1
|
Zhu F, Yang M, Wang D, Jiang Y, Jia C, Fu Y, Yu A, Liu H, Wang M, Wang T, Liu H, Li J. Spatial distribution of maternal factors in pig mature oocytes. Anim Biotechnol 2024; 35:2394692. [PMID: 39185998 DOI: 10.1080/10495398.2024.2394692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
It is known that asymmetrical maternal transcripts play an important role in the cell fate of the early embryo, but few studies are available in mammal oocytes especially in pig. To investigate the spatial factors in pig oocytes, the oriented bisection was established for collecting karyoplasts (NSOs) and cytoplasts (SSOs) with more than 95% efficiency. Subsequently, RNA-Seq and LC-MS/MS analysis were performed on NSOs and SSOs. Although no differentially expressed genes (DEGs) could be detected between NSOs and SSOs, 89 of the differentially expressed proteins (DEPs) were detected, that 58 proteins higher expressed but 31 proteins lower expressed in NSOs compared with SSOs. These DEPs mainly participated in the 'cell cycle' and 'ribosome' pathway, while the up-regulated DEPs were mainly GO in 'spindle' and 'positive regulation of translation', and the down-regulated DEPs were in 'cytosolic small ribosomal subunit' and 'mRNA binding'. The up-regulated DEP SIRT5 which are related to the regulation of gene expression, epigenetic were further detected and revealed. A spatial asymmetry of maternal factors at the protein level was firstly detected in pig mature oocytes.
Collapse
Affiliation(s)
- Fuquan Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meng Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Dayu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuan Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chao Jia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanfeng Fu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Aochen Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huijun Liu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, Zhejiang Province, China
| | - Meixia Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, Zhejiang Province, China
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, Zhejiang Province, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Juan Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Yin X, Zeng D, Liao Y, Tang C, Li Y. The Function of H2A Histone Variants and Their Roles in Diseases. Biomolecules 2024; 14:993. [PMID: 39199381 PMCID: PMC11352661 DOI: 10.3390/biom14080993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Epigenetic regulation, which is characterized by reversible and heritable genetic alterations without changing DNA sequences, has recently been increasingly studied in diseases. Histone variant regulation is an essential component of epigenetic regulation. The substitution of canonical histones by histone variants profoundly alters the local chromatin structure and modulates DNA accessibility to regulatory factors, thereby exerting a pivotal influence on gene regulation and DNA damage repair. Histone H2A variants, mainly including H2A.Z, H2A.B, macroH2A, and H2A.X, are the most abundant identified variants among all histone variants with the greatest sequence diversity. Harboring varied chromatin occupancy and structures, histone H2A variants perform distinct functions in gene transcription and DNA damage repair. They are implicated in multiple pathophysiological mechanisms and the emergence of different illnesses. Cancer, embryonic development abnormalities, neurological diseases, metabolic diseases, and heart diseases have all been linked to histone H2A variant alterations. This review focuses on the functions of H2A histone variants in mammals, including H2A.Z, H2A.B, macroH2A, and H2A.X, and their current roles in various diseases.
Collapse
Affiliation(s)
- Xuemin Yin
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Dong Zeng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Yingjun Liao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Ying Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| |
Collapse
|
3
|
Brahmachari S, Tripathi S, Onuchic JN, Levine H. Nucleosomes play a dual role in regulating transcription dynamics. Proc Natl Acad Sci U S A 2024; 121:e2319772121. [PMID: 38968124 PMCID: PMC11252751 DOI: 10.1073/pnas.2319772121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024] Open
Abstract
Transcription has a mechanical component, as the translocation of the transcription machinery or RNA polymerase (RNAP) on DNA or chromatin is dynamically coupled to the chromatin torsion. This posits chromatin mechanics as a possible regulator of eukaryotic transcription, however, the modes and mechanisms of this regulation are elusive. Here, we first take a statistical mechanics approach to model the torsional response of topology-constrained chromatin. Our model recapitulates the experimentally observed weaker torsional stiffness of chromatin compared to bare DNA and proposes structural transitions of nucleosomes into chirally distinct states as the driver of the contrasting torsional mechanics. Coupling chromatin mechanics with RNAP translocation in stochastic simulations, we reveal a complex interplay of DNA supercoiling and nucleosome dynamics in governing RNAP velocity. Nucleosomes play a dual role in controlling the transcription dynamics. The steric barrier aspect of nucleosomes in the gene body counteracts transcription via hindering RNAP motion, whereas the chiral transitions facilitate RNAP motion via driving a low restoring torque upon twisting the DNA. While nucleosomes with low dissociation rates are typically transcriptionally repressive, highly dynamic nucleosomes offer less of a steric barrier and enhance the transcription elongation dynamics of weakly transcribed genes via buffering DNA twist. We use the model to predict transcription-dependent levels of DNA supercoiling in segments of the budding yeast genome that are in accord with available experimental data. The model unveils a paradigm of DNA supercoiling-mediated interaction between genes and makes testable predictions that will guide experimental design.
Collapse
Affiliation(s)
| | - Shubham Tripathi
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX77005
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX77005
- Department of Physics and Astronomy, Rice University, Houston, TX77005
- Department of Chemistry, Rice University, Houston, TX77005
- Department of Biosciences, Rice University, Houston, TX77005
| | - Herbert Levine
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA02115
- Department of Physics, Northeastern University, Boston, MA02115
| |
Collapse
|
4
|
Peng Y, Song W, Teif VB, Ovcharenko I, Landsman D, Panchenko AR. Detection of new pioneer transcription factors as cell-type-specific nucleosome binders. eLife 2024; 12:RP88936. [PMID: 38293962 PMCID: PMC10945518 DOI: 10.7554/elife.88936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Wrapping of DNA into nucleosomes restricts accessibility to DNA and may affect the recognition of binding motifs by transcription factors. A certain class of transcription factors, the pioneer transcription factors, can specifically recognize their DNA binding sites on nucleosomes, initiate local chromatin opening, and facilitate the binding of co-factors in a cell-type-specific manner. For the majority of human pioneer transcription factors, the locations of their binding sites, mechanisms of binding, and regulation remain unknown. We have developed a computational method to predict the cell-type-specific ability of transcription factors to bind nucleosomes by integrating ChIP-seq, MNase-seq, and DNase-seq data with details of nucleosome structure. We have demonstrated the ability of our approach in discriminating pioneer from canonical transcription factors and predicted new potential pioneer transcription factors in H1, K562, HepG2, and HeLa-S3 cell lines. Last, we systematically analyzed the interaction modes between various pioneer transcription factors and detected several clusters of distinctive binding sites on nucleosomal DNA.
Collapse
Affiliation(s)
- Yunhui Peng
- Institute of Biophysics and Department of Physics, Central China Normal UniversityWuhanChina
- National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Wei Song
- National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Vladimir B Teif
- School of Life Sciences, University of Essex, Wivenhoe ParkColchesterUnited Kingdom
| | - Ivan Ovcharenko
- National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - David Landsman
- National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, Queen’s UniversityKingstonCanada
- Department of Biology and Molecular Sciences, Queen’s UniversityKingstonCanada
- School of Computing, Queen’s UniversityKingstonCanada
- Ontario Institute of Cancer ResearchTorontoCanada
| |
Collapse
|
5
|
Yang ZZ, Parchem RJ. The role of noncoding RNAs in pancreatic birth defects. Birth Defects Res 2023; 115:1785-1808. [PMID: 37066622 PMCID: PMC10579456 DOI: 10.1002/bdr2.2178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
Congenital defects in the pancreas can cause severe health issues such as pancreatic cancer and diabetes which require lifelong treatment. Regenerating healthy pancreatic cells to replace malfunctioning cells has been considered a promising cure for pancreatic diseases including birth defects. However, such therapies are currently unavailable in the clinic. The developmental gene regulatory network underlying pancreatic development must be reactivated for in vivo regeneration and recapitulated in vitro for cell replacement therapy. Thus, understanding the mechanisms driving pancreatic development will pave the way for regenerative therapies. Pancreatic progenitor cells are the precursors of all pancreatic cells which use epigenetic changes to control gene expression during differentiation to generate all of the distinct pancreatic cell types. Epigenetic changes involving DNA methylation and histone modifications can be controlled by noncoding RNAs (ncRNAs). Indeed, increasing evidence suggests that ncRNAs are indispensable for proper organogenesis. Here, we summarize recent insight into the role of ncRNAs in the epigenetic regulation of pancreatic development. We further discuss how disruptions in ncRNA biogenesis and expression lead to developmental defects and diseases. This review summarizes in vivo data from animal models and in vitro studies using stem cell differentiation as a model for pancreatic development.
Collapse
Affiliation(s)
- Ziyue Zoey Yang
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ronald J Parchem
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
6
|
Aich M, Ansari AH, Ding L, Iesmantavicius V, Paul D, Choudhary C, Maiti S, Buchholz F, Chakraborty D. TOBF1 modulates mouse embryonic stem cell fate through regulating alternative splicing of pluripotency genes. Cell Rep 2023; 42:113177. [PMID: 37751355 DOI: 10.1016/j.celrep.2023.113177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/28/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Embryonic stem cells (ESCs) can undergo lineage-specific differentiation, giving rise to different cell types that constitute an organism. Although roles of transcription factors and chromatin modifiers in these cells have been described, how the alternative splicing (AS) machinery regulates their expression has not been sufficiently explored. Here, we show that the long non-coding RNA (lncRNA)-associated protein TOBF1 modulates the AS of transcripts necessary for maintaining stem cell identity in mouse ESCs. Among the genes affected is serine/arginine splicing factor 1 (SRSF1), whose AS leads to global changes in splicing and expression of a large number of downstream genes involved in the maintenance of ESC pluripotency. By overlaying information derived from TOBF1 chromatin occupancy, the distribution of its pluripotency-associated OCT-SOX binding motifs, and transcripts undergoing differential expression and AS upon its knockout, we describe local nuclear territories where these distinct events converge. Collectively, these contribute to the maintenance of mouse ESC identity.
