1
|
Bournique E, Sanchez A, Oh S, Ghazarian D, Mahieu AL, Manjunath L, Ednacot E, Ortega P, Masri S, Marazzi I, Buisson R. ATM and IRAK1 orchestrate two distinct mechanisms of NF-κB activation in response to DNA damage. Nat Struct Mol Biol 2025; 32:740-755. [PMID: 39753776 PMCID: PMC11997730 DOI: 10.1038/s41594-024-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 10/02/2024] [Indexed: 01/25/2025]
Abstract
DNA damage in cells induces the expression of inflammatory genes. However, the mechanism by which cells initiate an innate immune response in the presence of DNA lesions blocking transcription remains unknown. Here we find that genotoxic stresses lead to an acute activation of the transcription factor NF-κB through two distinct pathways, each triggered by different types of DNA lesions and coordinated by either ataxia-telangiectasia mutated (ATM) or IRAK1 kinases. ATM stimulates NF-κB in cells with DNA double-strand breaks. By contrast, IRAK1-induced NF-κB signaling occurs in neighboring cells through IL-1α secretion from transcriptionally stressed cells caused by DNA lesions blocking RNA polymerases. Subsequently, both pathways stimulate TRAF6 and the IKK complex to promote NF-κB-mediated inflammatory gene expression. These findings provide an alternative mechanism for damaged cells with impaired transcription to initiate an inflammatory response without relying on their own gene expression, a necessary step that injured cells depend on during canonical innate immune responses.
Collapse
Affiliation(s)
- Elodie Bournique
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Ambrocio Sanchez
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Daniel Ghazarian
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Alisa L Mahieu
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Lavanya Manjunath
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Eirene Ednacot
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - Pedro Ortega
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Selma Masri
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Ivan Marazzi
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA.
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
- Center for Virus Research, University of California Irvine, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
Gilbert N, Marenduzzo D. Topological epigenetics: The biophysics of DNA supercoiling and its relation to transcription and genome instability. Curr Opin Cell Biol 2025; 92:102448. [PMID: 39672089 DOI: 10.1016/j.ceb.2024.102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/09/2024] [Accepted: 11/19/2024] [Indexed: 12/15/2024]
Abstract
Whilst DNA encodes our genetic blueprint as individual nucleobases, as well as epigenetic annotations in the form of biochemical marks, it also carries an extra layer of topological information -, the local over or underwinding of the double helix, known as DNA supercoiling. Supercoiling is a fundamental property of DNA that can be viewed as "topological epigenetics": it stores energy and structural information, and is tightly linked to fundamental processes; however, its quantification and study, by experiments and modelling alike, is challenging. We review experimental and simulation techniques to study supercoiling and its partition into twist and writhe, especially in the context of chromatin. We then discuss the dynamics of transcription-driven supercoiling in vitro and in vivo, and of supercoiling propagation along mammalian genomes. We finally provide evidence from the literature and potential mechanisms linking this ethereal topological mark to gene expression and chromosome instabilities in genetic diseases and cancer.
Collapse
Affiliation(s)
- Nick Gilbert
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| | - Davide Marenduzzo
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Morao AK, Chervova A, Zhao Y, Ercan S, Cecere G. DNA supercoiling modulates eukaryotic transcription in a gene-orientation dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.03.631213. [PMID: 39803503 PMCID: PMC11722375 DOI: 10.1101/2025.01.03.631213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Transcription introduces torsional stress in the DNA fiber causing it to transition from a relaxed to a supercoiled state that can propagate across several kilobases and modulate the binding and activity of DNA-associated proteins. As a result, transcription at one locus has the potential to impact nearby transcription events. In this study, we asked how DNA supercoiling affects histone modifications and transcription of neighboring genes in the multicellular eukaryote Caenorhabditis elegans. We acutely depleted the two major topoisomerases and measured nascent transcription by Global Run-on sequencing (GRO-seq), RNA Polymerase II occupancy by ChIP-seq, gene expression by RNA-seq and four transcription-associated histone modifications by Cut & Tag. Depletion of topoisomerases I and II led to genome-wide changes in transcription dynamics, with minor disruptions to the histone modification landscape. Our results showed that C. elegans topoisomerase I is required for transcription elongation and is partially redundant with topoisomerase II. Analysis of transcription changes with respect to neighboring genes suggest that negative supercoiling promotes the transcription of genes with a divergent neighbor and positive supercoiling suppresses transcription of convergent genes. Additionally, topoisomerase depletion caused coordinated changes in the expression of divergent gene pairs, suggesting that negative supercoiling drives their synchronized expression. Conversely, the coordinated expression of convergent genes was disrupted, suggesting that excessive positive supercoiling inhibits transcription. Overall, our data supports a model in which DNA supercoiling generated by transcription at one site propagates along the eukaryotic chromatin fiber, influencing nearby transcription in an orientation-dependent manner.
Collapse
Affiliation(s)
- Ana Karina Morao
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris 75015, France
| | - Almira Chervova
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris 75015, France
| | - Yuya Zhao
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Sevinc Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Germano Cecere
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris 75015, France
| |
Collapse
|
4
|
Yao Q, Zhu L, Shi Z, Banerjee S, Chen C. Topoisomerase-modulated genome-wide DNA supercoiling domains colocalize with nuclear compartments and regulate human gene expression. Nat Struct Mol Biol 2025; 32:48-61. [PMID: 39152238 DOI: 10.1038/s41594-024-01377-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 07/24/2024] [Indexed: 08/19/2024]
Abstract
DNA supercoiling is a biophysical feature of the double helix with a pivotal role in biological processes. However, understanding of DNA supercoiling in the chromatin remains limited. Here, we developed azide-trimethylpsoralen sequencing (ATMP-seq), a DNA supercoiling assay offering quantitative accuracy while minimizing genomic bias and background noise. Using ATMP-seq, we directly visualized transcription-dependent negative and positive twin-supercoiled domains around genes and mapped kilobase-resolution DNA supercoiling throughout the human genome. Remarkably, we discovered megabase-scale supercoiling domains (SDs) across all chromosomes that are modulated mainly by topoisomerases I and IIβ. Transcription activities, but not the consequent supercoiling accumulation in the local region, contribute to SD formation, indicating the long-range propagation of transcription-generated supercoiling. Genome-wide SDs colocalize with A/B compartments in both human and Drosophila cells but are distinct from topologically associating domains (TADs), with negative supercoiling accumulation at TAD boundaries. Furthermore, genome-wide DNA supercoiling varies between cell states and types and regulates human gene expression, underscoring the importance of supercoiling dynamics in chromatin regulation and function.
Collapse
MESH Headings
- Humans
- DNA, Superhelical/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- Genome, Human
- DNA Topoisomerases, Type I/metabolism
- DNA Topoisomerases, Type I/chemistry
- DNA Topoisomerases, Type I/genetics
- Animals
- Gene Expression Regulation
- Chromatin/metabolism
- Chromatin/chemistry
- DNA Topoisomerases, Type II/metabolism
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/chemistry
- Cell Nucleus/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Qian Yao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Linying Zhu
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhen Shi
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Subhadra Banerjee
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chongyi Chen
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Zhang H, Tian L, Ma Y, Xu J, Bai T, Wang Q, Liu X, Guo L. Not only the top: Type I topoisomerases function in multiple tissues and organs development in plants. J Adv Res 2024:S2090-1232(24)00588-5. [PMID: 39662729 DOI: 10.1016/j.jare.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/24/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND DNA topoisomerases (TOPs) are essential components in a diverse range of biological processes including DNA replication, transcription and genome integrity. Although the functions and mechanisms of TOPs, particularly type I TOP (TOP1s), have been extensively studied in bacteria, yeast and animals, researches on these proteins in plants have only recently commenced. AIM OF REVIEW In this review, the function and mechanism studies of TOP1s in plants and the structural biology of plant TOP1 are presented, providing readers with a comprehensive understanding of the current research status of this essential enzyme.The future research directions for exploring the working mechanism of plant TOP1s are also discussed. KEY SCIENTIFIC CONCEPTS OF REVIEW Over the past decade, it has been discovered TOP1s play a vital role in multiphasic processes of plant development, such as maintaining meristem activity, gametogenesis, flowering time, gravitropic response and so on. Plant TOP1s affects gene transcription by modulating chromatin status, including chromatin accessibility, DNA/RNA structure, and nucleosome positioning. However, the function and mechanism of this vital enzyme is poorly summarized although it has been systematically summarized in other species. This review summarized the research progresses of plant TOP1s according to the diverse functions and working mechanism in different tissues.
Collapse
Affiliation(s)
- Hao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| | - Lirong Tian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| | - Yuru Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| | - Jiahui Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| | - Tianyu Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| | - Qian Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| | - Lin Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| |
Collapse
|
6
|
Gittens WH, Allison RM, Wright EM, Brown GGB, Neale MJ. Osmotic disruption of chromatin induces Topoisomerase 2 activity at sites of transcriptional stress. Nat Commun 2024; 15:10606. [PMID: 39639049 PMCID: PMC11621772 DOI: 10.1038/s41467-024-54567-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Transcription generates superhelical stress in DNA that poses problems for genome stability, but determining when and where such stress arises within chromosomes is challenging. Here, using G1-arrested S. cerevisiae cells, and employing rapid fixation and ultra-sensitive enrichment, we utilise the physiological activity of endogenous topoisomerase 2 (Top2) as a probe of transcription-induced superhelicity. We demonstrate that Top2 activity is surprisingly uncorrelated with transcriptional activity, suggesting that superhelical stress is obscured from Top2 within chromatin in vivo. We test this idea using osmotic perturbation-a treatment that transiently destabilises chromatin in vivo-revealing that Top2 activity redistributes within sub-minute timescales into broad zones patterned by long genes, convergent gene arrays, and transposon elements-and also by acute transcriptional induction. We propose that latent superhelical stress is normally absorbed by the intrinsic topological buffering capacity of chromatin, helping to avoid spurious topoisomerase activity arising within the essential coding regions of the genome.
