-Jie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu, China.
| | - Xiao Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Jin-Peng Sun
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
6
|
Liu J, Wu C, Liu Y, Chen Q, Ding Y, Lin Z, Pan L, Xiao K, Li J, Liu Z, Liu W. Structural insights into the dual Ca 2+-sensor-mediated activation of the PPEF phosphatase family. Nat Commun 2025; 16:3120. [PMID: 40169586 PMCID: PMC11962071 DOI: 10.1038/s41467-025-58261-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 03/14/2025] [Indexed: 04/03/2025] Open
Abstract
Serine/threonine-protein phosphatases with EF-hands (PPEFs) are a family of highly conserved proteins implicated in cancer and neuronal degeneration. The initially characterized member, Drosophila melanogaster retinal degeneration C (RDGC) contains a calmodulin (CaM)-interacting extended-IQ motif and a Ca2+-binding EF-like/EF-hand tandem. However, the molecular regulation of PPEF is poorly understood. In this study, we use cryogenic-electron microscopy to delineate the structures of the RDGC/CaM holoenzyme. In the absence of Ca2+, CaM and the EF-like/EF-hand tandem allow the extended-IQ motif to block substrate access to the catalytic sites, constituting an auto-inhibitory mechanism. Upon Ca2+ binding, CaM and the EF-like/EF-hand tandem drive drastic conformational changes in the extended-IQ motif to unlock the catalytic sites. This dual Ca2+-sensor-mediated activation is evolutionarily conserved in mammals. This study provides mechanistic insight into the molecular activation of PPEFs, paving the way for the development of therapeutic strategies for PPEF-related human diseases.
Collapse
Affiliation(s)
- Jia Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong, China
| | - Cang Wu
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Yuyang Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong, China
| | - Qiangou Chen
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong, China
| | - Yuzhen Ding
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong, China
| | - Zhiqiao Lin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lifeng Pan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Kang Xiao
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, China
| | - Jianchao Li
- Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Zhongmin Liu
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong, China.
- Institute of Geriatric Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China.
| |
Collapse
|
7
|
Huang YT, Li Z, Yuan C, Zhu YC, Zhao WW, Xu JJ. Organic Photoelectrochemical Multisensory Integration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2503030. [PMID: 40099588 DOI: 10.1002/adma.202503030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Indexed: 03/20/2025]
Abstract
Neuromorphic perception capable of multisensory integration (MSI) in electrolytes is important but remains challenging. Here, the aqueous implementation of artificial MSI is reported based on the newly emerged organic photoelectrochemical transistor (OPECT) by representative visual (light)-gustatory (sour) perception. Under the co-modulation of light and H+/OH-, multisensory synaptic plasticity and several typical MSI characteristics are mimicked, including "super-additive response," "inverse effectiveness effect" and "temporal congruency." To demonstrate its potential usage, different types of multisensory associative learning and corresponding reflex activities are further emulated. The chemical MSI system is also utilized to control artificial salivation by a closed loop of real-time perception, processing, integration, and actuation to emulate the biological responses toward external stimuli. In contrast to previous solid-state operations, this work offers a new strategy for developing neuromorphic MSI in aqueous environments that are analogous to those in biology.
Collapse
Affiliation(s)
- Yu-Ting Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Cheng Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuan-Cheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
8
|
Obayashi K, Zou R, Kawaguchi T, Mori T, Tsukamoto H. Molecular basis underlying the specificity of an antagonist AA92593 for mammalian melanopsins. J Biol Chem 2025; 301:108461. [PMID: 40154611 DOI: 10.1016/j.jbc.2025.108461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/14/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025] Open
Abstract
Melanopsin functions in intrinsically photosensitive retinal ganglion cells of mammals to regulate circadian clock and pupil constriction. The opsinamide AA92593 has been reported to specifically inhibit mouse and human melanopsin functions as a competitive antagonist against retinal; however, the molecular mechanisms underlying its specificity have not been resolved. In this study, we attempted to identify amino acid residues responsible for the susceptibility of mammalian melanopsins to AA92593. Our cell-based assays confirmed that AA92593 effectively inhibited the light-induced cellular responses of mammalian melanopsins, but not those of non-mammalian vertebrate and invertebrate melanopsins. These results suggest that amino acid residues specifically conserved among mammalian melanopsins are important for the antagonistic effect of AA92593, and we noticed Phe-942.61, Ser-188ECL2, and Ser-2696.52 as candidate residues. Substitutions of these residues reduced the antagonistic effect of AA92593. We conducted docking and molecular dynamics simulations based on the AlphaFold-predicted melanopsin structure. The simulations indicated that Phe-942.61, Ser-188ECL2, and Ser-2696.52 are located at the AA92593-binding site and additionally identified Trp-189ECL2 and Leu-2075.42 interacting with the antagonist. Substitutions of Trp-189ECL2 and Leu-2075.42 affected the antagonistic effect of AA92593. Furthermore, substitutions of these amino acid residues converted the AA92593-insensitive non-mammalian melanopsins susceptible to the antagonist. Based on experiments and molecular simulations, five amino acid residues, at positions 942.61, 188ECL2, 189ECL2, 2075.42, and 2696.52, were found to be responsible for the specific susceptibility of mammalian melanopsins to AA92593.
Collapse
Affiliation(s)
- Kohei Obayashi
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Ruisi Zou
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoki Kawaguchi
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Toshifumi Mori
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka, Japan; Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| | - Hisao Tsukamoto
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan; Center of Optical Scattering Image Science, Kobe University, Kobe, Japan.
| |
Collapse
|
9
|
Fukuzawa S, Kawaguchi T, Shimomura T, Kubo Y, Tsukamoto H. Characterization and Engineering of a Blue-Sensitive, Gi/o-Biased, and Bistable Ciliary Opsin from a Fan Worm. Biochemistry 2025; 64:1020-1031. [PMID: 39947647 DOI: 10.1021/acs.biochem.4c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Ciliary opsins (c-opsin) have been identified not only in vertebrates but also in invertebrates. An invertebrate ciliary opsin was recently identified in the fan worm Acromegalomma interruptum (formerly named Megalomma interrupta); however, its spectral and signaling characteristics are unknown. In the present study, we characterized the spectral properties and light-induced cellular signaling properties of opsin (Acromegalomma invertebrate ciliary opsin (AcrInvC-opsin)). AcrInvC-opsin showed an absorption maximum at 464 nm, and upon blue light absorption, the spectrum was red-shifted by approximately 50 nm. The two states are interconvertible by illumination with blue and orange light. Blue light illumination of AcrInvC-opsin caused specific coupling with Gi, sustained Gi dissociation, decreased intracellular cAMP levels, and the activation of GIRK channels. The cellular responses by the activated opsin were partially terminated by orange light illumination. These light-dependent responses indicate that InvC-opsin is a typical bistable pigment wherein the resting and activated states can be interconverted by visible light illumination. We also attempted to modulate the spectral and functional properties of AcrInvC-opsin by using site-directed mutagenesis. Substitution of Ser-94 with Ala caused little spectral shift in the resting state but a further red shift of ∼10 nm in the activated state, indicating that the absorption spectra of the two states were tuned differently. In contrast, the substitution of S94A did not significantly affect the light-dependent signaling properties of AcrInvC-opsin. Because AcrInvC-opsin is a blue-sensitive, Gi/o-biased, and bistable pigment, it has the potential to serve as an optical control tool to specifically and reversibly regulate Gi/o-dependent signaling pathways by visible light.
Collapse
Affiliation(s)
- Sachiko Fukuzawa
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Tomoki Kawaguchi
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Takushi Shimomura
- Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- Program of Physiological Sciences, Field of Life Science, Department of Advanced Studies, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- Program of Physiological Sciences, Field of Life Science, Department of Advanced Studies, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Hisao Tsukamoto
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
- Center of Optical Scattering Image Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
10
|
Ohnishi K, Sokabe T. Thermosensory Roles of G Protein-Coupled Receptors and Other Cellular Factors in Animals. Bioessays 2025; 47:e202400233. [PMID: 39723698 PMCID: PMC11848117 DOI: 10.1002/bies.202400233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
In this review, we introduce the concept of "dual thermosensing mechanisms," highlighting the functional collaboration between G protein-coupled receptors (GPCRs) and transient receptor potential (TRP) channels that enable sophisticated cellular thermal responsiveness. GPCRs have been implicated in thermosensory processes, with recent findings identifying several candidates across species, including mammals, fruit flies, and nematodes. In many cases, these GPCRs work in conjunction with another class of thermosensors, TRP channels, offering insights into the complex mechanisms underlying thermosensory signaling. We examine how GPCRs function as thermosensors and how their signaling regulates cellular thermosensation, illustrating the complexity of thermosensory systems. Understanding these dual thermosensory mechanisms would advance our comprehension of cellular thermosensation and its regulatory pathways.
Collapse
Affiliation(s)
- Kohei Ohnishi
- Physiology and Biophysics, Graduate School of Biomedical and Health Sciences (Medical)Hiroshima UniversityHiroshimaJapan
| | - Takaaki Sokabe
- Section of Sensory Physiology, Center for Genetic Analysis of BehaviorNational Institute for Physiological SciencesOkazakiAichiJapan
- Thermal Biology Group, Exploratory Research Center on Life and Living SystemsNational Institutes of Natural SciencesOkazakiAichiJapan
- Graduate Institute for Advanced Studies, SOKENDAIHayamaKanagawaJapan
- AMED‐PRIMEJapan Agency for Medical Research and DevelopmentTokyoJapan
| |
Collapse
|
11
|
Jiang X, Zhang Q, Zhao N, Li Z, Jiang L, Zhang Z. 2D Conjugated Metal-Organic Framework-Based Composite Membranes for Nanofluidic Ionic Photoelectric Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416093. [PMID: 39930720 DOI: 10.1002/adma.202416093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/04/2025] [Indexed: 03/27/2025]
Abstract
Nanofluidic photoelectric conversion system based on photo-excitable 2D materials can directly transduce light stimuli into an ion-transport-mediated electric signal, showing potential for mimicking the retina's function with a more favorable human-robot interactions. However, the current membranes suffer from low generation efficiency of charge carriers due to the mixed microstructure and limited charge transport ability caused by the large interlayer spacing and monotonous pathway. Here, a fully conjugated 2D hexaimino-substituted triphenylene-based metal-organic framework (2D-HATP-cMOF) based composite membrane with high conductivity for photoelectric conversion is presented. The extended π-d conjugation within the ab plane and the favorable transport pathway through π-π stacking of the c-MOF maximize the generation and transfer of charge carrier and greatly accelerate the ion transport. As a result, the 2D-HATP-cMOF-based composite membrane possesses ultrafast photoelectric response, superior to other reported 2D systems like graphene oxide (GO), transition metal carbides, carbonitrides and nitrides (MXene), and MoS2, which require at least 10 s. A successful ion pump phenomenon, that is active transport from low concentration to high concentration as an important way of information transmission in organisms, is realized based on the efficient photoelectric conversion capability. This work demonstrates the great promise of 2D c-MOF in ionic photoelectric conversion.
