1
|
Ding Y, Li J, Jiang HL, Suo F, Shao GC, Zhang XR, Dong MQ, Liu CP, Xu RM, Du LL. The ortholog of human DNAJC9 promotes histone H3-H4 degradation and is counteracted by Asf1 in fission yeast. Nucleic Acids Res 2025; 53:gkaf036. [PMID: 39878217 PMCID: PMC11775587 DOI: 10.1093/nar/gkaf036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/14/2024] [Accepted: 01/16/2025] [Indexed: 01/31/2025] Open
Abstract
Mammalian J-domain protein DNAJC9 interacts with histones H3-H4 and is important for cell proliferation. However, its exact function remains unclear. Here, we show that, in the fission yeast Schizosaccharomyces pombe, loss of Djc9, the ortholog of DNAJC9, renders the histone chaperone Asf1 no longer essential for growth. Utilizing AlphaFold-based structural prediction, we identified a histone-binding surface on Djc9 that binds to helix α3 of H3 in a manner that precludes simultaneous helix α3-binding by Asf1. Djc9 and Asf1 indeed compete for binding to the H3-H4 dimer in vitro, and an H3-α3 mutation impeding Djc9 binding also renders Asf1 non-essential, indicating that the role of Asf1 needed for growth in fission yeast is to prevent histone binding by Djc9. In the absence of Asf1, cell growth is hindered due to unrestrained Djc9-mediated downregulation of H3 and H4. In the presence of Asf1, Djc9 confers resistance to the DNA replication inhibitor hydroxyurea and dominant negative disease-related histone mutants by promoting the degradation of superfluous or dysfunctional histones. Our findings provide new insights into the function and mechanism of this conserved histone-binding protein.
Collapse
Affiliation(s)
- Yan Ding
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jun Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - He-Li Jiang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing 102206, China
| | - Guang-Can Shao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiao-Ran Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Chao-Pei Liu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui-Ming Xu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Lin Du
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| |
Collapse
|
2
|
Nakagawa M, Nakagawa T. CUL4-Based Ubiquitin Ligases in Chromatin Regulation: An Evolutionary Perspective. Cells 2025; 14:63. [PMID: 39851492 PMCID: PMC11763709 DOI: 10.3390/cells14020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
Ubiquitylation is a post-translational modification that modulates protein function and stability. It is orchestrated by the concerted action of three types of enzymes, with substrate specificity governed by ubiquitin ligases (E3s), which may exist as single proteins or as part of multi-protein complexes. Although Cullin (CUL) proteins lack intrinsic enzymatic activity, they participate in the formation of active ubiquitin ligase complexes, known as Cullin-Ring ubiquitin Ligases (CRLs), through their association with ROC1 or ROC2, along with substrate adaptor and receptor proteins. Mammalian genomes encode several CUL proteins (CUL1-9), each contributing to distinct CRLs. Among these CUL proteins, CUL1, CUL3, and CUL4 are believed to be the most ancient and evolutionarily conserved from yeast to mammals, with CUL4 uniquely duplicated in vertebrates. Genetic evidence strongly implicates CUL4-based ubiquitin ligases (CRL4s) in chromatin regulation across various species and suggests that, in vertebrates, CRL4s have also acquired a cytosolic role, which is facilitated by a cytosol-localizing paralog of CUL4. Substrates identified through biochemical studies have elucidated the molecular mechanisms by which CRL4s regulate chromatin and cytosolic processes. The substantial body of knowledge on CUL4 biology amassed over the past two decades provides a unique opportunity to explore the functional evolution of CRL4. In this review, we synthesize the available structural, genetic, and biochemical data on CRL4 from various model organisms and discuss the conserved and novel functions of CRL4s.
Collapse
Affiliation(s)
- Makiko Nakagawa
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi 755-8505, Japan;
- Advanced Technology Institute, Life Science Division, Yamaguchi University, Yamaguchi 755-8611, Japan
| | - Tadashi Nakagawa
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan
| |
Collapse
|
3
|
Duan S, Nodelman IM, Zhou H, Tsukiyama T, Bowman GD, Zhang Z. H3K56 acetylation regulates chromatin maturation following DNA replication. Nat Commun 2025; 16:134. [PMID: 39746969 PMCID: PMC11697131 DOI: 10.1038/s41467-024-55144-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Following DNA replication, the newly reassembled chromatin is disorganized and must mature to its steady state to maintain both genome and epigenome integrity. However, the regulatory mechanisms governing this critical process remain poorly understood. Here, we show that histone H3K56 acetylation (H3K56ac), a mark on newly-synthesized H3, facilitates the remodeling of disorganized nucleosomes in nascent chromatin, and its removal at the subsequent G2/M phase of the cell cycle marks the completion of chromatin maturation. In vitro, H3K56ac enhances the activity of ISWI chromatin remodelers, including yeast ISW1 and its human equivalent SNF2h. In vivo, a deficiency of H3K56ac in nascent chromatin results in the formation of closely packed di-nucleosomes and/or tetra-nucleosomes. In contrast, abnormally high H3K56ac levels disrupt chromatin maturation, leading to genome instability. These findings establish a central role of H3K56ac in chromatin maturation and reveal a mechanism regulating this critical aspect of chromosome replication.
Collapse
Affiliation(s)
- Shoufu Duan
- Institute for Cancer Genetics, Department of Pediatrics and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ilana M Nodelman
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Hui Zhou
- Institute for Cancer Genetics, Department of Pediatrics and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Gregory D Bowman
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Department of Pediatrics and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
4
|
Kimble MT, Sane A, Reid RJD, Johnson MJ, Rothstein R, Symington LS. Repair of replication-dependent double-strand breaks differs between the leading and lagging strands. Mol Cell 2025; 85:61-77.e6. [PMID: 39631395 PMCID: PMC11698654 DOI: 10.1016/j.molcel.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/23/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
Single-strand breaks (SSBs) are one of the most commonly occurring endogenous lesions with the potential to give rise to cytotoxic double-strand breaks (DSBs) during DNA replication. To investigate how replication-dependent DSBs are repaired, we employed Cas9 nickase (nCas9) to generate site- and strand-specific nicks in the budding yeast genome. We found that nCas9-induced nicks are converted to mostly double-ended DSBs during S phase. Repair of replication-associated DSBs requires homologous recombination (HR) and is independent of classical non-homologous end joining. Consistent with a strong bias to repair these lesions using a sister-chromatid template, we observed minimal induction of inter-chromosomal HR by nCas9. In a genome-wide screen to identify factors necessary for the repair of replication-dependent DSBs, we recovered components of the replication-coupled nucleosome assembly (RCNA) pathway. Our findings suggest that the RCNA pathway is especially important to repair DSBs arising from nicks in the leading-strand template through acetylation of histone H3K56.
Collapse
Affiliation(s)
- Michael T Kimble
- Program in Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aakanksha Sane
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Robert J D Reid
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthew J Johnson
- Program in Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
5
|
Noireterre A, Soudet J, Bagdiul I, Stutz F. The cullin Rtt101 promotes ubiquitin-dependent DNA-protein crosslink repair across the cell cycle. Nucleic Acids Res 2024; 52:9654-9670. [PMID: 39077933 PMCID: PMC11381328 DOI: 10.1093/nar/gkae658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/28/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
DNA-protein crosslinks (DPCs) challenge faithful DNA replication and smooth passage of genomic information. Our study unveils the cullin E3 ubiquitin ligase Rtt101 as a DPC repair factor. Genetic analyses demonstrate that Rtt101 is essential for resistance to a wide range of DPC types including topoisomerase 1 crosslinks, in the same pathway as the ubiquitin-dependent aspartic protease Ddi1. Using an in vivo inducible Top1-mimicking DPC system, we reveal the significant impact of Rtt101 ubiquitination on DPC removal across different cell cycle phases. High-throughput methods coupled with next-generation sequencing specifically highlight the association of Rtt101 with replisomes as well as colocalization with DPCs. Our findings establish Rtt101 as a main contributor to DPC repair throughout the yeast cell cycle.
Collapse
Affiliation(s)
- Audrey Noireterre
- Department of Molecular and Cellular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Julien Soudet
- Department of Molecular and Cellular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Ivona Bagdiul
- Department of Molecular and Cellular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Françoise Stutz
- Department of Molecular and Cellular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
6
|
Dasgupta A, Nandi S, Gupta S, Roy S, Das C. To Ub or not to Ub: The epic dilemma of histones that regulate gene expression and epigenetic cross-talk. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195033. [PMID: 38750882 DOI: 10.1016/j.bbagrm.2024.195033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/04/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
A dynamic array of histone post-translational modifications (PTMs) regulate diverse cellular processes in the eukaryotic chromatin. Among them, histone ubiquitination is particularly complex as it alters nucleosome surface area fostering intricate cross-talk with other chromatin modifications. Ubiquitin signaling profoundly impacts DNA replication, repair, and transcription. Histones can undergo varied extent of ubiquitination such as mono, multi-mono, and polyubiquitination, which brings about distinct cellular fates. Mechanistic studies of the ubiquitin landscape in chromatin have unveiled a fascinating tapestry of events that orchestrate gene regulation. In this review, we summarize the key contributors involved in mediating different histone ubiquitination and deubiquitination events, and discuss their mechanism which impacts cell transcriptional identity and DNA damage response. We also focus on the proteins bearing epigenetic reader modules critical in discerning site-specific histone ubiquitination, pivotal for establishing complex epigenetic crosstalk. Moreover, we highlight the role of histone ubiquitination in different human diseases including neurodevelopmental disorders and cancer. Overall the review elucidates the intricate orchestration of histone ubiquitination impacting diverse cellular functions and disease pathogenesis, and provides insights into the current challenges of targeting them for therapeutic interventions.
Collapse
Affiliation(s)
- Anirban Dasgupta
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Sayan Gupta
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
7
|
Jia J, Yu C. The Role of the MCM2-7 Helicase Subunit MCM2 in Epigenetic Inheritance. BIOLOGY 2024; 13:572. [PMID: 39194510 DOI: 10.3390/biology13080572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024]
Abstract
Recycling histone proteins from parental chromatin, a process known as parental histone transfer, is an important component in chromosome replication and is essential for epigenetic inheritance. We review recent advances in our understanding of the recycling mechanism of parental histone H3-H4 tetramers (parH3:H4tet), emphasizing the pivotal role of the DNA replisome. In particular, we highlight the function of the MCM2-7 helicase subunit Mcm2 as a histone H3-H4 tetramer chaperone. Disruption of this histone chaperone's functions affects mouse embryonic stem cell differentiation and can lead to embryonic lethality in mice, underscoring the crucial role of the replisome in maintaining epigenomic stability.