Collapse
Affiliation(s)
- Meghali Aich
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Asgar Hussain Ansari
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Li Ding
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Vytautas Iesmantavicius
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Deepanjan Paul
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Chunaram Choudhary
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Souvik Maiti
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Debojyoti Chakraborty
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Arora S, Yang J, Akiyama T, James DQ, Morrissey A, Blanda TR, Badjatia N, Lai WK, Ko MS, Pugh BF, Mahony S. Joint sequence & chromatin neural networks characterize the differential abilities of Forkhead transcription factors to engage inaccessible chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561228. [PMID: 37873361 PMCID: PMC10592618 DOI: 10.1101/2023.10.06.561228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The DNA-binding activities of transcription factors (TFs) are influenced by both intrinsic sequence preferences and extrinsic interactions with cell-specific chromatin landscapes and other regulatory proteins. Disentangling the roles of these binding determinants remains challenging. For example, the FoxA subfamily of Forkhead domain (Fox) TFs are known pioneer factors that can bind to relatively inaccessible sites during development. Yet FoxA TF binding also varies across cell types, pointing to a combination of intrinsic and extrinsic forces guiding their binding. While other Forkhead domain TFs are often assumed to have pioneering abilities, how sequence and chromatin features influence the binding of related Fox TFs has not been systematically characterized. Here, we present a principled approach to compare the relative contributions of intrinsic DNA sequence preference and cell-specific chromatin environments to a TF's DNA-binding activities. We apply our approach to investigate how a selection of Fox TFs (FoxA1, FoxC1, FoxG1, FoxL2, and FoxP3) vary in their binding specificity. We over-express the selected Fox TFs in mouse embryonic stem cells, which offer a platform to contrast each TF's binding activity within the same preexisting chromatin background. By applying a convolutional neural network to interpret the Fox TF binding patterns, we evaluate how sequence and preexisting chromatin features jointly contribute to induced TF binding. We demonstrate that Fox TFs bind different DNA targets, and drive differential gene expression patterns, even when induced in identical chromatin settings. Despite the association between Forkhead domains and pioneering activities, the selected Fox TFs display a wide range of affinities for preexiting chromatin states. Using sequence and chromatin feature attribution techniques to interpret the neural network predictions, we show that differential sequence preferences combined with differential abilities to engage relatively inaccessible chromatin together explain Fox TF binding patterns at individual sites and genome-wide.
Collapse
Affiliation(s)
- Sonny Arora
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Jianyu Yang
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Tomohiko Akiyama
- Department of Systems Medicine, Keio University School of Medicine, Tokyo, Japan
- Current address: School of Medicine, Yokohama City University, Japan
| | - Daniela Q. James
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Alexis Morrissey
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Thomas R. Blanda
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Nitika Badjatia
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - William K.M. Lai
- Department of Molecular Biology and Genetics, Cornell University, NY, USA
| | - Minoru S.H. Ko
- Department of Systems Medicine, Keio University School of Medicine, Tokyo, Japan
| | - B. Franklin Pugh
- Department of Molecular Biology and Genetics, Cornell University, NY, USA
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| |
Collapse
|
8
|
Lyu X, Rowley MJ, Kulik MJ, Dalton S, Corces VG. Regulation of CTCF loop formation during pancreatic cell differentiation. Nat Commun 2023; 14:6314. [PMID: 37813869 PMCID: PMC10562423 DOI: 10.1038/s41467-023-41964-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
Transcription reprogramming during cell differentiation involves targeting enhancers to genes responsible for establishment of cell fates. To understand the contribution of CTCF-mediated chromatin organization to cell lineage commitment, we analyzed 3D chromatin architecture during the differentiation of human embryonic stem cells into pancreatic islet organoids. We find that CTCF loops are formed and disassembled at different stages of the differentiation process by either recruitment of CTCF to new anchor sites or use of pre-existing sites not previously involved in loop formation. Recruitment of CTCF to new sites in the genome involves demethylation of H3K9me3 to H3K9me2, demethylation of DNA, recruitment of pioneer factors, and positioning of nucleosomes flanking the new CTCF sites. Existing CTCF sites not involved in loop formation become functional loop anchors via the establishment of new cohesin loading sites containing NIPBL and YY1 at sites between the new anchors. In both cases, formation of new CTCF loops leads to strengthening of enhancer promoter interactions and increased transcription of genes adjacent to loop anchors. These results suggest an important role for CTCF and cohesin in controlling gene expression during cell differentiation.
Collapse
Affiliation(s)
- Xiaowen Lyu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China.
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China.
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Michael J Kulik
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, 30602, USA
- Center for Molecular Medicine, The University of Georgia, Athens, GA, 30602, USA
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, 30602, USA
- Center for Molecular Medicine, The University of Georgia, Athens, GA, 30602, USA
- School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
9
|
Sadaf, Hazazi A, Alkhalil SS, Alsaiari AA, Gharib AF, Alhuthali HM, Rana S, Aloliqi AA, Eisa AA, Hasan MR, Dev K. Role of Fork-Head Box Genes in Breast Cancer: From Drug Resistance to Therapeutic Targets. Biomedicines 2023; 11:2159. [PMID: 37626655 PMCID: PMC10452497 DOI: 10.3390/biomedicines11082159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer has been acknowledged as one of the most notorious cancers, responsible for millions of deaths around the globe. Understanding the various factors, genetic mutations, comprehensive pathways, etc., that are involved in the development of breast cancer and how these affect the development of the disease is very important for improving and revitalizing the treatment of this global health issue. The forkhead-box gene family, comprising 19 subfamilies, is known to have a significant impact on the growth and progression of this cancer. The article looks into the various forkhead genes and how they play a role in different types of cancer. It also covers their impact on cancer drug resistance, interaction with microRNAs, explores their potential as targets for drug therapies, and their association with stem cells.
Collapse
Affiliation(s)
- Sadaf
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India;
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh 11481, Saudi Arabia;
| | - Samia S. Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11961, Saudi Arabia;
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Amal F. Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Hayaa M. Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Shanika Rana
- School of Biosciences, Apeejay Stya University, Gurugram 122003, India;
| | - Abdulaziz A. Aloliqi
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Alaa Abdulaziz Eisa
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Medina 30002, Saudi Arabia;
| | - Mohammad Raghibul Hasan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11961, Saudi Arabia;
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India;
| |
Collapse
|
10
|
EBF1 is continuously required for stabilizing local chromatin accessibility in pro-B cells. Proc Natl Acad Sci U S A 2022; 119:e2210595119. [PMID: 36409886 PMCID: PMC9860308 DOI: 10.1073/pnas.2210595119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The establishment of de novo chromatin accessibility in lymphoid progenitors requires the "pioneering" function of transcription factor (TF) early B cell factor 1 (EBF1), which binds to naïve chromatin and induces accessibility by recruiting the BRG1 chromatin remodeler subunit. However, it remains unclear whether the function of EBF1 is continuously required for stabilizing local chromatin accessibility. To this end, we replaced EBF1 by EBF1-FKBPF36V in pro-B cells, allowing the rapid degradation by adding the degradation TAG13 (dTAG13) dimerizer. EBF1 degradation results in a loss of genome-wide EBF1 occupancy and EBF1-targeted BRG1 binding. Chromatin accessibility was rapidly diminished at EBF1-binding sites with a preference for sites whose occupancy requires the pioneering activity of the C-terminal domain of EBF1. Diminished chromatin accessibility correlated with altered gene expression. Thus, continuous activity of EBF1 is required for the stable maintenance of the transcriptional and epigenetic state of pro-B cells.
Collapse
|
11
|
Singh A, Maurer‐Alcalá XX, Solberg T, Häußermann L, Gisler S, Ignarski M, Swart EC, Nowacki M. Chromatin remodeling is required for sRNA-guided DNA elimination in Paramecium. EMBO J 2022; 41:e111839. [PMID: 36221862 PMCID: PMC9670198 DOI: 10.15252/embj.2022111839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 01/13/2023] Open
Abstract
Small RNAs mediate the silencing of transposable elements and other genomic loci, increasing nucleosome density and preventing undesirable gene expression. The unicellular ciliate Paramecium is a model to study dynamic genome organization in eukaryotic cells, given its unique feature of nuclear dimorphism. Here, the formation of the somatic macronucleus during sexual reproduction requires eliminating thousands of transposon remnants (IESs) and transposable elements scattered throughout the germline micronuclear genome. The elimination process is guided by Piwi-associated small RNAs and leads to precise cleavage at IES boundaries. Here we show that IES recognition and precise excision are facilitated by recruiting ISWI1, a Paramecium homolog of the chromatin remodeler ISWI. ISWI1 knockdown substantially inhibits DNA elimination, quantitatively similar to development-specific sRNA gene knockdowns but with much greater aberrant IES excision at alternative boundaries. We also identify key development-specific sRNA biogenesis and transport proteins, Ptiwi01 and Ptiwi09, as ISWI1 cofactors in our co-immunoprecipitation studies. Nucleosome profiling indicates that increased nucleosome density correlates with the requirement for ISWI1 and other proteins necessary for IES excision. We propose that chromatin remodeling together with small RNAs is essential for efficient and precise DNA elimination in Paramecium.
Collapse
Affiliation(s)
- Aditi Singh
- Institute of Cell BiologyUniversity of BernBernSwitzerland,Graduate School for Cellular and Biomedical SciencesUniversity of BernBernSwitzerland,Max Planck Institute for BiologyTubingenGermany
| | | | - Therese Solberg
- Institute of Cell BiologyUniversity of BernBernSwitzerland,Graduate School for Cellular and Biomedical SciencesUniversity of BernBernSwitzerland
| | | | - Silvan Gisler
- Institute of Cell BiologyUniversity of BernBernSwitzerland
| | | | - Estienne C Swart
- Institute of Cell BiologyUniversity of BernBernSwitzerland,Max Planck Institute for BiologyTubingenGermany
| | | |
Collapse
|
12
|
Moonen JR, Chappell J, Shi M, Shinohara T, Li D, Mumbach MR, Zhang F, Nair RV, Nasser J, Mai DH, Taylor S, Wang L, Metzger RJ, Chang HY, Engreitz JM, Snyder MP, Rabinovitch M. KLF4 recruits SWI/SNF to increase chromatin accessibility and reprogram the endothelial enhancer landscape under laminar shear stress. Nat Commun 2022; 13:4941. [PMID: 35999210 PMCID: PMC9399231 DOI: 10.1038/s41467-022-32566-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/05/2022] [Indexed: 12/14/2022] Open
Abstract
Physiologic laminar shear stress (LSS) induces an endothelial gene expression profile that is vasculo-protective. In this report, we delineate how LSS mediates changes in the epigenetic landscape to promote this beneficial response. We show that under LSS, KLF4 interacts with the SWI/SNF nucleosome remodeling complex to increase accessibility at enhancer sites that promote the expression of homeostatic endothelial genes. By combining molecular and computational approaches we discover enhancers that loop to promoters of KLF4- and LSS-responsive genes that stabilize endothelial cells and suppress inflammation, such as BMPR2, SMAD5, and DUSP5. By linking enhancers to genes that they regulate under physiologic LSS, our work establishes a foundation for interpreting how non-coding DNA variants in these regions might disrupt protective gene expression to influence vascular disease.
