1
|
Liu J, Shen Y, Liu J, Xu D, Chang CY, Wang J, Zhou J, Haffty BG, Zhang L, Bargonetti J, De S, Hu W, Feng Z. Lipogenic enzyme FASN promotes mutant p53 accumulation and gain-of-function through palmitoylation. Nat Commun 2025; 16:1762. [PMID: 39971971 PMCID: PMC11839913 DOI: 10.1038/s41467-025-57099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/11/2025] [Indexed: 02/21/2025] Open
Abstract
The tumor-suppressive function of p53 is frequently disrupted by mutations in cancers. Missense mutant p53 (mutp53) protein often stabilizes and accumulates to high levels in cancers to promote tumorigenesis through the gain-of-function (GOF) mechanism. Currently, the mechanism of mutp53 accumulation and GOF is incompletely understood. Here, we identify the lipogenic enzyme FASN as an important regulator of mutp53 accumulation and GOF. FASN interacts with mutp53 to enhance mutp53 palmitoylation, which inhibits mutp53 ubiquitination to promote mutp53 accumulation and GOF. Blocking FASN genetically or by small-molecule inhibitors suppresses mutp53 palmitoylation to inhibit mutp53 accumulation, which in turn inhibits the growth of mutp53 tumors in orthotopic and subcutaneous xenograft tumor models and transgenic mice, as well as the growth of human tumor organoids carrying mutp53. Our results reveal that mutp53 palmitoylation is an important mechanism underlying mutp53 accumulation and GOF, and targeting FASN is a potential therapeutic strategy for cancers carrying mutp53.
Collapse
Affiliation(s)
- Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute, Rutgers-State University of New Jersey, New Brunswick, NJ, USA
| | - Yiyun Shen
- Department of Radiation Oncology, Rutgers Cancer Institute, Rutgers-State University of New Jersey, New Brunswick, NJ, USA
| | - Jie Liu
- Department of Radiation Oncology, Rutgers Cancer Institute, Rutgers-State University of New Jersey, New Brunswick, NJ, USA
| | - Dandan Xu
- Department of Radiation Oncology, Rutgers Cancer Institute, Rutgers-State University of New Jersey, New Brunswick, NJ, USA
| | - Chun-Yuan Chang
- Department of Radiation Oncology, Rutgers Cancer Institute, Rutgers-State University of New Jersey, New Brunswick, NJ, USA
| | - Jianming Wang
- Department of Radiation Oncology, Rutgers Cancer Institute, Rutgers-State University of New Jersey, New Brunswick, NJ, USA
| | - Jason Zhou
- Department of Radiation Oncology, Rutgers Cancer Institute, Rutgers-State University of New Jersey, New Brunswick, NJ, USA
| | - Bruce G Haffty
- Department of Radiation Oncology, Rutgers Cancer Institute, Rutgers-State University of New Jersey, New Brunswick, NJ, USA
| | - Lanjing Zhang
- Department of Pathology, Princeton Medical Center, Princeton, NJ, USA
- Department of Cell Biology and Neuroscience, Rutgers-State University of New Jersey, Piscataway, NJ, USA
| | - Jill Bargonetti
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Subhajyoti De
- Center for Systems and Computational Biology, Rutgers Cancer Institute, Rutgers-State University of New Jersey, New Brunswick, NJ, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute, Rutgers-State University of New Jersey, New Brunswick, NJ, USA.
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute, Rutgers-State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
2
|
Chastney MR, Kaivola J, Leppänen VM, Ivaska J. The role and regulation of integrins in cell migration and invasion. Nat Rev Mol Cell Biol 2025; 26:147-167. [PMID: 39349749 DOI: 10.1038/s41580-024-00777-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 01/29/2025]
Abstract
Integrin receptors are the main molecular link between cells and the extracellular matrix (ECM) as well as mediating cell-cell interactions. Integrin-ECM binding triggers the formation of heterogeneous multi-protein assemblies termed integrin adhesion complexes (IACs) that enable integrins to transform extracellular cues into intracellular signals that affect many cellular processes, especially cell motility. Cell migration is essential for diverse physiological and pathological processes and is dysregulated in cancer to favour cell invasion and metastasis. Here, we discuss recent findings on the role of integrins in cell migration with a focus on cancer cell dissemination. We review how integrins regulate the spatial distribution and dynamics of different IACs, covering classical focal adhesions, emerging adhesion types and adhesion regulation. We discuss the diverse roles integrins have during cancer progression from cell migration across varied ECM landscapes to breaching barriers such as the basement membrane, and eventual colonization of distant organs.
Collapse
Affiliation(s)
- Megan R Chastney
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jasmin Kaivola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Veli-Matti Leppänen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- Department of Life Technologies, University of Turku, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Western Finnish Cancer Center (FICAN West), University of Turku, Turku, Finland.
- Foundation for the Finnish Cancer Institute, Helsinki, Finland.
| |
Collapse
|
3
|
R HC, C GPD. Investigation of the impact of R273H and R273C mutations on the DNA binding domain of P53 protein through molecular dynamic simulation. J Biomol Struct Dyn 2025; 43:798-812. [PMID: 39737749 DOI: 10.1080/07391102.2023.2283793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 01/01/2025]
Abstract
The P53 protein, a cancer-associated transcriptional factor and tumor suppressor, houses a Zn2+ ion in its DNA-binding domain (DBD), essential for sequence-specific DNA binding. However, common mutations at position 273, specifically from Arginine to Histidine and Cysteine, lead to a loss of function as a tumor suppressor, also called DNA contact mutations. The mutant (MT) P53 structure cannot stabilize DNA due to inadequate interaction. To investigate the conformational changes, we performed a comparative molecular dynamic simulation (MDS) to study the effect of the P53-Wildtype (P53-WT) and the DNA contact mutations (R273H and R273C) on the DBD. Our research indicated that the DNA binding bases lose Hydrogen bonds (H bonds) when mutated to P53-R273H and P53-R273C during the simulation. We employed tools, such as PDIviz to highlight the contacts with DNA bases and backbone, major and minor grooves, and various pharmacophore forms of atoms. The contact maps for R273H and R273C were generated using the COZOID tool, which displayed changes in the frequency of the amino acids and DNA bases interaction in the DNA binding domain. These residues have diminished interactions, and the zinc-binding domain shows significant movements by Zn2+ ion binding to the phosphate group of the DNA, moving away from its binding sites. In conclusion, our research suggests that R273H and R273C each have unique stability and self-assembly properties. This understanding might assist researchers in better comprehending the function of the p53 protein and its importance in cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hephzibah Cathryn R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| |
Collapse
|
4
|
Cáceres-Calle D, Torre-Cea I, Marcos-Zazo L, Carrera-Aguado I, Guerra-Paes E, Berlana-Galán P, Muñoz-Félix JM, Sánchez-Juanes F. Integrins as Key Mediators of Metastasis. Int J Mol Sci 2025; 26:904. [PMID: 39940673 PMCID: PMC11816423 DOI: 10.3390/ijms26030904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Metastasis is currently becoming a major clinical concern, due to its potential to cause therapeutic resistance. Its development involves a series of phases that describe the metastatic cascade: preparation of the pre-metastatic niche, epithelial-mesenchymal transition, dissemination, latency and colonization of the new tissue. In the last few years, new therapeutic targets, such as integrins, are arising to face this disease. Integrins are transmembrane proteins found in every cell that have a key role in the metastatic cascade. They intervene in adhesion and intracellular signaling dependent on the extracellular matrix and cytokines found in the microenvironment. In this case, integrins can initiate the epithelial-mesenchymal transition, guide the formation of the pre-metastatic niche and increase tumor migration and survival. Integrins also take part in the tumor vascularization process necessary to sustain metastasis. This fact emphasizes the importance of inhibitory therapies capable of interfering with the function of integrins in metastasis.
Collapse
Affiliation(s)
- Daniel Cáceres-Calle
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (D.C.-C.); (I.T.-C.); (L.M.-Z.); (I.C.-A.); (E.G.-P.); (P.B.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Irene Torre-Cea
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (D.C.-C.); (I.T.-C.); (L.M.-Z.); (I.C.-A.); (E.G.-P.); (P.B.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Laura Marcos-Zazo
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (D.C.-C.); (I.T.-C.); (L.M.-Z.); (I.C.-A.); (E.G.-P.); (P.B.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Iván Carrera-Aguado
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (D.C.-C.); (I.T.-C.); (L.M.-Z.); (I.C.-A.); (E.G.-P.); (P.B.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Elena Guerra-Paes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (D.C.-C.); (I.T.-C.); (L.M.-Z.); (I.C.-A.); (E.G.-P.); (P.B.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Patricia Berlana-Galán
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (D.C.-C.); (I.T.-C.); (L.M.-Z.); (I.C.-A.); (E.G.-P.); (P.B.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José M. Muñoz-Félix
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (D.C.-C.); (I.T.-C.); (L.M.-Z.); (I.C.-A.); (E.G.-P.); (P.B.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Fernando Sánchez-Juanes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (D.C.-C.); (I.T.-C.); (L.M.-Z.); (I.C.-A.); (E.G.-P.); (P.B.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
5
|
Sadu Murari LS, Kunkel S, Shetty A, Bents A, Bhandary A, Rivera-Mulia JC. p63: A Master Regulator at the Crossroads Between Development, Senescence, Aging, and Cancer. Cells 2025; 14:43. [PMID: 39791744 PMCID: PMC11719615 DOI: 10.3390/cells14010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
The p63 protein is a master regulatory transcription factor that plays crucial roles in cell differentiation, adult tissue homeostasis, and chromatin remodeling, and its dysregulation is associated with genetic disorders, physiological and premature aging, and cancer. The effects of p63 are carried out by two main isoforms that regulate cell proliferation and senescence. p63 also controls the epigenome by regulating interactions with histone modulators, such as the histone acetyltransferase p300, deacetylase HDAC1/2, and DNA methyltransferases. miRNA-p63 interactions are also critical regulators in the context of cancer metastasis. This review aims to elaborate on the diverse roles of p63, focusing on disease, development, and the mechanisms controlling genome organization and function.
Collapse
Affiliation(s)
- Lakshana Sruthi Sadu Murari
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (L.S.S.M.); (S.K.); (A.B.); (A.B.)
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Sam Kunkel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (L.S.S.M.); (S.K.); (A.B.); (A.B.)
| | - Anala Shetty
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (L.S.S.M.); (S.K.); (A.B.); (A.B.)
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Addison Bents
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (L.S.S.M.); (S.K.); (A.B.); (A.B.)
| | - Aayush Bhandary
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (L.S.S.M.); (S.K.); (A.B.); (A.B.)
| | - Juan Carlos Rivera-Mulia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (L.S.S.M.); (S.K.); (A.B.); (A.B.)
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Funk JS, Klimovich M, Drangenstein D, Pielhoop O, Hunold P, Borowek A, Noeparast M, Pavlakis E, Neumann M, Balourdas DI, Kochhan K, Merle N, Bullwinkel I, Wanzel M, Elmshäuser S, Teply-Szymanski J, Nist A, Procida T, Bartkuhn M, Humpert K, Mernberger M, Savai R, Soussi T, Joerger AC, Stiewe T. Deep CRISPR mutagenesis characterizes the functional diversity of TP53 mutations. Nat Genet 2025; 57:140-153. [PMID: 39774325 PMCID: PMC11735402 DOI: 10.1038/s41588-024-02039-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
The mutational landscape of TP53, a tumor suppressor mutated in about half of all cancers, includes over 2,000 known missense mutations. To fully leverage TP53 mutation status for personalized medicine, a thorough understanding of the functional diversity of these mutations is essential. We conducted a deep mutational scan using saturation genome editing with CRISPR-mediated homology-directed repair to engineer 9,225 TP53 variants in cancer cells. This high-resolution approach, covering 94.5% of all cancer-associated TP53 missense mutations, precisely mapped the impact of individual mutations on tumor cell fitness, surpassing previous deep mutational scan studies in distinguishing benign from pathogenic variants. Our results revealed even subtle loss-of-function phenotypes and identified promising mutants for pharmacological reactivation. Moreover, we uncovered the roles of splicing alterations and nonsense-mediated messenger RNA decay in mutation-driven TP53 dysfunction. These findings underscore the power of saturation genome editing in advancing clinical TP53 variant interpretation for genetic counseling and personalized cancer therapy.