Collapse
Affiliation(s)
- William H Gittens
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.
| | - Rachal M Allison
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Ellie M Wright
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - George G B Brown
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Matthew J Neale
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
7
|
Keszthelyi A, Mansoubi S, Whale A, Houseley J, Baxter J. The fork protection complex generates DNA topological stress-induced DNA damage while ensuring full and faithful genome duplication. Proc Natl Acad Sci U S A 2024; 121:e2413631121. [PMID: 39589889 PMCID: PMC11626154 DOI: 10.1073/pnas.2413631121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/14/2024] [Indexed: 11/28/2024] Open
Abstract
The fork protection complex (FPC), composed of Mrc1, Tof1, and Csm3, supports rapid and stable DNA replication. Here, we show that FPC activity also introduces DNA damage by increasing DNA topological stress during replication. Mrc1 action increases DNA topological stress during plasmid replication, while Mrc1 or Tof1 activity causes replication stress and DNA damage within topologically constrained regions. We show that the recruitment of Top1 to the fork by Tof1 suppresses the DNA damage generated in these loci. While FPC activity introduces some DNA damage due to increased topological stress, the FPC is also necessary to prevent DNA damage in long replicons across the genome, indicating that the FPC is required for complete and faithful genome duplication. We conclude that FPC regulation must balance ensuring full genome duplication through rapid replication with minimizing the consequential DNA topological stress-induced DNA damage caused by rapid replication through constrained regions.
Collapse
Affiliation(s)
- Andrea Keszthelyi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, East SussexBN1 9RQ, United Kingdom
| | - Sahar Mansoubi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, East SussexBN1 9RQ, United Kingdom
- Biology Department, North Tehran Branch, Islamic Azad University, Tehran1477893855, Iran
| | - Alex Whale
- Epigenetics Programme The Babraham Institute, Babraham Research Campus, CambridgeCB22 3AT, United Kingdom
| | - Jonathan Houseley
- Epigenetics Programme The Babraham Institute, Babraham Research Campus, CambridgeCB22 3AT, United Kingdom
| | - Jonathan Baxter
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, East SussexBN1 9RQ, United Kingdom
| |
Collapse
|
8
|
Kim S, Guo MS. Temporospatial control of topoisomerases by essential cellular processes. Curr Opin Microbiol 2024; 82:102559. [PMID: 39520813 DOI: 10.1016/j.mib.2024.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
Topoisomerases are essential, ubiquitous enzymes that break and rejoin the DNA strand to control supercoiling. Because topoisomerases are DNA scissors, these enzymes are highly regulated to avoid excessive DNA cleavage, a vulnerability exploited by many antibiotics. Topoisomerase activity must be co-ordinated in time and space with transcription, replication, and cell division or else these processes stall, leading to genome loss. Recent work in Escherichia coli has revealed that topoisomerases do not act alone. Most topoisomerases interact with the essential process that they promote, a coupling that may stimulate topoisomerase activity precisely when and where cleavage is required. Surprisingly, in E. coli and most other bacteria, gyrase is not apparently regulated in this manner. We review how each E. coli topoisomerase is regulated, propose possible solutions to 'the gyrase problem', and conclude by highlighting how this regulation may present opportunities for antimicrobial development.
Collapse
Affiliation(s)
- Sora Kim
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Monica S Guo
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
9
|
Longo GMC, Sayols S, Stefanova ME, Xie T, Elsayed W, Panagi A, Stavridou AI, Petrosino G, Ing-Simmons E, Melo US, Gothe HJ, Vaquerizas JM, Kotini AG, Papantonis A, Mundlos S, Roukos V. Type II topoisomerases shape multi-scale 3D chromatin folding in regions of positive supercoils. Mol Cell 2024; 84:4267-4281.e8. [PMID: 39486417 DOI: 10.1016/j.molcel.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/19/2024] [Accepted: 10/04/2024] [Indexed: 11/04/2024]
Abstract
Type II topoisomerases (TOP2s) resolve torsional stress accumulated during various cellular processes and are enriched at chromatin loop anchors and topologically associated domain (TAD) boundaries, where, when trapped, can lead to genomic instability promoting the formation of oncogenic fusions. Whether TOP2s relieve topological constraints at these positions and/or participate in 3D chromosome folding remains unclear. Here, we combine 3D genomics, imaging, and GapRUN, a method for the genome-wide profiling of positive supercoiling, to assess the role of TOP2s in shaping chromosome organization in human cells. Acute TOP2 depletion led to the emergence of new, large-scale contacts at the boundaries between active, positively supercoiled, and lamina-associated domains. TOP2-dependent changes at the higher-order chromatin folding were accompanied by remodeling of chromatin-nuclear lamina interactions and of gene expression, while at the chromatin loop level, TOP2 depletion predominantly remodeled transcriptionally anchored, positively supercoiled loops. We propose that TOP2s act as a fine regulator of chromosome folding at multiple scales.
Collapse
Affiliation(s)
- Gabriel M C Longo
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Sergi Sayols
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Maria E Stefanova
- Charité-Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany; Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Ting Xie
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Waheba Elsayed
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Anastasia Panagi
- Department of General Biology, Medical School, University of Patras, Rio, Patras 26500 Greece
| | - Amalia I Stavridou
- Department of General Biology, Medical School, University of Patras, Rio, Patras 26500 Greece
| | - Giuseppe Petrosino
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Elizabeth Ing-Simmons
- MRC London Institute of Medical Sciences, Du Cane Rd., London W12 0HS, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Uirá Souto Melo
- Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Henrike J Gothe
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Juan M Vaquerizas
- MRC London Institute of Medical Sciences, Du Cane Rd., London W12 0HS, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Andriana G Kotini
- Department of General Biology, Medical School, University of Patras, Rio, Patras 26500 Greece
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany.
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany.
| | - Vassilis Roukos
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany; Department of General Biology, Medical School, University of Patras, Rio, Patras 26500 Greece.
| |
Collapse
|
10
|
Das SK, Karmakar S, Venkatachalapathy H, Jha RK, Batchelor E, Levens D. Excessive MYC-topoisome activity triggers acute DNA damage, MYC degradation, and replacement by a p53-topoisome. Mol Cell 2024; 84:4059-4078.e10. [PMID: 39481385 PMCID: PMC11560571 DOI: 10.1016/j.molcel.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/28/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024]
Abstract
Hyperproliferation driven by the protooncogene MYC may lead to tumor suppressor p53 activating DNA damage that has been presumed to derive from hypertranscription and over-replication. Here, we report that excessive MYC-topoisome (MYC/topoisomerase 1/topoisomerase 2) activity acutely damages DNA-activating pATM and p53. In turn, MYC is shut off and degraded, releasing TOP1 and TOP2A from MYC topoisomes in vitro and in vivo. To manage the topological and torsional stress generated at its target genes, p53 assembles a separate topoisome. Because topoisomerase activity is intrinsically DNA damaging, p53 topoisomes provoke an initial burst of DNA damage. Because p53, unlike MYC, upregulates the DNA-damage response (DDR) and activates tyrosyl-DNA-phosphodiesterase (TDP) 1 and TDP2, it suppresses further topoisome-mediated damage. The physical coupling and activation of TOP1 and TOP2 by p53 creates a tool that supports p53-target expression while braking MYC-driven proliferation in mammalian cells.
Collapse
Affiliation(s)
- Subhendu K Das
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Sharmistha Karmakar
- Energy Storage and Technology Department, Energy and Environment Science and Technology Division, Idaho National Laboratory, Idaho Falls, ID 83415, USA
| | | | - Rajiv Kumar Jha
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Eric Batchelor
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - David Levens
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Peng D, Guo Y, Hu H, Wang X, He S, Gao C, Liu Z, Chen M. Functional characterisation of BnaA02.TOP1α and BnaC02.TOP1α involved in true leaf biomass accumulation in Brassica napus L. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1358-1376. [PMID: 39348559 DOI: 10.1111/tpj.17054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024]
Abstract
Leaves, as primary photosynthetic organs essential for high crop yield and quality, have attracted significant attention. The functions of DNA topoisomerase 1α (TOP1α) in various biological processes, including leaf development, in Brassica napus remain unknown. Here, four paralogs of BnaTOP1α, namely BnaA01.TOP1α, BnaA02.TOP1α, BnaC01.TOP1α and BnaC02.TOP1α, were identified and cloned in the B. napus inbred line 'K407'. Expression pattern analysis revealed that BnaA02.TOP1α and BnaC02.TOP1α, but not BnaA01.TOP1α and BnaC01.TOP1α, were persistently and highly expressed in B. napus true leaves. Preliminary analysis in Arabidopsis thaliana revealed that BnaA02.TOP1α and BnaC02.TOP1α paralogs, but not BnaA01.TOP1α and BnaC01.TOP1α, performed biological functions. Targeted mutations of four BnaTOP1α paralogs in B. napus using the CRISPR-Cas9 system revealed that BnaA02.TOP1α and BnaC02.TOP1α served as functional paralogs and redundantly promoted true leaf number and size, thereby promoting true leaf biomass accumulation. Moreover, BnaA02.TOP1α modulated the levels of endogenous gibberellins, cytokinins and auxins by indirectly regulating several genes related to their metabolism processes. BnaA02.TOP1α directly activated BnaA03.CCS52A2 and BnaC09.AN3 by facilitating the recruitment of RNA polymerase II and modulating H3K27me3, H3K36me2 and H3K36me3 levels at these loci and indirectly activated the BnaA08.PARL1 expression, thereby positively controlling the true leaf size in B. napus. Additionally, BnaA02.TOP1α indirectly activated the BnaA07.PIN1 expression to positively regulate the true leaf number. These results reveal the important functions of BnaTOP1α and provide insights into the regulatory network controlling true leaf biomass accumulation in B. napus.