Collapse
Affiliation(s)
- Jan-Renier Moonen
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- BASE Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - James Chappell
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Minyi Shi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Tsutomu Shinohara
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- BASE Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dan Li
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Maxwell R Mumbach
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fan Zhang
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ramesh V Nair
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Joseph Nasser
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Daniel H Mai
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Shalina Taylor
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lingli Wang
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- BASE Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ross J Metzger
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Howard Y Chang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jesse M Engreitz
- BASE Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Michael P Snyder
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Marlene Rabinovitch
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- BASE Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
13
|
Li J, Wu X, Ke J, Lee M, Lan Q, Li J, Yu J, Huang Y, Sun DQ, Xie R. TET1 dioxygenase is required for FOXA2-associated chromatin remodeling in pancreatic beta-cell differentiation. Nat Commun 2022; 13:3907. [PMID: 35798741 PMCID: PMC9263144 DOI: 10.1038/s41467-022-31611-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/17/2022] [Indexed: 12/02/2022] Open
Abstract
Existing knowledge of the role of epigenetic modifiers in pancreas development has exponentially increased. However, the function of TET dioxygenases in pancreatic endocrine specification remains obscure. We set out to tackle this issue using a human embryonic stem cell (hESC) differentiation system, in which TET1/TET2/TET3 triple knockout cells display severe defects in pancreatic β-cell specification. The integrative whole-genome analysis identifies unique cell-type-specific hypermethylated regions (hyper-DMRs) displaying reduced chromatin activity and remarkable enrichment of FOXA2, a pioneer transcription factor essential for pancreatic endoderm specification. Intriguingly, TET depletion leads to significant changes in FOXA2 binding at the pancreatic progenitor stage, in which gene loci with decreased FOXA2 binding feature low levels of active chromatin modifications and enriches for bHLH motifs. Transduction of full-length TET1 but not the TET1-catalytic-domain in TET-deficient cells effectively rescues β-cell differentiation accompanied by restoring PAX4 hypomethylation. Taking these findings together with the defective generation of functional β-cells upon TET1-inactivation, our study unveils an essential role of TET1-dependent demethylation in establishing β-cell identity. Moreover, we discover a physical interaction between TET1 and FOXA2 in endodermal lineage intermediates, which provides a mechanistic clue regarding the complex crosstalk between TET dioxygenases and pioneer transcription factors in epigenetic regulation during pancreas specification. Here the authors show that TET1 is required for the generation of functional insulin-producing cells, FOXA2 physically interacts with TET1 and contributes to specific recruitment of TET1 to mediate chromatin opening at the regulatory elements of pancreatic lineage determinants.
Collapse
Affiliation(s)
- Jianfang Li
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China.,Innovation Center for Advanced Interdisciplinary Medicine, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510530, China.,Guangzhou Laboratory, Guangzhou, 510005, China
| | - Xinwei Wu
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China.,Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jie Ke
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Minjung Lee
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Qingping Lan
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Jia Li
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yun Huang
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - De-Qiang Sun
- Innovation Center for Advanced Interdisciplinary Medicine, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510530, China. .,Cardiology Department, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Ruiyu Xie
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China. .,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, 999078, China.
| |
Collapse
|
14
|
Dijkwel Y, Tremethick DJ. The Role of the Histone Variant H2A.Z in Metazoan Development. J Dev Biol 2022; 10:jdb10030028. [PMID: 35893123 PMCID: PMC9326617 DOI: 10.3390/jdb10030028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/12/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
During the emergence and radiation of complex multicellular eukaryotes from unicellular ancestors, transcriptional systems evolved by becoming more complex to provide the basis for this morphological diversity. The way eukaryotic genomes are packaged into a highly complex structure, known as chromatin, underpins this evolution of transcriptional regulation. Chromatin structure is controlled by a variety of different epigenetic mechanisms, including the major mechanism for altering the biochemical makeup of the nucleosome by replacing core histones with their variant forms. The histone H2A variant H2A.Z is particularly important in early metazoan development because, without it, embryos cease to develop and die. However, H2A.Z is also required for many differentiation steps beyond the stage that H2A.Z-knockout embryos die. H2A.Z can facilitate the activation and repression of genes that are important for pluripotency and differentiation, and acts through a variety of different molecular mechanisms that depend upon its modification status, its interaction with histone and nonhistone partners, and where it is deposited within the genome. In this review, we discuss the current knowledge about the different mechanisms by which H2A.Z regulates chromatin function at various developmental stages and the chromatin remodeling complexes that determine when and where H2A.Z is deposited.
Collapse
|
15
|
Hyperglycemia induces gastric carcinoma proliferation and migration via the Pin1/BRD4 pathway. Cell Death Dis 2022; 8:224. [PMID: 35461311 PMCID: PMC9035156 DOI: 10.1038/s41420-022-01030-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022]
Abstract
Diabetes is a potential risk factor for gastric cancer (GC). Pin1, a peptidyl–prolyl cis/trans isomerase, promotes GC cell proliferation and migration. The role and underlying mechanism of the Pin1/BRD4 axis in hyperglycemia-induced proliferation and migration of GC cells were analyzed in vivo and in vitro. Proliferation and migration of GC cells were measured; Pin1 and BRD4 expression of the cell cycle were determined. Pin1 and BRD4 were downregulated by transfecting Pin1 shRNA lentivirus into GC cells and JQ1-intervention GC cells. Tumor formation and lung metastasis were assessed in vivo. Inhibition of Pin1 and BRD4 significantly suppressed high-glucose (HG)-induced GC cell proliferation and migration. HG enhanced G1/S cell-cycle transition, associated with increased Pin1 and BRD4 expression. Silencing Pin1 significantly downregulated the expression of BRD4 and NAP1L1 and upregulated that of P21 in GC cells. In vivo studies indicated that hyperglycemia promotes tumor growth and lung metastasis by inducing Pin1 and BRD4 expression. Thus, Pin1/BRD4 plays an important role in hyperglycemia-promoted tumor growth. The significance of these findings toward improved prognosis of diabetic patients with GC cannot be underestimated.
Collapse
|
16
|
Rajam SM, Varghese PC, Dutta D. Histone Chaperones as Cardinal Players in Development. Front Cell Dev Biol 2022; 10:767773. [PMID: 35445016 PMCID: PMC9014011 DOI: 10.3389/fcell.2022.767773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Dynamicity and flexibility of the chromatin landscape are critical for most of the DNA-dependent processes to occur. This higher-order packaging of the eukaryotic genome into the chromatin is mediated by histones and associated non-histone proteins that determine the states of chromatin. Histone chaperones- “the guardian of genome stability and epigenetic information” controls the chromatin accessibility by escorting the nucleosomal and non-nucleosomal histones as well as their variants. This distinct group of molecules is involved in all facets of histone metabolism. The selectivity and specificity of histone chaperones to the histones determine the maintenance of the chromatin in an open or closed state. This review highlights the functional implication of the network of histone chaperones in shaping the chromatin function in the development of an organism. Seminal studies have reported embryonic lethality at different stages of embryogenesis upon perturbation of some of the chaperones, suggesting their essentiality in development. We hereby epitomize facts and functions that emphasize the relevance of histone chaperones in orchestrating different embryonic developmental stages starting from gametogenesis to organogenesis in multicellular organisms.
Collapse
Affiliation(s)
- Sruthy Manuraj Rajam
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Pallavi Chinnu Varghese
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Debasree Dutta
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| |
Collapse
|
17
|
Metabolic and epigenetic regulation of endoderm differentiation. Trends Cell Biol 2022; 32:151-164. [PMID: 34607773 PMCID: PMC8760149 DOI: 10.1016/j.tcb.2021.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023]
Abstract
The endoderm, one of the three primary germ layers, gives rise to lung, liver, stomach, intestine, colon, pancreas, bladder, and thyroid. These endoderm-originated organs are subject to many life-threatening diseases. However, primary cells/tissues from endodermal organs are often difficult to grow in vitro. Human pluripotent stem cells (hPSCs), therefore, hold great promise for generating endodermal cells and their derivatives for the development of new therapeutics against these human diseases. Although a wealth of research has provided crucial information on the mechanisms underlying endoderm differentiation from hPSCs, increasing evidence has shown that metabolism, in connection with epigenetics, actively regulates endoderm differentiation in addition to the conventional endoderm inducing signals. Here we review recent advances in metabolic and epigenetic regulation of endoderm differentiation.
Collapse
|
18
|
Colino-Sanguino Y, Clark SJ, Valdes-Mora F. The H2A.Z-nuclesome code in mammals: emerging functions. Trends Genet 2021; 38:273-289. [PMID: 34702577 DOI: 10.1016/j.tig.2021.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022]
Abstract
H2A.Z is a histone variant that provides specific structural and docking-side properties to the nucleosome, resulting in diverse and specialised molecular and cellular functions. In this review, we discuss the latest studies uncovering new functional aspects of mammalian H2A.Z in gene transcription, including pausing and elongation of RNA polymerase II (RNAPII) and enhancer activity; DNA repair; DNA replication; and 3D chromatin structure. We also review the recently described role of H2A.Z in embryonic development, cell differentiation, neurodevelopment, and brain function. In conclusion, our cumulative knowledge of H2A.Z over the past 40 years, in combination with the implementation of novel molecular technologies, is unravelling an unexpected and complex role of histone variants in gene regulation and disease.
Collapse
Affiliation(s)
- Yolanda Colino-Sanguino
- Cancer Epigenetics Biology and Therapeutics, Precision Medicine Theme, Children's Cancer Institute, Sydney, NSW, Australia; School of Children and Women Health, University of NSW Sydney, Sydney, NSW, Australia.
| | - Susan J Clark
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, University of NSW Sydney, Sydney, NSW, Australia
| | - Fatima Valdes-Mora
- Cancer Epigenetics Biology and Therapeutics, Precision Medicine Theme, Children's Cancer Institute, Sydney, NSW, Australia; School of Children and Women Health, University of NSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
19
|
Kain J, Wei X, Reddy NA, Price AJ, Woods C, Bochkis IM. Pioneer factor Foxa2 enables ligand-dependent activation of type II nuclear receptors FXR and LXRα. Mol Metab 2021; 53:101291. [PMID: 34246806 PMCID: PMC8350412 DOI: 10.1016/j.molmet.2021.101291] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022] Open
Abstract
Objective Type II nuclear hormone receptors, including farnesoid X receptors (FXR), liver X receptors (LXR), and peroxisome proliferator-activated receptors (PPAR), which serve as drug targets for metabolic diseases, are permanently positioned in the nucleus and thought to be bound to DNA regardless of the ligand status. However, recent genome-wide location analysis showed that LXRα and PPARα binding in the liver is largely ligand-dependent. We hypothesized that pioneer factor Foxa2 evicts nucleosomes to enable ligand-dependent binding of type II nuclear receptors and performed genome-wide studies to test this hypothesis. Methods ATAC-Seq was used to profile chromatin accessibility; ChIP-Seq was performed to assess transcription factors (Foxa2, FXR, LXRα, and PPARα) binding; and RNA-Seq analysis determined differentially expressed genes in wildtype and Foxa2 mutants treated with a ligand (GW4064 for FXR, GW3965, and T09 for LXRα). Results We reveal that chromatin accessibility, FXR binding, LXRα occupancy, and ligand-responsive activation of gene expression by FXR and LXRα require Foxa2. Unexpectedly, Foxa2 occupancy is drastically increased when either receptor, FXR or LXRα, is bound by an agonist. In addition, co-immunoprecipitation experiments demonstrate that Foxa2 interacts with either receptor in a ligand-dependent manner, suggesting that Foxa2 and the receptor, bind DNA as an interdependent complex during ligand activation. Furthermore, PPARα binding is induced in Foxa2 mutants treated with FXR and LXR ligands, leading to the activation of PPARα targets. Conclusions Our model requires pioneering activity for ligand activation that challenges the existing ligand-independent binding mechanism. We also demonstrate that Foxa2 is required to achieve activation of the proper receptor – one that binds the added ligand – by repressing the activity of a competing receptor. Foxa2 opens chromatin for FXR and LXRα binding during acute ligand activation. Ligand-dependent activation of FXR & LXR-dependent gene expression requires Foxa2. Foxa2 interacts with FXR and LXRα in a ligand-dependent manner. Foxa2 restricts binding of competing receptor PPARα to ensure proper ligand-dependent activation of FXR and LXRα.