Collapse
Affiliation(s)
- Jing Jia
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Chuanhe Yu
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
8
|
Kimble MT, Sane A, Reid RJ, Johnson MJ, Rothstein R, Symington LS. Strand asymmetry in the repair of replication dependent double-strand breaks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.598707. [PMID: 38948862 PMCID: PMC11212877 DOI: 10.1101/2024.06.17.598707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Single-strand breaks (SSBs) are one of the most common endogenous lesions and have the potential to give rise to cytotoxic double-strand breaks (DSBs) during DNA replication. To investigate the mechanism of replication fork collapse at SSBs and subsequent repair, we employed Cas9 nickase (nCas9) to generate site and strand-specific nicks in the budding yeast genome. We show that nCas9-induced nicks are converted to mostly double-ended DSBs during S-phase. We find that repair of replication-dependent DSBs requires homologous recombination (HR) and is independent of canonical non-homologous end joining. Consistent with a strong bias to repair these lesions using a sister chromatid template, we observe minimal induction of inter-chromosomal HR by nCas9. Using nCas9 and a gRNA to nick either the leading or lagging strand template, we carried out a genome-wide screen to identify factors necessary for the repair of replication-dependent DSBs. All the core HR genes were recovered in the screen with both gRNAs, but we recovered components of the replication-coupled nucleosome assembly (RCNA) pathway with only the gRNA targeting the leading strand template. By use of additional gRNAs, we find that the RCNA pathway is especially important to repair a leading strand fork collapse.
Collapse
|
9
|
Karri S, Yang Y, Zhou J, Dickinson Q, Jia J, Huang Y, Wang Z, Gan H, Yu C. Defective transfer of parental histone decreases frequency of homologous recombination by increasing free histone pools in budding yeast. Nucleic Acids Res 2024; 52:5138-5151. [PMID: 38554108 PMCID: PMC11109958 DOI: 10.1093/nar/gkae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 04/01/2024] Open
Abstract
Recycling of parental histones is an important step in epigenetic inheritance. During DNA replication, DNA polymerase epsilon subunit DPB3/DPB4 and DNA replication helicase subunit MCM2 are involved in the transfer of parental histones to the leading and lagging strands, respectively. Single Dpb3 deletion (dpb3Δ) or Mcm2 mutation (mcm2-3A), which each disrupts one parental histone transfer pathway, leads to the other's predominance. However, the biological impact of the two histone transfer pathways on chromatin structure and DNA repair remains elusive. In this study, we used budding yeast Saccharomyces cerevisiae to determine the genetic and epigenetic outcomes from disruption of parental histone H3-H4 tetramer transfer. We found that a dpb3Δ mcm2-3A double mutant did not exhibit the asymmetric parental histone patterns caused by a single dpb3Δ or mcm2-3A mutation, suggesting that the processes by which parental histones are transferred to the leading and lagging strands are independent. Surprisingly, the frequency of homologous recombination was significantly lower in dpb3Δ, mcm2-3A and dpb3Δ mcm2-3A mutants, likely due to the elevated levels of free histones detected in the mutant cells. Together, these findings indicate that proper transfer of parental histones during DNA replication is essential for maintaining chromatin structure and that lower homologous recombination activity due to parental histone transfer defects is detrimental to cells.
Collapse
Affiliation(s)
- Srinivasu Karri
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Yi Yang
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Jiaqi Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Quinn Dickinson
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Jing Jia
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Yuxin Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhiquan Wang
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Haiyun Gan
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chuanhe Yu
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
10
|
Gao E, Brown JAR, Jung S, Howe LJ. A fluorescent assay for cryptic transcription in Saccharomyces cerevisiae reveals novel insights into factors that stabilize chromatin structure on newly replicated DNA. Genetics 2024; 226:iyae016. [PMID: 38407959 PMCID: PMC10990430 DOI: 10.1093/genetics/iyae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/12/2024] [Indexed: 02/27/2024] Open
Abstract
The disruption of chromatin structure can result in transcription initiation from cryptic promoters within gene bodies. While the passage of RNA polymerase II is a well-characterized chromatin-disrupting force, numerous factors, including histone chaperones, normally stabilize chromatin on transcribed genes, thereby repressing cryptic transcription. DNA replication, which employs a partially overlapping set of histone chaperones, is also inherently disruptive to chromatin, but a role for DNA replication in cryptic transcription has never been examined. In this study, we tested the hypothesis that, in the absence of chromatin-stabilizing factors, DNA replication can promote cryptic transcription in Saccharomyces cerevisiae. Using a novel fluorescent reporter assay, we show that multiple factors, including Asf1, CAF-1, Rtt106, Spt6, and FACT, block transcription from a cryptic promoter, but are entirely or partially dispensable in G1-arrested cells, suggesting a requirement for DNA replication in chromatin disruption. Collectively, these results demonstrate that transcription fidelity is dependent on numerous factors that function to assemble chromatin on nascent DNA.
Collapse
Affiliation(s)
- Ellia Gao
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Joshua A R Brown
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Stephanie Jung
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - LeAnn J Howe
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
11
|
Blaszczak E, Pasquier E, Le Dez G, Odrzywolski A, Lazarewicz N, Brossard A, Fornal E, Moskalek P, Wysocki R, Rabut G. Dissecting Ubiquitylation and DNA Damage Response Pathways in the Yeast Saccharomyces cerevisiae Using a Proteome-Wide Approach. Mol Cell Proteomics 2024; 23:100695. [PMID: 38101750 PMCID: PMC10803944 DOI: 10.1016/j.mcpro.2023.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/26/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
In response to genotoxic stress, cells evolved with a complex signaling network referred to as the DNA damage response (DDR). It is now well established that the DDR depends upon various posttranslational modifications; among them, ubiquitylation plays a key regulatory role. Here, we profiled ubiquitylation in response to the DNA alkylating agent methyl methanesulfonate (MMS) in the budding yeast Saccharomyces cerevisiae using quantitative proteomics. To discover new proteins ubiquitylated upon DNA replication stress, we used stable isotope labeling by amino acids in cell culture, followed by an enrichment of ubiquitylated peptides and LC-MS/MS. In total, we identified 1853 ubiquitylated proteins, including 473 proteins that appeared upregulated more than 2-fold in response to MMS treatment. This enabled us to localize 519 ubiquitylation sites potentially regulated upon MMS in 435 proteins. We demonstrated that the overexpression of some of these proteins renders the cells sensitive to MMS. We also assayed the abundance change upon MMS treatment of a selection of yeast nuclear proteins. Several of them were differentially regulated upon MMS treatment. These findings corroborate the important role of ubiquitin-proteasome-mediated degradation in regulating the DDR.
Collapse
Affiliation(s)
- Ewa Blaszczak
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland; Department of Biochemistry and Molecular Biology, Faculty of Medical Sciences, Medical University of Lublin, Lublin, Poland.
| | - Emeline Pasquier
- Univ Rennes, CNRS, INSERM, Institute of Genetics and Development of Rennes (IGDR), UMR 6290, U1305, Rennes, France
| | - Gaëlle Le Dez
- Univ Rennes, CNRS, INSERM, Institute of Genetics and Development of Rennes (IGDR), UMR 6290, U1305, Rennes, France
| | - Adrian Odrzywolski
- Department of Biochemistry and Molecular Biology, Faculty of Medical Sciences, Medical University of Lublin, Lublin, Poland
| | - Natalia Lazarewicz
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland; Univ Rennes, CNRS, INSERM, Institute of Genetics and Development of Rennes (IGDR), UMR 6290, U1305, Rennes, France
| | - Audrey Brossard
- Univ Rennes, CNRS, INSERM, Institute of Genetics and Development of Rennes (IGDR), UMR 6290, U1305, Rennes, France
| | - Emilia Fornal
- Department of Bioanalytics, Faculty of Biomedicine, Medical University of Lublin, Lublin, Poland
| | - Piotr Moskalek
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland
| | - Robert Wysocki
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland.
| | - Gwenaël Rabut
- Univ Rennes, CNRS, INSERM, Institute of Genetics and Development of Rennes (IGDR), UMR 6290, U1305, Rennes, France.
| |
Collapse
|
12
|
Tremblay R, Mehrjoo Y, Ahmed O, Simoneau A, McQuaid ME, Affar EB, Nislow C, Giaever G, Wurtele H. Persistent Acetylation of Histone H3 Lysine 56 Compromises the Activity of DNA Replication Origins. Mol Cell Biol 2023; 43:566-595. [PMID: 37811746 PMCID: PMC10791153 DOI: 10.1080/10985549.2023.2259739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 08/09/2023] [Indexed: 10/10/2023] Open
Abstract
In Saccharomyces cerevisiae, newly synthesized histones H3 are acetylated on lysine 56 (H3 K56ac) by the Rtt109 acetyltransferase prior to their deposition on nascent DNA behind replication forks. Two deacetylases of the sirtuin family, Hst3 and Hst4, remove H3 K56ac from chromatin after S phase. hst3Δ hst4Δ cells present constitutive H3 K56ac, which sensitizes cells to replicative stress via unclear mechanisms. A chemogenomic screen revealed that DBF4 heterozygosity sensitizes cells to NAM-induced inhibition of sirtuins. DBF4 and CDC7 encode subunits of the Dbf4-dependent kinase (DDK), which activates origins of DNA replication during S phase. We show that (i) cells harboring the dbf4-1 or cdc7-4 hypomorphic alleles are sensitized to NAM, and that (ii) the sirtuins Sir2, Hst1, Hst3, and Hst4 promote DNA replication in cdc7-4 cells. We further demonstrate that Rif1, an inhibitor of DDK-dependent activation of origins, causes DNA damage and replication defects in NAM-treated cells and hst3Δ hst4Δ mutants. cdc7-4 hst3Δ hst4Δ cells are shown to display delayed initiation of DNA replication, which is not due to intra-S checkpoint activation but requires Rtt109-dependent H3 K56ac. Our results suggest that constitutive H3 K56ac sensitizes cells to replicative stress in part by negatively influencing the activation of origins of DNA replication.
Collapse
Affiliation(s)
- Roch Tremblay
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Québec, Canada
- Molecular Biology Program, Université de Montréal, Montreal, Québec, Canada
| | - Yosra Mehrjoo
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Québec, Canada
- Molecular Biology Program, Université de Montréal, Montreal, Québec, Canada
| | - Oumaima Ahmed
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Québec, Canada
- Molecular Biology Program, Université de Montréal, Montreal, Québec, Canada
| | - Antoine Simoneau
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Québec, Canada
- Molecular Biology Program, Université de Montréal, Montreal, Québec, Canada
| | - Mary E. McQuaid
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Québec, Canada
| | - El Bachir Affar
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Québec, Canada
- Department of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guri Giaever
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hugo Wurtele
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Québec, Canada
- Department of Medicine, Université de Montréal, Montreal, Québec, Canada
| |
Collapse
|
13
|
Ghaddar N, Luciano P, Géli V, Corda Y. Chromatin assembly factor-1 preserves genome stability in ctf4Δ cells by promoting sister chromatid cohesion. Cell Stress 2023; 7:69-89. [PMID: 37662646 PMCID: PMC10468696 DOI: 10.15698/cst2023.09.289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Chromatin assembly and the establishment of sister chromatid cohesion are intimately connected to the progression of DNA replication forks. Here we examined the genetic interaction between the heterotrimeric chromatin assembly factor-1 (CAF-1), a central component of chromatin assembly during replication, and the core replisome component Ctf4. We find that CAF-1 deficient cells as well as cells affected in newly-synthesized H3-H4 histones deposition during DNA replication exhibit a severe negative growth with ctf4Δ mutant. We dissected the role of CAF-1 in the maintenance of genome stability in ctf4Δ yeast cells. In the absence of CTF4, CAF-1 is essential for viability in cells experiencing replication problems, in cells lacking functional S-phase checkpoint or functional spindle checkpoint, and in cells lacking DNA repair pathways involving homologous recombination. We present evidence that CAF-1 affects cohesin association to chromatin in a DNA-damage-dependent manner and is essential to maintain cohesion in the absence of CTF4. We also show that Eco1-catalyzed Smc3 acetylation is reduced in absence of CAF-1. Furthermore, we describe genetic interactions between CAF-1 and essential genes involved in cohesin loading, cohesin stabilization, and cohesin component indicating that CAF-1 is crucial for viability when sister chromatid cohesion is affected. Finally, our data indicate that the CAF-1-dependent pathway required for cohesion is functionally distinct from the Rtt101-Mms1-Mms22 pathway which functions in replicated chromatin assembly. Collectively, our results suggest that the deposition by CAF-1 of newly-synthesized H3-H4 histones during DNA replication creates a chromatin environment that favors sister chromatid cohesion and maintains genome integrity.