Collapse
Affiliation(s)
- Julianne S Funk
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Maria Klimovich
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | | | - Ole Pielhoop
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Pascal Hunold
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Anna Borowek
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Maxim Noeparast
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | | | - Michelle Neumann
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Dimitrios-Ilias Balourdas
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Frankfurt am Main, Germany
| | - Katharina Kochhan
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Nastasja Merle
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Imke Bullwinkel
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Michael Wanzel
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | | | - Julia Teply-Szymanski
- Institute of Pathology, Philipps-University, Marburg University Hospital, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps-University, Marburg, Germany
| | - Tara Procida
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Marek Bartkuhn
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Biomedical Informatics and Systems Medicine, Justus-Liebig-University, Giessen, Germany
| | - Katharina Humpert
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
- Bioinformatics Core Facility, Philipps-University, Marburg, Germany
| | - Marco Mernberger
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Rajkumar Savai
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Lung Microenvironmental Niche in Cancerogenesis, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thierry Soussi
- Centre de Recherche Saint-Antoine UMRS_938, INSERM, Sorbonne Université, Paris, France
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Frankfurt am Main, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany.
- Genomics Core Facility, Philipps-University, Marburg, Germany.
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany.
- Bioinformatics Core Facility, Philipps-University, Marburg, Germany.
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
7
|
Zhang H, Li Y, Wang R, Hu X, Wang Z. Neuron-Specific Gene Family Member 1 is a Potential New Therapeutic Target Associated with Immune Cell Infiltration for Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:769-783. [PMID: 39564093 PMCID: PMC11575459 DOI: 10.2147/bctt.s483757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024]
Abstract
Background Breast cancer (BC) is the most common cancer and is highly morphologically and molecularly heterogeneous. Neuron-specific gene family member 1 (NSG1) is a small single-channel transmembrane protein that consists of 185 amino acids and has been reported in a variety of tumours in recent years. However, the role of NSG1 in BC is unclear. Objective This study aimed to explore the role of NSG1 in the pathogenesis and development of BC and its potential as a prognostic marker for BC. Methods This study analysed data from The Cancer Genome Atlas database and the Gene Expression Omnibus database to determine the expression level and prognostic value of NSG1 messenger ribonucleic acid in BC. Using this data, we constructed a clinical risk model. Immunohistochemistry was performed in combination with a clinical cohort of 192 patients with BC to explore the NSG1 protein expression in BC. Enrichment analysis was used to predict the biological function of NSG1 in BC. To analyse the correlation between NSG1 and the BC immune microenvironment, a single-cell analysis of NSG1 expression and cells in BC was performed. Kaplan‒Meier curves and Cox regression analysis were utilised to identify the relationship between the expression of NSG1 protein and clinicopathological features and prognosis. Results Neuron-specific gene family member 1 is highly expressed in patients with early BC, and its expression suggests a good prognosis for patients with BC. Neuron-specific gene family member 1 is involved in the T-cell receptor complex in BC and is associated with CD8 T cells in the BC immune microenvironment and may induce M1 polarisation of macrophages. Conclusion Neuron-specific gene family member 1 is a biomarker of good prognosis in BC. It is associated with the immune microenvironment of BC and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Haoyun Zhang
- Department of Breast Surgery, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, 056000, People's Republic of China
| | - Ying Li
- Department of Neurosurgery, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, 056000, People's Republic of China
| | - Ran Wang
- Department of Emergency, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, 056000, People's Republic of China
| | - Xindan Hu
- Department of Neurosurgery, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, 056000, People's Republic of China
| | - Zai Wang
- Science and Education Division, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, 056000, People's Republic of China
| |
Collapse
|
8
|
Ahmadi SE, Rahimian E, Rahimi S, Zarandi B, Bahraini M, Soleymani M, Safdari SM, Shabannezhad A, Jaafari N, Safa M. From regulation to deregulation of p53 in hematologic malignancies: implications for diagnosis, prognosis and therapy. Biomark Res 2024; 12:137. [PMID: 39538363 PMCID: PMC11565275 DOI: 10.1186/s40364-024-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The p53 protein, encoded by the TP53 gene, serves as a critical tumor suppressor, playing a vital role in maintaining genomic stability and regulating cellular responses to stress. Dysregulation of p53 is frequently observed in hematological malignancies, significantly impacting disease progression and patient outcomes. This review aims to examine the regulatory mechanisms of p53, the implications of TP53 mutations in various hematological cancers, and emerging therapeutic strategies targeting p53. We conducted a comprehensive literature review to synthesize recent findings related to p53's multifaceted role in hematologic cancers, focusing on its regulatory pathways and therapeutic potential. TP53 mutations in hematological malignancies often lead to treatment resistance and poor prognosis. Current therapeutic strategies, including p53 reactivation and gene therapy, show promise in improving treatment outcomes. Understanding the intricacies of p53 regulation and the consequences of its mutations is essential for developing effective diagnostic and therapeutic strategies in hematological malignancies, ultimately enhancing patient care and survival.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Bahraini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Soleymani
- Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mehrab Safdari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Ma M, Li X, Jing M, Zhang P, Zhang M, Wang L, Liang X, Jiang Y, Li J, He J, Wang X, Lin M, Wang L, Fan J. Enhanced Tumor-Targeted Delivery of Arginine-Rich Peptides via a Positive Feedback Loop Orchestrated by Piezo1/integrin β1 Signaling Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409081. [PMID: 39258781 PMCID: PMC11558097 DOI: 10.1002/advs.202409081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Indexed: 09/12/2024]
Abstract
Peptide-based drugs hold great potential for cancer treatment, and their effectiveness is driven by mechanisms on how peptides target cancer cells and escape from potential lysosomal entrapment post-endocytosis. Yet, the mechanisms remain elusive, which hinder the design of peptide-based drugs. Here hendeca-arginine peptides (R11) are synthesized for targeted delivery in bladder carcinoma (BC), investigated the targeting efficiency and elucidated the mechanism of peptide-based delivery, with the aim of refining the design and efficacy of peptide-based therapeutics. It is demonstrated that the over-activated Piezo1/integrin β1 (ITGB1) signaling axis significantly facilitates tumor-targeted delivery of R11 peptides via macropinocytosis. Furthermore, R11 peptides formed hydrogen bonds with integrin β1, facilitating targeting and penetration into tumor cells. Additionally, R11 peptides protected integrin β1 from lysosome degradation, promoting its recycling from cytoplasm to membrane. Moreover, this findings establish a positive feedback loop wherein R11 peptides activate Piezo1 by increasing membrane fusion, promoting Ca2+ releasing and resulting in enhanced integrin β1-mediated endocytosis in both orthotopic models and clinical tissues, demonstrating effective tumor-targeted delivery. Eventually, the Piezo1/integrin β1 signaling axis promoted cellular uptake and transport of peptides, establishing a positive feedback loop, promoting mechanical delivery to cancer and offering possibilities for drug modification in cancer therapy.
Collapse
Affiliation(s)
- Minghai Ma
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Department of Urology, The First Affiliated HospitalXi'an Jiaotong UniversityXi'an710061China
| | - Xing Li
- Department of Thoracic Surgery, Tangdu HospitalAir Force Medical UniversityXi'an710038China
| | - Minxuan Jing
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Department of Urology, The First Affiliated HospitalXi'an Jiaotong UniversityXi'an710061China
| | - Pu Zhang
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Department of Urology, The First Affiliated HospitalXi'an Jiaotong UniversityXi'an710061China
| | - Mengzhao Zhang
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Department of Urology, The First Affiliated HospitalXi'an Jiaotong UniversityXi'an710061China
| | - Lu Wang
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Department of Urology, The First Affiliated HospitalXi'an Jiaotong UniversityXi'an710061China
| | - Xiao Liang
- Department of Thoracic Surgery, Tangdu HospitalAir Force Medical UniversityXi'an710038China
| | - Yunzhong Jiang
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Department of Urology, The First Affiliated HospitalXi'an Jiaotong UniversityXi'an710061China
| | - Jianpeng Li
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Department of Urology, The First Affiliated HospitalXi'an Jiaotong UniversityXi'an710061China
| | - Jiale He
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Department of Urology, The First Affiliated HospitalXi'an Jiaotong UniversityXi'an710061China
| | - Xinyang Wang
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Department of Urology, The First Affiliated HospitalXi'an Jiaotong UniversityXi'an710061China
| | - Min Lin
- Key Laboratory of Biomedical Information Engineering, Ministry of Education, Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049China
| | - Lei Wang
- Department of Thoracic Surgery, Tangdu HospitalAir Force Medical UniversityXi'an710038China
| | - Jinhai Fan
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Department of Urology, The First Affiliated HospitalXi'an Jiaotong UniversityXi'an710061China
| |
Collapse
|
10
|
Meng F, Li H, Jin R, Yang A, Luo H, Li X, Wang P, Zhao Y, Chervova O, Tang K, Cheng S, Hu B, Li Y, Sheng J, Yang F, Carbone D, Chen K, Wang J. Spatial immunogenomic patterns associated with lymph node metastasis in lung adenocarcinoma. Exp Hematol Oncol 2024; 13:106. [PMID: 39468696 PMCID: PMC11514955 DOI: 10.1186/s40164-024-00574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) with lymph node (LN) metastasis is linked to poor prognosis, yet the underlying mechanisms remain largely undefined. This study aimed to elucidate the immunogenomic landscape associated with LN metastasis in LUAD. METHODS We employed broad-panel next-generation sequencing (NGS) on a cohort of 257 surgically treated LUAD patients to delineate the molecular landscape of primary tumors and identify actionable driver-gene alterations. Additionally, we used multiplex immunohistochemistry (mIHC) on a propensity score-matched cohort, which enabled us to profile the immune microenvironment of primary tumors in detail while preserving cellular metaclusters, interactions, and neighborhood functional units. By integrating data from NGS and mIHC, we successfully identified spatial immunogenomic patterns and developed a predictive model for LN metastasis, which was subsequently validated independently. RESULTS Our analysis revealed distinct immunogenomic alteration patterns associated with LN metastasis stages. Specifically, we observed increased mutation frequencies in genes such as PIK3CG and ATM in LN metastatic primary tumors. Moreover, LN positive primary tumors exhibited a higher presence of macrophage and regulatory T cell metaclusters, along with their enriched neighborhood units (p < 0.05), compared to LN negative tumors. Furthermore, we developed a novel predictive model for LN metastasis likelihood, designed to inform non-surgical treatment strategies, optimize personalized therapy plans, and potentially improve outcomes for patients who are ineligible for surgery. CONCLUSIONS This study offers a comprehensive analysis of the genetic and immune profiles in LUAD primary tumors with LN metastasis, identifying key immunogenomic patterns linked to metastatic progression. The predictive model derived from these insights marks a substantial advancement in personalized treatment, underscoring its potential to improve patient management.
Collapse
Affiliation(s)
- Fanjie Meng
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao Yang Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
| | - Ruoyi Jin
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-Small Cell Lung Cancer, Peking University People's Hospital, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Airong Yang
- Kanghui Biotechnology Co., Ltd, Shenyang, China
| | - Hao Luo
- Cancer Center, Daping Hospital Army Medical University, Chongqing, China
| | - Xiao Li
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
| | - Peiyu Wang
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-Small Cell Lung Cancer, Peking University People's Hospital, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Yaxing Zhao
- Infinity Scope Biotechnology Co., Ltd., Hangzhou, China
| | - Olga Chervova
- University College London Cancer Institute, University College London, London, UK
| | - Kaicheng Tang
- Infinity Scope Biotechnology Co., Ltd., Hangzhou, China
| | - Sida Cheng
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
| | - Bin Hu
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao Yang Hospital, Capital Medical University, Beijing, China
| | - Yun Li
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
| | - Jianpeng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Chinese Institutes for Medical Research, Beijing, China
| | - Fan Yang
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
| | - David Carbone
- James Thoracic Oncology Center, Ohio State University, Columbus, USA
| | - Kezhong Chen
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China.
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-Small Cell Lung Cancer, Peking University People's Hospital, Beijing, China.
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China.
| | - Jun Wang
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China.
| |
Collapse
|
11
|
Guzman A, Kawase T, Devanny AJ, Efe G, Navaridas R, Yu K, Regunath K, Mercer IG, Avard RC, Muniz de Queiroz R, Rustgi AK, Kaufman LJ, Prives C. Mutant p53 regulates cancer cell invasion in complex three-dimensional environments through mevalonate pathway-dependent Rho/ROCK signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618100. [PMID: 39464132 PMCID: PMC11507699 DOI: 10.1101/2024.10.13.618100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Certain mutations can confer neomorphic gain of function (GOF) activities to the p53 protein that affect cancer progression. Yet the concept of mutant p53 GOF has been challenged. Here, using various strategies to alter the status of mutant versions of p53 in different cell lines, we demonstrate that mutant p53 stimulates cancer cell invasion in three-dimensional environments. Mechanistically, mutant p53 enhances RhoA/ROCK-dependent cell contractility and cell-mediated extracellular matrix (ECM) re-organization via increasing mevalonate pathway-dependent RhoA localization to the membrane. In line with this, RhoA-dependent pro-invasive activity is also mediated by IDI-1, a mevalonate pathway product. Further, the invasion-enhancing effect of mutant p53 is dictated by the biomechanical properties of the surrounding ECM, thereby adding a cell-independent layer of regulation to mutant p53 GOF activity that is mediated by dynamic reciprocal cell-ECM interactions. Together our findings link mutant p53 metabolic GOF activity with an invasive cellular phenotype in physiologically relevant and context-dependent settings. Significance This study addresses the contribution of mutant p53 to the process of cancer cell dissemination in physiologically relevant three-dimensional environments - a key characteristic of metastatic disease. Several mutant p53 proteins display pro-oncogenic activity with respect to cancer cell invasion in 3D environments via mevalonate pathway-dependent Rho/ROCK signaling axis.