Collapse
Affiliation(s)
- Jessica Kain
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Xiaolong Wei
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Nihal A Reddy
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Andrew J Price
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Claire Woods
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Irina M Bochkis
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
20
|
Fu M, Chen H, Cai Z, Yang Y, Feng Z, Zeng M, Chen L, Qin Y, Cai B, Zhu P, Zhou C, Yu S, Guo J, Liu J, Cao S, Pei D. Forkhead box family transcription factors as versatile regulators for cellular reprogramming to pluripotency. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:17. [PMID: 34212295 PMCID: PMC8249537 DOI: 10.1186/s13619-021-00078-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/01/2021] [Indexed: 11/24/2022]
Abstract
Forkhead box (Fox) transcription factors play important roles in mammalian development and disease. However, their function in mouse somatic cell reprogramming remains unclear. Here, we report that FoxD subfamily and FoxG1 accelerate induced pluripotent stem cells (iPSCs) generation from mouse fibroblasts as early as day4 while FoxA and FoxO subfamily impede this process obviously. More importantly, FoxD3, FoxD4 and FoxG1 can replace Oct4 respectively and generate iPSCs with germline transmission together with Sox2 and Klf4. On the contrary, FoxO6 almost totally blocks reprogramming through inhibiting cell proliferation, suppressing the expression of pluripotent genes and hindering the process of mesenchymal to epithelial transition (MET). Thus, our study uncovers unexpected roles of Fox transcription factors in reprogramming and offers new insights into cell fate transition.
Collapse
Affiliation(s)
- Meijun Fu
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical School, Guangzhou, 511436, China.,CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Science, Beijing, 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Huan Chen
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical School, Guangzhou, 511436, China.,CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Zepo Cai
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical School, Guangzhou, 511436, China.,CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Yihang Yang
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Science, Beijing, 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Ziyu Feng
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Mengying Zeng
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Lijun Chen
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical School, Guangzhou, 511436, China.,CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Yue Qin
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Science, Beijing, 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Baomei Cai
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Pinghui Zhu
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Chunhua Zhou
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Shengyong Yu
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Science, Beijing, 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Jing Guo
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Jing Liu
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China. .,Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| | - Shangtao Cao
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| | - Duanqing Pei
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical School, Guangzhou, 511436, China. .,CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China. .,University of Chinese Academy of Science, Beijing, 100049, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China. .,Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| |
Collapse
|
21
|
Ryzhkova A, Battulin N. Genome Reorganization during Erythroid Differentiation. Genes (Basel) 2021; 12:genes12071012. [PMID: 34208866 PMCID: PMC8306769 DOI: 10.3390/genes12071012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 01/02/2023] Open
Abstract
Hematopoiesis is a convenient model to study how chromatin dynamics plays a decisive role in regulation of cell fate. During erythropoiesis a population of stem and progenitor cells becomes increasingly lineage restricted, giving rise to terminally differentiated progeny. The concerted action of transcription factors and epigenetic modifiers leads to a silencing of the multipotent transcriptome and activation of the transcriptional program that controls terminal differentiation. This article reviews some aspects of the biology of red blood cells production with the focus on the extensive chromatin reorganization during differentiation.
Collapse
Affiliation(s)
- Anastasia Ryzhkova
- Institute of Cytology and Genetics SB RAS, Laboratory of Developmental Genetics, 630090 Novosibirsk, Russia;
| | - Nariman Battulin
- Institute of Cytology and Genetics SB RAS, Laboratory of Developmental Genetics, 630090 Novosibirsk, Russia;
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
22
|
Yang X, Zhang X, Yang Y, Zhang H, Zhu W, Nie WF. The histone variant Sl_H2A.Z regulates carotenoid biosynthesis and gene expression during tomato fruit ripening. HORTICULTURE RESEARCH 2021; 8:85. [PMID: 33790255 PMCID: PMC8012623 DOI: 10.1038/s41438-021-00520-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/15/2021] [Accepted: 01/24/2021] [Indexed: 05/03/2023]
Abstract
The conserved histone variant H2A.Z is essential for transcriptional regulation; defense responses; and various biological processes in plants, such as growth, development, and flowering. However, little is known about how H2A.Z affects the developmental process and ripening of tomato fruits. Here, we utilized the CRISPR/Cas9 gene-editing system to generate a sl_hta9 sl_hta11 double-mutant, designated sl_h2a.z, and found that these two mutations led to a significant reduction in the fresh weight of tomato fruits. Subsequent messenger RNA (mRNA)-seq results showed that dysfunction of Sl_H2A.Z has profound effects on the reprogramming of genome-wide gene expression at different developmental stages of tomato fruits, indicating a ripening-dependent correlation between Sl_H2A.Z and gene expression regulation in tomato fruits. In addition, the expression of three genes, SlPSY1, SlPDS, and SlVDE, encoding the key enzymes in the biosynthesis pathway of carotenoids, was significantly upregulated in the later ripening stages, which was consistent with the increased contents of carotenoids in sl_h2a.z double-mutant fruits. Overall, our study reveals a role of Sl_H2A.Z in the regulation of carotenoids and provides a resource for the study of Sl_H2A.Z-dependent gene expression regulation. Hence, our results provide a link between epigenetic regulation via histone variants and fruit development, suggesting a conceptual framework to understand how histone variants regulate tomato fruit quality.
Collapse
Affiliation(s)
- Xuedong Yang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, 201403, Shanghai, China
| | - Xuelian Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, 201403, Shanghai, China
| | - Youxin Yang
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, 330045, Nanchang, Jiangxi, China
| | - Hui Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, 201403, Shanghai, China
| | - Weimin Zhu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, 201403, Shanghai, China.
| | - Wen-Feng Nie
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, 225009, Yangzhou, Jiangsu, China.
| |
Collapse
|
23
|
FoxA-dependent demethylation of DNA initiates epigenetic memory of cellular identity. Dev Cell 2021; 56:602-612.e4. [PMID: 33636105 DOI: 10.1016/j.devcel.2021.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/03/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
Tissue-specific DNA methylation patterns are created by transcription factors that recruit methylation and demethylation enzymes to cis-regulatory elements. To date, it is not known whether transcription factors are needed to continuously maintain methylation profiles in development and mature tissues or whether they only establish these marks during organ development. We queried the role of the pioneer factor FoxA in generating hypomethylated DNA at liver enhancers. We discovered a set of FoxA-binding sites that undergo regional, FoxA-dependent demethylation during organ development. Conditional ablation of FoxA genes in the adult liver demonstrated that continued FoxA presence was not required to maintain the hypomethylated state, even when massive cell proliferation was induced. This study provides strong evidence for the stable, epigenetic nature of tissue-specific DNA methylation patterns directed by lineage-determining transcription factors during organ development.
Collapse
|
24
|
Chromatin Regulation in Development: Current Understanding and Approaches. Stem Cells Int 2021; 2021:8817581. [PMID: 33603792 PMCID: PMC7872760 DOI: 10.1155/2021/8817581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/29/2020] [Accepted: 01/21/2021] [Indexed: 11/24/2022] Open
Abstract
The regulation of mammalian stem cell fate during differentiation is complex and can be delineated across many levels. At the chromatin level, the replacement of histone variants by chromatin-modifying proteins, enrichment of specific active and repressive histone modifications, long-range gene interactions, and topological changes all play crucial roles in the determination of cell fate. These processes control regulatory elements of critical transcriptional factors, thereby establishing the networks unique to different cell fates and initiate waves of distinctive transcription events. Due to the technical challenges posed by previous methods, it was difficult to decipher the mechanism of cell fate determination at early embryogenesis through chromatin regulation. Recently, single-cell approaches have revolutionised the field of developmental biology, allowing unprecedented insights into chromatin structure and interactions in early lineage segregation events during differentiation. Here, we review the recent technological advancements and how they have furthered our understanding of chromatin regulation during early differentiation events.
Collapse
|
25
|
Auer JMT, Stoddart JJ, Christodoulou I, Lima A, Skouloudaki K, Hall HN, Vukojević V, Papadopoulos DK. Of numbers and movement - understanding transcription factor pathogenesis by advanced microscopy. Dis Model Mech 2020; 13:dmm046516. [PMID: 33433399 PMCID: PMC7790199 DOI: 10.1242/dmm.046516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transcription factors (TFs) are life-sustaining and, therefore, the subject of intensive research. By regulating gene expression, TFs control a plethora of developmental and physiological processes, and their abnormal function commonly leads to various developmental defects and diseases in humans. Normal TF function often depends on gene dosage, which can be altered by copy-number variation or loss-of-function mutations. This explains why TF haploinsufficiency (HI) can lead to disease. Since aberrant TF numbers frequently result in pathogenic abnormalities of gene expression, quantitative analyses of TFs are a priority in the field. In vitro single-molecule methodologies have significantly aided the identification of links between TF gene dosage and transcriptional outcomes. Additionally, advances in quantitative microscopy have contributed mechanistic insights into normal and aberrant TF function. However, to understand TF biology, TF-chromatin interactions must be characterised in vivo, in a tissue-specific manner and in the context of both normal and altered TF numbers. Here, we summarise the advanced microscopy methodologies most frequently used to link TF abundance to function and dissect the molecular mechanisms underlying TF HIs. Increased application of advanced single-molecule and super-resolution microscopy modalities will improve our understanding of how TF HIs drive disease.