Collapse
Affiliation(s)
- Xinyan Jiang
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Qixiang Zhang
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Naijia Zhao
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Zhe Li
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Lei Jiang
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhen Zhang
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| |
Collapse
|
12
|
Chen SP, Chu XM, Chi MX, Zhao J, Qiu RZ. Transcriptomic Characterization of Phototransduction Genes of the Asian Citrus Psyllid Diaphorina citri Kuwayama. INSECTS 2024; 15:966. [PMID: 39769568 PMCID: PMC11678440 DOI: 10.3390/insects15120966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Opsin plays a regulatory role in phototaxis of Diaphorina citri, functioning as the initial station in the phototransduction cascade. Our study aimed to explore the D. citri phototransduction pathway to identify elicitors that may enhance D. citri phototaxis in the future. The RNAi technique was employed to inhibit LW-opsin gene expression, followed by RNA-Seq analysis to identify phototransduction genes. Finally, RT-qPCR was performed to validate whether genes in the phototransduction pathway were affected by the inhibition of LW-opsin expression. A total of 87 genes were identified within the transcriptome as involved in phototransduction based on KEGG functional annotation. Of these, 71 genes were identified as enriched in the phototransduction-fly pathway. These genes encode key proteins in this process, including Gqα, Gqβ, Gqγ, phospholipase C β (PLCβ), the cation channel transient receptor potential (TRP), and TRP-like (TRPL), among others. Moreover, the LOC103513214 (Gqβ) and LOC103518375 (ninaC) genes exhibited reduced expression when LW-opsin gene expression was suppressed. Our results provide a basis for further investigation of phototransduction in D. citri.
Collapse
Affiliation(s)
- Shao-Ping Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (S.-P.C.); (X.-M.C.); (M.-X.C.); (J.Z.)
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Engineering Research Center for Green Pest Management, Fuzhou 350013, China
| | - Xue-Mei Chu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (S.-P.C.); (X.-M.C.); (M.-X.C.); (J.Z.)
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Engineering Research Center for Green Pest Management, Fuzhou 350013, China
| | - Mei-Xiang Chi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (S.-P.C.); (X.-M.C.); (M.-X.C.); (J.Z.)
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Engineering Research Center for Green Pest Management, Fuzhou 350013, China
| | - Jian Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (S.-P.C.); (X.-M.C.); (M.-X.C.); (J.Z.)
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Engineering Research Center for Green Pest Management, Fuzhou 350013, China
- Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Rong-Zhou Qiu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (S.-P.C.); (X.-M.C.); (M.-X.C.); (J.Z.)
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Engineering Research Center for Green Pest Management, Fuzhou 350013, China
| |
Collapse
|
13
|
Comai S, De Martin S, Mattarei A, Guidetti C, Pappagallo M, Folli F, Alimonti A, Manfredi PL. N-methyl-D-aspartate Receptors and Depression: Linking Psychopharmacology, Pathology and Physiology in a Unifying Hypothesis for the Epigenetic Code of Neural Plasticity. Pharmaceuticals (Basel) 2024; 17:1618. [PMID: 39770460 PMCID: PMC11728621 DOI: 10.3390/ph17121618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/03/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Uncompetitive NMDAR (N-methyl-D-aspartate receptor) antagonists restore impaired neural plasticity, reverse depressive-like behavior in animal models, and relieve major depressive disorder (MDD) in humans. This review integrates recent findings from in silico, in vitro, in vivo, and human studies of uncompetitive NMDAR antagonists into the extensive body of knowledge on NMDARs and neural plasticity. Uncompetitive NMDAR antagonists are activity-dependent channel blockers that preferentially target hyperactive GluN2D subtypes because these subtypes are most sensitive to activation by low concentrations of extracellular glutamate and are more likely activated by certain pathological agonists and allosteric modulators. Hyperactivity of GluN2D subtypes in specific neural circuits may underlie the pathophysiology of MDD. We hypothesize that neural plasticity is epigenetically regulated by precise Ca2+ quanta entering cells via NMDARs. Stimuli reach receptor cells (specialized cells that detect specific types of stimuli and convert them into electrical signals) and change their membrane potential, regulating glutamate release in the synaptic cleft. Free glutamate binds ionotropic glutamatergic receptors regulating NMDAR-mediated Ca2+ influx. Quanta of Ca2+ via NMDARs activate enzymatic pathways, epigenetically regulating synaptic protein homeostasis and synaptic receptor expression; thereby, Ca2+ quanta via NMDARs control the balance between long-term potentiation and long-term depression. This NMDAR Ca2+ quantal hypothesis for the epigenetic code of neural plasticity integrates recent psychopharmacology findings into established physiological and pathological mechanisms of brain function.
Collapse
Affiliation(s)
- Stefano Comai
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35121 Padua, Italy; (S.C.); (S.D.M.); (A.M.)
- Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
- Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada
- IRCSS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35121 Padua, Italy; (S.C.); (S.D.M.); (A.M.)
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35121 Padua, Italy; (S.C.); (S.D.M.); (A.M.)
| | - Clotilde Guidetti
- Child Neuropsychiatry Unit, Department of Neuroscience, IRCCS Bambino Gesù Pediatric Hospital, 00165 Rome, Italy;
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Marco Pappagallo
- Relmada Therapeutics, Inc., Coral Gables, FL 33134, USA;
- MGGM LLC, 85 Baker Road, Kerhonkson, NY 12446, USA
| | - Franco Folli
- Department of Health Sciences, University of Milan, 20141 Milan, Italy;
| | - Andrea Alimonti
- The Institute of Oncology Research, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland;
- Veneto Institute of Molecular Medicine, 35129 Padua, Italy
- Department of Medicine, Zurich University, 8006 Zurich, Switzerland
- Department of Medicine, University of Padua, 35122 Padua, Italy
| | - Paolo L. Manfredi
- Relmada Therapeutics, Inc., Coral Gables, FL 33134, USA;
- MGGM LLC, 85 Baker Road, Kerhonkson, NY 12446, USA
| |
Collapse
|
14
|
Zhong S, Su L, Xu M, Loke D, Yu B, Zhang Y, Zhao R. Recent Advances in Artificial Sensory Neurons: Biological Fundamentals, Devices, Applications, and Challenges. NANO-MICRO LETTERS 2024; 17:61. [PMID: 39537845 PMCID: PMC11561216 DOI: 10.1007/s40820-024-01550-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/28/2024] [Indexed: 11/16/2024]
Abstract
Spike-based neural networks, which use spikes or action potentials to represent information, have gained a lot of attention because of their high energy efficiency and low power consumption. To fully leverage its advantages, converting the external analog signals to spikes is an essential prerequisite. Conventional approaches including analog-to-digital converters or ring oscillators, and sensors suffer from high power and area costs. Recent efforts are devoted to constructing artificial sensory neurons based on emerging devices inspired by the biological sensory system. They can simultaneously perform sensing and spike conversion, overcoming the deficiencies of traditional sensory systems. This review summarizes and benchmarks the recent progress of artificial sensory neurons. It starts with the presentation of various mechanisms of biological signal transduction, followed by the systematic introduction of the emerging devices employed for artificial sensory neurons. Furthermore, the implementations with different perceptual capabilities are briefly outlined and the key metrics and potential applications are also provided. Finally, we highlight the challenges and perspectives for the future development of artificial sensory neurons.
Collapse
Affiliation(s)
- Shuai Zhong
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, People's Republic of China.
| | - Lirou Su
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, People's Republic of China
| | - Mingkun Xu
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, People's Republic of China
| | - Desmond Loke
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Bin Yu
- College of Integrated Circuits, Zhejiang University, Hangzhou, 3112000, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, People's Republic of China
| | - Yishu Zhang
- College of Integrated Circuits, Zhejiang University, Hangzhou, 3112000, People's Republic of China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, People's Republic of China.
| | - Rong Zhao
- Department of Precision Instruments, Tsinghua University, Beijing, 100084, People's Republic of China
- Center for Brain-Inspired Computing Research, Tsinghua University, Beijing, 100084, People's Republic of China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, People's Republic of China
| |
Collapse
|
15
|
Nakayama K, Hiraga H, Manabe A, Chihara T, Okumura M. cGMP-dependent pathway and a GPCR kinase are required for photoresponse in the nematode Pristionchus pacificus. PLoS Genet 2024; 20:e1011320. [PMID: 39541254 PMCID: PMC11563456 DOI: 10.1371/journal.pgen.1011320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Light sensing is a critical function in most organisms and is mediated by photoreceptor proteins and phototransduction. Although most nematodes lack eyes, some species exhibit phototaxis. In the nematode Caenorhabditis elegans, the unique photoreceptor protein Cel-LITE-1, its downstream G proteins, and cyclic GMP (cGMP)-dependent pathways are required for phototransduction. However, the mechanism of light-sensing in other nematodes remains unknown. To address this question, we used the nematode Pristionchus pacificus, which was established as a satellite model organism for comparison with C. elegans. Similar to C. elegans, illumination with short-wavelength light induces avoidance behavior in P. pacificus. Opsin, cryptochrome/photolyase, and lite-1 were not detected in the P. pacificus genome using orthology and domain prediction-based analyses. To identify the genes related to phototransduction in P. pacificus, we conducted forward genetic screening for light-avoidance behavior and isolated five light-unresponsive mutants. Whole-genome sequencing and genetic mapping revealed that the cGMP-dependent pathway and Ppa-grk-2, which encodes a G protein-coupled receptor kinase (GRK) are required for light avoidance. Although the cGMP-dependent pathway is conserved in C. elegans phototransduction, GRK is not necessary for light avoidance in C. elegans. This suggests similarities and differences in light-sensing mechanisms between the two species. Using a reverse genetic approach, we showed that gamma-aminobutyric acid (GABA) and glutamate were involved in light avoidance. Through reporter analysis and suppression of synapse transmission, we identified candidate photosensory neurons. These findings advance our understanding of the diversity of phototransduction in nematodes even in the absence of eyes.