Collapse
Affiliation(s)
- Nagham Ghaddar
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix Marseille Univ, Institut Paoli-Calmettes, Marseille, France. Ligue Nationale Contre le Cancer (Labeled Equip)
| | - Pierre Luciano
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix Marseille Univ, Institut Paoli-Calmettes, Marseille, France. Ligue Nationale Contre le Cancer (Labeled Equip)
| | - Vincent Géli
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix Marseille Univ, Institut Paoli-Calmettes, Marseille, France. Ligue Nationale Contre le Cancer (Labeled Equip)
| | - Yves Corda
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix Marseille Univ, Institut Paoli-Calmettes, Marseille, France. Ligue Nationale Contre le Cancer (Labeled Equip)
| |
Collapse
|
14
|
Mao X, Wu J, Zhang Q, Zhang S, Chen X, Liu X, Wei M, Wan X, Qiu L, Zeng M, Lei X, Liu C, Han J. Requirement of WDR70 for POLE3-mediated DNA double-strand breaks repair. SCIENCE ADVANCES 2023; 9:eadh2358. [PMID: 37682991 PMCID: PMC10491287 DOI: 10.1126/sciadv.adh2358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
H2BK120ub1 triggers several prominent downstream histone modification pathways and changes in chromatin structure, therefore involving it into multiple critical cellular processes including DNA transcription and DNA damage repair. Although it has been reported that H2BK120ub1 is mediated by RNF20/40 and CRL4WDR70, less is known about the underlying regulation mechanism for H2BK120ub1 by WDR70. By using a series of biochemical and cell-based studies, we find that WDR70 promotes H2BK120ub1 by interacting with RNF20/40 complex, and deposition of H2BK120ub1 and H3K79me2 in POLE3 loci is highly sensitive to POLE3 transcription. Moreover, we demonstrate that POLE3 interacts CHRAC1 to promote DNA repair by regulation on the expression of homology-directed repair proteins and KU80 recruitment and identify CHRAC1 D121Y mutation in colorectal cancer, which leads to the defect in DNA repair due to attenuated the interaction with POLE3. These findings highlight a previously unknown role for WDR70 in maintenance of genomic stability and imply POLE3 and CHRAC1 as potential therapeutic targets in cancer.
Collapse
Affiliation(s)
- Xiaobing Mao
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian Wu
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qin Zhang
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Su Zhang
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoshuang Chen
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xueqin Liu
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingtian Wei
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaowen Wan
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Qiu
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ming Zeng
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University hospital, Sichuan University, Chengdu 610041, China
| | - Xue Lei
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cong Liu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Zhang X, Noberini R, Vai A, Bonaldi T, Seidl MF, Collemare J. Detection and quantification of the histone code in the fungal genus Aspergillus. Fungal Genet Biol 2023; 167:103800. [PMID: 37146898 DOI: 10.1016/j.fgb.2023.103800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/30/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
In eukaryotes, the combination of different histone post-translational modifications (PTMs) - the histone code - impacts the chromatin organization as compact and transcriptionally silent heterochromatin or accessible and transcriptionally active euchromatin. Although specific histone PTMs have been studied in fungi, an overview of histone PTMs and their relative abundance is still lacking. Here, we used mass spectrometry to detect and quantify histone PTMs in three fungal species belonging to three distinct taxonomic sections of the genus Aspergillus (Aspergillus niger, Aspergillus nidulans (two strains), and Aspergillus fumigatus). We overall detected 23 different histone PTMs, including a majority of lysine methylations and acetylations, and 23 co-occurrence patterns of multiple histone PTMs. Among those, we report for the first time the detection of H3K79me1, H3K79me2, and H4K31ac in Aspergilli. Although all three species harbour the same PTMs, we found significant differences in the relative abundance of H3K9me1/2/3, H3K14ac, H3K36me1 and H3K79me1, as well as the co-occurrence of acetylation on both K18 and K23 of histone H3 in a strain-specific manner. Our results provide novel insights about the underexplored complexity of the histone code in filamentous fungi, and its functional implications on genome architecture and gene regulation.
Collapse
Affiliation(s)
- Xin Zhang
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Roberta Noberini
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Alessandro Vai
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Via Adamello 16, 20139 Milan, Italy; Department of Oncology and Haematology-Oncology, University of Milano, Via Santa Sofia 9/1, 20122 Milano, Italy.
| | - Michael F Seidl
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Jérȏme Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
16
|
Schindler N, Tonn M, Kellner V, Fung JJ, Lockhart A, Vydzhak O, Juretschke T, Möckel S, Beli P, Khmelinskii A, Luke B. Genetic requirements for repair of lesions caused by single genomic ribonucleotides in S phase. Nat Commun 2023; 14:1227. [PMID: 36869098 PMCID: PMC9984532 DOI: 10.1038/s41467-023-36866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Single ribonucleoside monophosphates (rNMPs) are transiently present in eukaryotic genomes. The RNase H2-dependent ribonucleotide excision repair (RER) pathway ensures error-free rNMP removal. In some pathological conditions, rNMP removal is impaired. If these rNMPs hydrolyze during, or prior to, S phase, toxic single-ended double-strand breaks (seDSBs) can occur upon an encounter with replication forks. How such rNMP-derived seDSB lesions are repaired is unclear. We expressed a cell cycle phase restricted allele of RNase H2 to nick at rNMPs in S phase and study their repair. Although Top1 is dispensable, the RAD52 epistasis group and Rtt101Mms1-Mms22 dependent ubiquitylation of histone H3 become essential for rNMP-derived lesion tolerance. Consistently, loss of Rtt101Mms1-Mms22 combined with RNase H2 dysfunction leads to compromised cellular fitness. We refer to this repair pathway as nick lesion repair (NLR). The NLR genetic network may have important implications in the context of human pathologies.
Collapse
Affiliation(s)
- Natalie Schindler
- Johannes Gutenberg University Mainz, Institute for Developmental Neurology (IDN), Biozentrum 1, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany.
| | - Matthias Tonn
- Johannes Gutenberg University Mainz, Institute for Developmental Neurology (IDN), Biozentrum 1, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany
| | - Vanessa Kellner
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.,Department of Biology, New York University, New York, NY, USA
| | - Jia Jun Fung
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Arianna Lockhart
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Olga Vydzhak
- Johannes Gutenberg University Mainz, Institute for Developmental Neurology (IDN), Biozentrum 1, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany
| | - Thomas Juretschke
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Stefanie Möckel
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Petra Beli
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Anton Khmelinskii
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Brian Luke
- Johannes Gutenberg University Mainz, Institute for Developmental Neurology (IDN), Biozentrum 1, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany. .,Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
| |
Collapse
|
17
|
Zhang Y, Zhang Q, Zhang Y, Han J. The Role of Histone Modification in DNA Replication-Coupled Nucleosome Assembly and Cancer. Int J Mol Sci 2023; 24:ijms24054939. [PMID: 36902370 PMCID: PMC10003558 DOI: 10.3390/ijms24054939] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 03/08/2023] Open
Abstract
Histone modification regulates replication-coupled nucleosome assembly, DNA damage repair, and gene transcription. Changes or mutations in factors involved in nucleosome assembly are closely related to the development and pathogenesis of cancer and other human diseases and are essential for maintaining genomic stability and epigenetic information transmission. In this review, we discuss the role of different types of histone posttranslational modifications in DNA replication-coupled nucleosome assembly and disease. In recent years, histone modification has been found to affect the deposition of newly synthesized histones and the repair of DNA damage, further affecting the assembly process of DNA replication-coupled nucleosomes. We summarize the role of histone modification in the nucleosome assembly process. At the same time, we review the mechanism of histone modification in cancer development and briefly describe the application of histone modification small molecule inhibitors in cancer therapy.
Collapse
|
18
|
Conti B, Rinaldi B, Rimoldi M, Villa R, Iascone M, Gangi S, Porro M, Ajmone PF, Colli AM, Mosca F, Bedeschi MF. Chung-Jansen syndrome can mimic Cornelia de Lange syndrome: Another player among chromatinopathies? Am J Med Genet A 2023; 191:1586-1592. [PMID: 36843271 DOI: 10.1002/ajmg.a.63164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/13/2022] [Accepted: 02/03/2023] [Indexed: 02/28/2023]
Abstract
Cornelia de Lange syndrome (CdLS) is a rare multisystem congenital neurodevelopmental disorder (NDD) characterized by distinctive facial anomalies, short stature, developmental delay, hirsutism, gastrointestinal abnormalities and upper limb reduction defects. CdLS syndrome is associated with causative variants in genes encoding for the cohesin complex, a cellular machinery involved in chromatid pairing, DNA repair and gene-expression regulation. In this report, we describe a familial case of a syndromic presentation in a 4-year-old patient (P1) and in his mother (P2). Trio-based Whole Exome Sequencing (WES) performed on P1 was first negative. Since his phenotypic evolution during the follow-up was reminiscent of the CdLS spectrum, a reanalysis of WES data, focused on CdLS-related genes, was requested. Although no alterations in those genes was detected, we identified the likely pathogenetic variant c.40G > A (p.Glu14Lys) in the PHIP gene, in the meanwhile associated with Chung-Jansen syndrome. Reverse phenotyping carried out in both patients confirmed the molecular diagnosis. CHUJANS belongs to NDDs, featuring developmental delay, mild-to-moderate intellectual disability, behavioral problems, obesity and facial dysmorphisms. Moreover, as here described, CHUJANS shows a significant overlap with the CdLS spectrum, with specific regard to facial gestalt. On the basis of our findings, we suggest to include PHIP among genes routinely analyzed in patients belonging to the CdLS spectrum.