Collapse
Affiliation(s)
- Julia M T Auer
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Jack J Stoddart
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Ana Lima
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Hildegard N Hall
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Vladana Vukojević
- Center for Molecular Medicine (CMM), Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | | |
Collapse
|
26
|
Dumasia NP, Pethe PS. Pancreas development and the Polycomb group protein complexes. Mech Dev 2020; 164:103647. [PMID: 32991980 DOI: 10.1016/j.mod.2020.103647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
The dual nature of pancreatic tissue permits both endocrine and exocrine functions. Enzymatic secretions by the exocrine pancreas help digestive processes while the pancreatic hormones regulate glucose homeostasis and energy metabolism. Pancreas organogenesis is defined by a conserved array of signaling pathways that act on common gut progenitors to bring about the generation of diverse cell types. Multiple cellular processes characterize development of the mature organ. These processes are mediated by signaling pathways that regulate lineage-specific transcription factors and chromatin modifications guiding long-term gene expression programs. The chromatin landscape is altered chiefly by DNA or histone modifications, chromatin remodelers, and non-coding RNAs. Amongst histone modifiers, several studies have identified Polycomb group (PcG) proteins as crucial determinants mediating transcriptional repression of genes involved in developmental processes. Although PcG-mediated chromatin modifications define cellular transitions and influence cell identity of multipotent progenitors, much remains to be understood regarding coordination between extracellular signals and their impact on Polycomb functions during the pancreas lineage progression. In this review, we discuss interactions between sequence-specific DNA binding proteins and chromatin regulators underlying pancreas development and insulin producing β-cells, with particular focus on Polycomb group proteins. Understanding such basic molecular mechanisms would improve current strategies for stem cell-based differentiation while also help elucidate the pathogenesis of several pancreas-related maladies, including diabetes and pancreatic cancer.
Collapse
Affiliation(s)
- Niloufer P Dumasia
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (deemed to-be) University, Mumbai 400 056, India
| | - Prasad S Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University, Lavale, Pune 412 115, India.
| |
Collapse
|
27
|
Cui G, Dong Q, Duan J, Zhang C, Liu X, He Q. NC2 complex is a key factor for the activation of catalase-3 transcription by regulating H2A.Z deposition. Nucleic Acids Res 2020; 48:8332-8348. [PMID: 32633757 PMCID: PMC7470962 DOI: 10.1093/nar/gkaa552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 06/05/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Negative cofactor 2 (NC2), including two subunits NC2α and NC2β, is a conserved positive/negative regulator of class II gene transcription in eukaryotes. It is known that NC2 functions by regulating the assembly of the transcription preinitiation complex. However, the exact role of NC2 in transcriptional regulation is still unclear. Here, we reveal that, in Neurospora crassa, NC2 activates catalase-3 (cat-3) gene transcription in the form of heterodimer mediated by histone fold (HF) domains of two subunits. Deletion of HF domain in either of two subunits disrupts the NC2α–NC2β interaction and the binding of intact NC2 heterodimer to cat-3 locus. Loss of NC2 dramatically increases histone variant H2A.Z deposition at cat-3 locus. Further studies show that NC2 recruits chromatin remodeling complex INO80C to remove H2A.Z from the nucleosomes around cat-3 locus, resulting in transcriptional activation of cat-3. Besides HF domains of two subunits, interestingly, C-terminal repression domain of NC2β is required not only for NC2 binding to cat-3 locus, but also for the recruitment of INO80C to cat-3 locus and removal of H2A.Z from the nucleosomes. Collectively, our findings reveal a novel mechanism of NC2 in transcription activation through recruiting INO80C to remove H2A.Z from special H2A.Z-containing nucleosomes.
Collapse
Affiliation(s)
- Guofei Cui
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qing Dong
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiabin Duan
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chengcheng Zhang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
28
|
Genome-wide chromatin accessibility is restricted by ANP32E. Nat Commun 2020; 11:5063. [PMID: 33033242 PMCID: PMC7546623 DOI: 10.1038/s41467-020-18821-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Genome-wide chromatin state underlies gene expression potential and cellular function. Epigenetic features and nucleosome positioning contribute to the accessibility of DNA, but widespread regulators of chromatin state are largely unknown. Our study investigates how coordination of ANP32E and H2A.Z contributes to genome-wide chromatin state in mouse fibroblasts. We define H2A.Z as a universal chromatin accessibility factor, and demonstrate that ANP32E antagonizes H2A.Z accumulation to restrict chromatin accessibility genome-wide. In the absence of ANP32E, H2A.Z accumulates at promoters in a hierarchical manner. H2A.Z initially localizes downstream of the transcription start site, and if H2A.Z is already present downstream, additional H2A.Z accumulates upstream. This hierarchical H2A.Z accumulation coincides with improved nucleosome positioning, heightened transcription factor binding, and increased expression of neighboring genes. Thus, ANP32E dramatically influences genome-wide chromatin accessibility through subtle refinement of H2A.Z patterns, providing a means to reprogram chromatin state and to hone gene expression levels. Chromatin state underlies cellular function, and transcription factor binding patterns along with epigenetic marks define chromatin state. Here the authors show that the histone chaperone ANP32E functions through regulation of H2A.Z to restrict genome-wide chromatin accessibility and to inhibit gene transcriptional activation.
Collapse
|
29
|
Tafessu A, Banaszynski LA. Establishment and function of chromatin modification at enhancers. Open Biol 2020; 10:200255. [PMID: 33050790 PMCID: PMC7653351 DOI: 10.1098/rsob.200255] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
How a single genome can give rise to distinct cell types remains a fundamental question in biology. Mammals are able to specify and maintain hundreds of cell fates by selectively activating unique subsets of their genome. This is achieved, in part, by enhancers-genetic elements that can increase transcription of both nearby and distal genes. Enhancers can be identified by their unique chromatin signature, including transcription factor binding and the enrichment of specific histone post-translational modifications, histone variants, and chromatin-associated cofactors. How each of these chromatin features contributes to enhancer function remains an area of intense study. In this review, we provide an overview of enhancer-associated chromatin states, and the proteins and enzymes involved in their establishment. We discuss recent insights into the effects of the enhancer chromatin state on ongoing transcription versus their role in the establishment of new transcription programmes, such as those that occur developmentally. Finally, we highlight the role of enhancer chromatin in new conceptual advances in gene regulation such as condensate formation.
Collapse
Affiliation(s)
| | - Laura A. Banaszynski
- UT Southwestern Medical Center, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Research Institute, Hamon Center for Regenerative Science and Medicine, Dallas, TX 75390-8511, USA
| |
Collapse
|
30
|
FOXA2 Is Required for Enhancer Priming during Pancreatic Differentiation. Cell Rep 2020; 28:382-393.e7. [PMID: 31291575 PMCID: PMC6636862 DOI: 10.1016/j.celrep.2019.06.034] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 04/18/2019] [Accepted: 06/08/2019] [Indexed: 12/15/2022] Open
Abstract
Transcriptional regulatory mechanisms of lineage priming in embryonic development are largely uncharacterized because of the difficulty of isolating transient progenitor populations. Directed differentiation of human pluripotent stem cells (hPSCs) combined with gene editing provides a powerful system to define precise temporal gene requirements for progressive chromatin changes during cell fate transitions. Here, we map the dynamic chromatin landscape associated with sequential stages of pancreatic differentiation from hPSCs. Our analysis of chromatin accessibility dynamics led us to uncover a requirement for FOXA2, known as a pioneer factor, in human pancreas specification not previously shown from mouse knockout studies. FOXA2 knockout hPSCs formed reduced numbers of pancreatic progenitors accompanied by impaired recruitment of GATA6 to pancreatic enhancers. Furthermore, FOXA2 is required for proper chromatin remodeling and H3K4me1 deposition during enhancer priming. This work highlights the power of combining hPSC differentiation, genome editing, and computational genomics for discovering transcriptional mechanisms during development.
Collapse
|
31
|
Abstract
Pioneer transcription factors have the intrinsic biochemical ability to scan partial DNA sequence motifs that are exposed on the surface of a nucleosome and thus access silent genes that are inaccessible to other transcription factors. Pioneer factors subsequently enable other transcription factors, nucleosome remodeling complexes, and histone modifiers to engage chromatin, thereby initiating the formation of an activating or repressive regulatory sequence. Thus, pioneer factors endow the competence for fate changes in embryonic development, are essential for cellular reprogramming, and rewire gene networks in cancer cells. Recent studies with reconstituted nucleosomes in vitro and chromatin binding in vivo reveal that pioneer factors can directly perturb nucleosome structure and chromatin accessibility in different ways. This review focuses on our current understanding of the mechanisms by which pioneer factors initiate gene network changes and will ultimately contribute to our ability to control cell fates at will.
Collapse
Affiliation(s)
- Kenneth S Zaret
- Institute for Regenerative Medicine, Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5157, USA;
| |
Collapse
|
32
|
Martire S, Banaszynski LA. The roles of histone variants in fine-tuning chromatin organization and function. Nat Rev Mol Cell Biol 2020; 21:522-541. [PMID: 32665685 PMCID: PMC8245300 DOI: 10.1038/s41580-020-0262-8] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Histones serve to both package and organize DNA within the nucleus. In addition to histone post-translational modification and chromatin remodelling complexes, histone variants contribute to the complexity of epigenetic regulation of the genome. Histone variants are characterized by a distinct protein sequence and a selection of designated chaperone systems and chromatin remodelling complexes that regulate their localization in the genome. In addition, histone variants can be enriched with specific post-translational modifications, which in turn can provide a scaffold for recruitment of variant-specific interacting proteins to chromatin. Thus, through these properties, histone variants have the capacity to endow specific regions of chromatin with unique character and function in a regulated manner. In this Review, we provide an overview of recent advances in our understanding of the contribution of histone variants to chromatin function in mammalian systems. First, we discuss new molecular insights into chaperone-mediated histone variant deposition. Next, we discuss mechanisms by which histone variants influence chromatin properties such as nucleosome stability and the local chromatin environment both through histone variant sequence-specific effects and through their role in recruiting different chromatin-associated complexes. Finally, we focus on histone variant function in the context of both embryonic development and human disease, specifically developmental syndromes and cancer.
Collapse
Affiliation(s)
- Sara Martire
- Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laura A Banaszynski
- Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
33
|
Patty BJ, Hainer SJ. Non-Coding RNAs and Nucleosome Remodeling Complexes: An Intricate Regulatory Relationship. BIOLOGY 2020; 9:E213. [PMID: 32784701 PMCID: PMC7465399 DOI: 10.3390/biology9080213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
Abstract
Eukaryotic genomes are pervasively transcribed, producing both coding and non-coding RNAs (ncRNAs). ncRNAs are diverse and a critical family of biological molecules, yet much remains unknown regarding their functions and mechanisms of regulation. ATP-dependent nucleosome remodeling complexes, in modifying chromatin structure, play an important role in transcriptional regulation. Recent findings show that ncRNAs regulate nucleosome remodeler activities at many levels and that ncRNAs are regulatory targets of nucleosome remodelers. Further, a series of recent screens indicate this network of regulatory interactions is more expansive than previously appreciated. Here, we discuss currently described regulatory interactions between ncRNAs and nucleosome remodelers and contextualize their biological functions.