Collapse
Affiliation(s)
- Kenichi Nakayama
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Hirokuni Hiraga
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Aya Manabe
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
16
|
Krishnamoorthi A, Salom D, Wu A, Palczewski K, Rentzepis PM. Ultrafast transient absorption spectra and kinetics of human blue cone visual pigment at room temperature. Proc Natl Acad Sci U S A 2024; 121:e2414037121. [PMID: 39356673 PMCID: PMC11474067 DOI: 10.1073/pnas.2414037121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/01/2024] [Indexed: 10/04/2024] Open
Abstract
The ultrafast photochemical reaction mechanism, transient spectra, and transition kinetics of the human blue cone visual pigment have been recorded at room temperature. Ultrafast time-resolved absorption spectroscopy revealed the progressive formation and decay of several metastable photo-intermediates, corresponding to the Batho to Meta-II photo-intermediates previously observed with bovine rhodopsin and human green cone opsin, on the picosecond to millisecond timescales following pulsed excitation. The experimental data reveal several interesting similarities and differences between the photobleaching sequences of bovine rhodopsin, human green cone opsin, and human blue cone opsin. While Meta-II formation kinetics are comparable between bovine rhodopsin and blue cone opsin, the transition kinetics of earlier photo-intermediates and qualitative characteristics of the Meta-I to Meta-II transition are more similar for blue cone opsin and green cone opsin. Additionally, the blue cone photo-intermediate spectra exhibit a high degree of overlap with uniquely small spectral shifts. The observed variation in Meta-II formation kinetics between rod and cone visual pigments is explained based on key structural differences.
Collapse
Affiliation(s)
- Arjun Krishnamoorthi
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX77843
| | - David Salom
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA92697
- Department of Ophthalmology, School of Medicine, University of California Irvine, Irvine, CA92697
| | - Arum Wu
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA92697
- Department of Ophthalmology, School of Medicine, University of California Irvine, Irvine, CA92697
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA92697
- Department of Ophthalmology, School of Medicine, University of California Irvine, Irvine, CA92697
- Department of Chemistry, University of California Irvine, Irvine, CA92697
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA92697
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA92697
| | - Peter M. Rentzepis
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX77843
| |
Collapse
|
17
|
Bandara S, von Lintig J. Vitamin A supply in the eye and establishment of the visual cycle. Curr Top Dev Biol 2024; 161:319-348. [PMID: 39870437 DOI: 10.1016/bs.ctdb.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Animals perceiving light through visual pigments have evolved pathways for absorbing, transporting, and metabolizing the precursors essential for synthesis of their retinylidene chromophores. Over the past decades, our understanding of this metabolism has grown significantly. Through genetic manipulation, researchers gained insights into the metabolic complexity of the pathways mediating the flow of chromophore precursors throughout the body, and their enrichment within the eyes. This exploration has identified transport proteins and metabolizing enzymes for these essential lipids and has revealed some of the fundamental regulatory mechanisms governing this process. What emerges is a complex framework at play that maintains ocular retinoid homeostasis and functions. This review summarizes the recent advancements and highlights future research directions that may deepen our understanding of this complex metabolism.
Collapse
Affiliation(s)
- Sepalika Bandara
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
18
|
Hu J, Jing MJ, Huang YT, Kou BH, Li Z, Xu YT, Yu SY, Zeng X, Jiang J, Lin P, Zhao WW. A Photoelectrochemical Retinomorphic Synapse. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405887. [PMID: 39054924 DOI: 10.1002/adma.202405887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Reproducing human visual functions with artificial devices is a long-standing goal of the neuromorphic domain. However, emulating the chemical language communication of the visual system in fluids remains a grand challenge. Here, a "multi-color" hydrogel-based photoelectrochemical retinomorphic synapse is reported with unique chemical-ionic-electrical signaling in an aqueous electrolyte that enables, e.g., color perception and biomolecule-mediated synaptic plasticity. Based on the specific enzyme-catalyzed chromogenic reactions, three multifunctional colored hydrogels are developed, which can not only synergize with the Bi2S3 photogate to recognize the primary colors but also synergize with a given polymeric channel to promote the long-term memory of the system. A synaptic array is further constructed for sensing color images and biomolecule-coded information communication. Taking advantage of the versatile biochemistry, the biochemical-driven reversible photoelectric response of the cone cell is further mimicked. This work introduces rich chemical designs into retinomorphic devices, providing a perspective for replicating the human visual system in fluids.
Collapse
Affiliation(s)
- Jin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- State Key Laboratory of Solidification Processing, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Ming-Jian Jing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yu-Ting Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Bo-Han Kou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Si-Yuan Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xierong Zeng
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jie Jiang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, Hunan, 410083, P. R. China
| | - Peng Lin
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
19
|
Gao C, Lai S, Zeng J, Peng Y, Li J. Toxicity Evaluation and Transcriptome Analysis of Yellowstripe Goby ( Mugilogobius chulae) in Response to 2,7-Dibromocarbazole Exposure during Early Development. TOXICS 2024; 12:609. [PMID: 39195711 PMCID: PMC11359896 DOI: 10.3390/toxics12080609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/07/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
Polyhalogenated carbazoles (PHCZs) are a class of nitrogen-containing heterocyclic compounds that are widely distributed throughout the marine environment and sediment. These compounds share structural and toxicity similarities with dioxins. However, our understanding of the toxicological effects of PHCZs on marine organisms and their underlying molecular mechanisms remains limited. In this study, we employed the marine model organism Mugilogobius chulae as the experimental subject and selected 2,7-dibromocarbazole (2,7-DBCZ), a compound known for its high toxicity and detection frequency, to conduct both an acute toxicity test and transcriptome analysis on M. chulae embryos. Our findings revealed that the 96 h median lethal concentration (LC50) of 2,7-DBCZ for M. chulae embryos was 174 μg/L, with a median effective concentration (EC50) resulting in pericardial edema deformity of 88.82 μg/L. Transcriptome analysis revealed significant impacts on various systems in M. chulae embryos following exposure to 2,7-DBCZ, including the sensory, cardiovascular, immune, and endocrine systems. Furthermore, this compound perturbed signaling pathways such as phototransduction, protein folding and processing, amino acid metabolism, lipid transport, and exogenous compound metabolism. Notably, transcript abundance of the CYP1A gene associated with the activation of the AhR signaling pathway, similar to dioxin-like compounds, was 18.18 times higher than that in the control group. This observation suggests that M. chulae embryos mount a stress response when exposed to PHCZs. In summary, this study contributes to our understanding of the toxicological implications of PHCZ in marine fish and offers a theoretical foundation for risk assessment and regulatory frameworks for PHCZs in the marine environment.
Collapse
Affiliation(s)
- Caixia Gao
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (C.G.); (S.L.); (J.Z.)
| | - Suqun Lai
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (C.G.); (S.L.); (J.Z.)
| | - Jin Zeng
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (C.G.); (S.L.); (J.Z.)
| | - Ying Peng
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China;
- Key Laboratory of Coastal Water Environmental Management and Water Ecological Restoration of Guangdong Higher Education Institutes, Beijing Normal University, Zhuhai 519087, China
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jianjun Li
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (C.G.); (S.L.); (J.Z.)
| |
Collapse
|
20
|
Tan L, Wu H, Wang X, Liu Z, Hu J, Zheng X. Regulation of opsin and circadian clock genes on mate-finding behavior of the day-flying red moth, Phauda flammans (Walker). Chronobiol Int 2024; 41:1142-1155. [PMID: 39046293 DOI: 10.1080/07420528.2024.2382315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
First, significantly higher mate-finding success was found under light condition than under constant darkness condition in Phauda flammans, a typical diurnal moth. We speculate that mate-finding behavior in P. flammans may be influenced by the light-sensitive opsin genes Long wavelength opsin (PfLW), Ultraviolet opsin (PfUV) and Blue opsin (PfBL), which are potentially regulated by both light-cues and endogenous circadian rhythms. Second, the circadian clock genes Period (PfPer), Timeless (PfTim), Cryptochrome1 (PfCry1), Cryptochrome2 (PfCRY2), Cryptochrome3 (PfCry-like), Clock (PfClk), Cycle (PfCyc), Vrille (PfVri), and Slimb (PfSli) were identified in P. flammans. Third, circadian rhythms in the relative expression levels of opsin and circadian clock genes were demonstrated via quantitative real-time PCR analysis, with peak expression coinciding with the mate-finding peak. Notably, the relative expression of PfLW in males P. flammans was significantly higher than that in females P. flammans at the mate-finding peaks Zeitgeber time (ZT) 8 and ZT 10 under light, while the expression of the opsin gene PfBL showed a similar pattern at ZT 10 under light. Additionally, the expression of the clock gene PfCry-like was significantly higher in males than in females at ZT 8 and ZT 10 under light, while PfPer, PfTim, PfClk and PfCyc exhibited similar male-biased expression patterns at ZT 10 under light. Conversely, PfCry1 and PfVri expression was significantly higher in females than in male at ZT 8 under light. In conclusion, sex differences were detected in the expression of opsin and circadian clock genes, which indicated that light-mediated regulation of these genes may contribute to the daytime mate-finding behavior of P. flammans.
Collapse
Affiliation(s)
- Liusu Tan
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Haipan Wu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xiaoyun Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Zuojun Liu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Jin Hu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xialin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
21
|
Jeynes-Smith C, Bode M, Araujo RP. Identifying and explaining resilience in ecological networks. Ecol Lett 2024; 27:e14484. [PMID: 39090988 DOI: 10.1111/ele.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024]
Abstract
Resilient ecological systems are more likely to persist and function in the Anthropocene. Current methods for estimating an ecosystem's resilience rely on accurately parameterized ecosystem models, which is a significant empirical challenge. In this paper, we adapt tools from biochemical kinetics to identify ecological networks that exhibit 'structural resilience', a strong form of resilience that is solely a property of the network structure and is independent of model parameters. We undertake an exhaustive search for structural resilience across all three-species ecological networks, under a generalized Lotka-Volterra modelling framework. Out of 20,000 possible network structures, approximately 2% display structural resilience. The properties of these networks provide important insights into the mechanisms that could promote resilience in ecosystems, provide new theoretical avenues for qualitative modelling approaches and provide a foundation for identifying robust forms of ecological resilience in large, realistic ecological networks.