Collapse
Affiliation(s)
- Danshuai Peng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuan Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huan Hu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xin Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuangcheng He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chenhao Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zijin Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingxun Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
12
|
Lee TH, Qiao CX, Kuzin V, Shi Y, Ramanaranayan V, Wu T, Zhou X, Corujo D, Buschbeck M, Baranello L, Oberdoerffer P. Epigenetic control of Topoisomerase 1 activity presents a cancer vulnerability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619113. [PMID: 39484415 PMCID: PMC11526978 DOI: 10.1101/2024.10.22.619113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
DNA transactions introduce torsional constraints that pose an inherent risk to genome integrity. While topoisomerase 1 (TOP1) activity is essential for removing DNA supercoiling, aberrant stabilization of TOP1:DNA cleavage complexes (TOP1ccs) can result in cytotoxic DNA lesions. What protects genomic hot spots of topological stress from aberrant TOP1 activity remains unknown. Here, we identify chromatin context as an essential means to coordinate TOP1cc resolution. Through its ability to bind poly(ADP-ribose) (PAR), a protein modification required for TOP1cc repair, the histone variant macroH2A1.1 establishes a TOP1-permissive chromatin environment, while the alternatively spliced macroH2A1.2 isoform is unable to bind PAR or protect from TOP1ccs. By visualizing transcription-induced topological stress in single cells, we find that macroH2A1.1 facilitates PAR-dependent recruitment of the TOP1cc repair effector XRCC1 to protect from ssDNA damage. Impaired macroH2A1.1 splicing, a frequent cancer feature, was predictive of increased sensitivity to TOP1 poisons in a pharmaco-genomic screen in breast cancer cells, and macroH2A1.1 inactivation mirrored this effect. Consistent with this, low macroH2A1.1 expression correlated with improved survival in cancer patients treated with TOP1 inhibitors. We propose that macroH2A1 alternative splicing serves as an epigenetic modulator of TOP1-associated genome maintenance and a potential cancer vulnerability.
Collapse
Affiliation(s)
- Tae-Hee Lee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Colina X Qiao
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287
| | - Vladislav Kuzin
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Yuepeng Shi
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287
| | - Vijayalalitha Ramanaranayan
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287
| | - Tongyu Wu
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287
- Present address: Department of Cell Biology, University of Pittsburgh, PA 15261
| | - Xianzhen Zhou
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287
- Present address: Department of Biochemistry, St Anne’s College, Oxford, UK
| | - David Corujo
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Marcus Buschbeck
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, 08916 Barcelona, Spain
| | - Laura Baranello
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Philipp Oberdoerffer
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| |
Collapse
|
13
|
Bagattin A, Tammaccaro SL, Chiral M, Makinistoglu MP, Zimmermann N, Lerner J, Garbay S, Kuperwasser N, Pontoglio M. HNF1β bookmarking involves Topoisomerase 1 activation and DNA topology relaxation in mitotic chromatin. Cell Rep 2024; 43:114805. [PMID: 39388351 DOI: 10.1016/j.celrep.2024.114805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/03/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
HNF1β (HNF1B) is a transcription factor frequently mutated in patients with developmental renal disease. It binds to mitotic chromatin and reactivates gene expression after mitosis, a phenomenon referred to as bookmarking. Using a crosslinking method that circumvents the artifacts of formaldehyde, we demonstrate that HNF1β remains associated with chromatin in a sequence-specific way in both interphase and mitosis. We identify an HNF1β-interacting protein, BTBD2, that enables the interaction and activation of Topoisomerase 1 (TOP1) exclusively during mitosis. Our study identifies a shared microhomology domain between HNF1β and TOP1, where a mutation, found in "maturity onset diabetes of the young" patients, disrupts their interaction. Importantly, HNF1β recruits TOP1 and induces DNA relaxation around HNF1β mitotic chromatin sites, elucidating its crucial role in chromatin remodeling and gene reactivation after mitotic exit. These findings shed light on how HNF1β reactivates target gene expression after mitosis, providing insights into its crucial role in maintenance of cellular identity.
Collapse
Affiliation(s)
- Alessia Bagattin
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France.
| | - Salvina Laura Tammaccaro
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France
| | - Magali Chiral
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France
| | - Munevver Parla Makinistoglu
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France
| | - Nicolas Zimmermann
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France
| | - Jonathan Lerner
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France
| | - Serge Garbay
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France
| | - Nicolas Kuperwasser
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France
| | - Marco Pontoglio
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France.
| |
Collapse
|
14
|
Qian J, Lubkowska L, Zhang S, Tan C, Hong Y, Fulbright RM, Inman JT, Kay TM, Jeong J, Gotte D, Berger JM, Kashlev M, Wang MD. Chromatin Buffers Torsional Stress During Transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618270. [PMID: 39464147 PMCID: PMC11507789 DOI: 10.1101/2024.10.15.618270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Transcription through chromatin under torsion represents a fundamental problem in biology. Pol II must overcome nucleosome obstacles and, because of the DNA helical structure, must also rotate relative to the DNA, generating torsional stress. However, there is a limited understanding of how Pol II transcribes through nucleosomes while supercoiling DNA. In this work, we developed methods to visualize Pol II rotation of DNA during transcription and determine how torsion slows down the transcription rate. We found that Pol II stalls at ± 9 pN·nm torque, nearly sufficient to melt DNA. The stalling is due to extensive backtracking, and the presence of TFIIS increases the stall torque to + 13 pN·nm, making Pol II a powerful rotary motor. This increased torsional capacity greatly enhances Pol II's ability to transcribe through a nucleosome. Intriguingly, when Pol II encounters a nucleosome, nucleosome passage becomes more efficient on a chromatin substrate than on a single-nucleosome substrate, demonstrating that chromatin efficiently buffers torsional stress via its torsional mechanical properties. Furthermore, topoisomerase II relaxation of torsional stress significantly enhances transcription, allowing Pol II to elongate through multiple nucleosomes. Our results demonstrate that chromatin greatly reduces torsional stress on transcription, revealing a novel role of chromatin beyond the more conventional view of it being just a roadblock to transcription.
Collapse
Affiliation(s)
- Jin Qian
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Lucyna Lubkowska
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Shuming Zhang
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Chuang Tan
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Yifeng Hong
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | - James T. Inman
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Taryn M. Kay
- Biophysics Program, Cornell University, Ithaca, NY 14853, USA
| | - Joshua Jeong
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deanna Gotte
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - James M. Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mikhail Kashlev
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Michelle D. Wang
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
15
|
Lascaux P, Hoslett G, Tribble S, Trugenberger C, Antičević I, Otten C, Torrecilla I, Koukouravas S, Zhao Y, Yang H, Aljarbou F, Ruggiano A, Song W, Peron C, Deangeli G, Domingo E, Bancroft J, Carrique L, Johnson E, Vendrell I, Fischer R, Ng AWT, Ngeow J, D'Angiolella V, Raimundo N, Maughan T, Popović M, Milošević I, Ramadan K. TEX264 drives selective autophagy of DNA lesions to promote DNA repair and cell survival. Cell 2024; 187:5698-5718.e26. [PMID: 39265577 DOI: 10.1016/j.cell.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/04/2024] [Accepted: 08/10/2024] [Indexed: 09/14/2024]
Abstract
DNA repair and autophagy are distinct biological processes vital for cell survival. Although autophagy helps maintain genome stability, there is no evidence of its direct role in the repair of DNA lesions. We discovered that lysosomes process topoisomerase 1 cleavage complexes (TOP1cc) DNA lesions in vertebrates. Selective degradation of TOP1cc by autophagy directs DNA damage repair and cell survival at clinically relevant doses of topoisomerase 1 inhibitors. TOP1cc are exported from the nucleus to lysosomes through a transient alteration of the nuclear envelope and independent of the proteasome. Mechanistically, the autophagy receptor TEX264 acts as a TOP1cc sensor at DNA replication forks, triggering TOP1cc processing by the p97 ATPase and mediating the delivery of TOP1cc to lysosomes in an MRE11-nuclease- and ATR-kinase-dependent manner. We found an evolutionarily conserved role for selective autophagy in DNA repair that enables cell survival, protects genome stability, and is clinically relevant for colorectal cancer patients.