Collapse
Affiliation(s)
| | - Sarah J. Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| |
Collapse
|
34
|
Reizel Y, Morgan A, Gao L, Lan Y, Manduchi E, Waite EL, Wang AW, Wells A, Kaestner KH. Collapse of the hepatic gene regulatory network in the absence of FoxA factors. Genes Dev 2020; 34:1039-1050. [PMID: 32561546 PMCID: PMC7397852 DOI: 10.1101/gad.337691.120] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/14/2020] [Indexed: 12/18/2022]
Abstract
Here, Reizel et al. investigated the FoxA factor's role in maintaining the regulatory network needed for liver development, and ablated all FoxA genes in the adult mouse liver. They found that loss of FoxA caused rapid and massive reduction in the expression of critical liver genes, and that FoxA proteins are be required for maintaining enhancer activity, chromatin accessibility, nucleosome positioning, and binding of HNF4α. The FoxA transcription factors are critical for liver development through their pioneering activity, which initiates a highly complex regulatory network thought to become progressively resistant to the loss of any individual hepatic transcription factor via mutual redundancy. To investigate the dispensability of FoxA factors for maintaining this regulatory network, we ablated all FoxA genes in the adult mouse liver. Remarkably, loss of FoxA caused rapid and massive reduction in the expression of critical liver genes. Activity of these genes was reduced back to the low levels of the fetal prehepatic endoderm stage, leading to necrosis and lethality within days. Mechanistically, we found FoxA proteins to be required for maintaining enhancer activity, chromatin accessibility, nucleosome positioning, and binding of HNF4α. Thus, the FoxA factors act continuously, guarding hepatic enhancer activity throughout adult life.
Collapse
Affiliation(s)
- Yitzhak Reizel
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ashleigh Morgan
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Long Gao
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yemin Lan
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Elisabetta Manduchi
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Eric L Waite
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Amber W Wang
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrew Wells
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Klaus H Kaestner
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
35
|
Srivastava D, Mahony S. Sequence and chromatin determinants of transcription factor binding and the establishment of cell type-specific binding patterns. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194443. [PMID: 31639474 PMCID: PMC7166147 DOI: 10.1016/j.bbagrm.2019.194443] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/21/2019] [Accepted: 10/06/2019] [Indexed: 12/14/2022]
Abstract
Transcription factors (TFs) selectively bind distinct sets of sites in different cell types. Such cell type-specific binding specificity is expected to result from interplay between the TF's intrinsic sequence preferences, cooperative interactions with other regulatory proteins, and cell type-specific chromatin landscapes. Cell type-specific TF binding events are highly correlated with patterns of chromatin accessibility and active histone modifications in the same cell type. However, since concurrent chromatin may itself be a consequence of TF binding, chromatin landscapes measured prior to TF activation provide more useful insights into how cell type-specific TF binding events became established in the first place. Here, we review the various sequence and chromatin determinants of cell type-specific TF binding specificity. We identify the current challenges and opportunities associated with computational approaches to characterizing, imputing, and predicting cell type-specific TF binding patterns. We further focus on studies that characterize TF binding in dynamic regulatory settings, and we discuss how these studies are leading to a more complex and nuanced understanding of dynamic protein-DNA binding activities. We propose that TF binding activities at individual sites can be viewed along a two-dimensional continuum of local sequence and chromatin context. Under this view, cell type-specific TF binding activities may result from either strongly favorable sequence features or strongly favorable chromatin context.
Collapse
Affiliation(s)
- Divyanshi Srivastava
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America.
| |
Collapse
|
36
|
Wei L, Zhao C, Dong S, Yao S, Ji B, Zhao B, Liu Z, Liu X, Wang Y. Secoisolariciresinol diglucoside alleviates hepatic lipid metabolic misalignment involving the endoplasmic reticulum-mitochondrial axis. Food Funct 2020; 11:3952-3963. [PMID: 32426795 DOI: 10.1039/d0fo00124d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Secoisolariciresinol diglucoside (SDG) has positive effects on obesity and its complications. We investigated the effects and mechanism of SDG on high-fat and high-fructose diet (HFFD)-induced hepatic lipid metabolic disorders. Supplementation with 40 mg kg-1 d-1 SDG for 12 weeks significantly reduced the body weight and the ratio of liver and adipose tissue to body weight in HFFD-fed mice. Serum and hepatic TG, TC, HDL-C, and LDL-C levels became normalized, and hepatic lipid metabolic disorders lessened because of the downregulation of lipid synthesis genes and upregulation of lipid oxidation genes. SDG also alleviated endoplasmic reticulum (ER) stress and mitochondrial dysfunction by regulating the ER stress factors Bip, IRE1α, Xbp1, Atf6, Perk, and Chop and mitochondrial function-related genes Cox5b, Cox7a1, Cox8b, and Cycs. Results with HepG2 cells confirmed that SDG regulated lipid metabolic disorders by the ER stress-Ca2+-mitochondrial-associated pathway. Our study provides a strategy for the treatment of obesity and its related comorbidities.
Collapse
Affiliation(s)
- Liping Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
In eukaryotes, DNA is highly compacted within the nucleus into a structure known as chromatin. Modulation of chromatin structure allows for precise regulation of gene expression, and thereby controls cell fate decisions. Specific chromatin organization is established and preserved by numerous factors to generate desired cellular outcomes. In embryonic stem (ES) cells, chromatin is precisely regulated to preserve their two defining characteristics: self-renewal and pluripotent state. This action is accomplished by a litany of nucleosome remodelers, histone variants, epigenetic marks, and other chromatin regulatory factors. These highly dynamic regulatory factors come together to precisely define a chromatin state that is conducive to ES cell maintenance and development, where dysregulation threatens the survival and fitness of the developing organism.
Collapse
Affiliation(s)
- David C Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
38
|
Cernilogar FM, Hasenöder S, Wang Z, Scheibner K, Burtscher I, Sterr M, Smialowski P, Groh S, Evenroed IM, Gilfillan GD, Lickert H, Schotta G. Pre-marked chromatin and transcription factor co-binding shape the pioneering activity of Foxa2. Nucleic Acids Res 2019; 47:9069-9086. [PMID: 31350899 PMCID: PMC6753583 DOI: 10.1093/nar/gkz627] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/07/2019] [Accepted: 07/15/2019] [Indexed: 01/04/2023] Open
Abstract
Pioneer transcription factors (PTF) can recognize their binding sites on nucleosomal DNA and trigger chromatin opening for recruitment of other non-pioneer transcription factors. However, critical properties of PTFs are still poorly understood, such as how these transcription factors selectively recognize cell type-specific binding sites and under which conditions they can initiate chromatin remodelling. Here we show that early endoderm binding sites of the paradigm PTF Foxa2 are epigenetically primed by low levels of active chromatin modifications in embryonic stem cells (ESC). Priming of these binding sites is supported by preferential recruitment of Foxa2 to endoderm binding sites compared to lineage-inappropriate binding sites, when ectopically expressed in ESCs. We further show that binding of Foxa2 is required for chromatin opening during endoderm differentiation. However, increased chromatin accessibility was only detected on binding sites which are synergistically bound with other endoderm transcription factors. Thus, our data suggest that binding site selection of PTFs is directed by the chromatin environment and that chromatin opening requires collaboration of PTFs with additional transcription factors.
Collapse
Affiliation(s)
- Filippo M Cernilogar
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, LMU Munich, Germany
| | - Stefan Hasenöder
- Helmholtz Zentrum München, Institute of Stem Cell Research, Neuherberg, Germany.,Helmholtz Zentrum München, Institute of Diabetes and Regeneration Research, Neuherberg, Germany
| | - Zeyang Wang
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, LMU Munich, Germany
| | - Katharina Scheibner
- Helmholtz Zentrum München, Institute of Stem Cell Research, Neuherberg, Germany.,Helmholtz Zentrum München, Institute of Diabetes and Regeneration Research, Neuherberg, Germany
| | - Ingo Burtscher
- Helmholtz Zentrum München, Institute of Stem Cell Research, Neuherberg, Germany.,Helmholtz Zentrum München, Institute of Diabetes and Regeneration Research, Neuherberg, Germany
| | - Michael Sterr
- Helmholtz Zentrum München, Institute of Stem Cell Research, Neuherberg, Germany.,Helmholtz Zentrum München, Institute of Diabetes and Regeneration Research, Neuherberg, Germany
| | - Pawel Smialowski
- Helmholtz Zentrum München, Institute of Stem Cell Research, Neuherberg, Germany.,Bioinformatic Core Facility, Biomedical Center, LMU Munich, Martinsried, Germany
| | - Sophia Groh
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, LMU Munich, Germany
| | - Ida M Evenroed
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gregor D Gilfillan
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Heiko Lickert
- Helmholtz Zentrum München, Institute of Stem Cell Research, Neuherberg, Germany.,Helmholtz Zentrum München, Institute of Diabetes and Regeneration Research, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Technische Universität München, Germany
| | - Gunnar Schotta
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, LMU Munich, Germany.,Munich Center for Integrated Protein Science (CiPSM), Munich, Germany
| |
Collapse
|
39
|
Yao F, Yu P, Li Y, Yuan X, Li Z, Zhang T, Liu F, Wang Y, Wang Y, Li D, Ma B, Shu C, Kong W, Zhou B, Wang L. Histone Variant H2A.Z Is Required for the Maintenance of Smooth Muscle Cell Identity as Revealed by Single-Cell Transcriptomics. Circulation 2019; 138:2274-2288. [PMID: 29871976 DOI: 10.1161/circulationaha.117.033114] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Histone variants endow chromatin with specific structures, and play essential roles in development and diseases. However, little is known about their roles in controlling cell identity in vascular diseases. METHODS Given the cell heterogeneity in atherosclerotic lesions, we applied single-cell RNA-Sequencing to analyze diseased human arteries, and identified histone variant H2A.Z as a key histone signature to maintain vascular smooth muscle cell (VSMC) identity. RESULTS We show that H2A.Z occupies genomic regions near VSMC marker genes, and its occupancy is decreased in VSMCs undergoing dedifferentiation. Mechanistically, H2A.Z occupancy preferentially promotes nucleosome turnover, and facilitates the recruitment of SMAD3 and MED1, thereby activating VSMC marker gene expression. In addition, H2A.Z expression is dramatically reduced at both mRNA and protein levels in diseased human vascular tissues compared to those in normal arteries. Notably, in vivo overexpression of H2A.Z rescues injury-induced loss of VSMC identity and neointima formation. CONCLUSIONS Together, our data introduce dynamic occupancy of a histone variant as a novel regulatory basis contributing to cell fate decisions, and imply H2A.Z as a potential intervention node for vascular diseases.