Collapse
|
12
|
Lo CS, Alavi P, Bassey-Archibong B, Jahroudi N, Pasdar M. Differential effect of plakoglobin in restoring the tumor suppressor activities of p53-R273H vs. p53-R175H mutants. PLoS One 2024; 19:e0306705. [PMID: 39361615 PMCID: PMC11449273 DOI: 10.1371/journal.pone.0306705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/21/2024] [Indexed: 10/05/2024] Open
Abstract
The six most common missense mutations in the DNA binding domain of p53 are known as "hot spots" and include two of the most frequently occurring p53 mutations (p53-R175H and p53-R273H). p53 stability and function are regulated by various post-translational modifications such as phosphorylation, acetylation, sumoylation, methylation, and interactions with other proteins including plakoglobin. Previously, using various carcinoma cell lines we showed that plakoglobin interacted with wild-type and several endogenous p53 mutants (e.g., R280K, R273H, S241F, S215R, R175H) and restored their tumor suppressor activities in vitro. Since mutant p53 function is both mutant-specific and cell context-dependent, we sought herein, to determine if plakoglobin tumor suppressive effects on exogenously expressed p53-R273H and p53-R175H mutants are similarly maintained under the same genetic background using the p53-null and plakoglobin-deficient H1299 cell line. Functional assays were performed to assess colony formation, migration, and invasion while immunoblotting and qPCR were used to examine the subcellular distribution and expression of specific proteins and genes that are typically regulated by or regulate p53 function and are altered in mutant p53-expressing cell lines and tumors. We show that though, plakoglobin interacted with both p53-R273H and p53-R175H mutants, it had a differential effect on the transcription and subcellular distribution of their gene targets and their overall oncogenic properties in vitro. Notably, we found that plakoglobin's tumor suppressive effects were significantly stronger in p53-R175H expressing cells compared to p53-R273H cells. Together, our results indicate that exploring plakoglobin interactions with p53-R175H may be useful for the development of cancer therapeutics focused on the restoration of p53 function.
Collapse
Affiliation(s)
- Chu Shiun Lo
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Parnian Alavi
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Blessing Bassey-Archibong
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Biology and Environmental Sciences Concordia University of Edmonton, Edmonton, Alberta, Canada
| | - Nadia Jahroudi
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Manijeh Pasdar
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Ao J, Fei J, Wang G, Zhang W, Yu S, Guo R, Niu M, Chen H, Cao Y, Xiao ZXJ, Yi Y. pSTAT3 transactivates EGFR in maintaining EGFR protein homeostasis and EGFR-TKI resistance. Acta Biochim Biophys Sin (Shanghai) 2024; 57:310-316. [PMID: 39967270 DOI: 10.3724/abbs.2024166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
EGFR protein trafficking is critical for regulating multiple biological processes, including cell growth and survival. However, how EGFR protein homeostasis is maintained remains unclear. In this study, we show that a reduction in plasma membrane-associated EGFR triggers EGFR transcription by promoting pSTAT3 nuclear localization. Nucleus-localized pSTAT3 binds to the EGFR gene promoter to transactivate EGFR. Moreover, erlotinib, an EGFR tyrosine kinase inhibitor (TKI), can also increase pSTAT3 nuclear accumulation, resulting in increased EGFR transcription and erlotinib resistance. Importantly, pharmacological inhibition of pSTAT3 can significantly overcome the resistance of cancer cells to erlotinib. Together, these findings demonstrate that pSTAT3 is pivotal for maintaining EGFR protein homeostasis and suggest that activation of the pSTAT3-EGFR axis contributes to EGFR-TKI resistance.
Collapse
Affiliation(s)
- Juan Ao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Junjie Fei
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Guoqiang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Wenhua Zhang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Shuhan Yu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Rongtian Guo
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Mengmeng Niu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Hu Chen
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Yang Cao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Zhi-Xiong Jim Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yong Yi
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
14
|
Parihar K, Ko SHB, Bradley RP, Taylor P, Ramakrishnan N, Baumgart T, Guo W, Weaver VM, Janmey PA, Radhakrishnan R. Asymmetric crowders and membrane morphology at the nexus of intracellular trafficking and oncology. MECHANOBIOLOGY IN MEDICINE 2024; 2:100071. [PMID: 38899029 PMCID: PMC11185830 DOI: 10.1016/j.mbm.2024.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A definitive understanding of the interplay between protein binding/migration and membrane curvature evolution is emerging but needs further study. The mechanisms defining such phenomena are critical to intracellular transport and trafficking of proteins. Among trafficking modalities, exosomes have drawn attention in cancer research as these nano-sized naturally occurring vehicles are implicated in intercellular communication in the tumor microenvironment, suppressing anti-tumor immunity and preparing the metastatic niche for progression. A significant question in the field is how the release and composition of tumor exosomes are regulated. In this perspective article, we explore how physical factors such as geometry and tissue mechanics regulate cell cortical tension to influence exosome production by co-opting the biophysics as well as the signaling dynamics of intracellular trafficking pathways and how these exosomes contribute to the suppression of anti-tumor immunity and promote metastasis. We describe a multiscale modeling approach whose impact goes beyond the fundamental investigation of specific cellular processes toward actual clinical translation. Exosomal mechanisms are critical to developing and approving liquid biopsy technologies, poised to transform future non-invasive, longitudinal profiling of evolving tumors and resistance to cancer therapies to bring us one step closer to the promise of personalized medicine.
Collapse
Affiliation(s)
- Kshitiz Parihar
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Seung-Hyun B. Ko
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan P. Bradley
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Phillip Taylor
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - N. Ramakrishnan
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Tobias Baumgart
- Department of Chemistry, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Guo
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Valerie M. Weaver
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, USA
| | - Paul A. Janmey
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi Radhakrishnan
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Musa S, Amara N, Selawi A, Wang J, Marchini C, Agbarya A, Mahajna J. Overcoming Chemoresistance in Cancer: The Promise of Crizotinib. Cancers (Basel) 2024; 16:2479. [PMID: 39001541 PMCID: PMC11240740 DOI: 10.3390/cancers16132479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Chemoresistance is a major obstacle in cancer treatment, often leading to disease progression and poor outcomes. It arises through various mechanisms such as genetic mutations, drug efflux pumps, enhanced DNA repair, and changes in the tumor microenvironment. These processes allow cancer cells to survive despite chemotherapy, underscoring the need for new strategies to overcome resistance and improve treatment efficacy. Crizotinib, a first-generation multi-target kinase inhibitor, is approved by the FDA for the treatment of ALK-positive or ROS1-positive non-small cell lung cancer (NSCLC), refractory inflammatory (ALK)-positive myofibroblastic tumors (IMTs) and relapsed/refractory ALK-positive anaplastic large cell lymphoma (ALCL). Crizotinib exists in two enantiomeric forms: (R)-crizotinib and its mirror image, (S)-crizotinib. It is assumed that the R-isomer is responsible for the carrying out various processes reviewed here The S-isomer, on the other hand, shows a strong inhibition of MTH1, an enzyme important for DNA repair mechanisms. Studies have shown that crizotinib is an effective multi-kinase inhibitor targeting various kinases such as c-Met, native/T315I Bcr/Abl, and JAK2. Its mechanism of action involves the competitive inhibition of ATP binding and allosteric inhibition, particularly at Bcr/Abl. Crizotinib showed synergistic effects when combined with the poly ADP ribose polymerase inhibitor (PARP), especially in ovarian cancer harboring BRCA gene mutations. In addition, crizotinib targets a critical vulnerability in many p53-mutated cancers. Unlike its wild-type counterpart, the p53 mutant promotes cancer cell survival. Crizotinib can cause the degradation of the p53 mutant, sensitizing these cancer cells to DNA-damaging substances and triggering apoptosis. Interestingly, other reports demonstrated that crizotinib exhibits anti-bacterial activity, targeting Gram-positive bacteria. Also, it is active against drug-resistant strains. In summary, crizotinib exerts anti-tumor effects through several mechanisms, including the inhibition of kinases and the restoration of drug sensitivity. The potential of crizotinib in combination therapies is emphasized, particularly in cancers with a high prevalence of the p53 mutant, such as triple-negative breast cancer (TNBC) and high-grade serous ovarian cancer (HGSOC).
Collapse
Affiliation(s)
- Sanaa Musa
- Department of Nutrition and Natural Products, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 11016, Israel
| | - Noor Amara
- Department of Nutrition and Natural Products, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 11016, Israel
| | - Adan Selawi
- Department of Nutrition and Natural Products, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 11016, Israel
| | - Junbiao Wang
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Cristina Marchini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Abed Agbarya
- Oncology Department, Bnai Zion MC, Haifa 31048, Israel
| | - Jamal Mahajna
- Department of Nutrition and Natural Products, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 11016, Israel
| |
Collapse
|
16
|
Butera A, Amelio I. Deciphering the significance of p53 mutant proteins. Trends Cell Biol 2024:S0962-8924(24)00117-X. [PMID: 38960851 DOI: 10.1016/j.tcb.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024]
Abstract
Mutations in the p53 gene compromise its role as guardian of genomic integrity, yielding predominantly missense p53 mutant proteins. The gain-of-function hypothesis has long suggested that these mutant proteins acquire new oncogenic properties; however, recent studies challenge this notion, indicating that targeting these mutants may not impact the fitness of cancer cells. Mounting evidence indicates that tumorigenesis involves a cooperative interplay between driver mutations and cellular state, influenced by developmental stage, external insults, and tissue damage. Consistently, the behavior and properties of p53 mutants are altered by the context. This article aims to provide a balanced summary of the evolving evidence regarding the contribution of p53 mutants in the biology of cancer while contemplating alternative frameworks to decipher the complexity of p53 mutants within their physiological contexts.
Collapse
Affiliation(s)
- Alessio Butera
- Chair of Systems Toxicology, University of Konstanz, Konstanz, Germany
| | - Ivano Amelio
- Chair of Systems Toxicology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
17
|
Lin Y, Tang W, Huang P, Wang Z, Duan L, Jia C, Sun R, Liu L, Shen J. Denticleless E3 ubiquitin protein ligase (DTL) maintains the proliferation and differentiation of epidermis and hair follicles during skin development. Dev Dyn 2024; 253:635-647. [PMID: 38131461 DOI: 10.1002/dvdy.682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND A precise balance between the proliferation and differentiation of epidermal progenitors is required to achieve the barrier function during the development of epidermis. During the entire process of skin development, the newly formed basal layer cells divide, differentiate, and migrate outward to the surface of the skin, which is tightly regulated by a series of events related to cell cycle progression. The CRL4DTL complex (Cullin 4 RING ligase, in association with the substrate receptor DTL) has long emerged as a master regulator in various cellular processes, which mediates the degradation of key cell cycle proteins. However, the roles of DTL in regulating epidermal morphogenesis during skin development remain unclear. RESULTS We showed that DTL deficiency in epidermal progenitor cells leads to defects in epidermal stratification and loss of hair follicles accompanied by reduced epidermal progenitor cells and disturbed cell cycle progression during skin development. Transcriptome analysis revealed that p53 pathway is activated in DTL-depleted epidermal progenitor cells. The apoptosis of epidermal cells showed in DTL deficiency mice is rescued by the absence of p53, but the proliferation and differentiation defects were p53-independent. CONCLUSION Our findings indicate that DTL plays a vital role in epidermal malformation during skin development.
Collapse
Affiliation(s)
- Yanhui Lin
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Weibo Tang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Laboratory of Tumor Targeted Therapy and Translational Medicine, Jilin Medical University, Jilin, China
| | - Peijun Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhendong Wang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lian Duan
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chonghui Jia
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruizhen Sun
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Li Liu
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jingling Shen
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| |
Collapse
|
18
|
Haake SM, Rios BL, Pozzi A, Zent R. Integrating integrins with the hallmarks of cancer. Matrix Biol 2024; 130:20-35. [PMID: 38677444 DOI: 10.1016/j.matbio.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Epithelial cells adhere to a specialized extracellular matrix called the basement membrane which allows them to polarize and form epithelial tissues. The extracellular matrix provides essential physical scaffolding and biochemical and biophysical cues required for tissue morphogenesis, differentiation, function, and homeostasis. Epithelial cell adhesion to the extracellular matrix (i.e., basement membrane) plays a critical role in organizing epithelial tissues, separating the epithelial cells from the stroma. Epithelial cell detachment from the basement membrane classically results in death, though detachment or invasion through the basement membrane represents a critical step in carcinogenesis. Epithelial cells bind to the extracellular matrix via specialized matrix receptors, including integrins. Integrins are transmembrane receptors that form a mechanical linkage between the extracellular matrix and the intracellular cytoskeleton and are required for anchorage-dependent cellular functions such as proliferation, migration, and invasion. The role of integrins in the development, growth, and dissemination of multiple types of carcinomas has been investigated by numerous methodologies, which has led to great complexity. To organize this vast array of information, we have utilized the "Hallmarks of Cancer" from Hanahan and Weinberg as a convenient framework to discuss the role of integrins in the pathogenesis of cancers. This review explores this biology and how its complexity has impacted the development of integrin-targeted anti-cancer therapeutics.