Collapse
Affiliation(s)
- Cailan Jeynes-Smith
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Michael Bode
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Securing Antartica's Environmental Future, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Robyn P Araujo
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Yan C, Wu Z, Liu Y, Sun Y, Zhang J. Comparative transcriptomic analysis primarily explores the molecular mechanism of compound eye formation in Neocaridina denticulata sinensis. BMC Genomics 2024; 25:570. [PMID: 38844864 PMCID: PMC11155044 DOI: 10.1186/s12864-024-10453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024] Open
Abstract
Compound eyes formation in decapod crustaceans occurs after the nauplius stage. However, the key genes and regulatory mechanisms of compound eye development during crustacean embryonic development have not yet been clarified. In this study, RNA-seq was used to investigate the gene expression profiles of Neocaridina denticulata sinensis from nauplius to zoea stage. Based on RNA-seq data analysis, the phototransduction and insect hormone biosynthesis pathways were enriched, and molting-related neuropeptides were highly expressed. There was strong cell proliferation in the embryo prior to compound eye development. The formation of the visual system and the hormonal regulation of hatching were the dominant biological events during compound eye development. The functional analysis of DEGs across all four developmental stages showed that cuticle formation, muscle growth and the establishment of immune system occurred from nauplius to zoea stage. Key genes related to eye development were discovered, including those involved in the determination and differentiation of the eye field, eye-color formation, and visual signal transduction. In conclusion, the results increase the understanding of the molecular mechanism of eye formation in crustacean embryonic stage.
Collapse
Affiliation(s)
- Congcong Yan
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Zixuan Wu
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| | - Yujie Liu
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| | - Yuying Sun
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China.
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Jiquan Zhang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China.
| |
Collapse
|
23
|
Rao F, Xue T. Circadian-independent light regulation of mammalian metabolism. Nat Metab 2024; 6:1000-1007. [PMID: 38831000 DOI: 10.1038/s42255-024-01051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/16/2024] [Indexed: 06/05/2024]
Abstract
The daily light-dark cycle is a key zeitgeber (time cue) for entraining an organism's biological clock, whereby light sensing by retinal photoreceptors, particularly intrinsically photosensitive retinal ganglion cells, stimulates the suprachiasmatic nucleus of the hypothalamus, a central pacemaker that in turn orchestrates the rhythm of peripheral metabolic activities. Non-rhythmic effects of light on metabolism have also been long known, and their transduction mechanisms are only beginning to unfold. Here, we summarize emerging evidence that, in mammals, light exposure or deprivation profoundly affects glucose homeostasis, thermogenesis and other metabolic activities in a clock-independent manner. Such light regulation could involve melanopsin-based, intrinsically photosensitive retinal ganglion cell-initiated brain circuits via the suprachiasmatic nucleus of the hypothalamus and other nuclei, or direct stimulation of opsins expressed in the hypothalamus, adipose tissue, blood vessels and skin to regulate sympathetic tone, lipolysis, glucose uptake, mitochondrial activation, thermogenesis, food intake, blood pressure and melanogenesis. These photic signalling events may coordinate with circadian-based mechanisms to maintain metabolic homeostasis, with dysregulation of this system underlying metabolic diseases caused by aberrant light exposure, such as environmental night light and shift work.
Collapse
Affiliation(s)
- Feng Rao
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Tian Xue
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
24
|
Andreazzoli M, Longoni B, Angeloni D, Demontis GC. Retinoid Synthesis Regulation by Retinal Cells in Health and Disease. Cells 2024; 13:871. [PMID: 38786093 PMCID: PMC11120330 DOI: 10.3390/cells13100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Vision starts in retinal photoreceptors when specialized proteins (opsins) sense photons via their covalently bonded vitamin A derivative 11cis retinaldehyde (11cis-RAL). The reaction of non-enzymatic aldehydes with amino groups lacks specificity, and the reaction products may trigger cell damage. However, the reduced synthesis of 11cis-RAL results in photoreceptor demise and suggests the need for careful control over 11cis-RAL handling by retinal cells. This perspective focuses on retinoid(s) synthesis, their control in the adult retina, and their role during retina development. It also explores the potential importance of 9cis vitamin A derivatives in regulating retinoid synthesis and their impact on photoreceptor development and survival. Additionally, recent advancements suggesting the pivotal nature of retinoid synthesis regulation for cone cell viability are discussed.
Collapse
Affiliation(s)
| | - Biancamaria Longoni
- Department of Translational Medicine and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Debora Angeloni
- The Institute of Biorobotics, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | | |
Collapse
|
25
|
Kumar M, Has C, Lam-Kamath K, Ayciriex S, Dewett D, Bashir M, Poupault C, Schuhmann K, Thomas H, Knittelfelder O, Raghuraman BK, Ahrends R, Rister J, Shevchenko A. Eye proteome of Drosophila melanogaster. Proteomics 2024; 24:e2300330. [PMID: 37963819 PMCID: PMC11258641 DOI: 10.1002/pmic.202300330] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023]
Abstract
Drosophila melanogaster is a popular model organism to elucidate the molecular mechanisms that underlie the structure and function of the eye as well as the causes of retinopathies, aging, light-induced damage, or dietary deficiencies. Large-scale screens have isolated genes whose mutation causes morphological and functional ocular defects, which led to the discovery of key components of the phototransduction cascade. However, the proteome of the Drosophila eye is poorly characterized. Here, we used GeLC-MS/MS to quantify 3516 proteins, including the absolute (molar) quantities of 43 proteins in the eye of adult male Drosophila reared on standard laboratory food. This work provides a generic and expandable resource for further genetic, pharmacological, and dietary studies.
Collapse
Affiliation(s)
- Mukesh Kumar
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Canan Has
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Khanh Lam-Kamath
- Department of Biology, University of Massachusetts Boston, Integrated Sciences Complex, 100 Morrissey Boulevard, Boston, MA 02125, USA
| | - Sophie Ayciriex
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Deepshe Dewett
- Department of Biology, University of Massachusetts Boston, Integrated Sciences Complex, 100 Morrissey Boulevard, Boston, MA 02125, USA
| | - Mhamed Bashir
- Department of Biology, University of Massachusetts Boston, Integrated Sciences Complex, 100 Morrissey Boulevard, Boston, MA 02125, USA
| | - Clara Poupault
- Department of Biology, University of Massachusetts Boston, Integrated Sciences Complex, 100 Morrissey Boulevard, Boston, MA 02125, USA
| | - Kai Schuhmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Henrik Thomas
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Oskar Knittelfelder
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Bharath Kumar Raghuraman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Robert Ahrends
- Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Jens Rister
- Department of Biology, University of Massachusetts Boston, Integrated Sciences Complex, 100 Morrissey Boulevard, Boston, MA 02125, USA
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| |
Collapse
|
26
|
Tang YH, Bi SY, Wang XD, Ji SX, Huang C, Zhang GF, Guo JY, Yang NW, Ma DF, Wan FH, Lü ZC, Liu WX. Opsin mutants alter host plant selection by color vision in the nocturnal invasive pest Tuta absoluta. Int J Biol Macromol 2024; 265:130636. [PMID: 38467214 DOI: 10.1016/j.ijbiomac.2024.130636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 03/13/2024]
Abstract
In insects, vision is crucial in finding host plants, but its role in nocturnal insects is largely unknown. Vision involves responses to specific spectra of photon wavelengths and opsins plays an important role in this process. Long-wavelength sensitive opsin (LW opsin) and blue-sensitive opsin (BL opsin) are main visual opsin proteins and play important in behavior regulation.We used CRISPR/Cas9 technology to mutate the long-wavelength-sensitive and blue wavelength-sensitive genes and explored the role of vision in the nocturnal invasive pest Tuta absoluta. Light wave experiments revealed that LW2(-/-) and BL(-/-) mutants showed abnormal wavelength tropism. Both LW2 and BL mutations affected the preference of T. absoluta for the green environment. Mutations in LW2 and BL are necessary to inhibit visual attraction. The elimination of LW2 and BL affected the preference of leaf moths for green plants, and mutations in both induced a preference in moths for white plants. Behavioral changes resulting from LW2(-/-) and BL(-/-) mutants were not affected by sense of smell, further supporting the regulatory role of vision in insect behavior. To the best of our knowledge, this is the first study to reveal that vision, not smell, plays an important role in the host-seeking behavior of nocturnal insects at night, of which LW2 and BL opsins are key regulatory factors. These study findings will drive the development of the "vision-ecology" theory.
Collapse
Affiliation(s)
- Yan-Hong Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Si-Yan Bi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiao-Di Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shun-Xia Ji
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Cong Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Gui-Fen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jian-Yang Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nian-Wan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Dong-Fang Ma
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Fang-Hao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhi-Chuang Lü
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Wan-Xue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
27
|
Birch S, McGee L, Provencher C, DeMio C, Plachetzki D. Phototactic preference and its genetic basis in the planulae of the colonial Hydrozoan Hydractinia symbiolongicarpus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.585045. [PMID: 38617216 PMCID: PMC11014542 DOI: 10.1101/2024.03.28.585045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Background Marine organisms with sessile adults commonly possess motile larval stages that make settlement decisions based on integrating environmental sensory cues. Phototaxis, the movement toward or away from light, is a common behavioral characteristic of aquatic and marine metazoan larvae, and of algae, protists, and fungi. In cnidarians, behavioral genomic investigations of motile planulae larvae have been conducted in anthozoans (corals and sea anemones) and scyphozoans (true jellyfish), but such studies are presently lacking in hydrozoans. Here, we examined the behavioral genomics of phototaxis in planulae of the hydrozoan Hydractinia symbiolongicarpus. Results A behavioral phototaxis study of day 3 planulae indicated preferential phototaxis to green (523 nm) and blue (470 nm) wavelengths of light, but not red (625 nm) wavelengths. A developmental transcriptome study where planula larvae were collected from four developmental time points for RNA-seq revealed that many genes critical to the physiology and development of ciliary photosensory systems are dynamically expressed in planula development and correspond to the expression of phototactic behavior. Microscopical investigations using immunohistochemistry and in situ hybridization demonstrated that several transcripts with predicted function in photoreceptors, including cnidops class opsin, CNG ion channel, and CRX-like transcription factor, localize to ciliated bipolar sensory neurons of the aboral sensory neural plexus, which is associated with the direction of phototaxis and the site of settlement. Conclusions The phototactic preference displayed by planulae is consistent with the shallow sandy marine habitats they experience in nature. Our genomic investigations add further evidence of similarities between cnidops-mediated photoreceptors of hydrozoans and other cnidarians and ciliary photoreceptors as found in the eyes of humans and other bilaterians, suggesting aspects of their shared evolutionary history.