Collapse
Affiliation(s)
- Pauline Lascaux
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Gwendoline Hoslett
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Sara Tribble
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Camilla Trugenberger
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Ivan Antičević
- DNA Damage Group, Laboratory for Molecular Ecotoxicology, Department for Marine and Environmental Research, Institute Ruđer Bošković, 10000 Zagreb, Croatia
| | - Cecile Otten
- DNA Damage Group, Laboratory for Molecular Ecotoxicology, Department for Marine and Environmental Research, Institute Ruđer Bošković, 10000 Zagreb, Croatia
| | - Ignacio Torrecilla
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Stelios Koukouravas
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Yichen Zhao
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Hongbin Yang
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Ftoon Aljarbou
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Annamaria Ruggiano
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Wei Song
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Cristiano Peron
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Giulio Deangeli
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 2PY, UK
| | - Enric Domingo
- Department of Oncology, Medical Sciences Division, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| | - James Bancroft
- Centre for Human Genetics, Nuffield Department of Medicine (NDM), University of Oxford, Oxford OX3 7BN, UK
| | - Loïc Carrique
- Division of Structural Biology, Centre for Human Genetics, Nuffield Department of Medicine (NDM), University of Oxford, Oxford OX3 7BN, UK
| | - Errin Johnson
- Dunn School Bioimaging Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Iolanda Vendrell
- Target Discovery Institute, Nuffield Department of Medicine (NDM), University of Oxford, Oxford OX3 7FZ, UK; Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine (NDM), University of Oxford, Oxford OX3 7FZ, UK
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine (NDM), University of Oxford, Oxford OX3 7FZ, UK; Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine (NDM), University of Oxford, Oxford OX3 7FZ, UK
| | - Alvin Wei Tian Ng
- Lee Kong Chian School of Medicine (LKCMedicine), Nanyang Technological University, Singapore 636921, Singapore
| | - Joanne Ngeow
- Lee Kong Chian School of Medicine (LKCMedicine), Nanyang Technological University, Singapore 636921, Singapore; Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Vincenzo D'Angiolella
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, UK
| | - Nuno Raimundo
- Penn State College of Medicine, Department of Cellular and Molecular Physiology, Hershey, PA 17033, USA; Multidisciplinary Institute for Aging, Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra 3000-370, Portugal
| | - Tim Maughan
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK
| | - Marta Popović
- DNA Damage Group, Laboratory for Molecular Ecotoxicology, Department for Marine and Environmental Research, Institute Ruđer Bošković, 10000 Zagreb, Croatia
| | - Ira Milošević
- Centre for Human Genetics, Nuffield Department of Medicine (NDM), University of Oxford, Oxford OX3 7BN, UK; Multidisciplinary Institute for Aging, Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra 3000-370, Portugal
| | - Kristijan Ramadan
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Lee Kong Chian School of Medicine (LKCMedicine), Nanyang Technological University, Singapore 636921, Singapore.
| |
Collapse
|
16
|
Herbert A. A Compendium of G-Flipon Biological Functions That Have Experimental Validation. Int J Mol Sci 2024; 25:10299. [PMID: 39408629 PMCID: PMC11477331 DOI: 10.3390/ijms251910299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
As with all new fields of discovery, work on the biological role of G-quadruplexes (GQs) has produced a number of results that at first glance are quite baffling, sometimes because they do not fit well together, but mostly because they are different from commonly held expectations. Like other classes of flipons, those that form G-quadruplexes have a repeat sequence motif that enables the fold. The canonical DNA motif (G3N1-7)3G3, where N is any nucleotide and G is guanine, is a feature that is under active selection in avian and mammalian genomes. The involvement of G-flipons in genome maintenance traces back to the invertebrate Caenorhabditis elegans and to ancient DNA repair pathways. The role of GQs in transcription is supported by the observation that yeast Rap1 protein binds both B-DNA, in a sequence-specific manner, and GQs, in a structure-specific manner, through the same helix. Other sequence-specific transcription factors (TFs) also engage both conformations to actuate cellular transactions. Noncoding RNAs can also modulate GQ formation in a sequence-specific manner and engage the same cellular machinery as localized by TFs, linking the ancient RNA world with the modern protein world. The coevolution of noncoding RNAs and sequence-specific proteins is supported by studies of early embryonic development, where the transient formation of G-quadruplexes coordinates the epigenetic specification of cell fate.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, 42 8th Street, Unit 3412, Charlestown, MA 02129, USA
| |
Collapse
|
17
|
Bhola M, Abe K, Orozco P, Rahnamoun H, Avila-Lopez P, Taylor E, Muhammad N, Liu B, Patel P, Marko JF, Starner AC, He C, Van Nostrand EL, Mondragón A, Lauberth SM. RNA interacts with topoisomerase I to adjust DNA topology. Mol Cell 2024; 84:3192-3208.e11. [PMID: 39173639 PMCID: PMC11380577 DOI: 10.1016/j.molcel.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 07/07/2023] [Accepted: 07/31/2024] [Indexed: 08/24/2024]
Abstract
Topoisomerase I (TOP1) is an essential enzyme that relaxes DNA to prevent and dissipate torsional stress during transcription. However, the mechanisms underlying the regulation of TOP1 activity remain elusive. Using enhanced cross-linking and immunoprecipitation (eCLIP) and ultraviolet-cross-linked RNA immunoprecipitation followed by total RNA sequencing (UV-RIP-seq) in human colon cancer cells along with RNA electrophoretic mobility shift assays (EMSAs), biolayer interferometry (BLI), and in vitro RNA-binding assays, we identify TOP1 as an RNA-binding protein (RBP). We show that TOP1 directly binds RNA in vitro and in cells and that most RNAs bound by TOP1 are mRNAs. Using a TOP1 RNA-binding mutant and topoisomerase cleavage complex sequencing (TOP1cc-seq) to map TOP1 catalytic activity, we reveal that RNA opposes TOP1 activity as RNA polymerase II (RNAPII) commences transcription of active genes. We further demonstrate the inhibitory role of RNA in regulating TOP1 activity by employing DNA supercoiling assays and magnetic tweezers. These findings provide insight into the coordinated actions of RNA and TOP1 in regulating DNA topological stress intrinsic to RNAPII-dependent transcription.
Collapse
Affiliation(s)
- Mannan Bhola
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kouki Abe
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Paola Orozco
- Section of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Homa Rahnamoun
- Section of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Pedro Avila-Lopez
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elijah Taylor
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3108, USA
| | - Nefertiti Muhammad
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Bei Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Prachi Patel
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3108, USA
| | - Anne C Starner
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Eric L Van Nostrand
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3108, USA
| | - Shannon M Lauberth
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
18
|
Li S, Vemuri C, Chen C. DNA topology: A central dynamic coordinator in chromatin regulation. Curr Opin Struct Biol 2024; 87:102868. [PMID: 38878530 PMCID: PMC11283972 DOI: 10.1016/j.sbi.2024.102868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 07/29/2024]
Abstract
Double helical DNA winds around nucleosomes, forming a beads-on-a-string array that further contributes to the formation of high-order chromatin structures. The regulatory components of the chromatin, interacting intricately with DNA, often exploit the topological tension inherent in the DNA molecule. Recent findings shed light on, and simultaneously complicate, the multifaceted roles of DNA topology (also known as DNA supercoiling) in various aspects of chromatin regulation. Different studies may emphasize the dynamics of DNA topological tension across different scales, interacting with diverse chromatin factors such as nucleosomes, nucleic acid motors that propel DNA-tracking processes, and DNA topoisomerases. In this review, we consolidate recent studies and establish connections between distinct scientific discoveries, advancing our current understanding of chromatin regulation mediated by the supercoiling tension of the double helix. Additionally, we explore the implications of DNA topology and DNA topoisomerases in human diseases, along with their potential applications in therapeutic interventions.
Collapse
Affiliation(s)
- Shuai Li
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Charan Vemuri
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chongyi Chen
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
19
|
Wu T, Hou H, Dey A, Bachu M, Chen X, Wisniewski J, Kudoh F, Chen C, Chauhan S, Xiao H, Pan R, Ozato K. Bromodomain protein BRD4 directs mitotic cell division of mouse fibroblasts by inhibiting DNA damage. iScience 2024; 27:109797. [PMID: 38993671 PMCID: PMC11237862 DOI: 10.1016/j.isci.2024.109797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/30/2023] [Accepted: 04/18/2024] [Indexed: 07/13/2024] Open
Abstract
Bromodomain protein BRD4 binds to acetylated histones to regulate transcription. BRD4 also drives cancer cell proliferation. However, the role of BRD4 in normal cell growth has remained unclear. Here, we investigated this question by using mouse embryonic fibroblasts with conditional Brd4 knockout (KO). We found that Brd4KO cells grow more slowly than wild type cells; they do not complete replication, fail to achieve mitosis, and exhibit extensive DNA damage throughout all cell cycle stages. BRD4 was required for expression of more than 450 cell cycle genes including genes encoding core histones and centromere/kinetochore proteins that are critical for genome replication and chromosomal segregation. Moreover, we show that many genes controlling R-loop formation and DNA damage response (DDR) require BRD4 for expression. Finally, BRD4 constitutively occupied genes controlling R-loop, DDR and cell cycle progression. In summary, BRD4 epigenetically marks above genes and serves as a master regulator of normal cell growth.