Collapse
Affiliation(s)
- Scott M Haake
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Veterans Affairs, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Cancer Biology Program, Vanderbilt University, Nashville, TN, USA.
| | - Brenda L Rios
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Cancer Biology Program, Vanderbilt University, Nashville, TN, USA
| | - Ambra Pozzi
- Department of Veterans Affairs, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Roy Zent
- Department of Veterans Affairs, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Cancer Biology Program, Vanderbilt University, Nashville, TN, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
19
|
Jia MH, Zhang SL, Liu TB, Jue YF, Liu XL, Liu JB. Systematic review and meta-analysis of relationship between p53 protein expression and lymph node metastasis, vascular invasion, and perineural invasion in pancreatic cancer. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:376-386. [DOI: 10.11569/wcjd.v32.i5.376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
|
20
|
Pothuraju R, Khan I, Jain M, Bouvet M, Malafa M, Roy HK, Kumar S, Batra SK. Colorectal cancer murine models: Initiation to metastasis. Cancer Lett 2024; 587:216704. [PMID: 38360138 PMCID: PMC11257378 DOI: 10.1016/j.canlet.2024.216704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Despite significant advancements in prevention and treatment, colorectal cancer (CRC) remains the third leading cause of cancer-related deaths. Animal models, including xenografts, syngeneic, and genetically engineered, have emerged as indispensable tools in cancer research. These models offer a valuable platform to address critical questions regarding molecular pathogenesis and test therapeutic interventions before moving on to clinical trials. Advancements in CRC animal models have also facilitated the advent of personalized and precision medicine. Patient-derived xenografts and genetically engineered mice that mirror features of human tumors allow for tailoring treatments to specific CRC subtypes, improving treatment outcomes and quality of life. To overcome the limitations of individual model systems, recent studies have employed a multi-modal approach, combining different animal models, 3D organoids, and in vitro studies. This integrative approach provides a comprehensive understanding of CRC biology, including the tumor microenvironment and therapeutic responses, driving the development of more effective and personalized therapeutic interventions. This review discusses the animal models used for CRC research, including recent advancements and limitations of these animal models.
Collapse
Affiliation(s)
- Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Imran Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, California, USA
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Hemant K Roy
- Department of Medicine, Baylor College of Medicine, Houston, TX-77030, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE-68198, USA.
| |
Collapse
|
21
|
Song B, Yang P, Zhang S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun (Lond) 2024; 44:297-360. [PMID: 38311377 PMCID: PMC10958678 DOI: 10.1002/cac2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Targeted therapies aimed at key oncogenic driver mutations in combination with chemotherapy and radiotherapy as well as immunotherapy have benefited cancer patients considerably. Tumor protein p53 (TP53), a crucial tumor suppressor gene encoding p53, regulates numerous downstream genes and cellular phenotypes in response to various stressors. The affected genes are involved in diverse processes, including cell cycle arrest, DNA repair, cellular senescence, metabolic homeostasis, apoptosis, and autophagy. However, accumulating recent studies have continued to reveal novel and unexpected functions of p53 in governing the fate of tumors, for example, functions in ferroptosis, immunity, the tumor microenvironment and microbiome metabolism. Among the possibilities, the evolutionary plasticity of p53 is the most controversial, partially due to the dizzying array of biological functions that have been attributed to different regulatory mechanisms of p53 signaling. Nearly 40 years after its discovery, this key tumor suppressor remains somewhat enigmatic. The intricate and diverse functions of p53 in regulating cell fate during cancer treatment are only the tip of the iceberg with respect to its equally complicated structural biology, which has been painstakingly revealed. Additionally, TP53 mutation is one of the most significant genetic alterations in cancer, contributing to rapid cancer cell growth and tumor progression. Here, we summarized recent advances that implicate altered p53 in modulating the response to various cancer therapies, including chemotherapy, radiotherapy, and immunotherapy. Furthermore, we also discussed potential strategies for targeting p53 as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ping Yang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanP. R. China
- Laboratory of Radiation MedicineNHC Key Laboratory of Nuclear Technology Medical TransformationWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
22
|
Guo H, Zhou C, Zheng M, Zhang J, Wu H, He Q, Ding L, Yang B. Insights into the role of derailed endocytic trafficking pathway in cancer: From the perspective of cancer hallmarks. Pharmacol Res 2024; 201:107084. [PMID: 38295915 DOI: 10.1016/j.phrs.2024.107084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/06/2024]
Abstract
The endocytic trafficking pathway is a highly organized cellular program responsible for the regulation of membrane components and uptake of extracellular substances. Molecules internalized into the cell through endocytosis will be sorted for degradation or recycled back to membrane, which is determined by a series of sorting events. Many receptors, enzymes, and transporters on the membrane are strictly regulated by endocytic trafficking process, and thus the endocytic pathway has a profound effect on cellular homeostasis. However, the endocytic trafficking process is typically dysregulated in cancers, which leads to the aberrant retention of receptor tyrosine kinases and immunosuppressive molecules on cell membrane, the loss of adhesion protein, as well as excessive uptake of nutrients. Therefore, hijacking endocytic trafficking pathway is an important approach for tumor cells to obtain advantages of proliferation and invasion, and to evade immune attack. Here, we summarize how dysregulated endocytic trafficking process triggers tumorigenesis and progression from the perspective of several typical cancer hallmarks. The impact of endocytic trafficking pathway to cancer therapy efficacy is also discussed.
Collapse
Affiliation(s)
- Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chen Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingming Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honghai Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; School of Medicine, Hangzhou City University, Hangzhou 310015, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China.
| |
Collapse
|
23
|
Bhattacharya S, Sarker S, Das S, Ahir M, Chattopadhyay S, Ghosh S, Adhikary A. microRNA-205 represses breast cancer metastasis by perturbing the rab coupling protein [RCP]-mediated integrin β1 recycling on the membrane. Apoptosis 2024; 29:191-209. [PMID: 37945815 DOI: 10.1007/s10495-023-01912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
During cancer cell invasion, integrin undergoes constant endo/exocytic trafficking. It has been found that the recycling ability of integrin β1 through Rab11-controlled long loop pathways is directly associated with cancer invasion. Previous studies showed that gain-of-function mutant p53 regulates the Rab-coupling protein [RCP]-mediated integrin β1 recycling by inactivating tumor suppressor TAp63. So, we were interested to investigate the involvement of miR-205 in this process. In the current study first, we evaluated that the lower expression of miR-205 in MDA-MB-231 cell line is associated with high motility and invasiveness. Further investigation corroborated that miR-205 directly targets RCP resulting in attenuated RCP-mediated integrin β1 recycling. Overexpression of TAp63 validates our in vitro findings. To appraise the anti-metastatic role of miR-205, we developed two in vivo experimental models- xenograft-chick embryo and xenograft-immunosuppressed BALB/c mice. Our in vivo results support the negative effect of miR-205 on metastasis. Therefore, these findings advocate the tumor suppressor activity of miR-205 in breast cancer cells and suggest that in the future development of miR-205-targeting RNAi therapeutics could be a smart alternative approach to prevent the metastatic fate of the disease.
Collapse
Affiliation(s)
- Saurav Bhattacharya
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, 700106, West Bengal, India
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Sushmita Sarker
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, 700106, West Bengal, India
| | - Shaswati Das
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, 700106, West Bengal, India
| | - Manisha Ahir
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, 700106, West Bengal, India
- Baylor College of Medicine, Houston, TX, USA
| | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Swatilekha Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata. Major Arterial Road [South-East], Action Area II, Newtown, Kolkata, 700135, West Bengal, India
| | - Arghya Adhikary
- Department of Life science & Bio-technology, Jadavpur University, Kolkata, West Bengal, India.
| |
Collapse
|
24
|
De Rosa C, De Rosa V, Tuccillo C, Tirino V, Amato L, Papaccio F, Ciardiello D, Napolitano S, Martini G, Ciardiello F, Morgillo F, Iommelli F, Della Corte CM. ITGB1 and DDR activation as novel mediators in acquired resistance to osimertinib and MEK inhibitors in EGFR-mutant NSCLC. Sci Rep 2024; 14:500. [PMID: 38177190 PMCID: PMC10766645 DOI: 10.1038/s41598-023-50568-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
Osimertinib is a third-generation tyrosine kinase inhibitor clinically approved for first-line treatment of EGFR-mutant non-small cell lung cancer (NSCLC) patients. Although an impressive drug response is initially observed, in most of tumors, resistance occurs after different time and an alternative therapeutic strategy to induce regression disease is currently lacking. The hyperactivation of MEK/MAPKs, is one the most common event identified in osimertinib-resistant (OR) NSCLC cells. However, in response to selective drug pressure, the occurrence of multiple mechanisms of resistance may contribute to treatment failure. In particular, the epithelial-to-mesenchymal transition (EMT) and the impaired DNA damage repair (DDR) pathways are recognized as additional cause of resistance in NSCLC thus promoting tumor progression. Here we showed that concurrent upregulation of ITGB1 and DDR family proteins may be associated with an increase of EMT pathways and linked to both osimertinib and MEK inhibitor resistance to cell death. Furthermore, this study demonstrated the existence of an interplay between ITGB1 and DDR and highlighted, for the first time, that combined treatment of MEK inhibitor with DDRi may be relevant to downregulate ITGB1 levels and increase cell death in OR NSCLC cells.
Collapse
Affiliation(s)
- Caterina De Rosa
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Viviana De Rosa
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Concetta Tuccillo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Virginia Tirino
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luisa Amato
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Federica Papaccio
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Davide Ciardiello
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Stefania Napolitano
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giulia Martini
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Floriana Morgillo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Francesca Iommelli
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | | |
Collapse
|
25
|
Chamorro DF, Somes LK, Hoyos V. Engineered Adoptive T-Cell Therapies for Breast Cancer: Current Progress, Challenges, and Potential. Cancers (Basel) 2023; 16:124. [PMID: 38201551 PMCID: PMC10778447 DOI: 10.3390/cancers16010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Breast cancer remains a significant health challenge, and novel treatment approaches are critically needed. This review presents an in-depth analysis of engineered adoptive T-cell therapies (E-ACTs), an innovative frontier in cancer immunotherapy, focusing on their application in breast cancer. We explore the evolving landscape of chimeric antigen receptor (CAR) and T-cell receptor (TCR) T-cell therapies, highlighting their potential and challenges in targeting breast cancer. The review addresses key obstacles such as target antigen selection, the complex breast cancer tumor microenvironment, and the persistence of engineered T-cells. We discuss the advances in overcoming these barriers, including strategies to enhance T-cell efficacy. Finally, our comprehensive analysis of the current clinical trials in this area provides insights into the future possibilities and directions of E-ACTs in breast cancer treatment.
Collapse
Affiliation(s)
- Diego F. Chamorro
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; (D.F.C.); (L.K.S.)
| | - Lauren K. Somes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; (D.F.C.); (L.K.S.)
| | - Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; (D.F.C.); (L.K.S.)
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
26
|
Zhou Y, Jin J, Ji Y, Zhang J, Fu N, Chen M, Wang J, Qin K, Jiang Y, Cheng D, Deng X, Shen B. TP53 missense mutation reveals gain-of-function properties in small-sized KRAS transformed pancreatic ductal adenocarcinoma. J Transl Med 2023; 21:872. [PMID: 38037073 PMCID: PMC10691048 DOI: 10.1186/s12967-023-04742-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Although the molecular features of pancreatic ductal adenocarcinoma (PDAC) have been well described, the impact of detailed gene mutation subtypes on disease progression remained unclear. This study aimed to evaluate the impact of different TP53 mutation subtypes on clinical characteristics and outcomes of patients with PDAC. METHODS We included 639 patients treated with PDAC in Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine between Jan 2019 and Jun 2021. The genomic alterations of PDAC were analyzed, and the association of TP53 mutation subtypes and other core gene pathway alterations with patients' clinical characteristics were evaluated by Chi-squared test, Kaplan-Meier method and Cox regression model. RESULTS TP53 missense mutation was significantly associated with poor differentiation in KRASmut PDAC (50.7% vs. 36.1%, P = 0.001). In small-sized (≤ 2 cm) KRASmut tumors, significantly higher LNs involvement (54.8% vs. 23.5%, P = 0.010) and distal metastic rate (20.5% vs. 2.9%, P = 0.030) were observed in those with TP53 missense mutation instead of truncating mutation. Compared with TP53 truncating mutation, missense mutation was significantly associated with reduced DFS (6.6 [5.6-7.6] vs. 9.2 [5.2-13.3] months, HR 0.368 [0.200-0.677], P = 0.005) and OS (9.6 [8.0-11.1] vs. 18.3 [6.7-30.0] months, HR 0.457 [0.248-0.842], P = 0.012) in patients who failed to receive chemotherapy, while higher OS (24.2 [20.8-27.7] vs. 23.8 [19.0-28.5] months, HR 1.461 [1.005-2.124], P = 0.047) was observed in TP53missense cases after chemotherapy. CONCLUSIONS TP53 missense mutation was associated with poor tumor differentiation, and revealed gain-of-function properties in small-sized KRAS transformed PDAC. Nonetheless, it was not associated with insensitivity to chemotherapy, highlighting the neoadjuvant therapy before surgery as the potential optimized strategy for the treatment of a subset of patients.