Collapse
Affiliation(s)
- Sydney Birch
- Department of Molecular, Cellular, and Biomedical Sciences; University of New Hampshire; Durham, NH, 03824; USA
- Department of Biological Sciences; University of North Carolina Charlotte; Charlotte, NC, 28223; USA
| | - Lindy McGee
- Department of Molecular, Cellular, and Biomedical Sciences; University of New Hampshire; Durham, NH, 03824; USA
| | - Curtis Provencher
- Department of Molecular, Cellular, and Biomedical Sciences; University of New Hampshire; Durham, NH, 03824; USA
| | - Christine DeMio
- Department of Molecular, Cellular, and Biomedical Sciences; University of New Hampshire; Durham, NH, 03824; USA
| | - David Plachetzki
- Department of Molecular, Cellular, and Biomedical Sciences; University of New Hampshire; Durham, NH, 03824; USA
| |
Collapse
|
28
|
Kong F, Ran Z, Zhang M, Liao K, Chen D, Yan X, Xu J. Eyeless razor clam Sinonovacula constricta discriminates light spectra through opsins to guide Ca 2+ and cAMP signaling pathways. J Biol Chem 2024; 300:105527. [PMID: 38043801 PMCID: PMC10788561 DOI: 10.1016/j.jbc.2023.105527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023] Open
Abstract
Phototransduction is based on opsins that drive distinct types of Gα cascades. Although nonvisual photosensitivity has long been known in marine bivalves, the underlying molecular basis and phototransduction mechanism are poorly understood. Here, we introduced the eyeless razor clam Sinonovacula constricta as a model to clarify this issue. First, we showed that S. constricta was highly diverse in opsin family members, with a significant expansion in xenopsins. Second, the expression of putative S. constricta opsins was highly temporal-spatio specific, indicating their potential roles in S. constricta development and its peripheral photosensitivity. Third, by cloning four S. constricta opsins with relatively higher expression (Sc_opsin1, 5, 7, and 12), we found that they exhibited different expression levels in response to different light environments. Moreover, we demonstrated that these opsins (excluding Sc_opsin7) couple with Gαq and Gαi cascades to mediate the light-dependent Ca2+ (Sc_opsin1 and 5) and cAMP (Sc_opsin12) signaling pathways. The results indicated that Sc_opsin1 and 5 belonged to Gq-opsins, Sc_opsin12 belonged to Gi-opsins, while Sc_opsin7 might act as a photo-isomerase. Furthermore, we found that the phototransduction function of S. constricta Gq-opsins was dependent on the lysine at the seventh transmembrane domain, and greatly influenced by the external light spectra in a complementary way. Thus, a synergistic photosensitive system mediated by opsins might exist in S. constricta to rapidly respond to the transient or subtle changes of the external light environment. Collectively, our findings provide valuable insights into the evolution of opsins in marine bivalves and their potential functions in nonvisual photosensitivity.
Collapse
Affiliation(s)
- Fei Kong
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, China
| | - Zhaoshou Ran
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, China.
| | - Mengqi Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, China
| | - Kai Liao
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, China
| | - Deshui Chen
- Fujian Dalai Seedling Technology Co, LTD, Luoyuan, Fujian, China
| | - Xiaojun Yan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, China
| | - Jilin Xu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, China; Fujian Dalai Seedling Technology Co, LTD, Luoyuan, Fujian, China.
| |
Collapse
|
29
|
Santillo S, De Petrocellis L, Musio C. Diurnal and circadian regulation of opsin-like transcripts in the eyeless cnidarian Hydra. Biomol Concepts 2024; 15:bmc-2022-0044. [PMID: 38502542 DOI: 10.1515/bmc-2022-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/28/2024] [Indexed: 03/21/2024] Open
Abstract
Opsins play a key role in the ability to sense light both in image-forming vision and in non-visual photoreception (NVP). These modalities, in most animal phyla, share the photoreceptor protein: an opsin-based protein binding a light-sensitive chromophore by a lysine (Lys) residue. So far, visual and non-visual opsins have been discovered throughout the Metazoa phyla, including the photoresponsive Hydra, an eyeless cnidarian considered the evolutionary sister species to bilaterians. To verify whether light influences and modulates opsin gene expression in Hydra, we utilized four expression sequence tags, similar to two classic opsins (SW rhodopsin and SW blue-sensitive opsin) and two non-visual opsins (melanopsin and peropsin), in investigating the expression patterns during both diurnal and circadian time, by means of a quantitative RT-PCR. The expression levels of all four genes fluctuated along the light hours of diurnal cycle with respect to the darkness one and, in constant dark condition of the circadian cycle, they increased. The monophasic behavior in the L12:D12 cycle turned into a triphasic expression profile during the continuous darkness condition. Consequently, while the diurnal opsin-like expression revealed a close dependence on light hours, the highest transcript levels were found in darkness, leading us to novel hypothesis that in Hydra, an "internal" biological rhythm autonomously supplies the opsins expression during the circadian time. In conclusion, in Hydra, both diurnal and circadian rhythms apparently regulate the expression of the so-called visual and non-visual opsins, as already demonstrated in higher invertebrate and vertebrate species. Our data confirm that Hydra is a suitable model for studying ancestral precursor of both visual and NVP, providing useful hints on the evolution of visual and photosensory systems.
Collapse
Affiliation(s)
- Silvia Santillo
- Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello" (ISASI), National Research Council (CNR), Via Campi Flegrei 34, 80078 Pozzuoli (Naples), Italy
| | - Luciano De Petrocellis
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), 80078 Pozzuoli (Naples), Italy
| | - Carlo Musio
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR), Via Sommarive 18, 38123 Trento, Italy
| |
Collapse
|
30
|
Li G, Chen L, Jiang Z, Yau KW. Coexistence within one cell of microvillous and ciliary phototransductions across M1- through M6-IpRGCs. Proc Natl Acad Sci U S A 2023; 120:e2315282120. [PMID: 38109525 PMCID: PMC10756192 DOI: 10.1073/pnas.2315282120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) serve as primary photoceptors by expressing the photopigment, melanopsin, and also as retinal relay neurons for rod and cone signals en route to the brain, in both cases for the purpose of non-image vision as well as aspects of image vision. So far, six subtypes of ipRGCs (M1 through M6) have been characterized. Regarding their phototransduction mechanisms, we have previously found that, unconventionally, rhabdomeric (microvillous) and ciliary signaling motifs co-exist within a given M1-, M2-, and M4-ipRGC, with the first mechanism involving PLCβ4 and TRPC6,7 channels and the second involving cAMP and HCN channels. We have now examined M3-, M5-, and M6-cells and found that each cell likewise uses both signaling pathways for phototransduction, despite differences in the percentage representation by each pathway in a given ipRGC subtype for bright-flash responses (and saturated except for M6-cells). Generally, M3- and M5-cells show responses quite similar in kinetics to M2-responses, and M6-cell responses resemble broadly those of M1-cells although much lower in absolute sensitivity and amplitude. Therefore, similar to rod and cone subtypes in image vision, ipRGC subtypes possess the same phototransduction mechanism(s) even though they do not show microvilli or cilia morphologically.
Collapse
Affiliation(s)
- Guang Li
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Lujing Chen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Neuroscience Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Zheng Jiang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - King-Wai Yau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| |
Collapse
|
31
|
Hu Z, Yang J. Structural basis of properties, mechanisms, and channelopathy of cyclic nucleotide-gated channels. Channels (Austin) 2023; 17:2273165. [PMID: 37905307 PMCID: PMC10761061 DOI: 10.1080/19336950.2023.2273165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/07/2023] [Indexed: 11/02/2023] Open
Abstract
Recent years have seen an outpouring of atomic or near atomic resolution structures of cyclic nucleotide-gated (CNG) channels, captured in closed, transition, pre-open, partially open, and fully open states. These structures provide unprecedented molecular insights into the activation, assembly, architecture, regulation, and channelopathy of CNG channels, as well as mechanistic explanations for CNG channel biophysical and pharmacological properties. This article summarizes recent advances in CNG channel structural biology, describes key structural features and elements, and illuminates a detailed conformational landscape of activation by cyclic nucleotides. The review also correlates structures with findings and properties delineated in functional studies, including nonselective monovalent cation selectivity, Ca2+ permeation and block, block by L-cis-diltiazem, location of the activation gate, lack of voltage-dependent gating, and modulation by lipids and calmodulin. A perspective on future research is also offered.
Collapse
Affiliation(s)
- Zhengshan Hu
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
32
|
Cheng J, Keuthan CJ, Esumi N. The many faces of SIRT6 in the retina and retinal pigment epithelium. Front Cell Dev Biol 2023; 11:1244765. [PMID: 38016059 PMCID: PMC10646311 DOI: 10.3389/fcell.2023.1244765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/18/2023] [Indexed: 11/30/2023] Open
Abstract
Sirtuin 6 (SIRT6) is a member of the mammalian sirtuin family of NAD+-dependent protein deacylases, homologues of the yeast silent information regulator 2 (Sir2). SIRT6 has remarkably diverse functions and plays a key role in a variety of biological processes for maintaining cellular and organismal homeostasis. In this review, our primary aim is to summarize recent progress in understanding SIRT6's functions in the retina and retinal pigment epithelium (RPE), with the hope of further drawing interests in SIRT6 to increase efforts in exploring the therapeutic potential of this unique protein in the vision field. Before describing SIRT6's role in the eye, we first discuss SIRT6's general functions in a wide range of biological contexts. SIRT6 plays an important role in gene silencing, metabolism, DNA repair, antioxidant defense, inflammation, aging and longevity, early development, and stress response. In addition, recent studies have revealed SIRT6's role in macrophage polarization and mitochondrial homeostasis. Despite being initially understudied in the context of the eye, recent efforts have begun to elucidate the critical functions of SIRT6 in the retina and RPE. In the retina, SIRT6 is essential for adult retinal function, regulates energy metabolism by suppressing glycolysis that affects photoreceptor cell survival, protects retinal ganglion cells from oxidative stress, and plays a role in Müller cells during early neurodegenerative events in diabetic retinopathy. In the RPE, SIRT6 activates autophagy in culture and protects against oxidative stress in mice. Taken together, this review demonstrates that better understanding of SIRT6's functions and their mechanisms, both in and out of the context of the eye, holds great promise for the development of SIRT6-targeted strategies for prevention and treatment of blinding eye diseases.