Collapse
Affiliation(s)
- Beatrice Conti
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Berardo Rinaldi
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Martina Rimoldi
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberta Villa
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Silvana Gangi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Matteo Porro
- Pediatric Physical Medicine & Rehabilitation Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Francesca Ajmone
- Child and Adolescent Neuropsychiatric Service (UONPIA), Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Maria Colli
- Cardiology Department, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio Mosca
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | |
Collapse
|
19
|
Karri S, Yang Y, Zhou J, Dickson Q, Wang Z, Gan H, Yu C. Defective transfer of parental histone decreases frequency of homologous recombination in budding yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523501. [PMID: 36711718 PMCID: PMC9882084 DOI: 10.1101/2023.01.10.523501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recycling of parental histones is an important step in epigenetic inheritance. During DNA replication, DNA polymerase epsilon subunit DPB3/DPB4 and DNA replication helicase subunit MCM2 are involved in the transfer of parental histones to the leading and lagging DNA strands, respectively. Single Dpb3 deletion ( dpb3Δ ) or Mcm2 mutation ( mcm2-3A ), which each disrupt one parental histone transfer pathway, leads to the other's predominance. However, the impact of the two histone transfer pathways on chromatin structure and DNA repair remains elusive. In this study, we used budding yeast Saccharomyces cerevisiae to determine the genetic and epigenetic outcomes from disruption of parental histone H3-H4 tetramer transfer. We found that a dpb3Δ / mcm2-3A double mutant did not exhibit the single dpb3Δ and mcm2-3A mutants' asymmetric parental histone patterns, suggesting that the processes by which parental histones are transferred to the leading and lagging strands are independent. Surprisingly, the frequency of homologous recombination was significantly lower in dpb3Δ, mcm2-3A , and dpb3Δ / mcm2-3A mutants relative to the wild-type strain, likely due to the elevated levels of free histones detected in the mutant cells. Together, these findings indicate that proper transfer of parental histones to the leading and lagging strands during DNA replication is essential for maintaining chromatin structure and that high levels of free histones due to parental histone transfer defects are detrimental to cells.
Collapse
|
20
|
Martín-Rufo R, de la Vega-Barranco G, Lecona E. Ubiquitin and SUMO as timers during DNA replication. Semin Cell Dev Biol 2022; 132:62-73. [PMID: 35210137 DOI: 10.1016/j.semcdb.2022.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022]
Abstract
Every time a cell copies its DNA the genetic material is exposed to the acquisition of mutations and genomic alterations that corrupt the information passed on to daughter cells. A tight temporal regulation of DNA replication is necessary to ensure the full copy of the DNA while preventing the appearance of genomic instability. Protein modification by ubiquitin and SUMO constitutes a very complex and versatile system that allows the coordinated control of protein stability, activity and interactome. In chromatin, their action is complemented by the AAA+ ATPase VCP/p97 that recognizes and removes ubiquitylated and SUMOylated factors from specific cellular compartments. The concerted action of the ubiquitin/SUMO system and VCP/p97 determines every step of DNA replication enforcing the ordered activation/inactivation, loading/unloading and stabilization/destabilization of replication factors. Here we analyze the mechanisms used by ubiquitin/SUMO and VCP/p97 to establish molecular timers throughout DNA replication and their relevance in maintaining genome stability. We propose that these PTMs are the main molecular watch of DNA replication from origin recognition to replisome disassembly.
Collapse
Affiliation(s)
- Rodrigo Martín-Rufo
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain
| | - Guillermo de la Vega-Barranco
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain
| | - Emilio Lecona
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain.
| |
Collapse
|
21
|
Du W, Shi G, Shan CM, Li Z, Zhu B, Jia S, Li Q, Zhang Z. Mechanisms of chromatin-based epigenetic inheritance. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2162-2190. [PMID: 35792957 PMCID: PMC10311375 DOI: 10.1007/s11427-022-2120-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Multi-cellular organisms such as humans contain hundreds of cell types that share the same genetic information (DNA sequences), and yet have different cellular traits and functions. While how genetic information is passed through generations has been extensively characterized, it remains largely obscure how epigenetic information encoded by chromatin regulates the passage of certain traits, gene expression states and cell identity during mitotic cell divisions, and even through meiosis. In this review, we will summarize the recent advances on molecular mechanisms of epigenetic inheritance, discuss the potential impacts of epigenetic inheritance during normal development and in some disease conditions, and outline future research directions for this challenging, but exciting field.
Collapse
Affiliation(s)
- Wenlong Du
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guojun Shi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Chun-Min Shan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiming Li
- Institutes of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Songtao Jia
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Zhiguo Zhang
- Institutes of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
22
|
Cancer cell histone density links global histone acetylation, mitochondrial proteome and histone acetylase inhibitor sensitivity. Commun Biol 2022; 5:882. [PMID: 36030322 PMCID: PMC9420116 DOI: 10.1038/s42003-022-03846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 08/16/2022] [Indexed: 12/03/2022] Open
Abstract
Chromatin metabolism is frequently altered in cancer cells and facilitates cancer development. While cancer cells produce large amounts of histones, the protein component of chromatin packaging, during replication, the potential impact of histone density on cancer biology has not been studied systematically. Here, we show that altered histone density affects global histone acetylation, histone deactylase inhibitor sensitivity and altered mitochondrial proteome composition. We present estimates of nuclear histone densities in 373 cancer cell lines, based on Cancer Cell Line Encyclopedia data, and we show that a known histone regulator, HMGB1, is linked to histone density aberrations in many cancer cell lines. We further identify an E3 ubiquitin ligase interactor, DCAF6, and a mitochondrial respiratory chain assembly factor, CHCHD4, as histone modulators. As systematic characterization of histone density aberrations in cancer cell lines, this study provides approaches and resources to investigate the impact of histone density on cancer biology. Elevated histone density is associated with global histone acetylation, histone deacetylase inhibitor sensitivity and altered mitochondrial proteome composition, with histone regulator HMGB1 linked to histone density aberrations in many cancer cell lines.
Collapse
|
23
|
Jonas F, Yaakov G, Barkai N. Rtt109 promotes nucleosome replacement ahead of the replication fork. Genome Res 2022; 32:1089-1098. [PMID: 35609993 PMCID: PMC9248883 DOI: 10.1101/gr.276674.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022]
Abstract
DNA replication perturbs chromatin by triggering the eviction, replacement, and incorporation of nucleosomes. How this dynamic is orchestrated in time and space is poorly understood. Here, we apply a genetically encoded sensor for histone exchange to follow the time-resolved histone H3 exchange profile in budding yeast cells undergoing slow synchronous replication in nucleotide-limiting conditions. We find that new histones are incorporated not only behind, but also ahead of the replication fork. We provide evidence that Rtt109, the S-phase-induced acetyltransferase, stabilizes nucleosomes behind the fork but promotes H3 replacement ahead of the fork. Increased replacement ahead of the fork is independent of the primary Rtt109 acetylation target H3K56 and rather results from Vps75-dependent Rtt109 activity toward the H3 N terminus. Our results suggest that, at least under nucleotide-limiting conditions, selective incorporation of differentially modified H3s behind and ahead of the replication fork results in opposing effects on histone exchange, likely reflecting the distinct challenges for genome stability at these different regions.
Collapse
Affiliation(s)
- Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gilad Yaakov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
24
|
Xu X, Duan S, Hua X, Li Z, He R, Zhang Z. Stable inheritance of H3.3-containing nucleosomes during mitotic cell divisions. Nat Commun 2022; 13:2514. [PMID: 35523900 PMCID: PMC9076889 DOI: 10.1038/s41467-022-30298-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 04/22/2022] [Indexed: 12/13/2022] Open
Abstract
Newly synthesized H3.1 and H3.3 histones are assembled into nucleosomes by different histone chaperones in replication-coupled and replication-independent pathways, respectively. However, it is not clear how parental H3.3 molecules are transferred following DNA replication, especially when compared to H3.1. Here, by monitoring parental H3.1- and H3.3-SNAP signals, we show that parental H3.3, like H3.1, are stably transferred into daughter cells. Moreover, Mcm2-Pola1 and Pole3-Pole4, two pathways involved in parental histone transfer based upon the analysis of modifications on parental histones, participate in the transfer of both H3.1 and H3.3 following DNA replication. Lastly, we found that Mcm2, Pole3 and Pole4 mutants defective in parental histone transfer show defects in chromosome segregation. These results indicate that in contrast to deposition of newly synthesized H3.1 and H3.3, transfer of parental H3.1 and H3.3 is mediated by these shared mechanisms, which contributes to epigenetic memory of gene expression and maintenance of genome stability.
Collapse
Affiliation(s)
- Xiaowei Xu
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Shoufu Duan
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Xu Hua
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Zhiming Li
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Richard He
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
25
|
Shi X, Zhai Z, Chen Y, Li J, Nordenskiöld L. Recent Advances in Investigating Functional Dynamics of Chromatin. Front Genet 2022; 13:870640. [PMID: 35450211 PMCID: PMC9017861 DOI: 10.3389/fgene.2022.870640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022] Open
Abstract
Dynamics spanning the picosecond-minute time domain and the atomic-subcellular spatial window have been observed for chromatin in vitro and in vivo. The condensed organization of chromatin in eukaryotic cells prevents regulatory factors from accessing genomic DNA, which requires dynamic stabilization and destabilization of structure to initiate downstream DNA activities. Those processes are achieved through altering conformational and dynamic properties of nucleosomes and nucleosome–protein complexes, of which delineating the atomistic pictures is essential to understand the mechanisms of chromatin regulation. In this review, we summarize recent progress in determining chromatin dynamics and their modulations by a number of factors including post-translational modifications (PTMs), incorporation of histone variants, and binding of effector proteins. We focus on experimental observations obtained using high-resolution techniques, primarily including nuclear magnetic resonance (NMR) spectroscopy, Förster (or fluorescence) resonance energy transfer (FRET) microscopy, and molecular dynamics (MD) simulations, and discuss the elucidated dynamics in the context of functional response and relevance.
Collapse
Affiliation(s)
- Xiangyan Shi
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Ziwei Zhai
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Yinglu Chen
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Jindi Li
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
26
|
Nakagawa T, Morohoshi A, Nagasawa Y, Nakagawa M, Hosogane M, Noda Y, Hosoi T, Nakayama K. SPT16 ubiquitylation by DCAF14-CRL4 regulates FACT binding to histones. Cell Rep 2022; 38:110541. [PMID: 35320725 DOI: 10.1016/j.celrep.2022.110541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/23/2021] [Accepted: 02/28/2022] [Indexed: 12/27/2022] Open
Abstract
The histone chaperone complex FACT comprises SPT16 and SSRP1 and contributes to DNA replication, transcription, and repair, but how it plays such various roles is unclear. Here, we show that human SPT16 is ubiquitylated at lysine-674 (K674) by the DCAF14-CRL4 ubiquitin ligase. K674 is located in the middle domain of SPT16, and the corresponding residue of the yeast ortholog is critical for binding to histone H3.1-H4. We show that the middle domain of human SPT16 binds to histone H3.1-H4 and that this binding is inhibited by K674 ubiquitylation. Cells with heterozygous knockin of a K674R mutant of SPT16 manifest reduction of both SPT16 ubiquitylation and H3.1 in chromatin, a reduced population in mid S phase, impaired proliferation, and increased susceptibility to S phase stress. Our data thus indicate that SPT16 ubiquitylation by DCAF14-CRL4 regulates FACT binding to histones and may thereby control DNA replication-coupled histone incorporation into chromatin.