Collapse
Affiliation(s)
- Yiran Zhou
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiabin Jin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuchen Ji
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqiang Zhang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ningzhen Fu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengmin Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Wang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Qin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dongfeng Cheng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
27
|
Alvarado-Ortiz E, Ortiz-Sánchez E, Sarabia-Sánchez MA, de la Cruz-López KG, García-Carrancá A, Robles-Flores M. Mutant p53 gain-of-function stimulates canonical Wnt signaling via PI3K/AKT pathway in colon cancer. J Cell Commun Signal 2023:10.1007/s12079-023-00793-4. [PMID: 37982965 DOI: 10.1007/s12079-023-00793-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023] Open
Abstract
Aberrant canonical Wnt signaling is a hallmark of colon cancer. The TP53 tumor suppressor gene is altered in many solid tumors, including colorectal cancer, resulting in mutant versions of p53 (mut-p53) that lose their tumor suppressor capacities and acquire new-oncogenic functions (GOFs) critical for disease progression. Although the mechanisms related to mut-p53 GOF have been explored extensively, the relevance of mut-p53 in the canonical Wnt pathway is not well defined. This work investigated the influence of mut-p53 compared to wt-p53 in β-catenin-dependent Wnt signaling. Using the TCGA public data from Pan-Cancer and the GEPIA2 platform, an in silico analysis of wt-p53 versus mut-p53 genotyped colorectal cancer patients showed that TP53 (p53) and CTNNB1 (β-catenin) are significantly overexpressed in colorectal cancer, compared with normal tissue. Using p53 overexpression or p53 knockdown assays of wt-p53 or mut-p53, we found that while wt-p53 antagonizes canonical Wnt signaling, mut-p53 induces the opposite effect, improving the β-catenin-dependent transcriptional activity and colony formation ability of colon cancer cells, which were both decreased by mut-p53 knockdown expression. The mechanism involved in mut-p53-induced activation of canonical Wnt appears to be via AKT-mediated phosphorylation of Ser 552 of β-catenin, which is known to stabilize and enhance its transcriptional activity. We also found that while wt-p53 expression contributes to 5-FU sensitivity in colon cancer cells, the RITA p53 reactivating molecule counteracted the resistance against 5-FU in cells expressing mut-p53. Our results indicate that mut-p53 GOF acts as a positive regulator of canonical Wnt signaling and participates in the induction of resistance to 5-FU in colon cancer cells.
Collapse
Affiliation(s)
- Eduardo Alvarado-Ortiz
- Programa de Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, Mexico City, Mexico
| | | | - Karen Griselda de la Cruz-López
- Laboratorio de Virus & Cáncer, Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México & Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Alejandro García-Carrancá
- Laboratorio de Virus & Cáncer, Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México & Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Martha Robles-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
28
|
Brennan K, Espín-Pérez A, Chang S, Bedi N, Saumyaa S, Shin JH, Plevritis SK, Gevaert O, Sunwoo JB, Gentles AJ. Loss of p53-DREAM-mediated repression of cell cycle genes as a driver of lymph node metastasis in head and neck cancer. Genome Med 2023; 15:98. [PMID: 37978395 PMCID: PMC10656821 DOI: 10.1186/s13073-023-01236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The prognosis for patients with head and neck cancer (HNC) is poor and has improved little in recent decades, partially due to lack of therapeutic options. To identify effective therapeutic targets, we sought to identify molecular pathways that drive metastasis and HNC progression, through large-scale systematic analyses of transcriptomic data. METHODS We performed meta-analysis across 29 gene expression studies including 2074 primary HNC biopsies to identify genes and transcriptional pathways associated with survival and lymph node metastasis (LNM). To understand the biological roles of these genes in HNC, we identified their associated cancer pathways, as well as the cell types that express them within HNC tumor microenvironments, by integrating single-cell RNA-seq and bulk RNA-seq from sorted cell populations. RESULTS Patient survival-associated genes were heterogenous and included drivers of diverse tumor biological processes: these included tumor-intrinsic processes such as epithelial dedifferentiation and epithelial to mesenchymal transition, as well as tumor microenvironmental factors such as T cell-mediated immunity and cancer-associated fibroblast activity. Unexpectedly, LNM-associated genes were almost universally associated with epithelial dedifferentiation within malignant cells. Genes negatively associated with LNM consisted of regulators of squamous epithelial differentiation that are expressed within well-differentiated malignant cells, while those positively associated with LNM represented cell cycle regulators that are normally repressed by the p53-DREAM pathway. These pro-LNM genes are overexpressed in proliferating malignant cells of TP53 mutated and HPV + ve HNCs and are strongly associated with stemness, suggesting that they represent markers of pre-metastatic cancer stem-like cells. LNM-associated genes are deregulated in high-grade oral precancerous lesions, and deregulated further in primary HNCs with advancing tumor grade and deregulated further still in lymph node metastases. CONCLUSIONS In HNC, patient survival is affected by multiple biological processes and is strongly influenced by the tumor immune and stromal microenvironments. In contrast, LNM appears to be driven primarily by malignant cell plasticity, characterized by epithelial dedifferentiation coupled with EMT-independent proliferation and stemness. Our findings postulate that LNM is initially caused by loss of p53-DREAM-mediated repression of cell cycle genes during early tumorigenesis.
Collapse
Affiliation(s)
- Kevin Brennan
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA.
| | - Almudena Espín-Pérez
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Serena Chang
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - Nikita Bedi
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - Saumyaa Saumyaa
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - June Ho Shin
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - Sylvia K Plevritis
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - John B Sunwoo
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - Andrew J Gentles
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
29
|
Pal A, Gonzalez-Malerva L, Eaton S, Xu C, Zhang Y, Grief D, Sakala L, Nwekwo L, Zeng J, Christensen G, Gupta C, Streitwieser E, Singharoy A, Park JG, LaBaer J. Multidimensional quantitative phenotypic and molecular analysis reveals neomorphic behaviors of p53 missense mutants. NPJ Breast Cancer 2023; 9:78. [PMID: 37773066 PMCID: PMC10541912 DOI: 10.1038/s41523-023-00582-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
Mutations in the TP53 tumor suppressor gene occur in >80% of the triple-negative or basal-like breast cancer. To test whether neomorphic functions of specific TP53 missense mutations contribute to phenotypic heterogeneity, we characterized phenotypes of non-transformed MCF10A-derived cell lines expressing the ten most common missense mutant p53 proteins and observed a wide spectrum of phenotypic changes in cell survival, resistance to apoptosis and anoikis, cell migration, invasion and 3D mammosphere architecture. The p53 mutants R248W, R273C, R248Q, and Y220C are the most aggressive while G245S and Y234C are the least, which correlates with survival rates of basal-like breast cancer patients. Interestingly, a crucial amino acid difference at one position-R273C vs. R273H-has drastic changes on cellular phenotype. RNA-Seq and ChIP-Seq analyses show distinct DNA binding properties of different p53 mutants, yielding heterogeneous transcriptomics profiles, and MD simulation provided structural basis of differential DNA binding of different p53 mutants. Integrative statistical and machine-learning-based pathway analysis on gene expression profiles with phenotype vectors across the mutant cell lines identifies quantitative association of multiple pathways including the Hippo/YAP/TAZ pathway with phenotypic aggressiveness. Further, comparative analyses of large transcriptomics datasets on breast cancer cell lines and tumors suggest that dysregulation of the Hippo/YAP/TAZ pathway plays a key role in driving the cellular phenotypes towards basal-like in the presence of more aggressive p53 mutants. Overall, our study describes distinct gain-of-function impacts on protein functions, transcriptional profiles, and cellular behaviors of different p53 missense mutants, which contribute to clinical phenotypic heterogeneity of triple-negative breast tumors.
Collapse
Affiliation(s)
- Anasuya Pal
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Laura Gonzalez-Malerva
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Seron Eaton
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Chenxi Xu
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Yining Zhang
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Dustin Grief
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Lydia Sakala
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Lilian Nwekwo
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Jia Zeng
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Grant Christensen
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Chitrak Gupta
- The Biodesign Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Ellen Streitwieser
- The Biodesign Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Abhishek Singharoy
- The Biodesign Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Jin G Park
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
| | - Joshua LaBaer
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
30
|
Okuyama K, Fukushima H, Naruse T, Yanamoto S. Cell-in-cell structure in cancer: evading strategies from anti-cancer therapies. Front Oncol 2023; 13:1248097. [PMID: 37790755 PMCID: PMC10544585 DOI: 10.3389/fonc.2023.1248097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
One of the regulated forms of cell death is the cell-in-cell (CIC) structure, in which a surviving cell is engulfed by another cell, a mechanism that causes the death of the engulfed cell by an adjacent cell. Several investigators have previously shown that the presence of CICs is an independent risk factor significantly associated with decreased survival in patients with various types of cancer. In this review, we summarize the role of CIC in the tumor microenvironment (TME), including changes and crosstalk of molecules and proteins in the surrounding CIC, and the role of these factors in contributing to therapeutic resistance acquisition. Moreover, CIC structure formation is influenced by the modulation of TME, which may lead to changes in cellular properties. Future use of CIC as a clinical diagnostic tool will require a better understanding of the effects of chemotherapy on CIC, biomarkers for each CIC formation process, and the development of automated CIC detection methods in tissue sections of tumor specimens.
Collapse
Affiliation(s)
- Kohei Okuyama
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromasa Fukushima
- Department of Clinical Oral Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tomofumi Naruse
- Department of Clinical Oral Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
31
|
Pavlakis E, Neumann M, Merle N, Wieboldt R, Wanzel M, Ponath V, Pogge von Strandmann E, Elmshäuser S, Stiewe T. Mutant p53-ENTPD5 control of the calnexin/calreticulin cycle: a druggable target for inhibiting integrin-α5-driven metastasis. J Exp Clin Cancer Res 2023; 42:203. [PMID: 37563605 PMCID: PMC10413714 DOI: 10.1186/s13046-023-02785-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND TP53, encoding the tumor suppressor p53, is frequently mutated in various cancers, producing mutant p53 proteins (mutp53) which can exhibit neomorphic, gain-of-function properties. The latter transform p53 into an oncoprotein that promotes metastatic tumor progression via downstream effectors such as ENTPD5, an endoplasmic reticulum UDPase involved in the calnexin/calreticulin cycle of N-glycoprotein biosynthesis. Elucidating the mechanisms underlying the pro-metastatic functions of the mutp53-ENTPD5 axis is crucial for developing targeted therapies for aggressive metastatic cancer. METHODS We analyzed pancreatic, lung, and breast adenocarcinoma cells with p53 missense mutations to study the impact of mutp53 and ENTPD5 on the N-glycoproteins integrin-α5 (ITGA5) and integrin-β1 (ITGB1), which heterodimerize to form the key fibronectin receptor. We assessed the role of the mutp53-ENTPD5 axis in integrin-dependent tumor-stroma interactions and tumor cell motility using adhesion, migration, and invasion assays, identifying and validating therapeutic intervention targets. We employed an orthotopic xenograft model of pancreatic ductal adenocarcinoma to examine in vivo targeting of mutp53-ENTPD5-mediated ITGA5 regulation for cancer therapy. RESULTS Mutp53 depletion diminished ITGA5 and ITGB1 expression and impaired tumor cell adhesion, migration, and invasion, rescued by ENTPD5. The mutp53-ENTPD5 axis maintained ITGA5 expression and function via the calnexin/calreticulin cycle. Targeting this axis using ITGA5-blocking antibodies, α-glucosidase inhibitors, or pharmacological degradation of mutp53 by HSP90 inhibitors, such as Ganetespib, effectively inhibited ITGA5-mediated cancer cell motility in vitro. In the orthotopic xenograft model, Ganetespib reduced ITGA5 expression and metastasis in an ENTPD5-dependent manner. CONCLUSIONS The mutp53-ENTPD5 axis fosters ITGA5 and ITGB1 expression and tumor cell motility through the calnexin/calreticulin cycle, contributing to cancer metastasis. ITGA5-blocking antibodies or α-glucosidase inhibitors target this axis and represent potential therapeutic options worth exploring in preclinical models. The pharmacologic degradation of mutp53 by HSP90 inhibitors effectively blocks ENTPD5-ITGA5-mediated cancer cell motility and metastasis in vivo, warranting further clinical evaluation in p53-mutant cancers. This research underscores the significance of understanding the complex interplay between mutp53, ENTPD5, and the calnexin/calreticulin cycle in integrin-mediated metastatic tumor progression, offering valuable insights for the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Evangelos Pavlakis
- Institute of Molecular Oncology, Philipps-University, 35043, Marburg, Germany
| | - Michelle Neumann
- Institute of Molecular Oncology, Philipps-University, 35043, Marburg, Germany
| | - Nastasja Merle
- Institute of Molecular Oncology, Philipps-University, 35043, Marburg, Germany
| | - Ronja Wieboldt
- Institute of Molecular Oncology, Philipps-University, 35043, Marburg, Germany
| | - Michael Wanzel
- Institute of Molecular Oncology, Philipps-University, 35043, Marburg, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Marburg, 35043, Germany
| | - Viviane Ponath
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
| | | | - Sabrina Elmshäuser
- Institute of Molecular Oncology, Philipps-University, 35043, Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps-University, 35043, Marburg, Germany.