Collapse
Affiliation(s)
- Tiyun Wu
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haitong Hou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Anup Dey
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mahesh Bachu
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Weill Cornell Medicine, Graduate School of Medical Sciences, 1300 York Avenue Box 65, New York, NY 10065, USA
| | - Xiongfong Chen
- CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Jan Wisniewski
- Confocal Microscopy and Digital Imaging Facility, Experimental Immunology Branch, CCR, NCI NIH Bldg 10 Rm 4A05, Bethesda, MD 20892, USA
| | - Fuki Kudoh
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chao Chen
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Division of Hematology/Oncology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sakshi Chauhan
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hua Xiao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Pan
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keiko Ozato
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Ivancevic A, Simpson DM, Joyner OM, Bagby SM, Nguyen LL, Bitler BG, Pitts TM, Chuong EB. Endogenous retroviruses mediate transcriptional rewiring in response to oncogenic signaling in colorectal cancer. SCIENCE ADVANCES 2024; 10:eado1218. [PMID: 39018396 PMCID: PMC466953 DOI: 10.1126/sciadv.ado1218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/13/2024] [Indexed: 07/19/2024]
Abstract
Cancer cells exhibit rewired transcriptional regulatory networks that promote tumor growth and survival. However, the mechanisms underlying the formation of these pathological networks remain poorly understood. Through a pan-cancer epigenomic analysis, we found that primate-specific endogenous retroviruses (ERVs) are a rich source of enhancers displaying cancer-specific activity. In colorectal cancer and other epithelial tumors, oncogenic MAPK/AP1 signaling drives the activation of enhancers derived from the primate-specific ERV family LTR10. Functional studies in colorectal cancer cells revealed that LTR10 elements regulate tumor-specific expression of multiple genes associated with tumorigenesis, such as ATG12 and XRCC4. Within the human population, individual LTR10 elements exhibit germline and somatic structural variation resulting from a highly mutable internal tandem repeat region, which affects AP1 binding activity. Our findings reveal that ERV-derived enhancers contribute to transcriptional dysregulation in response to oncogenic signaling and shape the evolution of cancer-specific regulatory networks.
Collapse
Affiliation(s)
- Atma Ivancevic
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - David M. Simpson
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Olivia M. Joyner
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Stacey M. Bagby
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lily L. Nguyen
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ben G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Todd M. Pitts
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Edward B. Chuong
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
21
|
Abe K, Maunze B, Lopez PA, Xu J, Muhammad N, Yang GY, Katz D, Liu Y, Lauberth SM. Downstream-of-gene (DoG) transcripts contribute to an imbalance in the cancer cell transcriptome. SCIENCE ADVANCES 2024; 10:eadh9613. [PMID: 38959318 PMCID: PMC11221514 DOI: 10.1126/sciadv.adh9613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/29/2024] [Indexed: 07/05/2024]
Abstract
Downstream-of-gene (DoG) transcripts are an emerging class of noncoding RNAs. However, it remains largely unknown how DoG RNA production is regulated and whether alterations in DoG RNA signatures exist in major cancers. Here, through transcriptomic analyses of matched tumors and nonneoplastic tissues and cancer cell lines, we reveal a comprehensive catalog of DoG RNA signatures. Through separate lines of evidence, we support the biological importance of DoG RNAs in carcinogenesis. First, we show tissue-specific and stage-specific differential expression of DoG RNAs in tumors versus paired normal tissues with their respective host genes involved in tumor-promoting versus tumor-suppressor pathways. Second, we identify that differential DoG RNA expression is associated with poor patient survival. Third, we identify that DoG RNA induction is a consequence of treating colon cancer cells with the topoisomerase I (TOP1) poison camptothecin and following TOP1 depletion. Our results underlie the significance of DoG RNAs and TOP1-dependent regulation of DoG RNAs in diversifying and modulating the cancer transcriptome.
Collapse
Affiliation(s)
- Kouki Abe
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brian Maunze
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Pedro-Avila Lopez
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jessica Xu
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nefertiti Muhammad
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Guang-Yu Yang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - David Katz
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yaping Liu
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shannon M. Lauberth
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
22
|
Zhang H, Sun Y, Saha S, Saha LK, Pongor LS, Dhall A, Pommier Y. Genome-wide Mapping of Topoisomerase Binding Sites Suggests Topoisomerase 3α (TOP3A) as a Reader of Transcription-Replication Conflicts (TRC). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599352. [PMID: 38948815 PMCID: PMC11212928 DOI: 10.1101/2024.06.17.599352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Both transcription and replication can take place simultaneously on the same DNA template, potentially leading to transcription-replication conflicts (TRCs) and topological problems. Here we asked which topoisomerase(s) is/are the best candidate(s) for sensing TRC. Genome-wide topoisomerase binding sites were mapped in parallel for all the nuclear topoisomerases (TOP1, TOP2A, TOP2B, TOP3A and TOP3B). To increase the signal to noise ratio (SNR), we used ectopic expression of those topoisomerases in H293 cells followed by a modified CUT&Tag method. Although each topoisomerase showed distinct binding patterns, all topoisomerase binding signals positively correlated with gene transcription. TOP3A binding signals were suppressed by DNA replication inhibition. This was also observed but to a lesser extent for TOP2A and TOP2B. Hence, we propose the involvement of TOP3A in sensing both head-on TRCs (HO-TRCs) and co-directional TRCs (CD-TRCs). In which case, the TOP3A signals appear concentrated within the promoters and first 20 kb regions of the 5' -end of genes, suggesting the prevalence of TRCs and the recruitment of TOP3A in the 5'-regions of transcribed and replicated genes.
Collapse
Affiliation(s)
- Hongliang Zhang
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yilun Sun
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sourav Saha
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Liton Kumar Saha
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lorinc S Pongor
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anjali Dhall
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yves Pommier
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Teng Z, Yang L, Zhang Q, Chen Y, Wang X, Zheng Y, Tian A, Tian D, Lin Z, Deng WM, Liu H. Topoisomerase I is an evolutionarily conserved key regulator for satellite DNA transcription. Nat Commun 2024; 15:5151. [PMID: 38886382 PMCID: PMC11183047 DOI: 10.1038/s41467-024-49567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
RNA Polymerase (RNAP) II transcription on non-coding repetitive satellite DNAs plays an important role in chromosome segregation, but a little is known about the regulation of satellite transcription. We here show that Topoisomerase I (TopI), not TopII, promotes the transcription of α-satellite DNAs, the main type of satellite DNAs on human centromeres. Mechanistically, TopI localizes to centromeres, binds RNAP II and facilitates RNAP II elongation. Interestingly, in response to DNA double-stranded breaks (DSBs), α-satellite transcription is dramatically stimulated in a DNA damage checkpoint-independent but TopI-dependent manner, and these DSB-induced α-satellite RNAs form into strong speckles in the nucleus. Remarkably, TopI-dependent satellite transcription also exists in mouse 3T3 and Drosophila S2 cells and in Drosophila larval imaginal wing discs and tumor tissues. Altogether, our findings herein reveal an evolutionally conserved mechanism with TopI as a key player for the regulation of satellite transcription at both cellular and animal levels.
Collapse
Affiliation(s)
- Zhen Teng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Lu Yang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Qian Zhang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Yujue Chen
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Xianfeng Wang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Yiran Zheng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Aiguo Tian
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Di Tian
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Zhen Lin
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Wu-Min Deng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Hong Liu
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
24
|
Miller CN, Waterfield MR, Gardner JM, Anderson MS. Aire in Autoimmunity. Annu Rev Immunol 2024; 42:427-53. [PMID: 38360547 PMCID: PMC11774315 DOI: 10.1146/annurev-immunol-090222-101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The role of the autoimmune regulator (Aire) in central immune tolerance and thymic self-representation was first described more than 20 years ago, but fascinating new insights into its biology continue to emerge, particularly in the era of advanced single-cell genomics. We briefly describe the role of human genetics in the discovery of Aire, as well as insights into its function gained from genotype-phenotype correlations and the spectrum of Aire-associated autoimmunity-including insights from patients with Aire mutations with broad and diverse implications for human health. We then highlight emerging trends in Aire biology, focusing on three topic areas. First, we discuss medullary thymic epithelial diversity and the role of Aire in thymic epithelial development. Second, we highlight recent developments regarding the molecular mechanisms of Aire and its binding partners. Finally, we describe the rapidly evolving biology of the identity and function of extrathymic Aire-expressing cells (eTACs), and a novel eTAC subset called Janus cells, as well as their potential roles in immune homeostasis.
Collapse
Affiliation(s)
- Corey N Miller
- Diabetes Center, University of California, San Francisco, California, USA; ,
- Department of Medicine, University of California, San Francisco, California, USA
| | - Michael R Waterfield
- Department of Pediatrics, University of California, San Francisco, California, USA
| | - James M Gardner
- Diabetes Center, University of California, San Francisco, California, USA; ,
- Department of Surgery, University of California, San Francisco, California, USA
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, California, USA; ,
- Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
25
|
Geraud M, Cristini A, Salimbeni S, Bery N, Jouffret V, Russo M, Ajello AC, Fernandez Martinez L, Marinello J, Cordelier P, Trouche D, Favre G, Nicolas E, Capranico G, Sordet O. TDP1 mutation causing SCAN1 neurodegenerative syndrome hampers the repair of transcriptional DNA double-strand breaks. Cell Rep 2024; 43:114214. [PMID: 38761375 DOI: 10.1016/j.celrep.2024.114214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/05/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024] Open
Abstract
TDP1 removes transcription-blocking topoisomerase I cleavage complexes (TOP1ccs), and its inactivating H493R mutation causes the neurodegenerative syndrome SCAN1. However, the molecular mechanism underlying the SCAN1 phenotype is unclear. Here, we generate human SCAN1 cell models using CRISPR-Cas9 and show that they accumulate TOP1ccs along with changes in gene expression and genomic distribution of R-loops. SCAN1 cells also accumulate transcriptional DNA double-strand breaks (DSBs) specifically in the G1 cell population due to increased DSB formation and lack of repair, both resulting from abortive removal of transcription-blocking TOP1ccs. Deficient TDP1 activity causes increased DSB production, and the presence of mutated TDP1 protein hampers DSB repair by a TDP2-dependent backup pathway. This study provides powerful models to study TDP1 functions under physiological and pathological conditions and unravels that a gain of function of the mutated TDP1 protein, which prevents DSB repair, rather than a loss of TDP1 activity itself, could contribute to SCAN1 pathogenesis.