Collapse
Affiliation(s)
- Tadashi Nakagawa
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan; Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Akane Morohoshi
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Yuko Nagasawa
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Makiko Nakagawa
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Masaki Hosogane
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Yasuhiro Noda
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Toru Hosoi
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
27
|
van Schie JJM, de Lange J. The Interplay of Cohesin and the Replisome at Processive and Stressed DNA Replication Forks. Cells 2021; 10:3455. [PMID: 34943967 PMCID: PMC8700348 DOI: 10.3390/cells10123455] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
The cohesin complex facilitates faithful chromosome segregation by pairing the sister chromatids after DNA replication until mitosis. In addition, cohesin contributes to proficient and error-free DNA replication. Replisome progression and establishment of sister chromatid cohesion are intimately intertwined processes. Here, we review how the key factors in DNA replication and cohesion establishment cooperate in unperturbed conditions and during DNA replication stress. We discuss the detailed molecular mechanisms of cohesin recruitment and the entrapment of replicated sister chromatids at the replisome, the subsequent stabilization of sister chromatid cohesion via SMC3 acetylation, as well as the role and regulation of cohesin in the response to DNA replication stress.
Collapse
Affiliation(s)
- Janne J. M. van Schie
- Cancer Center Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Job de Lange
- Cancer Center Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
28
|
Wei M, Zhang Y, Yang X, Ma P, Li Y, Wu Y, Chen X, Deng X, Yang T, Mao X, Qiu L, Meng W, Zhang B, Wang Z, Han J. Claudin-2 promotes colorectal cancer growth and metastasis by suppressing NDRG1 transcription. Clin Transl Med 2021; 11:e667. [PMID: 34965023 PMCID: PMC8715829 DOI: 10.1002/ctm2.667] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumours, with multiple driving factors and biological transitions involved in its development. Claudin-2 (CLDN2), a well-defined component of cellular tight junction, has been indicated to associate with CRC progression. However, the function of CLDN2 and the underlying mechanism whereby the downstream signalling transduction is regulated in CRC remains largely unclear. In this study, we demonstrated that CLDN2 is upregulated in CRC samples and associated with poor survival. And CLDN2 depletion significantly promotes N-myc downstream-regulated gene 1 (NDRG1) transcription, leading to termination of the CRC growth and metastasis in vitro and in vivo. Mechanistically, this process promotes CLDN2/ZO1/ZONAB complex dissociation and ZONAB shuttle into nucleus to enrich in the promoter of NDRG1. Thus, this study reveals a novel CLDN2/ZO1/ZONAB-NDRG1 axis in CRC by regulating the expression of EMT-related genes and CDKIs, suggesting CLDN2 may serve as a promising target for CRC treatment.
Collapse
Affiliation(s)
- Mingtian Wei
- Department of Gastrointestinal SurgeryFrontiers Science Center for Disease‐related Molecular Network and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yaguang Zhang
- Research Laboratory of Tumors Epigenetics and GenomicsDepartment of General SurgeryFrontiers Science Center for Disease‐related Molecular NetworkState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Xuyang Yang
- Department of Gastrointestinal SurgeryFrontiers Science Center for Disease‐related Molecular Network and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Pingfan Ma
- Research Laboratory of Tumors Epigenetics and GenomicsDepartment of General SurgeryFrontiers Science Center for Disease‐related Molecular NetworkState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Yan Li
- Research Laboratory of Tumors Epigenetics and GenomicsDepartment of General SurgeryFrontiers Science Center for Disease‐related Molecular NetworkState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Yangping Wu
- Department of Respiratory and Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
- Department of Clinical Research ManagementWest China HospitalSichuan UniversityChengduChina
| | - Xiangzheng Chen
- Department of Liver Surgery & Liver Transplantation CenterWest China HospitalSichuan UniversityChengduChina
| | - Xiangbing Deng
- Department of Gastrointestinal SurgeryFrontiers Science Center for Disease‐related Molecular Network and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Tinghan Yang
- Department of Gastrointestinal SurgeryFrontiers Science Center for Disease‐related Molecular Network and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Xiaobing Mao
- Research Laboratory of Tumors Epigenetics and GenomicsDepartment of General SurgeryFrontiers Science Center for Disease‐related Molecular NetworkState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Lei Qiu
- Research Laboratory of Tumors Epigenetics and GenomicsDepartment of General SurgeryFrontiers Science Center for Disease‐related Molecular NetworkState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Wenjian Meng
- Department of Gastrointestinal SurgeryFrontiers Science Center for Disease‐related Molecular Network and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Bo Zhang
- Department of Gastrointestinal SurgeryFrontiers Science Center for Disease‐related Molecular Network and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
- Research Laboratory of Tumors Epigenetics and GenomicsDepartment of General SurgeryFrontiers Science Center for Disease‐related Molecular NetworkState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Ziqiang Wang
- Department of Gastrointestinal SurgeryFrontiers Science Center for Disease‐related Molecular Network and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Junhong Han
- Research Laboratory of Tumors Epigenetics and GenomicsDepartment of General SurgeryFrontiers Science Center for Disease‐related Molecular NetworkState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
29
|
Yin Y, Zhu L, Li Q, Zhou P, Ma L. Cullin4 E3 Ubiquitin Ligases Regulate Male Gonocyte Migration, Proliferation and Blood-Testis Barrier Homeostasis. Cells 2021; 10:2732. [PMID: 34685710 PMCID: PMC8535100 DOI: 10.3390/cells10102732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 01/15/2023] Open
Abstract
Ubiquitination, an essential posttranslational modification, plays fundamental roles during mammalian spermatogenesis. We previously reported the requirement of two Cullin 4 ubiquitin ligase family genes, Cullin 4a (Cul4a) and Cullin 4b (Cul4b), in murine spermatogenesis. Both genes are required for male fertility despite their distinct functions in different cell populations. Cul4a is required in primary spermatocytes to promote meiosis while Cul4b is required in secondary spermatocytes for spermiogenesis. As the two genes encode proteins that are highly homologous and have overlapping expression in embryonic germ cells, they may compensate for each other during germ cell development. In the present study, we directly address the potential functional redundancy of these two proteins by deleting both Cul4 genes, specifically, in the germ cell lineage during embryonic development, using the germ-cell specific Vasa-Cre line. Conditional double-knockout (dKO) males showed delayed homing and impaired proliferation of gonocytes, and a complete loss of germ cells before the end of the first wave of spermatogenesis. The dKO male germ cell phenotype is much more severe than those observed in either single KO mutant, demonstrating the functional redundancy between the two CUL4 proteins. The dKO mutant also exhibited atypical tight junction structures, suggesting the potential involvement of CUL4 proteins in spermatogonial stem cell (SSC) niche formation and blood-testis-barrier (BTB) maintenance. We also show that deleting Cul4b in both germ and Sertoli cells is sufficient to recapitulate part of this phenotype, causing spermatogenesis defects and drastically reduced number of mature sperms, accompanied by defective tight junctions in the mutant testes. These results indicate the involvement of CUL4B in maintaining BTB integrity.
Collapse
Affiliation(s)
- Yan Yin
- Department of Medicine, Division of Dermatology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; (Y.Y.); (L.Z.); (Q.L.)
| | - Liming Zhu
- Department of Medicine, Division of Dermatology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; (Y.Y.); (L.Z.); (Q.L.)
| | - Qiufang Li
- Department of Medicine, Division of Dermatology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; (Y.Y.); (L.Z.); (Q.L.)
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, The Joan and Stanford I. Weill Medical College of Cornell University, New York, NY 10021, USA;
| | - Liang Ma
- Department of Medicine, Division of Dermatology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; (Y.Y.); (L.Z.); (Q.L.)
| |
Collapse
|
30
|
Cavalieri V. The Expanding Constellation of Histone Post-Translational Modifications in the Epigenetic Landscape. Genes (Basel) 2021; 12:genes12101596. [PMID: 34680990 PMCID: PMC8535662 DOI: 10.3390/genes12101596] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022] Open
Abstract
The emergence of a nucleosome-based chromatin structure accompanied the evolutionary transition from prokaryotes to eukaryotes. In this scenario, histones became the heart of the complex and precisely timed coordination between chromatin architecture and functions during adaptive responses to environmental influence by means of epigenetic mechanisms. Notably, such an epigenetic machinery involves an overwhelming number of post-translational modifications at multiple residues of core and linker histones. This review aims to comprehensively describe old and recent evidence in this exciting field of research. In particular, histone post-translational modification establishing/removal mechanisms, their genomic locations and implication in nucleosome dynamics and chromatin-based processes, as well as their harmonious combination and interdependence will be discussed.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
31
|
Corda Y, Maestroni L, Luciano P, Najem MY, Géli V. Genome stability is guarded by yeast Rtt105 through multiple mechanisms. Genetics 2021; 217:6126811. [PMID: 33724421 DOI: 10.1093/genetics/iyaa035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
Ty1 mobile DNA element is the most abundant and mutagenic retrotransposon present in the genome of the budding yeast Saccharomyces cerevisiae. Protein regulator of Ty1 transposition 105 (Rtt105) associates with large subunit of RPA and facilitates its loading onto a single-stranded DNA at replication forks. Here, we dissect the role of RTT105 in the maintenance of genome stability under normal conditions and upon various replication stresses through multiple genetic analyses. RTT105 is essential for viability in cells experiencing replication problems and in cells lacking functional S-phase checkpoints and DNA repair pathways involving homologous recombination. Our genetic analyses also indicate that RTT105 is crucial when cohesion is affected and is required for the establishment of normal heterochromatic structures. Moreover, RTT105 plays a role in telomere maintenance as its function is important for the telomere elongation phenotype resulting from the Est1 tethering to telomeres. Genetic analyses indicate that rtt105Δ affects the growth of several rfa1 mutants but does not aggravate their telomere length defects. Analysis of the phenotypes of rtt105Δ cells expressing NLS-Rfa1 fusion protein reveals that RTT105 safeguards genome stability through its role in RPA nuclear import but also by directly affecting RPA function in genome stability maintenance during replication.