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Marburg, 35043, Germany.
- Genomics Core Facility, Philipps-University, 35043, Marburg, Germany.
- Institute for Lung Health (ILH), Justus Liebig University, 35392, Giessen, Germany.
| |
Collapse
|
32
|
Tseng TH, Shao YC, Lee YJ, Lee HJ. 2-(4-Benzyloxy-3-methoxyphenyl)-5-(carbethoxyethylene)-7-methoxy-benzofuran, a Benzofuran Derivative, Suppresses Metastasis Effects in P53-Mutant Hepatocellular Carcinoma Cells. Biomedicines 2023; 11:2027. [PMID: 37509669 PMCID: PMC10377018 DOI: 10.3390/biomedicines11072027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
2-(4-Benzyloxy-3-methoxyphenyl)-5-(carbethoxyethylene)-7-methoxy-benzofuran (BMBF), a benzofuran derivative, is an intermediate found in the process of total synthesis of ailanthoidol. Benzofuran derivatives are a class of compounds that possess various biological and pharmacological activities. The present study explored the anti-metastasis effects of BMBF in hepatocellular carcinoma (HCC). Our preliminary findings indicate that BMBF suppresses the proliferation and changes the morphology of Huh7-an HCC cell line with a mutated p53 gene (Y220C). According to a scratching motility assay, non-cytotoxic concentrations of BMBF significantly inhibited the motility and migration in Huh7 cells. BMBF upregulated the expression of E-cadherin and downregulated the expression of vimentin, Slug, and MMP9, which are associated with epithelial-mesenchymal transition (EMT) and metastasis in Huh7 cells. BMBF decreased the expression of integrin α7, deactivated its downstream signal FAK/AKT, and inhibited p53 protein levels. Cell transfection with p53 siRNA resulted in the prevention of cell invasion because of the reduction in integrin α7, Slug, and MMP-9 in Huh7 cells. BMBF had anti-metastatic effects in PLC/PRF/5-an HCC cell line with R249S, a mutated p53 gene. Our findings indicate that BMBF has anti-metastatic effects in downregulating p53 and mediating the suppression of integrin α7, EMT, and MMP-9 in HCC cells with a mutated p53 gene.
Collapse
Affiliation(s)
- Tsui-Hwa Tseng
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yi-Chia Shao
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Yean-Jang Lee
- Department of Chemistry, National Changhua University of Education, Changhua 50007, Taiwan
| | - Huei-Jane Lee
- Department of Biochemistry, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
33
|
Wang J, Liu W, Zhang L, Zhang J. Targeting mutant p53 stabilization for cancer therapy. Front Pharmacol 2023; 14:1215995. [PMID: 37502209 PMCID: PMC10369794 DOI: 10.3389/fphar.2023.1215995] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Over 50% cancer bears TP53 mutation, the highly stabilized mutant p53 protein drives the tumorigenesis and progression. Mutation of p53 not only cause loss-of-function and dominant-negative effects (DNE), but also results in the abnormal stability by the regulation of the ubiquitin-proteasome system and molecular chaperones that promote tumorigenesis through gain-of-function effects. The accumulation of mutant p53 is mainly regulated by molecular chaperones, including Hsp40, Hsp70, Hsp90 and other biomolecules such as TRIM21, BAG2 and Stat3. In addition, mutant p53 forms prion-like aggregates or complexes with other protein molecules and result in the accumulation of mutant p53 in tumor cells. Depleting mutant p53 has become one of the strategies to target mutant p53. This review will focus on the mechanism of mutant p53 stabilization and discuss how the strategies to manipulate these interconnected processes for cancer therapy.
Collapse
Affiliation(s)
- Jiajian Wang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Wenjun Liu
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Lanqing Zhang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jihong Zhang
- Medical School, Kunming University of Science and Technology, Kunming, China
- Yunnan Province Clinical Research Center for Hematologic Disease, Kunming, China
| |
Collapse
|
34
|
Wilson B, Flett C, Gemperle J, Lawless C, Hartshorn M, Hinde E, Harrison T, Chastney M, Taylor S, Allen J, Norman JC, Zacharchenko T, Caswell PT. Proximity labelling identifies pro-migratory endocytic recycling cargo and machinery of the Rab4 and Rab11 families. J Cell Sci 2023; 136:jcs260468. [PMID: 37232246 PMCID: PMC10323252 DOI: 10.1242/jcs.260468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
Endocytic recycling controls the return of internalised cargoes to the plasma membrane to coordinate their positioning, availability and downstream signalling. The Rab4 and Rab11 small GTPase families regulate distinct recycling routes, broadly classified as fast recycling from early endosomes (Rab4) and slow recycling from perinuclear recycling endosomes (Rab11), and both routes handle a broad range of overlapping cargoes to regulate cell behaviour. We adopted a proximity labelling approach, BioID, to identify and compare the protein complexes recruited by Rab4a, Rab11a and Rab25 (a Rab11 family member implicated in cancer aggressiveness), revealing statistically robust protein-protein interaction networks of both new and well-characterised cargoes and trafficking machinery in migratory cancer cells. Gene ontological analysis of these interconnected networks revealed that these endocytic recycling pathways are intrinsically connected to cell motility and cell adhesion. Using a knock-sideways relocalisation approach, we were further able to confirm novel links between Rab11, Rab25 and the ESCPE-1 and retromer multiprotein sorting complexes, and identify new endocytic recycling machinery associated with Rab4, Rab11 and Rab25 that regulates cancer cell migration in the 3D matrix.
Collapse
Affiliation(s)
- Beverley Wilson
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Chloe Flett
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Jakub Gemperle
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Craig Lawless
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Matthew Hartshorn
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Eleanor Hinde
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Tess Harrison
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Megan Chastney
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Sarah Taylor
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Jennifer Allen
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Jim C. Norman
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Thomas Zacharchenko
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Patrick T. Caswell
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
35
|
Luo M, Huang M, Yang N, Zhu Y, Huang P, Xu Z, Wang W, Cai L. Impairment of rigidity sensing caused by mutant TP53 gain of function in osteosarcoma. Bone Res 2023; 11:28. [PMID: 37246175 DOI: 10.1038/s41413-023-00265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/23/2023] [Accepted: 04/18/2023] [Indexed: 05/30/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant pediatric bone tumor and is characterized by high heterogeneity. Studies have revealed a wide range of phenotypic differences among OS cell lines in terms of their in vivo tumorigenicity and in vitro colony-forming abilities. However, the underlying molecular mechanism of these discrepancies remains unclear. The potential role of mechanotransduction in tumorigenicity is of particular interest. To this end, we tested the tumorigenicity and anoikis resistance of OS cell lines both in vitro and in vivo. We utilized a sphere culture model, a soft agar assay, and soft and rigid hydrogel surface culture models to investigate the function of rigidity sensing in the tumorigenicity of OS cells. Additionally, we quantified the expression of sensor proteins, including four kinases and seven cytoskeletal proteins, in OS cell lines. The upstream core transcription factors of rigidity-sensing proteins were further investigated. We detected anoikis resistance in transformed OS cells. The mechanosensing function of transformed OS cells was also impaired, with general downregulation of rigidity-sensing components. We identified toggling between normal and transformed growth based on the expression pattern of rigidity-sensing proteins in OS cells. We further uncovered a novel TP53 mutation (R156P) in transformed OS cells, which acquired gain of function to inhibit rigidity sensing, thus sustaining transformed growth. Our findings suggest a fundamental role of rigidity-sensing components in OS tumorigenicity as mechanotransduction elements through which cells can sense their physical microenvironment. In addition, the gain of function of mutant TP53 appears to serve as an executor for such malignant programs.
Collapse
Affiliation(s)
- Ming Luo
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Mingyang Huang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ningning Yang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yufan Zhu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Peng Huang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhujun Xu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wengang Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Lin Cai
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
36
|
Hellmold D, Kubelt C, Daunke T, Beckinger S, Janssen O, Hauck M, Schütt F, Adelung R, Lucius R, Haag J, Sebens S, Synowitz M, Held-Feindt J. Sequential Treatment with Temozolomide Plus Naturally Derived AT101 as an Alternative Therapeutic Strategy: Insights into Chemoresistance Mechanisms of Surviving Glioblastoma Cells. Int J Mol Sci 2023; 24:ijms24109075. [PMID: 37240419 DOI: 10.3390/ijms24109075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Glioblastoma (GBM) is a poorly treatable disease due to the fast development of tumor recurrences and high resistance to chemo- and radiotherapy. To overcome the highly adaptive behavior of GBMs, especially multimodal therapeutic approaches also including natural adjuvants have been investigated. However, despite increased efficiency, some GBM cells are still able to survive these advanced treatment regimens. Given this, the present study evaluates representative chemoresistance mechanisms of surviving human GBM primary cells in a complex in vitro co-culture model upon sequential application of temozolomide (TMZ) combined with AT101, the R(-) enantiomer of the naturally occurring cottonseed-derived gossypol. Treatment with TMZ+AT101/AT101, although highly efficient, yielded a predominance of phosphatidylserine-positive GBM cells over time. Analysis of the intracellular effects revealed phosphorylation of AKT, mTOR, and GSK3ß, resulting in the induction of various pro-tumorigenic genes in surviving GBM cells. A Torin2-mediated mTOR inhibition combined with TMZ+AT101/AT101 partly counteracted the observed TMZ+AT101/AT101-associated effects. Interestingly, treatment with TMZ+AT101/AT101 concomitantly changed the amount and composition of extracellular vesicles released from surviving GBM cells. Taken together, our analyses revealed that even when chemotherapeutic agents with different effector mechanisms are combined, a variety of chemoresistance mechanisms of surviving GBM cells must be taken into account.
Collapse
Affiliation(s)
- Dana Hellmold
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany
| | - Carolin Kubelt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany
| | - Tina Daunke
- Institute of Experimental Cancer Research, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany
| | - Silje Beckinger
- Institute of Experimental Cancer Research, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany
| | - Ottmar Janssen
- Institute for Immunology, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany
| | - Margarethe Hauck
- Functional Nanomaterials, Department of Materials Science, Kiel University, 24143 Kiel, Germany
| | - Fabian Schütt
- Functional Nanomaterials, Department of Materials Science, Kiel University, 24143 Kiel, Germany
| | - Rainer Adelung
- Functional Nanomaterials, Department of Materials Science, Kiel University, 24143 Kiel, Germany
| | - Ralph Lucius
- Institute of Anatomy, Kiel University, 24098 Kiel, Germany
| | - Jochen Haag
- Department of Pathology, Kiel University, 24105 Kiel, Germany
| | - Susanne Sebens
- Institute of Experimental Cancer Research, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany
| | - Michael Synowitz
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
37
|
Huang T, Lin Y, Chen J, Hu J, Chen H, Zhang Y, Zhang B, He X. CD51 Intracellular Domain Promotes Cancer Cell Neurotropism through Interacting with Transcription Factor NR4A3 in Colorectal Cancer. Cancers (Basel) 2023; 15:cancers15092623. [PMID: 37174090 PMCID: PMC10177513 DOI: 10.3390/cancers15092623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
The abundant nervous system in intestine provides the basis for perineural invasion (PNI) of colorectal cancer (CRC). PNI is defined as the invasion of the nerves by cancer cells. Although PNI is already known to be an independent prognostic factor in CRC, the molecular mechanism underlying PNI remains obscure. In this study, we first demonstrated that CD51 could promote the neurotropism of tumor cells through cleavage with γ-secretase to generate an intracellular domain (ICD). Mechanistically, ICD of CD51 could bind to the transcription factor NR4A3, and act as a coactivator to promote the expression of downstream effectors, such as NTRK1, NTRK3, and SEMA3E. Pharmacological inhibition of γ-secretase impedes PNI mediated by CD51 in CRC both in vitro and in vivo and may become a potential therapeutic target for PNI in CRC.