Collapse
Affiliation(s)
| | | | - Noriko Esumi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
33
|
Xiao N, Xu S, Li ZK, Tang M, Mao R, Yang T, Ma SX, Wang PH, Li MT, Sunilkumar A, Rouyer F, Cao LH, Luo DG. A single photoreceptor splits perception and entrainment by cotransmission. Nature 2023; 623:562-570. [PMID: 37880372 PMCID: PMC10651484 DOI: 10.1038/s41586-023-06681-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 09/26/2023] [Indexed: 10/27/2023]
Abstract
Vision enables both image-forming perception, driven by a contrast-based pathway, and unconscious non-image-forming circadian photoentrainment, driven by an irradiance-based pathway1,2. Although two distinct photoreceptor populations are specialized for each visual task3-6, image-forming photoreceptors can additionally contribute to photoentrainment of the circadian clock in different species7-15. However, it is unknown how the image-forming photoreceptor pathway can functionally implement the segregation of irradiance signals required for circadian photoentrainment from contrast signals required for image perception. Here we report that the Drosophila R8 photoreceptor separates image-forming and irradiance signals by co-transmitting two neurotransmitters, histamine and acetylcholine. This segregation is further established postsynaptically by histamine-receptor-expressing unicolumnar retinotopic neurons and acetylcholine-receptor-expressing multicolumnar integration neurons. The acetylcholine transmission from R8 photoreceptors is sustained by an autocrine negative feedback of the cotransmitted histamine during the light phase of light-dark cycles. At the behavioural level, elimination of histamine and acetylcholine transmission impairs R8-driven motion detection and circadian photoentrainment, respectively. Thus, a single type of photoreceptor can achieve the dichotomy of visual perception and circadian photoentrainment as early as the first visual synapses, revealing a simple yet robust mechanism to segregate and translate distinct sensory features into different animal behaviours.
Collapse
Affiliation(s)
- Na Xiao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shuang Xu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Ze-Kai Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Min Tang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Renbo Mao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Tian Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Si-Xing Ma
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Peng-Hao Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Meng-Tong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY, USA
| | - Ajay Sunilkumar
- Institut des Neurosciences Paris-Saclay, Université Paris-Sud, Université Paris-Saclay, CNRS, Gif-sur-Yvette, France
| | - François Rouyer
- Institut des Neurosciences Paris-Saclay, Université Paris-Sud, Université Paris-Saclay, CNRS, Gif-sur-Yvette, France
| | - Li-Hui Cao
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Dong-Gen Luo
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- School of Life Sciences, Peking University, Beijing, China.
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
34
|
Li H, Meng X, Zhang Y, Guo M, Li L. Active Components of Leontopodium alpinum Callus Culture Extract for Blue Light Damage in Human Foreskin Fibroblasts. Molecules 2023; 28:7319. [PMID: 37959738 PMCID: PMC10647756 DOI: 10.3390/molecules28217319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Leontopodium alpinum is a source of raw material for food additives and skin health. The purpose of this study was to investigate the application of Leontopodium alpinum callus culture extract (LACCE) to prevent blue light damage to the skin. We screened and identified the blue light-damage-protecting activities and mechanisms of ten components of LACCE, including chlorogenic acid (A), isoquercitrin (B), isochlorogenic acid A (C), cynaroside (D), syringin (E), isochlorogenic acid (F), cynarin (G), rutin (H), leontopodic acid A (I), and leontopodic acid B (J), using a novel blue light-induced human foreskin fibroblast (HFF-1) cell injury model. The study examined the cytotoxicity of ten ingredients using the cell counting kit-8 (CCK-8) assay, and selecting concentrations of 5, 10, and 20 μM for experiments with a cell viability above 65%. We explored the effects and mechanisms of action of these LACCE components in response to blue light injury using Western blotting and an enzyme-linked immunosorbent assay. We also measured ROS secretion and Ca2+ influx. Our study revealed that leontopodic acid A effectively boosted COI-1 expression, hindered MMP-1 expression, curbed ROS and Ca2+ endocytosis, and reduced OPN3 expression. These results provide theoretical support for the development of new raw materials for the pharmaceutical and skincare industries.
Collapse
Affiliation(s)
| | | | | | | | - Li Li
- College of Chemistry and Materials Engineering, Beijing Technology & Business University, Beijing 100048, China; (H.L.); (X.M.); (Y.Z.); (M.G.)
| |
Collapse
|
35
|
Wong NK, Yip SP, Huang CL. Establishing Functional Retina in a Dish: Progress and Promises of Induced Pluripotent Stem Cell-Based Retinal Neuron Differentiation. Int J Mol Sci 2023; 24:13652. [PMID: 37686457 PMCID: PMC10487913 DOI: 10.3390/ijms241713652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The human eye plays a critical role in vision perception, but various retinal degenerative diseases such as retinitis pigmentosa (RP), glaucoma, and age-related macular degeneration (AMD) can lead to vision loss or blindness. Although progress has been made in understanding retinal development and in clinical research, current treatments remain inadequate for curing or reversing these degenerative conditions. Animal models have limited relevance to humans, and obtaining human eye tissue samples is challenging due to ethical and legal considerations. Consequently, researchers have turned to stem cell-based approaches, specifically induced pluripotent stem cells (iPSCs), to generate distinct retinal cell populations and develop cell replacement therapies. iPSCs offer a novel platform for studying the key stages of human retinogenesis and disease-specific mechanisms. Stem cell technology has facilitated the production of diverse retinal cell types, including retinal ganglion cells (RGCs) and photoreceptors, and the development of retinal organoids has emerged as a valuable in vitro tool for investigating retinal neuron differentiation and modeling retinal diseases. This review focuses on the protocols, culture conditions, and techniques employed in differentiating retinal neurons from iPSCs. Furthermore, it emphasizes the significance of molecular and functional validation of the differentiated cells.
Collapse
Affiliation(s)
- Nonthaphat Kent Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China;
- Centre for Eye and Vision Research (CEVR), Hong Kong Science Park, Hong Kong, China
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China;
- Centre for Eye and Vision Research (CEVR), Hong Kong Science Park, Hong Kong, China
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China;
- Centre for Eye and Vision Research (CEVR), Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
36
|
Hong JD, Palczewski K. A short story on how chromophore is hydrolyzed from rhodopsin for recycling. Bioessays 2023; 45:e2300068. [PMID: 37454357 PMCID: PMC10614701 DOI: 10.1002/bies.202300068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023]
Abstract
The photocycle of visual opsins is essential to maintain the light sensitivity of the retina. The early physical observations of the rhodopsin photocycle by Böll and Kühne in the 1870s inspired over a century's worth of investigations on rhodopsin biochemistry. A single photon isomerizes the Schiff-base linked 11-cis-retinylidene chromophore of rhodopsin, converting it to the all-trans agonist to elicit phototransduction through photoactivated rhodopsin (Rho*). Schiff base hydrolysis of the agonist is a key step in the photocycle, not only diminishing ongoing phototransduction but also allowing for entry and binding of fresh 11-cis chromophore to regenerate the rhodopsin pigment and maintain light sensitivity. Many challenges have been encountered in measuring the rate of this hydrolysis, but recent advancements have facilitated studies of the hydrolysis within the native membrane environment of rhodopsin. These techniques can now be applied to study hydrolysis of agonist in other opsin proteins that mediate phototransduction or chromophore turnover. In this review, we discuss the progress that has been made in characterizing the rhodopsin photocycle and the journey to characterize the hydrolysis of its all-trans-retinylidene agonist.
Collapse
Affiliation(s)
- John D. Hong
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
37
|
Krishnamoorthi A, Khosh Abady K, Dhankhar D, Rentzepis PM. Ultrafast Transient Absorption Spectra and Kinetics of Rod and Cone Visual Pigments. Molecules 2023; 28:5829. [PMID: 37570798 PMCID: PMC10421382 DOI: 10.3390/molecules28155829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Rods and cones are the photoreceptor cells containing the visual pigment proteins that initiate visual phototransduction following the absorption of a photon. Photon absorption induces the photochemical transformation of a visual pigment, which results in the sequential formation of distinct photo-intermediate species on the femtosecond to millisecond timescales, whereupon a visual electrical signal is generated and transmitted to the brain. Time-resolved spectroscopic studies of the rod and cone photo-intermediaries enable the detailed understanding of initial events in vision, namely the key differences that underlie the functionally distinct scotopic (rod) and photopic (cone) visual systems. In this paper, we review our recent ultrafast (picoseconds to milliseconds) transient absorption studies of rod and cone visual pigments with a detailed comparison of the transient molecular spectra and kinetics of their respective photo-intermediaries. Key results include the characterization of the porphyropsin (carp fish rhodopsin) and human green-cone opsin photobleaching sequences, which show significant spectral and kinetic differences when compared against that of bovine rhodopsin. These results altogether reveal a rather strong interplay between the visual pigment structure and its corresponding photobleaching sequence, and relevant outstanding questions that will be further investigated through a forthcoming study of the human blue-cone visual pigment are discussed.
Collapse
Affiliation(s)
- Arjun Krishnamoorthi
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Keyvan Khosh Abady
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Dinesh Dhankhar
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
- Thermo Fisher Scientific, Hillsboro, OR 97124, USA
| | - Peter M. Rentzepis
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
38
|
Lu Y, Tang X, Zhao Y, Jiang T, Zhou J, Wang X, Huang B, Liu L, Deng H, Huang Y, Shi Y. Analysis of electromagnetic response of cells and lipid membranes using a model-free method. Bioelectrochemistry 2023; 152:108444. [PMID: 37146345 DOI: 10.1016/j.bioelechem.2023.108444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 05/07/2023]
Abstract
Electromagnetic radiation (EMR) is omnipresent on earth and may interact with the biological systems in diverse manners. But the scope and nature of such interactions remain poorly understood. In this study, we have measured the permittivity of cells and lipid membranes over the EMR frequency range of 20 Hz to 4.35 × 1010 Hz. To identify EMR frequencies that display physically intuitive permittivity features, we have developed a model-free method that relies on a potassium chloride reference solution of direct-current (DC) conductivity equal to that of the target sample. The dielectric constant, which reflects the capacity to store energy, displays a characteristic peak at 105-106 Hz. The dielectric loss factor, which represents EMR absorption, is markedly enhanced at 107-109 Hz. The fine characteristic features are influenced by the size and composition of these membraned structures. Mechanical disruption results in abrogation of these characteristic features. Enhanced energy storage at 105-106 Hz and energy absorption at 107-109 Hz may affect certain membrane activity relevant to cellular function.