Collapse
Affiliation(s)
- Yves Corda
- CNRS UMR7258, INSERM U1068, Aix-Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Laetitia Maestroni
- CNRS UMR7258, INSERM U1068, Aix-Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Pierre Luciano
- CNRS UMR7258, INSERM U1068, Aix-Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Maria Y Najem
- CNRS UMR7258, INSERM U1068, Aix-Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Vincent Géli
- CNRS UMR7258, INSERM U1068, Aix-Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|
32
|
Mattiroli F, Penengo L. Histone Ubiquitination: An Integrative Signaling Platform in Genome Stability. Trends Genet 2021; 37:566-581. [DOI: 10.1016/j.tig.2020.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 01/29/2023]
|
33
|
Fang L, Chen D, Zhang J, Li H, Bradford B, Jin C. Potential functions of histone H3.3 lysine 56 acetylation in mammals. Epigenetics 2021; 17:498-517. [PMID: 33902396 DOI: 10.1080/15592294.2021.1922198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
H3K56 acetylation (H3K56Ac) was first identified in yeast and has recently been reported to play important roles in maintaining genomic stability, chromatin assembly, DNA replication, cell cycle progression and DNA repair. Although H3.1K56Ac has been relatively well studied, the function of H3.3K56Ac remains mostly unknown in mammals. In this study, we used H3.3K56Q and H3.3K56R mutants to study the possible function of H3.3K56 acetylation. The K-to-Q substitution mimics a constitutively acetylated lysine, while the K-to-R replacement mimics a constitutively unmodified lysine. We report that cell lines harbouring mutation of H3.3K56R exhibit increased cell death and dramatic morphology changes. Using a Tet-Off inducible system, we found an increased population of polyploid/aneuploid cells and decreased cell viability in H3.3K56R mutant cells. Consistent with these results, the H3.3K56R mutant had compromised H3.3 incorporation into several pericentric and centric heterochromatin regions we tested. Moreover, mass spectrometry analysis coupled with label-free quantification revealed that biological processes regulated by the H3.3-associating proteins, whose interaction with H3.3 was markedly increased by H3.3K56Q mutation but decreased by H3.3K56R mutation, include sister chromatid cohesion, mitotic nuclear division, and mitotic nuclear envelope disassembly. These results suggest that H3.3K56 acetylation is crucial for chromosome segregation and cell division in mammals.
Collapse
Affiliation(s)
- Lei Fang
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA.,Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Danqi Chen
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Jingzi Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Hongjie Li
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Beatrix Bradford
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Chunyuan Jin
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
34
|
Hammond-Martel I, Verreault A, Wurtele H. Chromatin dynamics and DNA replication roadblocks. DNA Repair (Amst) 2021; 104:103140. [PMID: 34087728 DOI: 10.1016/j.dnarep.2021.103140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/27/2022]
Abstract
A broad spectrum of spontaneous and genotoxin-induced DNA lesions impede replication fork progression. The DNA damage response that acts to promote completion of DNA replication is associated with dynamic changes in chromatin structure that include two distinct processes which operate genome-wide during S-phase. The first, often referred to as histone recycling or parental histone segregation, is characterized by the transfer of parental histones located ahead of replication forks onto nascent DNA. The second, known as de novo chromatin assembly, consists of the deposition of new histone molecules onto nascent DNA. Because these two processes occur at all replication forks, their potential to influence a multitude of DNA repair and DNA damage tolerance mechanisms is considerable. The purpose of this review is to provide a description of parental histone segregation and de novo chromatin assembly, and to illustrate how these processes influence cellular responses to DNA replication roadblocks.
Collapse
Affiliation(s)
- Ian Hammond-Martel
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montreal, H1T 2M4, Canada
| | - Alain Verreault
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Succursale Centre-Ville, Montreal, H3C 3J7, Canada; Département de Pathologie et Biologie Cellulaire, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, H3T 1J4, Canada
| | - Hugo Wurtele
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montreal, H1T 2M4, Canada; Département de Médecine, Université de Montréal, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, H3T 1J4, Canada.
| |
Collapse
|
35
|
The incorporation loci of H3.3K36M determine its preferential prevalence in chondroblastomas. Cell Death Dis 2021; 12:311. [PMID: 33762579 PMCID: PMC7991640 DOI: 10.1038/s41419-021-03597-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022]
Abstract
The histone H3.3K36M mutation, identified in over 90% of chondroblastoma cases, reprograms the H3K36 methylation landscape and gene expression to promote tumorigenesis. However, it's still unclear how the H3K36M mutation preferentially occurs in the histone H3 variant H3.3 in chondroblastomas. Here, we report that H3.3K36M-, but not H3.1K36M-, mutant cells showed increased colony formation ability and differentiation defects. H3K36 methylations and enhancers were reprogrammed to different status in H3.3K36M- and H3.1K36M-mutant cells. The reprogramming of H3K36 methylation and enhancers was depended on the specific loci at which H3.3K36M and H3.1K36M were incorporated. Moreover, targeting H3K36M-mutant proteins to the chromatin inhibited the H3K36 methylation locally. Taken together, these results highlight the roles of the chromatic localization of H3.3K36M-mutant protein in the reprogramming of the epigenome and the subsequent induction of tumorigenesis, and shed light on the molecular mechanisms by which the H3K36M mutation mainly occurs in histone H3.3 in chondroblastomas.
Collapse
|
36
|
CRL4A DTL degrades DNA-PKcs to modulate NHEJ repair and induce genomic instability and subsequent malignant transformation. Oncogene 2021; 40:2096-2111. [PMID: 33627782 PMCID: PMC7979543 DOI: 10.1038/s41388-021-01690-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 01/30/2023]
Abstract
Genomic instability induced by DNA damage and improper DNA damage repair is one of the main causes of malignant transformation and tumorigenesis. DNA double strand breaks (DSBs) are the most detrimental form of DNA damage, and nonhomologous end-joining (NHEJ) mechanisms play dominant and priority roles in initiating DSB repair. A well-studied oncogene, the ubiquitin ligase Cullin 4A (CUL4A), is reported to be recruited to DSB sites in genomic DNA, but whether it regulates NHEJ mechanisms of DSB repair is unclear. Here, we discovered that the CUL4A-DTL ligase complex targeted the DNA-PKcs protein in the NHEJ repair pathway for nuclear degradation. Overexpression of either CUL4A or DTL reduced NHEJ repair efficiency and subsequently increased the accumulation of DSBs. Moreover, we demonstrated that overexpression of either CUL4A or DTL in normal cells led to genomic instability and malignant proliferation. Consistent with the in vitro findings, in human precancerous lesions, CUL4A expression gradually increased with increasing malignant tendency and was negatively correlated with DNA-PKcs and positively correlated with γ-H2AX expression. Collectively, this study provided strong evidence that the CUL4A-DTL axis increases genomic instability and enhances the subsequent malignant transformation of normal cells by inhibiting NHEJ repair. These results also suggested that CUL4A may be a prognostic marker of precancerous lesions and a potential therapeutic target in cancer.
Collapse
|
37
|
Braberg H, Echeverria I, Bohn S, Cimermancic P, Shiver A, Alexander R, Xu J, Shales M, Dronamraju R, Jiang S, Dwivedi G, Bogdanoff D, Chaung KK, Hüttenhain R, Wang S, Mavor D, Pellarin R, Schneidman D, Bader JS, Fraser JS, Morris J, Haber JE, Strahl BD, Gross CA, Dai J, Boeke JD, Sali A, Krogan NJ. Genetic interaction mapping informs integrative structure determination of protein complexes. Science 2020; 370:eaaz4910. [PMID: 33303586 PMCID: PMC7946025 DOI: 10.1126/science.aaz4910] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 07/23/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
Determining structures of protein complexes is crucial for understanding cellular functions. Here, we describe an integrative structure determination approach that relies on in vivo measurements of genetic interactions. We construct phenotypic profiles for point mutations crossed against gene deletions or exposed to environmental perturbations, followed by converting similarities between two profiles into an upper bound on the distance between the mutated residues. We determine the structure of the yeast histone H3-H4 complex based on ~500,000 genetic interactions of 350 mutants. We then apply the method to subunits Rpb1-Rpb2 of yeast RNA polymerase II and subunits RpoB-RpoC of bacterial RNA polymerase. The accuracy is comparable to that based on chemical cross-links; using restraints from both genetic interactions and cross-links further improves model accuracy and precision. The approach provides an efficient means to augment integrative structure determination with in vivo observations.
Collapse
Affiliation(s)
- Hannes Braberg
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ignacia Echeverria
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stefan Bohn
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Peter Cimermancic
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anthony Shiver
- Graduate Group in Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Richard Alexander
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiewei Xu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Raghuvar Dronamraju
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Shuangying Jiang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Gajendradhar Dwivedi
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Derek Bogdanoff
- Center for Advanced Technology, Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kaitlin K Chaung
- Center for Advanced Technology, Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Shuyi Wang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David Mavor
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Riccardo Pellarin
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dina Schneidman
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joel S Bader
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James S Fraser
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - John Morris
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Carol A Gross
- Department of Microbiology and Immunology and Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jef D Boeke
- NYU Langone Health, New York, NY 10016, USA.
- High Throughput Biology Center and Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Andrej Sali
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
38
|
Young TJ, Cui Y, Pfeffer C, Hobbs E, Liu W, Irudayaraj J, Kirchmaier AL. CAF-1 and Rtt101p function within the replication-coupled chromatin assembly network to promote H4 K16ac, preventing ectopic silencing. PLoS Genet 2020; 16:e1009226. [PMID: 33284793 PMCID: PMC7746308 DOI: 10.1371/journal.pgen.1009226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/17/2020] [Accepted: 10/26/2020] [Indexed: 11/18/2022] Open
Abstract
Replication-coupled chromatin assembly is achieved by a network of alternate pathways containing different chromatin assembly factors and histone-modifying enzymes that coordinate deposition of nucleosomes at the replication fork. Here we describe the organization of a CAF-1-dependent pathway in Saccharomyces cerevisiae that regulates acetylation of histone H4 K16. We demonstrate factors that function in this CAF-1-dependent pathway are important for preventing establishment of silenced states at inappropriate genomic sites using a crippled HMR locus as a model, while factors specific to other assembly pathways do not. This CAF-1-dependent pathway required the cullin Rtt101p, but was functionally distinct from an alternate pathway involving Rtt101p-dependent ubiquitination of histone H3 and the chromatin assembly factor Rtt106p. A major implication from this work is that cells have the inherent ability to create different chromatin modification patterns during DNA replication via differential processing and deposition of histones by distinct chromatin assembly pathways within the network.
Collapse
Affiliation(s)
- Tiffany J. Young
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue University Center for Cancer Research, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Yi Cui
- Purdue University Center for Cancer Research, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Claire Pfeffer
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Emilie Hobbs
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Wenjie Liu
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Bioengineering, Cancer Center at Illinois, Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, Urbana, Illinois, United States of America
| | - Joseph Irudayaraj
- Purdue University Center for Cancer Research, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Bioengineering, Cancer Center at Illinois, Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, Urbana, Illinois, United States of America
| | - Ann L. Kirchmaier
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue University Center for Cancer Research, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
39
|
Yang Y, Yu C. Liquid phase condensation directs nucleosome epigenetic modifications. Signal Transduct Target Ther 2020; 5:64. [PMID: 32376821 PMCID: PMC7203014 DOI: 10.1038/s41392-020-0166-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/16/2020] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yi Yang
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Chuanhe Yu
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA.
| |
Collapse
|
40
|
Fiore A, Liang Y, Lin YH, Tung J, Wang H, Langlais D, Nijnik A. Deubiquitinase MYSM1 in the Hematopoietic System and beyond: A Current Review. Int J Mol Sci 2020; 21:ijms21083007. [PMID: 32344625 PMCID: PMC7216186 DOI: 10.3390/ijms21083007] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 01/21/2023] Open
Abstract
MYSM1 has emerged as an important regulator of hematopoietic stem cell function, blood cell production, immune response, and other aspects of mammalian physiology. It is a metalloprotease family protein with deubiquitinase catalytic activity, as well as SANT and SWIRM domains. MYSM1 normally localizes to the nucleus, where it can interact with chromatin and regulate gene expression, through deubiquitination of histone H2A and non-catalytic contacts with other transcriptional regulators. A cytosolic form of MYSM1 protein was also recently described and demonstrated to regulate signal transduction pathways of innate immunity, by promoting the deubiquitination of TRAF3, TRAF6, and RIP2. In this work we review the current knowledge on the molecular mechanisms of action of MYSM1 protein in transcriptional regulation, signal transduction, and potentially other cellular processes. The functions of MYSM1 in different cell types and aspects of mammalian physiology are also reviewed, highlighting the key checkpoints in hematopoiesis, immunity, and beyond regulated by MYSM1. Importantly, mutations in MYSM1 in human were recently linked to a rare hereditary disorder characterized by leukopenia, anemia, and other hematopoietic and developmental abnormalities. Our growing knowledge of MYSM1 functions and mechanisms of actions sheds important insights into its role in mammalian physiology and the etiology of the MYSM1-deficiency disorder in human.