Collapse
Affiliation(s)
- Tianze Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Yanyun Lin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Junguo Chen
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Jiancong Hu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Hao Chen
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Yanhong Zhang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Bin Zhang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Xiaosheng He
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| |
Collapse
|
38
|
Neto Í, Rocha J, Gaspar MM, Reis CP. Experimental Murine Models for Colorectal Cancer Research. Cancers (Basel) 2023; 15:2570. [PMID: 37174036 PMCID: PMC10177088 DOI: 10.3390/cancers15092570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy worldwide and in both sexes. Numerous animal models for CRC have been established to study its biology, namely carcinogen-induced models (CIMs) and genetically engineered mouse models (GEMMs). CIMs are valuable for assessing colitis-related carcinogenesis and studying chemoprevention. On the other hand, CRC GEMMs have proven to be useful for evaluating the tumor microenvironment and systemic immune responses, which have contributed to the discovery of novel therapeutic approaches. Although metastatic disease can be induced by orthotopic injection of CRC cell lines, the resulting models are not representative of the full genetic diversity of the disease due to the limited number of cell lines suitable for this purpose. On the other hand, patient-derived xenografts (PDX) are the most reliable for preclinical drug development due to their ability to retain pathological and molecular characteristics. In this review, the authors discuss the various murine CRC models with a focus on their clinical relevance, benefits, and drawbacks. From all models discussed, murine CRC models will continue to be an important tool in advancing our understanding and treatment of this disease, but additional research is required to find a model that can correctly reflect the pathophysiology of CRC.
Collapse
Affiliation(s)
- Íris Neto
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - Catarina P. Reis
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
39
|
Balsa LM, Rodriguez MR, Ferraresi-Curotto V, Parajón-Costa BS, Gonzalez-Baró AC, León IE. Finding New Molecular Targets of Two Copper(II)-Hydrazone Complexes on Triple-Negative Breast Cancer Cells Using Mass-Spectrometry-Based Quantitative Proteomics. Int J Mol Sci 2023; 24:ijms24087531. [PMID: 37108690 PMCID: PMC10139133 DOI: 10.3390/ijms24087531] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer is the most common cancer in women, with a high incidence estimated to reach 2.3 million by 2030. Triple-Negative Breast Cancer (TNBC) is the greatest invasive class of breast cancer with a poor prognosis, due to the side-effects exerted by the chemotherapy used and the low effectivity of novel treatments. In this sense, copper compounds have shown to be potentially effective as antitumor agents, attracting increasing interest as alternatives to the usually employed platinum-derived drugs. Therefore, the aim of this work is to identify differentially expressed proteins in MDA-MB-231 cells exposed to two copper(II)-hydrazone complexes using label-free quantitative proteomics and functional bioinformatics strategies to identify the molecular mechanisms through which these copper complexes exert their antitumoral effect in TNBC cells. Both copper complexes increased proteins involved in endoplasmic reticulum stress and unfolded protein response, as well as the downregulation of proteins related to DNA replication and repair. One of the most relevant anticancer mechanisms of action found for CuHL1 and CuHL2 was the down-regulation of gain-of-function-mutant p53. Moreover, we found a novel and interesting effect for a copper metallodrug, which was the down-regulation of proteins related to lipid synthesis and metabolism that could lead to a beneficial decrease in lipid levels.
Collapse
Affiliation(s)
- Lucia M Balsa
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - María R Rodriguez
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Verónica Ferraresi-Curotto
- Instituto de Física La Plata, IFLP (UNLP, CCT-CONICET La Plata), Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Beatriz S Parajón-Costa
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Ana C Gonzalez-Baró
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Ignacio E León
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
- Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| |
Collapse
|
40
|
Su Z, Kon N, Yi J, Zhao H, Zhang W, Tang Q, Li H, Kobayashi H, Li Z, Duan S, Liu Y, Olive KP, Zhang Z, Honig B, Manfredi JJ, Rustgi AK, Gu W. Specific regulation of BACH1 by the hotspot mutant p53 R175H reveals a distinct gain-of-function mechanism. NATURE CANCER 2023; 4:564-581. [PMID: 36973430 PMCID: PMC10320414 DOI: 10.1038/s43018-023-00532-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023]
Abstract
Although the gain of function (GOF) of p53 mutants is well recognized, it remains unclear whether different p53 mutants share the same cofactors to induce GOFs. In a proteomic screen, we identified BACH1 as a cellular factor that recognizes the p53 DNA-binding domain depending on its mutation status. BACH1 strongly interacts with p53R175H but fails to effectively bind wild-type p53 or other hotspot mutants in vivo for functional regulation. Notably, p53R175H acts as a repressor for ferroptosis by abrogating BACH1-mediated downregulation of SLC7A11 to enhance tumor growth; conversely, p53R175H promotes BACH1-dependent tumor metastasis by upregulating expression of pro-metastatic targets. Mechanistically, p53R175H-mediated bidirectional regulation of BACH1 function is dependent on its ability to recruit the histone demethylase LSD2 to target promoters and differentially modulate transcription. These data demonstrate that BACH1 acts as a unique partner for p53R175H in executing its specific GOFs and suggest that different p53 mutants induce their GOFs through distinct mechanisms.
Collapse
Affiliation(s)
- Zhenyi Su
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Ning Kon
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Jingjie Yi
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Haiqing Zhao
- Departments of Biochemistry and Molecular Biophysics, Systems Biology, and Medical Sciences in Medicine, Zuckerman Institute Columbia University, New York, NY, USA
| | - Wanwei Zhang
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Qiaosi Tang
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Huan Li
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Hiroki Kobayashi
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Zhiming Li
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Shoufu Duan
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Yanqing Liu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Kenneth P Olive
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Barry Honig
- Departments of Biochemistry and Molecular Biophysics, Systems Biology, and Medical Sciences in Medicine, Zuckerman Institute Columbia University, New York, NY, USA
| | - James J Manfredi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
41
|
Sasaki K, Takahashi S, Ouchi K, Otsuki Y, Wakayama S, Ishioka C. Different impacts of TP53 mutations on cell cycle-related gene expression among cancer types. Sci Rep 2023; 13:4868. [PMID: 36964217 PMCID: PMC10039000 DOI: 10.1038/s41598-023-32092-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/22/2023] [Indexed: 03/26/2023] Open
Abstract
Functional properties caused by TP53 mutations are involved in cancer development and progression. Although most of the mutations lose normal p53 functions, some of them, gain-of-function (GOF) mutations, exhibiting novel oncogenic functions. No reports have analyzed the impact of TP53 mutations on the gene expression profile of the p53 signaling pathway across cancer types. This study is a cross-cancer type analysis of the effects of TP53 mutations on gene expression. A hierarchical cluster analysis of the expression profile of the p53 signaling pathway classified 21 cancer types into two clusters (A1 and A2). Changes in the expression of cell cycle-related genes and MKI67 by TP53 mutations were greater in cluster A1 than in cluster A2. There was no distinct difference in the effects between GOF and non-GOF mutations on the gene expression profile of the p53 signaling pathway.
Collapse
Affiliation(s)
- Keiju Sasaki
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shin Takahashi
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Kota Ouchi
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Yasufumi Otsuki
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shonosuke Wakayama
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Chikashi Ishioka
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan.
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan.
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
42
|
Liu J, Zhang C, Xu D, Zhang T, Chang CY, Wang J, Liu J, Zhang L, Haffty BG, Zong WX, Hu W, Feng Z. The ubiquitin ligase TRIM21 regulates mutant p53 accumulation and gain of function in cancer. J Clin Invest 2023; 133:164354. [PMID: 36749630 PMCID: PMC10014102 DOI: 10.1172/jci164354] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
The tumor suppressor TP53 is the most frequently mutated gene in human cancers. Mutant p53 (mutp53) proteins often accumulate to very high levels in human cancers to promote cancer progression through the gain-of-function (GOF) mechanism. Currently, the mechanism underlying mutp53 accumulation and GOF is incompletely understood. Here, we identified TRIM21 as a critical E3 ubiquitin ligase of mutp53 by screening for specific mutp53-interacting proteins. TRIM21 directly interacted with mutp53 but not WT p53, resulting in ubiquitination and degradation of mutp53 to suppress mutp53 GOF in tumorigenesis. TRIM21 deficiency in cancer cells promoted mutp53 accumulation and GOF in tumorigenesis. Compared with p53R172H knockin mice, which displayed mutp53 accumulation specifically in tumors but not normal tissues, TRIM21 deletion in p53R172H knockin mice resulted in mutp53 accumulation in normal tissues, an earlier tumor onset, and a shortened life span of mice. Furthermore, TRIM21 was frequently downregulated in some human cancers, including colorectal and breast cancers, and low TRIM21 expression was associated with poor prognosis in patients with cancers carrying mutp53. Our results revealed a critical mechanism underlying mutp53 accumulation in cancers and also uncovered an important tumor-suppressive function of TRIM21 and its mechanism in cancers carrying mutp53.
Collapse
Affiliation(s)
- Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Dandan Xu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Tianliang Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Chun-Yuan Chang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Jianming Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Jie Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Lanjing Zhang
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Pathology, Princeton Medical Center, Plainsboro, New Jersey, USA
| | - Bruce G. Haffty
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
43
|
The construction and analysis of a prognostic assessment model based on P53-related multi-genes in breast carcinoma. Eur J Cancer Prev 2023:00008469-990000000-00047. [PMID: 36912170 DOI: 10.1097/cej.0000000000000793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
BACKGROUND Breast cancer ranks second in female tumor mortality, with an estimation of 2 million new cases diagnosed each year worldwide. METHODS In our current study, we screened 13 genes highly distributed on the P53 phenotype which were significantly expressed and had a strong correlation with survival in the Cancer Genome Atlas breast cancer dataset. Least absolute shrinkage and selection operator Cox regression was conducted to construct the risk assessment model. Based on bioinformatics and statistical methods, we confirmed the credibility and validity of the model by training set and testing set. RESULTS The result of comparing the other two previous hypoxia models was also satisfying. We also verified the model on one of the Gene Expression Omnibus datasets-GSE20685. Using clinical data from patients in the Cancer Genome Atlas, we acknowledged the risk score as an independent influence on breast cancer survival prognosis, and strong relevance was suggested between risk signature and age, lymphatic metastasis, tumor size and clinical stage by performing univariate and multivariate analysis. Immunology analysis demonstrated that the macrophages subset was positively associated with a risk score and other immune cell types had a negative effect with the risk score increases. The risk score was also emerging as a valuable prognostic factor for the prediction of chemotherapy drug curative effect because Gemcitabine, vinorelbine, paclitaxel and cisplatin known as a generic drug for breast cancer had more pleasing sensitivity in high-scored patients than low-scored patients. CONCLUSION The P53-related risk assessment model is promising to be a potential predictor for the prognosis of patients with breast cancer and a powerful guide for the selection of therapeutic strategies.
Collapse
|
44
|
Asl ER, Rostamzadeh D, Duijf PHG, Mafi S, Mansoori B, Barati S, Cho WC, Mansoori B. Mutant P53 in the formation and progression of the tumor microenvironment: Friend or foe. Life Sci 2023; 315:121361. [PMID: 36608871 DOI: 10.1016/j.lfs.2022.121361] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
TP53 is the most frequently mutated gene in human cancer. It encodes the tumor suppressor protein p53, which suppresses tumorigenesis by acting as a critical transcription factor that can induce the expression of many genes controlling a plethora of fundamental cellular processes, including cell cycle progression, survival, apoptosis, and DNA repair. Missense mutations are the most frequent type of mutations in the TP53 gene. While these can have variable effects, they typically impair p53 function in a dominant-negative manner, thereby altering intra-cellular signaling pathways and promoting cancer development. Additionally, it is becoming increasingly apparent that p53 mutations also have non-cell autonomous effects that influence the tumor microenvironment (TME). The TME is a complex and heterogeneous milieu composed of both malignant and non-malignant cells, including cancer-associated fibroblasts (CAFs), adipocytes, pericytes, different immune cell types, such as tumor-associated macrophages (TAMs) and T and B lymphocytes, as well as lymphatic and blood vessels and extracellular matrix (ECM). Recently, a large body of evidence has demonstrated that various types of p53 mutations directly affect TME. They fine-tune the inflammatory TME and cell fate reprogramming, which affect cancer progression. Notably, re-educating the p53 signaling pathway in the TME may be an effective therapeutic strategy in combating cancer. Therefore, it is timely to here review the recent advances in our understanding of how TP53 mutations impact the fate of cancer cells by reshaping the TME.