Collapse
Affiliation(s)
- Mathéa Geraud
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Agnese Cristini
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Simona Salimbeni
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France; Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Nicolas Bery
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Virginie Jouffret
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France; BigA Core Facility, Centre de Biologie Intégrative (CBI), Université de Toulouse, 31062 Toulouse, France
| | - Marco Russo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Andrea Carla Ajello
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Lara Fernandez Martinez
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Jessica Marinello
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Pierre Cordelier
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Didier Trouche
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Gilles Favre
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Estelle Nicolas
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Olivier Sordet
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France.
| |
Collapse
|
26
|
Duardo RC, Marinello J, Russo M, Morelli S, Pepe S, Guerra F, Gómez-González B, Aguilera A, Capranico G. Human DNA topoisomerase I poisoning causes R loop-mediated genome instability attenuated by transcription factor IIS. SCIENCE ADVANCES 2024; 10:eadm8196. [PMID: 38787953 PMCID: PMC11122683 DOI: 10.1126/sciadv.adm8196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/18/2024] [Indexed: 05/26/2024]
Abstract
DNA topoisomerase I can contribute to cancer genome instability. During catalytic activity, topoisomerase I forms a transient intermediate, topoisomerase I-DNA cleavage complex (Top1cc) to allow strand rotation and duplex relaxation, which can lead to elevated levels of DNA-RNA hybrids and micronuclei. To comprehend the underlying mechanisms, we have integrated genomic data of Top1cc-triggered hybrids and DNA double-strand breaks (DSBs) shortly after Top1cc induction, revealing that Top1ccs increase hybrid levels with different mechanisms. DSBs are at highly transcribed genes in early replicating initiation zones and overlap with hybrids downstream of accumulated RNA polymerase II (RNAPII) at gene 5'-ends. A transcription factor IIS mutant impairing transcription elongation further increased RNAPII accumulation likely due to backtracking. Moreover, Top1ccs can trigger micronuclei when occurring during late G1 or early/mid S, but not during late S. As micronuclei and transcription-replication conflicts are attenuated by transcription factor IIS, our results support a role of RNAPII arrest in Top1cc-induced transcription-replication conflicts leading to DSBs and micronuclei.
Collapse
Affiliation(s)
- Renée C. Duardo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Jessica Marinello
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Marco Russo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Sara Morelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Simona Pepe
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Federico Guerra
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Universidad de Sevilla–CSIC, Calle Américo Vespucio 24, 41092 Seville, Spain
- Departamento de Genetica, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Universidad de Sevilla–CSIC, Calle Américo Vespucio 24, 41092 Seville, Spain
- Departamento de Genetica, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, via Selmi 3, 40126, Bologna, Italy
| |
Collapse
|
27
|
Teng Z, Yang L, Zhang Q, Chen Y, Wang X, Zheng Y, Tian A, Tian D, Lin Z, Deng WM, Liu H. Topoisomerase I is an Evolutionarily Conserved Key Regulator for Satellite DNA Transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592391. [PMID: 38746280 PMCID: PMC11092777 DOI: 10.1101/2024.05.03.592391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Repetitive satellite DNAs, divergent in nucleic-acid sequence and size across eukaryotes, provide a physical site for centromere assembly to orchestrate chromosome segregation during the cell cycle. These non-coding DNAs are transcribed by RNA polymerase (RNAP) II and the transcription has been shown to play a role in chromosome segregation, but a little is known about the regulation of centromeric transcription, especially in higher organisms with tandemly-repeated-DNA-sequence centromeres. Using RNA interference knockdown, chemical inhibition and AID/IAA degradation, we show that Topoisomerase I (TopI), not TopII, promotes the transcription of α-satellite DNAs, the main type of satellite on centromeres in human cells. Mechanistically, TopI localizes to centromeres, binds RNAP II and facilitates RNAP II elongation on centromeres. Interestingly, in response to DNA double-stranded breaks (DSBs) induced by chemotherapy drugs or CRSPR/Cas9, α-satellite transcription is dramatically stimulated in a DNA damage checkpoint-independent but TopI-dependent manner. These DSB-induced α-satellite RNAs were predominantly derived from the α-satellite high-order repeats of human centromeres and forms into strong speckles in the nucleus. Remarkably, TopI-dependent satellite transcription also exists in mouse 3T3 and Drosophila S2 cells and in Drosophila larval imaginal wing discs and tumor tissues. Altogether, our findings herein reveal an evolutionally conserved mechanism with TopI as a key player for the regulation of satellite transcription at both cellular and animal levels.
Collapse
Affiliation(s)
- Zhen Teng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Contribute equally
| | - Lu Yang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Contribute equally
| | - Qian Zhang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Contribute equally
| | - Yujue Chen
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Xianfeng Wang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Yiran Zheng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Aiguo Tian
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Di Tian
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Zhen Lin
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Wu-Min Deng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Hong Liu
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| |
Collapse
|
28
|
Liang HT, Yan JY, Yao HJ, Zhang XN, Xing ZM, Liu L, Chen YQ, Li GR, Huang J, He YD, Zheng KW. G-quadruplexes on chromosomal DNA negatively regulates topoisomerase 1 activity. Nucleic Acids Res 2024; 52:2142-2156. [PMID: 38340342 PMCID: PMC10954455 DOI: 10.1093/nar/gkae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/03/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Human DNA topoisomerase 1 (Top1) is a crucial enzyme responsible for alleviating torsional stress on DNA during transcription and replication, thereby maintaining genome stability. Previous researches had found that non-working Top1 interacted extensively with chromosomal DNA in human cells. However, the reason for its retention on chromosomal DNA remained unclear. In this study, we discovered a close association between Top1 and chromosomal DNA, specifically linked to the presence of G-quadruplex (G4) structures. G4 structures, formed during transcription, trap Top1 and hinder its ability to relax neighboring DNAs. Disruption of the Top1-G4 interaction using G4 ligand relieved the inhibitory effect of G4 on Top1 activity, resulting in a further reduction of R-loop levels in cells. Additionally, the activation of Top1 through the use of a G4 ligand enhanced the toxicity of Top1 inhibitors towards cancer cells. Our study uncovers a negative regulation mechanism of human Top1 and highlights a novel pathway for activating Top1.
Collapse
Affiliation(s)
- Hui-ting Liang
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Jiang-yu Yan
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Hao-jun Yao
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Xue-nan Zhang
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Zhi-ming Xing
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Lin Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yao-qing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Guo-rui Li
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Jing Huang
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Yi-de He
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Ke-wei Zheng
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| |
Collapse
|
29
|
Hidmi O, Oster S, Monin J, Aqeilan RI. TOP1 and R-loops facilitate transcriptional DSBs at hypertranscribed cancer driver genes. iScience 2024; 27:109082. [PMID: 38375218 PMCID: PMC10875566 DOI: 10.1016/j.isci.2024.109082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/26/2023] [Accepted: 01/28/2024] [Indexed: 02/21/2024] Open
Abstract
DNA double-stranded breaks (DSBs) pose a significant threat to genomic integrity, and their generation during essential cellular processes like transcription remains poorly understood. In this study, we employ several techniques to map DSBs, R-loops, and topoisomerase 1 cleavage complex (TOP1cc) to comprehensively investigate the interplay between transcription, DSBs, topoisomerase 1 (TOP1), and R-loops. Our findings reveal the presence of DSBs at highly expressed genes enriched with TOP1 and R-loops. Remarkably, transcription-associated DSBs at these loci are significantly reduced upon depletion of R-loops and TOP1, uncovering the pivotal roles of TOP1 and R-loops in transcriptional DSB formation. By elucidating the intricate interplay between TOP1cc trapping, R-loops, and DSBs, our study provides insights into the mechanisms underlying transcription-associated genomic instability. Moreover, we establish a link between transcriptional DSBs and early molecular changes driving cancer development, highlighting the distinct etiology and molecular characteristics of driver mutations compared to passenger mutations.
Collapse
Affiliation(s)
- Osama Hidmi
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sara Oster
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jonathan Monin
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rami I. Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Cyprus Cancer Research Institute (CCRI), Nicosia, Cyprus
| |
Collapse
|
30
|
Abugable AA, Antar S, El-Khamisy SF. Chromosomal single-strand break repair and neurological disease: Implications on transcription and emerging genomic tools. DNA Repair (Amst) 2024; 135:103629. [PMID: 38266593 DOI: 10.1016/j.dnarep.2024.103629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Cells are constantly exposed to various sources of DNA damage that pose a threat to their genomic integrity. One of the most common types of DNA breaks are single-strand breaks (SSBs). Mutations in the repair proteins that are important for repairing SSBs have been reported in several neurological disorders. While several tools have been utilised to investigate SSBs in cells, it was only through recent advances in genomics that we are now beginning to understand the architecture of the non-random distribution of SSBs and their impact on key cellular processes such as transcription and epigenetic remodelling. Here, we discuss our current understanding of the genome-wide distribution of SSBs, their link to neurological disorders and summarise recent technologies to investigate SSBs at the genomic level.