Collapse
Affiliation(s)
- Fang Yao
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases (F.Y., P.Y., X.Y., Z.L., F.L., Y.W., D.L., B.Z., L.W.), Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Peng Yu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases (F.Y., P.Y., X.Y., Z.L., F.L., Y.W., D.L., B.Z., L.W.), Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Yue Li
- Department of Cardiac Surgery, Air Force General Hospital of People's Liberation Army, Beijing, China (Y.L.)
| | - Xinli Yuan
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases (F.Y., P.Y., X.Y., Z.L., F.L., Y.W., D.L., B.Z., L.W.), Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Zheng Li
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases (F.Y., P.Y., X.Y., Z.L., F.L., Y.W., D.L., B.Z., L.W.), Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Tao Zhang
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, China (T.Z.)
| | - Fei Liu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases (F.Y., P.Y., X.Y., Z.L., F.L., Y.W., D.L., B.Z., L.W.), Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Yingbao Wang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases (F.Y., P.Y., X.Y., Z.L., F.L., Y.W., D.L., B.Z., L.W.), Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China (Y.W., B.M., W.K.)
| | | | - Dandan Li
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases (F.Y., P.Y., X.Y., Z.L., F.L., Y.W., D.L., B.Z., L.W.), Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Baihui Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China (Y.W., B.M., W.K.)
| | - Chang Shu
- Department of Cardiovascular Surgery (C.S.), Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China (Y.W., B.M., W.K.)
| | - Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases (F.Y., P.Y., X.Y., Z.L., F.L., Y.W., D.L., B.Z., L.W.), Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases (F.Y., P.Y., X.Y., Z.L., F.L., Y.W., D.L., B.Z., L.W.), Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| |
Collapse
|
40
|
Semer M, Bidon B, Larnicol A, Caliskan G, Catez P, Egly JM, Coin F, Le May N. DNA repair complex licenses acetylation of H2A.Z.1 by KAT2A during transcription. Nat Chem Biol 2019; 15:992-1000. [PMID: 31527837 DOI: 10.1038/s41589-019-0354-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
Post-translational modifications of histone variant H2A.Z accompany gene transactivation, but its modifying enzymes still remain elusive. Here, we reveal a hitherto unknown function of human KAT2A (GCN5) as a histone acetyltransferase (HAT) of H2A.Z at the promoters of a set of transactivated genes. Expression of these genes also depends on the DNA repair complex XPC-RAD23-CEN2. We established that XPC-RAD23-CEN2 interacts both with H2A.Z and KAT2A to drive the recruitment of the HAT at promoters and license H2A.Z acetylation. KAT2A selectively acetylates H2A.Z.1 versus H2A.Z.2 in vitro on several well-defined lysines and we unveiled that alanine-14 in H2A.Z.2 is responsible for inhibiting the activity of KAT2A. Notably, the use of a nonacetylable H2A.Z.1 mutant shows that H2A.Z.1ac recruits the epigenetic reader BRD2 to promote RNA polymerase II recruitment. Our studies identify KAT2A as an H2A.Z.1 HAT in mammals and implicate XPC-RAD23-CEN2 as a transcriptional co-activator licensing the reshaping of the promoter epigenetic landscape.
Collapse
Affiliation(s)
- M Semer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labélisée Ligue contre le Cancer, Illkirch Cedex, Strasbourg, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - B Bidon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labélisée Ligue contre le Cancer, Illkirch Cedex, Strasbourg, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - A Larnicol
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labélisée Ligue contre le Cancer, Illkirch Cedex, Strasbourg, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - G Caliskan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labélisée Ligue contre le Cancer, Illkirch Cedex, Strasbourg, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Department of Pharmaceutical Biotechnology, Faculty of pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - P Catez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labélisée Ligue contre le Cancer, Illkirch Cedex, Strasbourg, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - J M Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labélisée Ligue contre le Cancer, Illkirch Cedex, Strasbourg, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - F Coin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labélisée Ligue contre le Cancer, Illkirch Cedex, Strasbourg, France. .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France. .,Université de Strasbourg, Illkirch, France.
| | - N Le May
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labélisée Ligue contre le Cancer, Illkirch Cedex, Strasbourg, France. .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France. .,Université de Strasbourg, Illkirch, France.
| |
Collapse
|
41
|
Deckard CE, Banerjee DR, Sczepanski JT. Chromatin Structure and the Pioneering Transcription Factor FOXA1 Regulate TDG-Mediated Removal of 5-Formylcytosine from DNA. J Am Chem Soc 2019; 141:14110-14114. [PMID: 31460763 DOI: 10.1021/jacs.9b07576] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although a functional relationship between active DNA demethylation and chromatin structure is often implied, direct experimental evidence is lacking. We investigated the relationship between chromatin structure and thymine DNA glycosylase (TDG) using chemically defined nucleosome arrays containing site-specifically positioned 5-formylcytosine (5fC) residues. We show that the extent of array compaction, as well as nucleosome positioning, dramatically influence the ability of TDG to excise 5fC from DNA, indicating that the chromatin structure is likely a key determinant of whether 5fC is removed from the genome or retained as an epigenetic mark. Furthermore, the H2A.Z/H3.3 double-variant nucleosome and the pioneering transcription factor forkhead box A1 (FOXA1), both of which are implicated in shaping the chromatin landscape during demethylation of tissue-specific enhancers, differentially regulate TDG activity on chromatin. Together, this work provides the first direct evidence that the higher order chromatin structure regulates active DNA demethylation through TDG and provides novel insights into the mechanism of 5fC turnover at enhancers.
Collapse
Affiliation(s)
- Charles E Deckard
- Department of Chemistry , Texas A&M University , College Station , Texas 77842 , United States
| | - Deb Ranjan Banerjee
- Department of Chemistry , Texas A&M University , College Station , Texas 77842 , United States
| | - Jonathan T Sczepanski
- Department of Chemistry , Texas A&M University , College Station , Texas 77842 , United States
| |
Collapse
|
42
|
Zheng D, Trynda J, Sun Z, Li Z. NUCLIZE for quantifying epigenome: generating histone modification data at single-nucleosome resolution using genuine nucleosome positions. BMC Genomics 2019; 20:541. [PMID: 31266464 PMCID: PMC6604165 DOI: 10.1186/s12864-019-5932-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/24/2019] [Indexed: 01/06/2023] Open
Abstract
Background Defining histone modification at single-nucleosome resolution provides accurate epigenomic information in individual nucleosomes. However, most of histone modification data deposited in current databases, such as ENCODE and Roadmap, have low resolution with peaks of several kilo-base pairs (kb), which due to the technical defects of regular ChIP-Seq technology. Results To generate histone modification data at single-nucleosome resolution, we developed a novel approach, NUCLIZE, using synergistic analyses of histone modification data from ChIP-Seq and high-resolution nucleosome mapping data from native MNase-Seq. With this approach, we generated quantitative epigenomics data of single and multivalent histone modification marks in each nucleosome. We found that the dominant trivalent histone mark (H3K4me3/H3K9ac/H3K27ac) and others showed defined and specific patterns near each TSS, indicating potential epigenetic codes regulating gene transcription. Conclusions Single-nucleosome histone modification data render epigenomic data become quantitative, which is essential for investigating dynamic changes of epigenetic regulation in the biological process or for functional epigenomics studies. Thus, NUCLIZE turns current epigenomic mapping studies into genuine functional epigenomics studies with quantitative epigenomic data. Electronic supplementary material The online version of this article (10.1186/s12864-019-5932-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daoshan Zheng
- Department of Cancer Biology and Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, 4500 San Pablo Road, Griffin 210, Jacksonville, FL, 32224, USA
| | - Justyna Trynda
- Department of Cancer Biology and Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, 4500 San Pablo Road, Griffin 210, Jacksonville, FL, 32224, USA
| | - Zhifu Sun
- Bioinformatics Core and Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, 4500 San Pablo Road, Griffin 210, Jacksonville, FL, 32224, USA
| | - Zhaoyu Li
- Department of Cancer Biology and Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, 4500 San Pablo Road, Griffin 210, Jacksonville, FL, 32224, USA.
| |
Collapse
|
43
|
Torres ES, Deal RB. The histone variant H2A.Z and chromatin remodeler BRAHMA act coordinately and antagonistically to regulate transcription and nucleosome dynamics in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:144-162. [PMID: 30742338 PMCID: PMC7259472 DOI: 10.1111/tpj.14281] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/28/2018] [Accepted: 12/18/2018] [Indexed: 05/17/2023]
Abstract
Plants adapt to environmental changes by regulating transcription and chromatin organization. The histone H2A variant H2A.Z and the SWI2/SNF2 ATPase BRAHMA (BRM) have overlapping roles in positively and negatively regulating environmentally responsive genes in Arabidopsis, but the extent of this overlap was uncharacterized. Both factors have been associated with various changes in nucleosome positioning and stability in different contexts, but their specific roles in transcriptional regulation and chromatin organization need further characterization. We show that H2A.Z and BRM co-localize at thousands of sites, where they interact both cooperatively and antagonistically in transcriptional repression and activation of genes involved in development and responses to environmental stimuli. We identified eight classes of genes that show distinct relationships between H2A.Z and BRM with respect to their roles in transcription. These include activating and silencing transcription both redundantly and antagonistically. We found that H2A.Z contributes to a range of different nucleosome properties, while BRM stabilizes nucleosomes where it binds and destabilizes or repositions flanking nucleosomes. We also found that, at many genes regulated by both BRM and H2A.Z, both factors overlap with binding sites of the light-regulated transcription factor FAR1-Related Sequence 9 (FRS9) and that a subset of these FRS9 binding sites are dependent on H2A.Z and BRM for accessibility. Collectively, we comprehensively characterized the antagonistic and cooperative contributions of H2A.Z and BRM to transcriptional regulation, and illuminated several interrelated roles in chromatin organization. The variability observed in their individual functions implies that both BRM and H2A.Z have more context-dependent roles than previously assumed.
Collapse
Affiliation(s)
- E. Shannon Torres
- Department of Biology, Emory University, Atlanta, GA 30322
- Graduate Program in Genetics and Molecular Biology of the Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322
| | - Roger B. Deal
- Department of Biology, Emory University, Atlanta, GA 30322
| |
Collapse
|
44
|
Qiao H, Li Y, Feng C, Duo S, Ji F, Jiao J. Nap1l1 Controls Embryonic Neural Progenitor Cell Proliferation and Differentiation in the Developing Brain. Cell Rep 2019; 22:2279-2293. [PMID: 29490266 DOI: 10.1016/j.celrep.2018.02.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/22/2017] [Accepted: 02/05/2018] [Indexed: 01/27/2023] Open
Abstract
The precise function and role of nucleosome assembly protein 1-like 1 (Nap1l1) in brain development are unclear. Here, we find that Nap1l1 knockdown decreases neural progenitor cell (NPC) proliferation and induces premature neuronal differentiation during cortical development. A similar deficiency in embryonic neurogenesis was observed in Nap1l1 knockout (KO) mice, which were generated using the CRISPR-Cas9 system. RNA sequencing (RNA-seq) analysis indicates that Ras-associated domain family member 10 (RassF10) may be the downstream target of Nap1l1. Furthermore, we found that Nap1l1 regulates RassF10 expression by promoting SETD1A-mediated H3K4 trimethylation at the RassF10 promoter. Nap1l1 KO defects may be rescued by RassF10 overexpression, suggesting that Nap1l1 controls NPC differentiation through RassF10. Our findings reveal an essential role for the Nap1l1 histone chaperone in cortical neurogenesis during early embryonic brain development.