Collapse
Affiliation(s)
- Elmira Roshani Asl
- Department of Biochemistry, Saveh University of Medical Sciences, Saveh, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran; Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Pascal H G Duijf
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia; Cancer and Aging Research Program, Queensland University of Technology, Brisbane, QLD, Australia; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Sahar Mafi
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran; Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Behnaz Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, PA, United States.
| |
Collapse
|
45
|
Aggarwal M. 2,2-Diphenethyl Isothiocyanate Enhances Topoisomerase Inhibitor-Induced Cell Death and Suppresses Multi-Drug Resistance 1 in Breast Cancer Cells. Cancers (Basel) 2023; 15:cancers15030928. [PMID: 36765888 PMCID: PMC9913484 DOI: 10.3390/cancers15030928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
We previously reported that phenethyl isothiocyanate (PEITC), a dietary-related compound, can rescue mutant p53. A structure-activity relationships study showed that the synthetic analog 2,2-diphenylethyl isothiocyanate (DPEITC) is a more potent inducer of apoptosis than natural or synthetic ITCs. Here, we showed that DPEITC inhibited the growth of triple-negative breast cancer cells (MDA-MB-231, MDA-MB-468, and Hs578T) expressing "hotspot" p53 mutants, structural (p53R280K, p53R273H) or contact (p53V157F), at IC50 values significantly lower than PEITC. DPEITC inhibited the growth of HER2+ (p53R175H SK-BR-3, p53R175H AU565) and Luminal A (p53L194F T47D) breast cancer (BC) cells harboring a p53 structural mutant. DPEITC induced apoptosis, irrespective of BC subtypes, by rescuing p53 mutants. Accordingly, the rescued p53 mutants induced apoptosis by activating canonical WT p53 targets and delaying the cell cycle. DPEITC acted synergistically with doxorubicin and camptothecin to inhibit proliferation and induce apoptosis. Under these conditions, DPEITC delayed BC cells in the G1 phase, activated p53 canonical targets, and enhanced pS1981-ATM. DPEITC reduced the expression of MDR1 and ETS1. These findings are the first report of synergism between a synthetic ITC and a chemotherapy drug via mutant p53 rescue. Furthermore, our data demonstrate that ITCs suppress the expression of cellular proteins that play a role in chemoresistance.
Collapse
Affiliation(s)
- Monika Aggarwal
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| |
Collapse
|
46
|
Wang J, Qu C, Shao X, Song G, Sun J, Shi D, Jia R, An H, Wang H. Carrier-free nanoprodrug for p53-mutated tumor therapy via concurrent delivery of zinc-manganese dual ions and ROS. Bioact Mater 2023; 20:404-417. [PMID: 35784636 PMCID: PMC9218170 DOI: 10.1016/j.bioactmat.2022.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 02/09/2023] Open
Abstract
Human cancers typically express a high level of tumor-promoting mutant p53 protein (Mutp53) with a minimal level of tumor-suppressing wild-type p53 protein (WTp53). In this regard, inducing Mutp53 degradation while activating WTp53 is a viable strategy for precise anti-tumor therapy. Herein, a new carrier-free nanoprodrug (i.e., Mn-ZnO2 nanoparticles) was developed for concurrent delivery of dual Zn-Mn ions and reactive oxygen species (ROS) within tumor to regulate the p53 protein for high anti-tumor efficacy. In response to the mild tumor acidic environment, the released Zn2+ and H2O2 from Mn-ZnO2 NPs induced ubiquitination-mediated proteasomal degradation of Mutp53, while the liberative Mn2+ and increased ROS level activated the ATM-p53-Bax pathway to elevate WTp53 level. Both in vitro and in vivo results demonstrated that pH-responsive decomposition of Mn-ZnO2 NPs could effectively elevate the intracellular dual Zn-Mn ions and ROS level and subsequently generate the cytotoxic hydroxyl radical (•OH) through the Fenton-like reaction. With the integration of multiple functions (i.e., carrier-free ion and ROS delivery, tumor accumulation, p53 protein modulation, toxic •OH generation, and pH-activated MRI contrast) in a single nanosystem, Mn-ZnO2 NPs demonstrate its superiority as a promising nanotherapeutics for p53-mutated tumor therapy.
Collapse
Affiliation(s)
- Jinping Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, PR China
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
| | - Chang Qu
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130, PR China
| | - Xinyue Shao
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China
| | - Guoqiang Song
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China
| | - Jingyu Sun
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
| | - Donghong Shi
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130, PR China
| | - Ran Jia
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China
| | - Hailong An
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, PR China
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
- Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
| |
Collapse
|
47
|
Yi T, Qian J, Ye Y, Zhang H, Jin X, Wang M, Yang Z, Zhang W, Wen L, Zhang Y. Crizotinib Nanomicelles Synergize with Chemotherapy through Inducing Proteasomal Degradation of Mutp53 Proteins. ACS APPLIED MATERIALS & INTERFACES 2023; 15:511-523. [PMID: 36578131 DOI: 10.1021/acsami.2c18020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
TP53 missense mutations that express highly stabilized mutant p53 protein (mutp53) driving tumorigenesis have been witnessed in a considerable percentage of human cancers. The attempt to induce degradation of mutp53 has thus been an attractive strategy to realize precise antitumor therapy, but currently, there has been no FDA-approved medication for mutp53 cancer. Herein, we discovered a small molecule compound crizotinib, an FDA-approved antitumor drug, exhibited outstanding mutp53-degrading capability. Crizotinib induced ubiquitination-mediated proteasomal degradation of wide-spectrum mutp53 but not the wild-type p53 protein. Degradation of mutp53 by crizotinib eliminated mutp53-conferred gain-of-function (GOF), leading to reduced cell proliferation, migration, demise, and cell cycle arrest, as well as enhanced sensitivity to doxorubicin-elicited killing in mutp53 cancer. To alleviate the side effects and improve the therapeutic effect, we adopted poly(ethylene glycol)-polylactide-co-glycolide (PEG-PLGA) nanomicelles to deliver the hydrophobic drugs doxorubicin and crizotinib, demonstrating that crizotinib nanomicelles effectively enhanced doxorubicin-elicited anticancer efficacy in a p53Y220C pancreatic cancer in vitro and in vivo via mutp53 degradation induced by crizotinib, manifesting its promising application in clinical practice. Our work therefore revealed that crizotinib exerted significant synergistic chemotherapy with doxorubicin and suggested a novel combination therapeutic strategy for targeting p53 cancer in further clinical application.
Collapse
Affiliation(s)
- Tianxiang Yi
- School of Medicine, School of Biomedical Science and Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, P. R. China
| | - Jieying Qian
- School of Medicine, School of Biomedical Science and Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, P. R. China
| | - Yayi Ye
- School of Medicine, School of Biomedical Science and Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, P. R. China
| | - Hao Zhang
- School of Medicine, School of Biomedical Science and Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, P. R. China
| | - Xin Jin
- School of Medicine, School of Biomedical Science and Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, P. R. China
| | - Meimei Wang
- School of Medicine, School of Biomedical Science and Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, P. R. China
| | - Zhenyu Yang
- School of Medicine, School of Biomedical Science and Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, P. R. China
| | - Wang Zhang
- School of Medicine, School of Biomedical Science and Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, P. R. China
| | - Longping Wen
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University & School of Medicine, South China University of Technology, Guangzhou 510080, P. R. China
| | - Yunjiao Zhang
- School of Medicine, School of Biomedical Science and Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, P. R. China
| |
Collapse
|
48
|
Increased Expression of the Δ133p53β Isoform Enhances Brain Metastasis. Int J Mol Sci 2023; 24:ijms24021267. [PMID: 36674782 PMCID: PMC9866425 DOI: 10.3390/ijms24021267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/20/2022] [Accepted: 12/31/2022] [Indexed: 01/10/2023] Open
Abstract
The Δ133p53β isoform is increased in many primary tumors and has many tumor-promoting properties that contribute to increased proliferation, migration and inflammation. Here we investigated whether Δ133p53β contributed to some of the most aggressive tumors that had metastasized to the brain. Δ133p53β mRNA expression was measured in lung, breast, melanoma, colorectal metastases and, where available, the matched primary tumor. The presence of Δ133p53β expression was associated with the time for the primary tumor to metastasize and overall survival once the tumor was detected in the brain. Δ133p53β was present in over 50% of lung, breast, melanoma and colorectal metastases to the brain. It was also increased in the brain metastases compared with the matched primary tumor. Brain metastases with Δ133p53β expressed were associated with a reduced time for the primary tumor to metastasize to the brain compared with tumors with no Δ133p53β expression. In-vitro-based analyses in Δ133p53β-expressing cells showed increased cancer-promoting proteins on the cell surface and increased downstream p-AKT and p-MAPK signaling. Δ133p53β-expressing cells also invaded more readily across a mock blood-brain barrier. Together these data suggested that Δ133p53β contributes to brain metastases by making cells more likely to invade the brain.
Collapse
|
49
|
Huet-Calderwood C, Rivera-Molina F, Toomre D, Calderwood DA. Use of Ecto-Tagged Integrins to Monitor Integrin Exocytosis and Endocytosis. Methods Mol Biol 2023; 2608:17-38. [PMID: 36653699 PMCID: PMC9999384 DOI: 10.1007/978-1-0716-2887-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Controlled exocytosis and endocytosis of integrin adhesion receptors is required for normal cell adhesion, migration, and signaling. In this chapter, we describe the design of functional β1 integrins carrying extracellular fluorescent or chemically traceable tags (ecto-tag) and methods for their use to image β1 integrin trafficking in cells. We provide approaches to generate cells in which endogenous β1 integrins are replaced by ecto-tagged integrins containing a pH-sensitive fluorophore pHluorin or a HaloTag and describe strategies using photobleaching, selective extracellular/intracellular labeling, and chase, quenching, and blocking to reveal β1 integrin exocytosis, endocytosis, and recycling by live total internal reflection fluorescence (TIRF) microscopy.
Collapse
Affiliation(s)
- Clotilde Huet-Calderwood
- Departments of Pharmacology, Yale University School of Medicine, Yale University, New Haven, CT, USA
| | - Felix Rivera-Molina
- Departments of Cell Biology, Yale University School of Medicine, Yale University, New Haven, CT, USA
| | - Derek Toomre
- Departments of Cell Biology, Yale University School of Medicine, Yale University, New Haven, CT, USA
| | - David A Calderwood
- Departments of Pharmacology, Yale University School of Medicine, Yale University, New Haven, CT, USA.
- Departments of Cell Biology, Yale University School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
50
|
Koessinger D, Novo D, Koessinger A, Campos A, Peters J, Dutton L, Paschke P, Zerbst D, Moore M, Mitchell L, Neilson M, Stevenson K, Chalmers A, Tait S, Birch J, Norman J. Glioblastoma extracellular vesicles influence glial cell hyaluronic acid deposition to promote invasiveness. Neurooncol Adv 2023; 5:vdad067. [PMID: 37334166 PMCID: PMC10276538 DOI: 10.1093/noajnl/vdad067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Background Infiltration of glioblastoma (GBM) throughout the brain leads to its inevitable recurrence following standard-of-care treatments, such as surgical resection, chemo-, and radiotherapy. A deeper understanding of the mechanisms invoked by GBM to infiltrate the brain is needed to develop approaches to contain the disease and reduce recurrence. The aim of this study was to discover mechanisms through which extracellular vesicles (EVs) released by GBM influence the brain microenvironment to facilitate infiltration, and to determine how altered extracellular matrix (ECM) deposition by glial cells might contribute to this. Methods CRISPR was used to delete genes, previously established to drive carcinoma invasiveness and EV production, from patient-derived primary and GBM cell lines. We purified and characterized EVs released by these cells, assessed their capacity to foster pro-migratory microenvironments in mouse brain slices, and evaluated the contribution made by astrocyte-derived ECM to this. Finally, we determined how CRISPR-mediated deletion of genes, which we had found to control EV-mediated communication between GBM cells and astrocytes, influenced GBM infiltration when orthotopically injected into CD1-nude mice. Results GBM cells expressing a p53 mutant (p53R273H) with established pro-invasive gain-of-function release EVs containing a sialomucin, podocalyxin (PODXL), which encourages astrocytes to deposit ECM with increased levels of hyaluronic acid (HA). This HA-rich ECM, in turn, promotes migration of GBM cells. Consistently, CRISPR-mediated deletion of PODXL opposes infiltration of GBM in vivo. Conclusions This work describes several key components of an EV-mediated mechanism though which GBM cells educate astrocytes to support infiltration of the surrounding healthy brain tissue.
Collapse
Affiliation(s)
- Dominik Koessinger
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Department of Neurosurgery, Freiburg University Hospital, Freiburg, Germany
| | - David Novo
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Anna Koessinger
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | - Louise Dutton
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Désirée Zerbst
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | - Stephen Tait
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Joanna Birch
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jim Norman
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|