Collapse
Affiliation(s)
- Arwa A Abugable
- School of Biosciences, Firth Court, University of Sheffield, Sheffield, UK; The healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK
| | - Sarah Antar
- School of Biosciences, Firth Court, University of Sheffield, Sheffield, UK; The healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK; Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Sherif F El-Khamisy
- School of Biosciences, Firth Court, University of Sheffield, Sheffield, UK; The healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK; Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK.
| |
Collapse
|
31
|
Segev A, Heady L, Crewe M, Madabhushi R. Mapping catalytically engaged TOP2B in neurons reveals the principles of topoisomerase action within the genome. Cell Rep 2024; 43:113809. [PMID: 38377005 PMCID: PMC11064056 DOI: 10.1016/j.celrep.2024.113809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/22/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
We trapped catalytically engaged topoisomerase IIβ (TOP2B) in covalent DNA cleavage complexes (TOP2Bccs) and mapped their positions genome-wide in cultured mouse cortical neurons. We report that TOP2Bcc distribution varies with both nucleosome and compartmental chromosome organization. While TOP2Bccs in gene bodies correlate with their level of transcription, highly expressed genes that lack the usually associated chromatin marks, such as H3K36me3, show reduced TOP2Bccs, suggesting that histone posttranslational modifications regulate TOP2B activity. Promoters with high RNA polymerase II occupancy show elevated TOP2B chromatin immunoprecipitation sequencing signals but low TOP2Bccs, indicating that TOP2B catalytic engagement is curtailed at active promoters. Surprisingly, either poisoning or inhibiting TOP2B increases nascent transcription at most genes and enhancers but reduces transcription within long genes. These effects are independent of transcript length and instead correlate with the presence of intragenic enhancers. Together, these results clarify how cells modulate the catalytic engagement of topoisomerases to affect transcription.
Collapse
Affiliation(s)
- Amir Segev
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Peter O' Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lance Heady
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Peter O' Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Morgan Crewe
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Peter O' Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ram Madabhushi
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Peter O' Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
32
|
Terrón-Bautista J, Martínez-Sánchez MDM, López-Hernández L, Vadusevan AA, García-Domínguez M, Williams RS, Aguilera A, Millán-Zambrano G, Cortés-Ledesma F. Topological regulation of the estrogen transcriptional response by ZATT-mediated inhibition of TOP2B activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576640. [PMID: 38328138 PMCID: PMC10849543 DOI: 10.1101/2024.01.22.576640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Human type-II topoisomerases, TOP2A and TOP2B, remove transcription associated DNA supercoiling, thereby affecting gene-expression programs, and have recently been associated with 3D genome architecture. Here, we study the regulatory roles of TOP2 paralogs in response to estrogen, which triggers an acute transcriptional induction that involves rewiring of genome organization. We find that, whereas TOP2A facilitates transcription, as expected for a topoisomerase, TOP2B limits the estrogen response. Consistent with this, TOP2B activity is locally downregulated upon estrogen treatment to favor the establishment and stabilization of regulatory chromatin contacts, likely through an accumulation of DNA supercoiling. We show that estrogen-mediated inhibition of TOP2B requires estrogen receptor α (ERα), a non-catalytic function of TOP2A, and the action of the atypical SUMO-ligase ZATT. This mechanism of topological transcriptional-control, which may be shared by additional gene-expression circuits, highlights the relevance of DNA topoisomerases as central actors of genome dynamics.
Collapse
Affiliation(s)
- José Terrón-Bautista
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Topology and DNA Breaks Group, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| | | | - Laura López-Hernández
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Spain
| | - Ananda Ayyappan Vadusevan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Mario García-Domínguez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - R. Scott Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Spain
| | - Gonzalo Millán-Zambrano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Spain
| | - Felipe Cortés-Ledesma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Topology and DNA Breaks Group, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
- Lead contact
| |
Collapse
|
33
|
Benham CJ. DNA superhelicity. Nucleic Acids Res 2024; 52:22-48. [PMID: 37994702 PMCID: PMC10783518 DOI: 10.1093/nar/gkad1092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Closing each strand of a DNA duplex upon itself fixes its linking number L. This topological condition couples together the secondary and tertiary structures of the resulting ccDNA topoisomer, a constraint that is not present in otherwise identical nicked or linear DNAs. Fixing L has a range of structural, energetic and functional consequences. Here we consider how L having different integer values (that is, different superhelicities) affects ccDNA molecules. The approaches used are primarily theoretical, and are developed from a historical perspective. In brief, processes that either relax or increase superhelicity, or repartition what is there, may either release or require free energy. The energies involved can be substantial, sufficient to influence many events, directly or indirectly. Here two examples are developed. The changes of unconstrained superhelicity that occur during nucleosome attachment and release are examined. And a simple theoretical model of superhelically driven DNA structural transitions is described that calculates equilibrium distributions for populations of identical topoisomers. This model is used to examine how these distributions change with superhelicity and other factors, and applied to analyze several situations of biological interest.
Collapse
Affiliation(s)
- Craig J Benham
- UC Davis Genome Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
34
|
Vega M, Barrios R, Fraile R, de Castro Cogle K, Castillo D, Anglada R, Casals F, Ayté J, Lowy-Gallego E, Hidalgo E. Topoisomerase 1 facilitates nucleosome reassembly at stress genes during recovery. Nucleic Acids Res 2023; 51:12161-12173. [PMID: 37956308 PMCID: PMC10711424 DOI: 10.1093/nar/gkad1066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Chromatin remodeling is essential to allow full development of alternative gene expression programs in response to environmental changes. In fission yeast, oxidative stress triggers massive transcriptional changes including the activation of hundreds of genes, with the participation of histone modifying complexes and chromatin remodelers. DNA transcription is associated to alterations in DNA topology, and DNA topoisomerases facilitate elongation along gene bodies. Here, we test whether the DNA topoisomerase Top1 participates in the RNA polymerase II-dependent activation of the cellular response to oxidative stress. Cells lacking Top1 are resistant to H2O2 stress. The transcriptome of Δtop1 strain was not greatly affected in the absence of stress, but activation of the anti-stress gene expression program was more sustained than in wild-type cells. Top1 associated to stress open reading frames. While the nucleosomes of stress genes are partially and transiently evicted during stress, the chromatin configuration remains open for longer times in cells lacking Top1, facilitating RNA polymerase II progression. We propose that, by removing DNA tension arising from transcription, Top1 facilitates nucleosome reassembly and works in synergy with the chromatin remodeler Hrp1 as opposing forces to transcription and to Snf22 / Hrp3 opening remodelers.
Collapse
Affiliation(s)
- Montserrat Vega
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Rubén Barrios
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Rodrigo Fraile
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | | | | | - Roger Anglada
- Genomics Core Facility, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Ferran Casals
- Genomics Core Facility, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Ernesto Lowy-Gallego
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona 08003, Spain
| |
Collapse
|
35
|
D'Alessio Y, D'Alfonso A, Camilloni G. Chromatin conformations of HSP12 during transcriptional activation in the Saccharomyces cerevisiae stationary phase. Adv Biol Regul 2023; 90:100986. [PMID: 37741159 DOI: 10.1016/j.jbior.2023.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/17/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023]
Abstract
During evolution, living cells have developed sophisticated molecular and physiological processes to cope with a variety of stressors. These mechanisms, which collectively constitute the Environmental Stress Response, involve the activation/repression of hundreds of genes that are regulated to respond rapidly and effectively to protect the cell. The main stressors include sudden increases in environmental temperature and osmolarity, exposure to heavy metals, nutrient limitation, ROS accumulation, and protein-damaging events. The growth stages of the yeast S. cerevisiae proceed from the exponential to the diauxic phase, finally reaching the stationary phase. It is in this latter phase that the main stressor events are more active. In the present work, we aim to understand whether the responses evoked by the sudden onset of a stressor, like what happens to cells going through the stationary phase, would be different or similar to those induced by a gradual increase in the same stimulus. To this aim, we studied the expression of the HSP12 gene of the HSP family of proteins, typically induced by stress conditions, with a focus on the role of chromatin in this regulation. Analyses of nucleosome occupancy and three-dimensional chromatin conformation suggest the activation of a different response pathway upon a sudden vs a gradual onset of a stress stimulus. Here we show that it is the three-dimensional chromatin structure of HSP12, rather than nucleosome remodeling, that becomes altered in HSP12 transcription during the stationary phase.
Collapse
Affiliation(s)
- Yuri D'Alessio
- Dipartimento di Biologia e Biotecnologie, University of Rome, Sapienza Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Anna D'Alfonso
- Dipartimento di Biologia e Biotecnologie, University of Rome, Sapienza Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Giorgio Camilloni
- Dipartimento di Biologia e Biotecnologie, University of Rome, Sapienza Piazzale A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
36
|
Vihervaara A, Versluis P, Himanen SV, Lis JT. PRO-IP-seq tracks molecular modifications of engaged Pol II complexes at nucleotide resolution. Nat Commun 2023; 14:7039. [PMID: 37923726 PMCID: PMC10624850 DOI: 10.1038/s41467-023-42715-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
RNA Polymerase II (Pol II) is a multi-subunit complex that undergoes covalent modifications as transcription proceeds through genes and enhancers. Rate-limiting steps of transcription control Pol II recruitment, site and degree of initiation, pausing duration, productive elongation, nascent transcript processing, transcription termination, and Pol II recycling. Here, we develop Precision Run-On coupled to Immuno-Precipitation sequencing (PRO-IP-seq), which double-selects nascent RNAs and transcription complexes, and track phosphorylation of Pol II C-terminal domain (CTD) at nucleotide-resolution. We uncover precise positional control of Pol II CTD phosphorylation as transcription proceeds from the initiating nucleotide (+1 nt), through early (+18 to +30 nt) and late (+31 to +60 nt) promoter-proximal pause, and into productive elongation. Pol II CTD is predominantly unphosphorylated from initiation until the early pause-region, whereas serine-2- and serine-5-phosphorylations are preferentially deposited in the later pause-region. Upon pause-release, serine-7-phosphorylation rapidly increases and dominates over the region where Pol II assembles elongation factors and accelerates to its full elongational speed. Interestingly, tracking CTD modifications upon heat-induced transcriptional reprogramming demonstrates that Pol II with phosphorylated CTD remains paused on thousands of heat-repressed genes. These results uncover dynamic Pol II regulation at rate-limiting steps of transcription and provide a nucleotide-resolution technique for tracking composition of engaged transcription complexes.