Collapse
Affiliation(s)
- Huimin Qiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College at University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuguang Duo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fen Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
45
|
Giaimo BD, Ferrante F, Herchenröther A, Hake SB, Borggrefe T. The histone variant H2A.Z in gene regulation. Epigenetics Chromatin 2019; 12:37. [PMID: 31200754 PMCID: PMC6570943 DOI: 10.1186/s13072-019-0274-9] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/23/2019] [Indexed: 01/04/2023] Open
Abstract
The histone variant H2A.Z is involved in several processes such as transcriptional control, DNA repair, regulation of centromeric heterochromatin and, not surprisingly, is implicated in diseases such as cancer. Here, we review the recent developments on H2A.Z focusing on its role in transcriptional activation and repression. H2A.Z, as a replication-independent histone, has been studied in several model organisms and inducible mammalian model systems. Its loading machinery and several modifying enzymes have been recently identified, and some of the long-standing discrepancies in transcriptional activation and/or repression are about to be resolved. The buffering functions of H2A.Z, as supported by genome-wide localization and analyzed in several dynamic systems, are an excellent example of transcriptional control. Posttranslational modifications such as acetylation and ubiquitination of H2A.Z, as well as its specific binding partners, are in our view central players in the control of gene expression. Understanding the key-mechanisms in either turnover or stabilization of H2A.Z-containing nucleosomes as well as defining the H2A.Z interactome will pave the way for therapeutic applications in the future.
Collapse
Affiliation(s)
| | - Francesca Ferrante
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Andreas Herchenröther
- Institute for Genetics, University of Giessen, Heinrich-Buff-Ring 58-62, 35392, Giessen, Germany
| | - Sandra B Hake
- Institute for Genetics, University of Giessen, Heinrich-Buff-Ring 58-62, 35392, Giessen, Germany
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392, Giessen, Germany.
| |
Collapse
|
46
|
Chen X, Ye Y, Gu L, Sun J, Du Y, Liu WJ, Li W, Zhang X, Jiang C. H3K27me3 Signal in the Cis Regulatory Elements Reveals the Differentiation Potential of Progenitors During Drosophila Neuroglial Development. GENOMICS PROTEOMICS & BIOINFORMATICS 2019; 17:297-304. [PMID: 31195140 PMCID: PMC6818177 DOI: 10.1016/j.gpb.2018.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/14/2018] [Accepted: 12/14/2018] [Indexed: 01/24/2023]
Abstract
Drosophila neural development undergoes extensive chromatin remodeling and precise epigenetic regulation. However, the roles of chromatin remodeling in establishment and maintenance of cell identity during cell fate transition remain enigmatic. Here, we compared the changes in gene expression, as well as the dynamics of nucleosome positioning and key histone modifications between the four major neural cell types during Drosophila neural development. We find that the neural progenitors can be separated from the terminally differentiated cells based on their gene expression profiles, whereas nucleosome distribution in the flanking regions of transcription start sites fails to identify the relationships between the progenitors and the differentiated cells. H3K27me3 signal in promoters and enhancers can not only distinguish the progenitors from the differentiated cells but also identify the differentiation path of the neural stem cells (NSCs) to the intermediate progenitor cells to the glial cells. In contrast, H3K9ac signal fails to identify the differentiation path, although it activates distinct sets of genes with neuron-specific and glia-related functions during the differentiation of the NSCs into neurons and glia, respectively. Together, our study provides novel insights into the crucial roles of chromatin remodeling in determining cell type during Drosophila neural development.
Collapse
Affiliation(s)
- Xiaolong Chen
- Institute of Translational Research, Tongji Hospital, School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, Tongji University, Shanghai 200092, China
| | - Youqiong Ye
- Institute of Translational Research, Tongji Hospital, School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, Tongji University, Shanghai 200092, China
| | - Liang Gu
- Institute of Translational Research, Tongji Hospital, School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, Tongji University, Shanghai 200092, China
| | - Jin Sun
- Institute of Translational Research, Tongji Hospital, School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, Tongji University, Shanghai 200092, China
| | - Yanhua Du
- Institute of Translational Research, Tongji Hospital, School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, Tongji University, Shanghai 200092, China
| | - Wen-Ju Liu
- Institute of Translational Research, Tongji Hospital, School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, Tongji University, Shanghai 200092, China
| | - Wei Li
- Tongji University Library, Tongji University, Shanghai 200092, China
| | - Xiaobai Zhang
- Institute of Translational Research, Tongji Hospital, School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, Tongji University, Shanghai 200092, China
| | - Cizhong Jiang
- Institute of Translational Research, Tongji Hospital, School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, Tongji University, Shanghai 200092, China; Research Center of Stem Cells and Ageing, Tsingtao Advanced Research Institute, Tongji University, Tsingtao 266071, China.
| |
Collapse
|
47
|
The base pair-scale diffusion of nucleosomes modulates binding of transcription factors. Proc Natl Acad Sci U S A 2019; 116:12161-12166. [PMID: 31147470 DOI: 10.1073/pnas.1815424116] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The structure of promoter chromatin determines the ability of transcription factors (TFs) to bind to DNA and therefore has a profound effect on the expression levels of genes. However, the role of spontaneous nucleosome movements in this process is not fully understood. Here, we developed a single-molecule optical tweezers assay capable of simultaneously characterizing the base pair-scale diffusion of a nucleosome on DNA and the binding of a TF, using the luteinizing hormone β subunit gene (Lhb) promoter and Egr-1 as a model system. Our results demonstrate that nucleosomes undergo confined diffusion, and that the incorporation of the histone variant H2A.Z serves to partially relieve this confinement, inducing a different type of nucleosome repositioning. The increase in diffusion leads to exposure of a TF's binding site and facilitates its association with the DNA, which, in turn, biases the subsequent movement of the nucleosome. Our findings suggest the use of mobile nucleosomes as a general transcriptional regulatory mechanism.
Collapse
|
48
|
Leemans C, van der Zwalm MCH, Brueckner L, Comoglio F, van Schaik T, Pagie L, van Arensbergen J, van Steensel B. Promoter-Intrinsic and Local Chromatin Features Determine Gene Repression in LADs. Cell 2019; 177:852-864.e14. [PMID: 30982597 PMCID: PMC6506275 DOI: 10.1016/j.cell.2019.03.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/23/2019] [Accepted: 03/04/2019] [Indexed: 12/28/2022]
Abstract
It is largely unclear whether genes that are naturally embedded in lamina-associated domains (LADs) are inactive due to their chromatin environment or whether LADs are merely secondary to the lack of transcription. We show that hundreds of human promoters become active when moved from their native LAD position to a neutral context in the same cells, indicating that LADs form a repressive environment. Another set of promoters inside LADs is able to "escape" repression, although their transcription elongation is attenuated. By inserting reporters into thousands of genomic locations, we demonstrate that escaper promoters are intrinsically less sensitive to LAD repression. This is not simply explained by promoter strength but by the interplay between promoter sequence and local chromatin features that vary strongly across LADs. Enhancers also differ in their sensitivity to LAD chromatin. This work provides a general framework for the systematic understanding of gene regulation by repressive chromatin.
Collapse
Affiliation(s)
- Christ Leemans
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marloes C H van der Zwalm
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Laura Brueckner
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Federico Comoglio
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Tom van Schaik
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ludo Pagie
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Joris van Arensbergen
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Bas van Steensel
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
49
|
Genga RMJ, Kernfeld EM, Parsi KM, Parsons TJ, Ziller MJ, Maehr R. Single-Cell RNA-Sequencing-Based CRISPRi Screening Resolves Molecular Drivers of Early Human Endoderm Development. Cell Rep 2019; 27:708-718.e10. [PMID: 30995470 PMCID: PMC6525305 DOI: 10.1016/j.celrep.2019.03.076] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 02/22/2019] [Accepted: 03/20/2019] [Indexed: 12/22/2022] Open
Abstract
Studies in vertebrates have outlined conserved molecular control of definitive endoderm (END) development. However, recent work also shows that key molecular aspects of human END regulation differ even from rodents. Differentiation of human embryonic stem cells (ESCs) to END offers a tractable system to study the molecular basis of normal and defective human-specific END development. Here, we interrogated dynamics in chromatin accessibility during differentiation of ESCs to END, predicting DNA-binding proteins that may drive this cell fate transition. We then combined single-cell RNA-seq with parallel CRISPR perturbations to comprehensively define the loss-of-function phenotype of those factors in END development. Following a few candidates, we revealed distinct impairments in the differentiation trajectories for mediators of TGFβ signaling and expose a role for the FOXA2 transcription factor in priming human END competence for human foregut and hepatic END specification. Together, this single-cell functional genomics study provides high-resolution insight on human END development.
Collapse
Affiliation(s)
- Ryan M J Genga
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Eric M Kernfeld
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Krishna M Parsi
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Teagan J Parsons
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael J Ziller
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - René Maehr
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
50
|
Khabarova AA, Ryzhkova AS, Battulin NR. Reorganisation of chromatin during erythroid differentiation. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A totipotent zygote has unlimited potential for differentiation into all cell types found in an adult organism. During ontogenesis proliferating and maturing cells gradually lose their differentiation potential, limiting the spectrum of possible developmental transitions to a specific cell type. Following the initiation of the developmental program cells acquire specific morphological and functional properties. Deciphering the mechanisms that coordinate shifts in gene expression revealed a critical role of three-dimensional chromatin structure in the regulation of gene activity during lineage commitment. Several levels of DNA packaging have been recently identified using chromosome conformation capture based techniques such a Hi-C. It is now clear that chromatin regions with high transcriptional activity assemble into Mb-scale compartments in the nuclear space, distinct from transcriptionally silent regions. More locally chromatin is organized into topological domains, serving as functionally insulated units with cell type – specific regulatory loop interactions. However, molecular mechanisms establishing and maintaining such 3D organization are yet to be investigated. Recent focus on studying chromatin reorganization accompanying cell cycle progression and cellular differentiation partially explained some aspects of 3D genome folding. Throughout erythropoiesis cells undergo a dramatic reorganization of the chromatin landscape leading to global nuclear condensation and transcriptional silencing, followed by nuclear extrusion at the final stage of mammalian erythropoiesis. Drastic changes of genome architecture and function accompanying erythroid differentiation seem to be an informative model for studying the ways of how genome organization and dynamic gene activity are connected. Here we summarize current views on the role of global rearrangement of 3D chromatin structure in erythroid differentiation.
Collapse
Affiliation(s)
| | | | - N. R. Battulin
- Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
| |
Collapse
|