Collapse
Affiliation(s)
- Amanda Fiore
- Department of Physiology, McGill University, Montreal, QC 3655, Canada; (A.F.); (Y.L.); (Y.H.L.); (J.T.); (H.W.)
- Research Centre on Complex Traits, McGill University, Montreal, QC 3649, Canada;
| | - Yue Liang
- Department of Physiology, McGill University, Montreal, QC 3655, Canada; (A.F.); (Y.L.); (Y.H.L.); (J.T.); (H.W.)
- Research Centre on Complex Traits, McGill University, Montreal, QC 3649, Canada;
| | - Yun Hsiao Lin
- Department of Physiology, McGill University, Montreal, QC 3655, Canada; (A.F.); (Y.L.); (Y.H.L.); (J.T.); (H.W.)
- Research Centre on Complex Traits, McGill University, Montreal, QC 3649, Canada;
| | - Jacky Tung
- Department of Physiology, McGill University, Montreal, QC 3655, Canada; (A.F.); (Y.L.); (Y.H.L.); (J.T.); (H.W.)
- Research Centre on Complex Traits, McGill University, Montreal, QC 3649, Canada;
| | - HanChen Wang
- Department of Physiology, McGill University, Montreal, QC 3655, Canada; (A.F.); (Y.L.); (Y.H.L.); (J.T.); (H.W.)
- Research Centre on Complex Traits, McGill University, Montreal, QC 3649, Canada;
- Department of Human Genetics, McGill University, Montreal, QC 3640, Canada
| | - David Langlais
- Research Centre on Complex Traits, McGill University, Montreal, QC 3649, Canada;
- Department of Human Genetics, McGill University, Montreal, QC 3640, Canada
- McGill University Genome Centre, Montreal, QC 740, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC 3655, Canada; (A.F.); (Y.L.); (Y.H.L.); (J.T.); (H.W.)
- Research Centre on Complex Traits, McGill University, Montreal, QC 3649, Canada;
- Correspondence: ; Tel.: +1-514-398-5567
| |
Collapse
|
41
|
Milo S, Harari-Misgav R, Hazkani-Covo E, Covo S. Limited DNA Repair Gene Repertoire in Ascomycete Yeast Revealed by Comparative Genomics. Genome Biol Evol 2020; 11:3409-3423. [PMID: 31693105 PMCID: PMC7145719 DOI: 10.1093/gbe/evz242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Ascomycota is the largest phylogenetic group of fungi that includes species important to human health and wellbeing. DNA repair is important for fungal survival and genome evolution. Here, we describe a detailed comparative genomic analysis of DNA repair genes in Ascomycota. We determined the DNA repair gene repertoire in Taphrinomycotina, Saccharomycotina, Leotiomycetes, Sordariomycetes, Dothideomycetes, and Eurotiomycetes. The subphyla of yeasts, Saccharomycotina and Taphrinomycotina, have a smaller DNA repair gene repertoire comparing to Pezizomycotina. Some genes were absent from most, if not all, yeast species. To study the conservation of these genes in Pezizomycotina, we used the Gain Loss Mapping Engine algorithm that provides the expectations of gain or loss of genes given the tree topology. Genes that were absent from most of the species of Taphrinomycotina or Saccharomycotina showed lower conservation in Pezizomycotina. This suggests that the absence of some DNA repair in yeasts is not random; genes with a tendency to be lost in other classes are missing. We ranked the conservation of DNA repair genes in Ascomycota. We found that Rad51 and its paralogs were less conserved than other recombinational proteins, suggesting that there is a redundancy between Rad51 and its paralogs, at least in some species. Finally, based on the repertoire of UV repair genes, we found conditions that differentially kill the wine pathogen Brettanomyces bruxellensis and not Saccharomyces cerevisiae. In summary, our analysis provides testable hypotheses to the role of DNA repair proteins in the genome evolution of Ascomycota.
Collapse
Affiliation(s)
- Shira Milo
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, Israel
| | - Reut Harari-Misgav
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel
| | - Einat Hazkani-Covo
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, Israel
| |
Collapse
|
42
|
Zhang W, Feng J, Li Q. The replisome guides nucleosome assembly during DNA replication. Cell Biosci 2020; 10:37. [PMID: 32190287 PMCID: PMC7066812 DOI: 10.1186/s13578-020-00398-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/29/2020] [Indexed: 12/18/2022] Open
Abstract
Nucleosome assembly during DNA replication is tightly coupled to ongoing DNA synthesis. This process, termed DNA replication-coupled (RC) nucleosome assembly, is essential for chromatin replication and has a great impact on both genome stability maintenance and epigenetic inheritance. This review discusses a set of recent findings regarding the role of replisome components contributing to RC nucleosome assembly. Starting with a brief introduction to the factors involved in nucleosome assembly and some aspects of the architecture of the eukaryotic replisome, we discuss studies from yeast to mammalian cells and the interactions of replisome components with histones and histone chaperones. We describe the proposed functions of replisome components during RC nucleosome assembly and discuss their impacts on histone segregation and implications for epigenetic inheritance.
Collapse
Affiliation(s)
- Wenshuo Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| | - Jianxun Feng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| |
Collapse
|
43
|
Pérez-Benavente B, Nasresfahani AF, Farràs R. Ubiquitin-Regulated Cell Proliferation and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:3-28. [PMID: 32274751 DOI: 10.1007/978-3-030-38266-7_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ubiquitin ligases (E3) play a crucial role in the regulation of different cellular processes such as proliferation and differentiation via recognition, interaction, and ubiquitination of key cellular proteins in a spatial and temporal regulated manner. The type of ubiquitin chain formed determines the fate of the substrates. The ubiquitinated substrates can be degraded by the proteasome, display altered subcellular localization, or can suffer modifications on their interaction with functional protein complexes. Deregulation of E3 activities is frequently found in various human pathologies, including cancer. The illegitimated or accelerated degradation of oncosuppressive proteins or, inversely, the abnormally high accumulation of oncoproteins, contributes to cell proliferation and transformation. Anomalies in protein abundance may be related to mutations that alter the direct or indirect recognition of proteins by the E3 enzymes or alterations in the level of expression or activity of ubiquitin ligases. Through a few examples, we illustrate here the complexity and diversity of the molecular mechanisms related to protein ubiquitination involved in cell cycle regulation. We will discuss the role of ubiquitin-dependent degradation mediated by the proteasome, the role of non-proteolytic ubiquitination during cell cycle progression, and the consequences of this deregulation on cellular transformation. Finally, we will highlight the novel opportunities that arise from these studies for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Rosa Farràs
- Oncogenic Signaling Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
44
|
Oya E, Nakagawa R, Yoshimura Y, Tanaka M, Nishibuchi G, Machida S, Shirai A, Ekwall K, Kurumizaka H, Tagami H, Nakayama J. H3K14 ubiquitylation promotes H3K9 methylation for heterochromatin assembly. EMBO Rep 2019; 20:e48111. [PMID: 31468675 PMCID: PMC6776926 DOI: 10.15252/embr.201948111] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/28/2022] Open
Abstract
The methylation of histone H3 at lysine 9 (H3K9me), performed by the methyltransferase Clr4/SUV39H, is a key event in heterochromatin assembly. In fission yeast, Clr4, together with the ubiquitin E3 ligase Cul4, forms the Clr4 methyltransferase complex (CLRC), whose physiological targets and biological role are currently unclear. Here, we show that CLRC-dependent H3 ubiquitylation regulates Clr4's methyltransferase activity. Affinity-purified CLRC ubiquitylates histone H3, and mass spectrometric and mutation analyses reveal that H3 lysine 14 (H3K14) is the preferred target of the complex. Chromatin immunoprecipitation analysis shows that H3K14 ubiquitylation (H3K14ub) is closely associated with H3K9me-enriched chromatin. Notably, the CLRC-mediated H3 ubiquitylation promotes H3K9me by Clr4, suggesting that H3 ubiquitylation is intimately linked to the establishment and/or maintenance of H3K9me. These findings demonstrate a cross-talk mechanism between histone ubiquitylation and methylation that is involved in heterochromatin assembly.
Collapse
Affiliation(s)
- Eriko Oya
- Graduate School of Natural SciencesNagoya City UniversityNagoyaJapan
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Present address:
Faculty of Science and EngineeringChuo UniversityBunkyo‐ku, TokyoJapan
| | - Reiko Nakagawa
- Laboratory for PhyloinformaticsRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Yuriko Yoshimura
- Division of Chromatin RegulationNational Institute for Basic BiologyOkazakiJapan
| | - Mayo Tanaka
- Division of Chromatin RegulationNational Institute for Basic BiologyOkazakiJapan
| | - Gohei Nishibuchi
- Graduate School of Natural SciencesNagoya City UniversityNagoyaJapan
- Present address:
Graduate School of ScienceOsaka UniversityToyonakaJapan
| | - Shinichi Machida
- Laboratory of Structural BiologyGraduate School of Advanced Science and EngineeringWaseda UniversityShinjuku‐ku, TokyoJapan
- Present address:
Institute of Human GeneticsCNRS UMR 9002MontpellierFrance
| | | | - Karl Ekwall
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Hitoshi Kurumizaka
- Laboratory of Structural BiologyGraduate School of Advanced Science and EngineeringWaseda UniversityShinjuku‐ku, TokyoJapan
- Laboratory of Chromatin Structure and FunctionInstitute for Quantitative BiosciencesThe University of TokyoBunkyo‐ku, TokyoJapan
| | - Hideaki Tagami
- Graduate School of Natural SciencesNagoya City UniversityNagoyaJapan
| | - Jun‐ichi Nakayama
- Graduate School of Natural SciencesNagoya City UniversityNagoyaJapan
- Division of Chromatin RegulationNational Institute for Basic BiologyOkazakiJapan
- Department of Basic BiologySchool of Life ScienceThe Graduate University for Advanced Studies (SOKENDAI)OkazakiJapan
| |
Collapse
|
45
|
Cul4 E3 ubiquitin ligase regulates ovarian cancer drug resistance by targeting the antiapoptotic protein BIRC3. Cell Death Dis 2019; 10:104. [PMID: 30718461 PMCID: PMC6362125 DOI: 10.1038/s41419-018-1200-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 02/05/2023]
Abstract
CRL4, a well-defined E3 ligase, has been reported to be upregulated and is proposed to be a potential drug target in ovarian cancers. However, the biological functions of CRL4 and the underlying mechanism regulating cancer chemoresistance are still largely elusive. Here, we show that CRL4 is considerably increased in cisplatin-resistant ovarian cancer cells, and CRL4 knockdown with shRNAs is able to reverse cisplatin-resistance of ovarian cancer cells. Moreover, CRL4 knockdown markedly inhibits the expression of BIRC3, one of the inhibitors of apoptosis proteins (IAPs). Besides, lower expression level of BIRC3 is associated with better prognosis of ovarian cancer patients, and BIRC3 knockdown in ovarian cancer cells can recover their sensitivity to cisplatin. More importantly, we demonstrate that CRL4 regulates BIRC3 expression by mediating the STAT3, but not the PI3K pathway. Therefore, our results identified CRL4 as an important factor in ovarian cancer chemoresistance, suggesting that CRL4 and BIRC3 may serve as novel therapeutic targets for relapsed patients after treatment with cisplatin and its derivative to overcome the bottle neck of ovarian cancer chemoresistance.