Collapse
Affiliation(s)
- Yingxian Lu
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Xiaping Tang
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yanyu Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Tianyu Jiang
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiayao Zhou
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaofei Wang
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bing Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Lingyu Liu
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hu Deng
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yujing Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
39
|
Cherkashin AP, Rogachevskaja OA, Khokhlov AA, Kabanova NV, Bystrova MF, Kolesnikov SS. Contribution of TRPC3-mediated Ca 2+ entry to taste transduction. Pflugers Arch 2023:10.1007/s00424-023-02834-8. [PMID: 37369785 DOI: 10.1007/s00424-023-02834-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/19/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
The current concept of taste transduction implicates the TASR/PLCβ2/IP3R3/TRPM5 axis in mediating chemo-electrical coupling in taste cells of the type II. While generation of IP3 has been verified as an obligatory step, DAG appears to be a byproduct of PIP2 cleavage by PLCβ2. Here, we provide evidence that DAG-signaling could play a significant and not yet recognized role in taste transduction. In particular, we found that DAG-gated channels are functional in type II cells but not in type I and type III cells. The DAG-gated current presumably constitutes a fraction of the generator current triggered by taste stimulation in type II cells. Bitter stimuli and DAG analogs produced Ca2+ transients in type II cells, which were greatly decreased at low bath Ca2+, indicating their dependence on Ca2+ influx. Among DAG-gated channels, transcripts solely for TRPC3 were detected in the taste tissue, thus implicating this channel in mediating DAG-regulated Ca2+ entry. Release of the afferent neurotransmitter ATP from CV papillae was monitored online by using the luciferin/luciferase method and Ussing-like chamber. It was shown that ATP secretion initiated by bitter stimuli and DAG analogs strongly depended on mucosal Ca2+. Based on the overall findings, we speculate that in taste transduction, IP3-driven Ca2+ release is transient and mainly responsible for rapid activation of Ca2+-gated TRPM5 channels, thus forming the initial phase of receptor potential. DAG-regulated Ca2+ entry through apically situated TRPC3 channels extends the primary Ca2+ signal and preserves TRPM5 activity, providing a needful prolongation of the receptor potential.
Collapse
Affiliation(s)
- Alexander P Cherkashin
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 3 Institutskaya Street, Pushchino, Moscow Region, 142290, Russia
| | - Olga A Rogachevskaja
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 3 Institutskaya Street, Pushchino, Moscow Region, 142290, Russia
| | - Alexander A Khokhlov
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 3 Institutskaya Street, Pushchino, Moscow Region, 142290, Russia
| | - Natalia V Kabanova
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 3 Institutskaya Street, Pushchino, Moscow Region, 142290, Russia
| | - Marina F Bystrova
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 3 Institutskaya Street, Pushchino, Moscow Region, 142290, Russia
| | - Stanislav S Kolesnikov
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 3 Institutskaya Street, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
40
|
Moon J, Zhou G, Jankowsky E, von Lintig J. Vitamin A deficiency compromises the barrier function of the retinal pigment epithelium. PNAS NEXUS 2023; 2:pgad167. [PMID: 37275262 PMCID: PMC10235913 DOI: 10.1093/pnasnexus/pgad167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/01/2023] [Indexed: 06/07/2023]
Abstract
A major cause for childhood blindness worldwide is attributed to nutritional vitamin A deficiency. Surprisingly, the molecular basis of the ensuing retinal degeneration has not been well defined. Abundant expression of the retinoid transporter STRA6 in the retinal pigment epithelium (RPE) and homeostatic blood levels of retinol-binding protein delay vitamin A deprivation of the mouse eyes. Hence, genetic dissection of STRA6 makes mice susceptible to nutritional manipulation of ocular retinoid status. We performed RNA-seq analyses and complemented the data with tests of visual physiology, ocular morphology, and retinoid biochemistry to compare eyes with different vitamin A status. Mild ocular vitamin A deficiency decreased transcripts of photoreceptor transduction pathway-related genes and increased transcripts of oxidative stress pathways. The response was associated with impaired visual sensitivity and an accumulation of fluorescent debris in the retina. Severe vitamin A deficiency did not only impair visual perception but also decreased transcripts of genes encoding cell adhesion and cellular junction proteins. This response altered cell morphology, resulted in significant changes in transport pathways of small molecules, and compromised the barrier function of the RPE. Together, our analyses characterize the molecular events underlying nutritional blindness in a novel mouse model and indicate that breakdown of the outer blood-retinal barrier contributes to retinal degeneration and photoreceptor cell death in severe vitamin A deficiency.
Collapse
Affiliation(s)
- Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gao Zhou
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
41
|
Harris N, Bates SG, Zhuang Z, Bernstein M, Stonemetz JM, Hill TJ, Yu YV, Calarco JA, Sengupta P. Molecular encoding of stimulus features in a single sensory neuron type enables neuronal and behavioral plasticity. Curr Biol 2023; 33:1487-1501.e7. [PMID: 36977417 PMCID: PMC10133190 DOI: 10.1016/j.cub.2023.02.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
Neurons modify their transcriptomes in response to an animal's experience. How specific experiences are transduced to modulate gene expression and precisely tune neuronal functions are not fully defined. Here, we describe the molecular profile of a thermosensory neuron pair in C. elegans experiencing different temperature stimuli. We find that distinct salient features of the temperature stimulus, including its duration, magnitude of change, and absolute value, are encoded in the gene expression program in this single neuron type, and we identify a novel transmembrane protein and a transcription factor whose specific transcriptional dynamics are essential to drive neuronal, behavioral, and developmental plasticity. Expression changes are driven by broadly expressed activity-dependent transcription factors and corresponding cis-regulatory elements that nevertheless direct neuron- and stimulus-specific gene expression programs. Our results indicate that coupling of defined stimulus characteristics to the gene regulatory logic in individual specialized neuron types can customize neuronal properties to drive precise behavioral adaptation.
Collapse
Affiliation(s)
- Nathan Harris
- Department of Biology, MS008, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| | - Samuel G Bates
- Department of Biology, MS008, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Zihao Zhuang
- Department of Biology, MS008, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Matthew Bernstein
- Department of Biology, MS008, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Jamie M Stonemetz
- Department of Biology, MS008, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Tyler J Hill
- Department of Biology, MS008, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Yanxun V Yu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei Province, China
| | - John A Calarco
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, ON M5S 3G5, Canada
| | - Piali Sengupta
- Department of Biology, MS008, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| |
Collapse
|
42
|
Kumar M, Has C, Lam-Kamath K, Ayciriex S, Dewett D, Bashir M, Poupault C, Schuhmann K, Knittelfelder O, Raghuraman BK, Ahrends R, Rister J, Shevchenko A. Eye proteome of Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.04.531088. [PMID: 36945598 PMCID: PMC10028839 DOI: 10.1101/2023.03.04.531088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
The Drosophila melanogaster eye is a popular model to elucidate the molecular mechanisms that underlie the structure and function of the eye as well as the causes of retinopathies. For instance, the Drosophila eye has been used to investigate the impacts of ageing and environmental stresses such as light-induced damage or dietary deficiencies. Moreover, large-scale screens have isolated genes whose mutation causes morphological and functional ocular defects, which includes key components of the phototransduction cascade. However, the proteome of the Drosophila eye is poorly characterized. Here, we used GeLC-MS/MS to quantify 3516 proteins he adult Drosophila melanogaster eye and provide a generic and expandable resource for further genetic, pharmacological, and dietary studies.
Collapse
|
43
|
Lan Y, Zeng W, Wang Y, Dong X, Shen X, Gu Y, Zhang W, Lu H. Opsin 3 mediates UVA-induced keratinocyte supranuclear melanin cap formation. Commun Biol 2023; 6:238. [PMID: 36869204 PMCID: PMC9984416 DOI: 10.1038/s42003-023-04621-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Solar ultraviolet (UV) radiation-induced DNA damage is a major risk factor for skin cancer development. UV-induced redistribution of melanin near keratinocyte nuclei leads to the formation of a supranuclear cap, which acts as a natural sunscreen and protects DNA by absorbing and scattering UV radiation. However, the mechanism underlying the intracellular movement of melanin in nuclear capping is poorly understood. In this study, we found that OPN3 is an important photoreceptor in human epidermal keratinocytes and is critical for UVA-mediated supranuclear cap formation. OPN3 mediates supranuclear cap formation via the calcium-dependent G protein-coupled receptor signaling pathway and ultimately upregulates Dync1i1 and DCTN1 expression in human epidermal keratinocytes via activating calcium/CaMKII, CREB, and Akt signal transduction. Together, these results clarify the role of OPN3 in regulating melanin cap formation in human epidermal keratinocytes, greatly expanding our understanding of the phototransduction mechanisms involved in physiological function in skin keratinocytes.
Collapse
Affiliation(s)
- Yinghua Lan
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China
| | - Wen Zeng
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China
| | - Yu Wang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China
| | - Xian Dong
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China
| | - Xiaoping Shen
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China
| | - Yangguang Gu
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China
| | - Wei Zhang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China
| | - Hongguang Lu
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China.
| |
Collapse
|
44
|
Kojima K, Sudo Y. Convergent evolution of animal and microbial rhodopsins. RSC Adv 2023; 13:5367-5381. [PMID: 36793294 PMCID: PMC9923458 DOI: 10.1039/d2ra07073a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/05/2023] [Indexed: 02/15/2023] Open
Abstract
Rhodopsins, a family of photoreceptive membrane proteins, contain retinal as a chromophore and were firstly identified as reddish pigments from frog retina in 1876. Since then, rhodopsin-like proteins have been identified mainly from animal eyes. In 1971, a rhodopsin-like pigment was discovered from the archaeon Halobacterium salinarum and named bacteriorhodopsin. While it was believed that rhodopsin- and bacteriorhodopsin-like proteins were expressed only in animal eyes and archaea, respectively, before the 1990s, a variety of rhodopsin-like proteins (called animal rhodopsins or opsins) and bacteriorhodopsin-like proteins (called microbial rhodopsins) have been progressively identified from various tissues of animals and microorganisms, respectively. Here, we comprehensively introduce the research conducted on animal and microbial rhodopsins. Recent analysis has revealed that the two rhodopsin families have common molecular properties, such as the protein structure (i.e., 7-transmembrane structure), retinal structure (i.e., binding ability to cis- and trans-retinal), color sensitivity (i.e., UV- and visible-light sensitivities), and photoreaction (i.e., triggering structural changes by light and heat), more than what was expected at the early stages of rhodopsin research. Contrastingly, their molecular functions are distinctively different (e.g., G protein-coupled receptors and photoisomerases for animal rhodopsins and ion transporters and phototaxis sensors for microbial rhodopsins). Therefore, based on their similarities and dissimilarities, we propose that animal and microbial rhodopsins have convergently evolved from their distinctive origins as multi-colored retinal-binding membrane proteins whose activities are regulated by light and heat but independently evolved for different molecular and physiological functions in the cognate organism.
Collapse
Affiliation(s)
- Keiichi Kojima
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Japan
| | - Yuki Sudo
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Japan
| |
Collapse
|
45
|
Gulati S, Palczewski K. Structural view of G protein-coupled receptor signaling in the retinal rod outer segment. Trends Biochem Sci 2023; 48:172-186. [PMID: 36163145 PMCID: PMC9868064 DOI: 10.1016/j.tibs.2022.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 01/26/2023]
Abstract
Visual phototransduction is the most extensively studied G protein-coupled receptor (GPCR) signaling pathway because of its quantifiable stimulus, non-redundancy of genes, and immense importance in vision. We summarize recent discoveries that have advanced our understanding of rod outer segment (ROS) morphology and the pathological basis of retinal diseases. We have combined recently published cryo-electron tomography (cryo-ET) data on the ROS with structural knowledge on individual proteins to define the precise spatial limitations under which phototransduction occurs. Although hypothetical, the reconstruction of the rod phototransduction system highlights the potential roles of phosphodiesterase 6 (PDE6) and guanylate cyclases (GCs) in maintaining the spacing between ROS discs, suggesting a plausible mechanism by which intrinsic optical signals are generated in the retina.
Collapse
Affiliation(s)
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute and the Department of Ophthalmology, Center for Translational Vision Research, Department of Physiology and Biophysics, Department of Chemistry, Molecular Biology, and Biochemistry, University of California Irvine, 850 Health Sciences Road, Irvine, CA 92697-4375, USA.
| |
Collapse
|
46
|
Harris N, Bates S, Zhuang Z, Bernstein M, Stonemetz J, Hill T, Yu YV, Calarco JA, Sengupta P. Molecular encoding of stimulus features in a single sensory neuron type enables neuronal and behavioral plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525070. [PMID: 36711719 PMCID: PMC9882311 DOI: 10.1101/2023.01.22.525070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Neurons modify their transcriptomes in response to an animal’s experience. How specific experiences are transduced to modulate gene expression and precisely tune neuronal functions are not fully defined. Here, we describe the molecular profile of a thermosensory neuron pair in C. elegans experiencing different temperature stimuli. We find that distinct salient features of the temperature stimulus including its duration, magnitude of change, and absolute value are encoded in the gene expression program in this single neuron, and identify a novel transmembrane protein and a transcription factor whose specific transcriptional dynamics are essential to drive neuronal, behavioral, and developmental plasticity. Expression changes are driven by broadly expressed activity-dependent transcription factors and corresponding cis -regulatory elements that nevertheless direct neuron- and stimulus-specific gene expression programs. Our results indicate that coupling of defined stimulus characteristics to the gene regulatory logic in individual specialized neuron types can customize neuronal properties to drive precise behavioral adaptation.
Collapse
Affiliation(s)
- Nathan Harris
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Samuel Bates
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Zihao Zhuang
- Department of Biology, Brandeis University, Waltham, MA, USA
- Current address: Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | | | - Jamie Stonemetz
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Tyler Hill
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Yanxun V. Yu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - John A. Calarco
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA, USA
| |
Collapse
|
47
|
Chen SP, Lin XL, Qiu RZ, Chi MX, Yang G. An LW-Opsin Mutation Changes the Gene Expression of the Phototransduction Pathway: A Cryptochrome1 Mutation Enhances the Phototaxis of Male Plutella xylostella (Lepidoptera: Plutellidae). INSECTS 2023; 14:72. [PMID: 36662000 PMCID: PMC9860677 DOI: 10.3390/insects14010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Plutella xylostella is a typical phototactic pest. LW-opsin contributes to the phototaxis of P. xylostella, but the expression changes of other genes in the phototransduction pathway caused by the mutation of LW-opsin remain unknown. In the study, the head transcriptomes of male G88 and LW-opsin mutants were compared. A GO-function annotation showed that DEGs mainly belonged to the categories of molecular functions, biological processes, and cell composition. Additionally, a KEGG-pathway analysis suggested that DEGs were significantly enriched in some classical pathways, such as the phototransduction-fly and vitamin digestion and absorption pathways. The mRNA expressions of genes in the phototransduction-fly pathway, such as Gq, ninaC, and rdgC were significantly up-regulated, and trp, trpl, inaD, cry1, ninaA and arr1 were significantly down-regulated. The expression trends of nine DEGs in the phototransduction pathway confirmed by a RT-qPCR were consistent with transcriptomic data. In addition, the influence of a cry1 mutation on the phototaxis of P. xylostella was examined, and the results showed that the male cry1 mutant exhibited higher phototactic rates to UV and blue lights than the male G88. Our results indicated that the LW-opsin mutation changed the expression of genes in the phototransduction pathway, and the mutation of cry1 enhanced the phototaxis of a P. xylostella male, providing a basis for further investigation on the phototransduction pathway in P. xylostella.
Collapse
Affiliation(s)
- Shao-Ping Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Xiao-Lu Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| | - Rong-Zhou Qiu
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Mei-Xiang Chi
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| |
Collapse
|
48
|
Kalargyrou AA, Guilfoyle SE, Smith AJ, Ali RR, Pearson RA. Extracellular vesicles in the retina - putative roles in physiology and disease. Front Mol Neurosci 2023; 15:1042469. [PMID: 36710933 PMCID: PMC9877344 DOI: 10.3389/fnmol.2022.1042469] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/22/2022] [Indexed: 01/15/2023] Open
Abstract
The retina encompasses a network of neurons, glia and epithelial and vascular endothelia cells, all coordinating visual function. Traditionally, molecular information exchange in this tissue was thought to be orchestrated by synapses and gap junctions. Recent findings have revealed that many cell types are able to package and share molecular information via extracellular vesicles (EVs) and the technological advancements in visualisation and tracking of these delicate nanostructures has shown that the role of EVs in cell communication is pleiotropic. EVs are released under physiological conditions by many cells but they are also released during various disease stages, potentially reflecting the health status of the cells in their cargo. Little is known about the physiological role of EV release in the retina. However, administration of exogenous EVs in vivo after injury suggest a neurotrophic role, whilst photoreceptor transplantation in early stages of retina degeneration, EVs may facilitate interactions between photoreceptors and Müller glia cells. In this review, we consider some of the proposed roles for EVs in retinal physiology and discuss current evidence regarding their potential impact on ocular therapies via gene or cell replacement strategies and direct intraocular administration in the diseased eye.
Collapse
Affiliation(s)
- Aikaterini A. Kalargyrou
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| | - Siobhan E. Guilfoyle
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| | - Alexander J. Smith
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| | - Robin R. Ali
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States
| | - Rachael A. Pearson
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| |
Collapse
|
49
|
Unusual phototransduction via cross-motif signaling from G q to adenylyl cyclase in intrinsically photosensitive retinalganglion cells. Proc Natl Acad Sci U S A 2023; 120:e2216599120. [PMID: 36584299 PMCID: PMC9910442 DOI: 10.1073/pnas.2216599120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nonimage-forming vision in mammals is mediated primarily by melanopsin (OPN4)-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs). In mouse M1-ipRGCs, melanopsin predominantly activates, via Gαq,11,14, phospholipase C-β4 to open transient receptor 6 (TRPC6) and TRPC7 channels. In M2- and M4-ipRGCs, however, a prominent phototransduction mechanism involves the opening of hyperpolarization- and cyclic nucleotide-gated channels via cyclic nucleotide, although the upstream steps remain uncertain. We report here experiments, primarily on M4-ipRGCs, with photo-uncaging of cyclic nucleotides and virally expressed CNGA2 channels to conclude that the second messenger is cyclic adenosine monophosphate (cAMP) - very surprising considering that cyclic guanosine monophosphate (cGMP) is used in almost all cyclic nucleotide-mediated phototransduction mechanisms across the animal kingdom. We further found that the upstream G protein is likewise Gq, which via its Gβγ subunits directly activates adenylyl cyclase (AC). Our findings are a demonstration in a native cell of a cross-motif GPCR signaling pathway from Gq directly to AC with a specific function.
Collapse
|
50
|
Jeynes-Smith C, Araujo RP. Protein-protein complexes can undermine ultrasensitivity-dependent biological adaptation. J R Soc Interface 2023; 20:20220553. [PMID: 36596458 PMCID: PMC9810431 DOI: 10.1098/rsif.2022.0553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
Robust perfect adaptation (RPA) is a ubiquitously observed signalling response across all scales of biological organization. A major class of network architectures that drive RPA in complex networks is the Opposer module-a feedback-regulated network into which specialized integral-computing 'opposer node(s)' are embedded. Although ultrasensitivity-generating chemical reactions have long been considered a possible mechanism for such adaptation-conferring opposer nodes, this hypothesis has relied on simplified Michaelian models, which neglect the presence of protein-protein complexes. Here we develop complex-complete models of interlinked covalent-modification cycles with embedded ultrasensitivity, explicitly capturing all molecular interactions and protein complexes. Strikingly, we demonstrate that the presence of protein-protein complexes thwarts the network's capacity for RPA in any 'free' active protein form, conferring RPA capacity instead on the concentration of a larger protein pool consisting of two distinct forms of a single protein. We further show that the presence of enzyme-substrate complexes, even at comparatively low concentrations, play a crucial and previously unrecognized role in controlling the RPA response-significantly reducing the range of network inputs for which RPA can obtain, and imposing greater parametric requirements on the RPA response. These surprising results raise fundamental new questions as to the biochemical requirements for adaptation-conferring Opposer modules within complex cellular networks.
Collapse
Affiliation(s)
- C. Jeynes-Smith
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - R. P. Araujo
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|