Collapse
|
46
|
Sun H, Zhang J, Xin S, Jiang M, Zhang J, Li Z, Cao Q, Lou H. Cul4-Ddb1 ubiquitin ligases facilitate DNA replication-coupled sister chromatid cohesion through regulation of cohesin acetyltransferase Esco2. PLoS Genet 2019; 15:e1007685. [PMID: 30779731 PMCID: PMC6396947 DOI: 10.1371/journal.pgen.1007685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/01/2019] [Accepted: 01/16/2019] [Indexed: 12/30/2022] Open
Abstract
Cohesin acetyltransferases ESCO1 and ESCO2 play a vital role in establishing sister chromatid cohesion. How ESCO1 and ESCO2 are controlled in a DNA replication-coupled manner remains unclear in higher eukaryotes. Here we show a critical role of CUL4-RING ligases (CRL4s) in cohesion establishment via regulating ESCO2 in human cells. Depletion of CUL4A, CUL4B or DDB1 subunits substantially reduces the normal cohesion efficiency. We also show that MMS22L, a vertebrate ortholog of yeast Mms22, is one of DDB1 and CUL4-associated factors (DCAFs) involved in cohesion. Several lines of evidence show selective interaction of CRL4s with ESCO2 through LxG motif, which is lost in ESCO1. Depletion of either CRL4s or ESCO2 causes a defect in SMC3 acetylation, which can be rescued by HDAC8 inhibition. More importantly, both CRL4s and PCNA act as mediators for efficiently stabilizing ESCO2 on chromatin and catalyzing SMC3 acetylation. Taken together, we propose an evolutionarily conserved mechanism in which CRL4s and PCNA promote ESCO2-dependent establishment of sister chromatid cohesion.
Collapse
Affiliation(s)
- Haitao Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiaxin Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Siyu Xin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Meiqian Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jingjing Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qinhong Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Huiqiang Lou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
47
|
Li S, Xu Z, Xu J, Zuo L, Yu C, Zheng P, Gan H, Wang X, Li L, Sharma S, Chabes A, Li D, Wang S, Zheng S, Li J, Chen X, Sun Y, Xu D, Han J, Chan K, Qi Z, Feng J, Li Q. Rtt105 functions as a chaperone for replication protein A to preserve genome stability. EMBO J 2018; 37:embj.201899154. [PMID: 30065069 DOI: 10.15252/embj.201899154] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/28/2018] [Accepted: 07/06/2018] [Indexed: 02/05/2023] Open
Abstract
Generation of single-stranded DNA (ssDNA) is required for the template strand formation during DNA replication. Replication Protein A (RPA) is an ssDNA-binding protein essential for protecting ssDNA at replication forks in eukaryotic cells. While significant progress has been made in characterizing the role of the RPA-ssDNA complex, how RPA is loaded at replication forks remains poorly explored. Here, we show that the Saccharomyces cerevisiae protein regulator of Ty1 transposition 105 (Rtt105) binds RPA and helps load it at replication forks. Cells lacking Rtt105 exhibit a dramatic reduction in RPA loading at replication forks, compromised DNA synthesis under replication stress, and increased genome instability. Mechanistically, we show that Rtt105 mediates the RPA-importin interaction and also promotes RPA binding to ssDNA directly in vitro, but is not present in the final RPA-ssDNA complex. Single-molecule studies reveal that Rtt105 affects the binding mode of RPA to ssDNA These results support a model in which Rtt105 functions as an RPA chaperone that escorts RPA to the nucleus and facilitates its loading onto ssDNA at replication forks.
Collapse
Affiliation(s)
- Shuqi Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhiyun Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jiawei Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Linyu Zuo
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chuanhe Yu
- Department of Pediatrics and Department of Genetics and Development, Institute for Cancer Genetics, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Pu Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Haiyun Gan
- Department of Pediatrics and Department of Genetics and Development, Institute for Cancer Genetics, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Xuezheng Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Longtu Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Sushma Sharma
- Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Andrei Chabes
- Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Di Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Sheng Wang
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Sihao Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Jinbao Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Xuefeng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Dongyi Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Junhong Han
- Division of Abdominal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and National Collaborative Center for Biotherapy, Chengdu, China
| | - Kuiming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Zhi Qi
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jianxun Feng
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China .,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Qing Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China .,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
48
|
Zhang L, Serra-Cardona A, Zhou H, Wang M, Yang N, Zhang Z, Xu RM. Multisite Substrate Recognition in Asf1-Dependent Acetylation of Histone H3 K56 by Rtt109. Cell 2018; 174:818-830.e11. [PMID: 30057113 DOI: 10.1016/j.cell.2018.07.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/08/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022]
Abstract
Rtt109 is a unique histone acetyltransferase acetylating histone H3 lysine 56 (H3K56), a modification critical for DNA replication-coupled nucleosome assembly and genome stability. In cells, histone chaperone Asf1 is essential for H3K56 acetylation, yet the mechanisms for H3K56 specificity and Asf1 requirement remain unknown. We have determined the crystal structure of the Rtt109-Asf1-H3-H4 complex and found that unwinding of histone H3 αN, where K56 is normally located, and stabilization of the very C-terminal β strand of histone H4 by Asf1 are prerequisites for H3K56 acetylation. Unexpectedly, an interaction between Rtt109 and the central helix of histone H3 is also required. The observed multiprotein, multisite substrate recognition mechanism among histone modification enzymes provides mechanistic understandings of Rtt109 and Asf1 in H3K56 acetylation, as well as valuable insights into substrate recognition by histone modification enzymes in general.
Collapse
Affiliation(s)
- Lin Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Albert Serra-Cardona
- Institute for Cancer Genetics, Departments of Pediatrics and Genetics and Development and Irving Cancer Research Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Hui Zhou
- Institute for Cancer Genetics, Departments of Pediatrics and Genetics and Development and Irving Cancer Research Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Mingzhu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Na Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 300353 Tianjin, China
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Departments of Pediatrics and Genetics and Development and Irving Cancer Research Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
49
|
Fang D, Gan H, Cheng L, Lee JH, Zhou H, Sarkaria JN, Daniels DJ, Zhang Z. H3.3K27M mutant proteins reprogram epigenome by sequestering the PRC2 complex to poised enhancers. eLife 2018; 7:36696. [PMID: 29932419 PMCID: PMC6033537 DOI: 10.7554/elife.36696] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/21/2018] [Indexed: 11/21/2022] Open
Abstract
Expression of histone H3.3K27M mutant proteins in human diffuse intrinsic pontine glioma (DIPG) results in a global reduction of tri-methylation of H3K27 (H3K27me3), and paradoxically, H3K27me3 peaks remain at hundreds of genomic loci, a dichotomous change that lacks mechanistic insights. Here, we show that the PRC2 complex is sequestered at poised enhancers, but not at active promoters with high levels of H3.3K27M proteins, thereby contributing to the global reduction of H3K27me3. Moreover, the levels of H3.3K27M proteins are low at the retained H3K27me3 peaks and consequently having minimal effects on the PRC2 activity at these loci. H3K27me3-mediated silencing at specific tumor suppressor genes, including Wilms Tumor 1, promotes proliferation of DIPG cells. These results support a model in which the PRC2 complex is redistributed to poised enhancers in H3.3K27M mutant cells and contributes to tumorigenesis in part by locally enhancing H3K27me3, and hence silencing of tumor suppressor genes.
Collapse
Affiliation(s)
- Dong Fang
- Department of Pediatrics and Department of Genetics and Development, Institute for Cancer Genetics, Irving Cancer Research Center, Columbia University, New York, United States
| | - Haiyun Gan
- Department of Pediatrics and Department of Genetics and Development, Institute for Cancer Genetics, Irving Cancer Research Center, Columbia University, New York, United States
| | - Liang Cheng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Jeong-Heon Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Hui Zhou
- Department of Pediatrics and Department of Genetics and Development, Institute for Cancer Genetics, Irving Cancer Research Center, Columbia University, New York, United States
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, United States
| | - David J Daniels
- Department of Neurosurgery, Mayo Clinic, Rochester, United States
| | - Zhiguo Zhang
- Department of Pediatrics and Department of Genetics and Development, Institute for Cancer Genetics, Irving Cancer Research Center, Columbia University, New York, United States
| |
Collapse
|
50
|
USP52 acts as a deubiquitinase and promotes histone chaperone ASF1A stabilization. Nat Commun 2018; 9:1285. [PMID: 29599486 PMCID: PMC5876348 DOI: 10.1038/s41467-018-03588-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/22/2018] [Indexed: 12/31/2022] Open
Abstract
Histone chaperone ASF1A has been reported to be dysregulated in multiple tumors; however, the underlying molecular mechanism that how the abundance and function of ASF1A are regulated remains unclear. Here we report that ASF1A is physically associated with USP52, which is previously identified as a pseudo-deubiquitinase. Interestingly, we demonstrate that USP52 is a bona fide ubiquitin-specific protease, and USP52 promotes ASF1A deubiquitination and stabilization. USP52-promoted ASF1A stabilization facilitates chromatin assembly and favors cell cycle progression. Additionally, we find that USP52 is overexpressed in breast carcinomas, and its level of expression correlates with that of ASF1A. Moreover, we reveal that impairment of USP52-promoted ASF1A stabilization results in growth arrest of breast cancer cells and sensitizes these cells to DNA damage. Our experiments identify USP52 as a truly protein deubiquitinase, uncover a molecular mechanism of USP52 in chromatin assembly, and reveal a potential role of USP52 in breast carcinogenesis. Histone chaperone ASF1A is often dysregulated in cancers, however the regulation of its abundance is unclear. Here, the authors show that USP52 promotes ASF1A stability through deubiquitination while impairment of this stability reduces breast tumorigenesis and confers sensitivity to DNA damage.
Collapse
|