Collapse
Affiliation(s)
- Anniina Vihervaara
- KTH Royal Institute of Technology, Department of Gene Technology, Science for Life Laboratory, Stockholm, Sweden.
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| | - Philip Versluis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Samu V Himanen
- KTH Royal Institute of Technology, Department of Gene Technology, Science for Life Laboratory, Stockholm, Sweden
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
37
|
El-Khamisy SF. Oxidative DNA damage and repair at non-coding regulatory regions. Trends Cell Biol 2023; 33:939-949. [PMID: 37029073 DOI: 10.1016/j.tcb.2023.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/09/2023]
Abstract
DNA breaks at protein-coding sequences are well-established threats to tissue homeostasis and maintenance. They arise from the exposure to intracellular and environmental genotoxins, causing damage in one or two strands of the DNA. DNA breaks have been also reported in non-coding regulatory regions such as enhancers and promoters. They arise from essential cellular processes required for gene transcription, cell identity and function. One such process that has attracted recent attention is the oxidative demethylation of DNA and histones, which generates abasic sites and DNA single-strand breaks. Here, we discuss how oxidative DNA breaks at non-coding regulatory regions are generated and the recently reported role of NuMA (nuclear mitotic apparatus) protein in promoting transcription and repair at these regions.
Collapse
Affiliation(s)
- Sherif F El-Khamisy
- School of Biosciences, The Healthy Lifespan and Neuroscience Institutes, Firth Court, University of Sheffield, Sheffield, UK; Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK.
| |
Collapse
|
38
|
Lau MS, Hu Z, Zhao X, Tan YS, Liu J, Huang H, Yeo CJ, Leong HF, Grinchuk OV, Chan JK, Yan J, Tee WW. Transcriptional repression by a secondary DNA binding surface of DNA topoisomerase I safeguards against hypertranscription. Nat Commun 2023; 14:6464. [PMID: 37833256 PMCID: PMC10576097 DOI: 10.1038/s41467-023-42078-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Regulation of global transcription output is important for normal development and disease, but little is known about the mechanisms involved. DNA topoisomerase I (TOP1) is an enzyme well-known for its role in relieving DNA supercoils for enabling transcription. Here, we report a non-enzymatic function of TOP1 that downregulates RNA synthesis. This function is dependent on specific DNA-interacting residues located on a conserved protein surface. A loss-of-function knock-in mutation on this surface, R548Q, is sufficient to cause hypertranscription and alter differentiation outcomes in mouse embryonic stem cells (mESCs). Hypertranscription in mESCs is accompanied by reduced TOP1 chromatin binding and change in genomic supercoiling. Notably, the mutation does not impact TOP1 enzymatic activity; rather, it diminishes TOP1-DNA binding and formation of compact protein-DNA structures. Thus, TOP1 exhibits opposing influences on transcription through distinct activities which are likely to be coordinated. This highlights TOP1 as a safeguard of appropriate total transcription levels in cells.
Collapse
Affiliation(s)
- Mei Sheng Lau
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
| | - Zhenhua Hu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaodan Zhao
- Department of Physics, National University of Singapore, Singapore, 117551, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Yaw Sing Tan
- Bioinformatics Institute (BII), A*STAR, 30 Biopolis Street, Matrix, Singapore, 138671, Singapore
| | - Jinyue Liu
- Genome Institute of Singapore (GIS), A*STAR, 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Hua Huang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Electrophysiology Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Clarisse Jingyi Yeo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Hwei Fen Leong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Oleg V Grinchuk
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Justin Kaixuan Chan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Jie Yan
- Department of Physics, National University of Singapore, Singapore, 117551, Singapore.
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, 117557, Singapore.
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore.
| | - Wee-Wei Tee
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
39
|
Cameron DP, Grosser J, Ladigan S, Kuzin V, Iliopoulou E, Wiegard A, Benredjem H, Jackson K, Liffers ST, Lueong S, Cheung PF, Vangala D, Pohl M, Viebahn R, Teschendorf C, Wolters H, Usta S, Geng K, Kutter C, Arsenian-Henriksson M, Siveke JT, Tannapfel A, Schmiegel W, Hahn SA, Baranello L. Coinhibition of topoisomerase 1 and BRD4-mediated pause release selectively kills pancreatic cancer via readthrough transcription. SCIENCE ADVANCES 2023; 9:eadg5109. [PMID: 37831776 PMCID: PMC10575591 DOI: 10.1126/sciadv.adg5109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023]
Abstract
Pancreatic carcinoma lacks effective therapeutic strategies resulting in poor prognosis. Transcriptional dysregulation due to alterations in KRAS and MYC affects initiation, development, and survival of this tumor type. Using patient-derived xenografts of KRAS- and MYC-driven pancreatic carcinoma, we show that coinhibition of topoisomerase 1 (TOP1) and bromodomain-containing protein 4 (BRD4) synergistically induces tumor regression by targeting promoter pause release. Comparing the nascent transcriptome with the recruitment of elongation and termination factors, we found that coinhibition of TOP1 and BRD4 disrupts recruitment of transcription termination factors. Thus, RNA polymerases transcribe downstream of genes for hundreds of kilobases leading to readthrough transcription. This occurs during replication, perturbing replisome progression and inducing DNA damage. The synergistic effect of TOP1 + BRD4 inhibition is specific to cancer cells leaving normal cells unaffected, highlighting the tumor's vulnerability to transcriptional defects. This preclinical study provides a mechanistic understanding of the benefit of combining TOP1 and BRD4 inhibitors to treat pancreatic carcinomas addicted to oncogenic drivers of transcription and replication.
Collapse
Affiliation(s)
- Donald P. Cameron
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jan Grosser
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Swetlana Ladigan
- Ruhr University Bochum, Faculty of Medicine, Department of Molecular GI Oncology, Bochum, Germany
- Ruhr University Bochum, Knappschaftskrankenhaus, Department of Internal Medicine, Bochum, Germany
| | - Vladislav Kuzin
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Evanthia Iliopoulou
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anika Wiegard
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hajar Benredjem
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kathryn Jackson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sven T. Liffers
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Smiths Lueong
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Phyllis F. Cheung
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Deepak Vangala
- Ruhr University Bochum, Faculty of Medicine, Department of Molecular GI Oncology, Bochum, Germany
- Ruhr University Bochum, Knappschaftskrankenhaus, Department of Internal Medicine, Bochum, Germany
| | - Michael Pohl
- Ruhr University Bochum, Knappschaftskrankenhaus, Department of Internal Medicine, Bochum, Germany
| | - Richard Viebahn
- Ruhr University Bochum, Knappschaftskrankenhaus, Department of Surgery, Bochum, Germany
| | | | - Heiner Wolters
- Department of Visceral and General Surgery, St. Josef-Hospital, Dortmund, Germany
| | - Selami Usta
- Department of Visceral and General Surgery, St. Josef-Hospital, Dortmund, Germany
| | - Keyi Geng
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | | | - Jens T. Siveke
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | | | - Wolff Schmiegel
- Ruhr University Bochum, Knappschaftskrankenhaus, Department of Internal Medicine, Bochum, Germany
| | - Stephan A. Hahn
- Ruhr University Bochum, Faculty of Medicine, Department of Molecular GI Oncology, Bochum, Germany
| | - Laura Baranello
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
40
|
Papadopoulos D, Uhl L, Ha SA, Eilers M. Beyond gene expression: how MYC relieves transcription stress. Trends Cancer 2023; 9:805-816. [PMID: 37422352 DOI: 10.1016/j.trecan.2023.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/10/2023]
Abstract
MYC oncoproteins are key drivers of tumorigenesis. As transcription factors, MYC proteins regulate transcription by all three nuclear polymerases and gene expression. Accumulating evidence shows that MYC proteins are also crucial for enhancing the stress resilience of transcription. MYC proteins relieve torsional stress caused by active transcription, prevent collisions between the transcription and replication machineries, resolve R-loops, and repair DNA damage by participating in a range of protein complexes and forming multimeric structures at sites of genomic instability. We review the key complexes and multimerization properties of MYC proteins that allow them to mitigate transcription-associated DNA damage, and propose that the oncogenic functions of MYC extend beyond the modulation of gene expression.
Collapse
Affiliation(s)
- Dimitrios Papadopoulos
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Mildred Scheel Early Career Center, University Hospital Würzburg, Würzburg, Germany
| | - Leonie Uhl
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Stefanie Anh Ha
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
41
|
Kotekar A, Singh AK, Devaiah BN. BRD4 and MYC: power couple in transcription and disease. FEBS J 2023; 290:4820-4842. [PMID: 35866356 PMCID: PMC9867786 DOI: 10.1111/febs.16580] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 01/26/2023]
Abstract
The MYC proto-oncogene and BRD4, a BET family protein, are two cardinal proteins that have a broad influence in cell biology and disease. Both proteins are expressed ubiquitously in mammalian cells and play central roles in controlling growth, development, stress responses and metabolic function. As chromatin and transcriptional regulators, they play a critical role in regulating the expression of a burgeoning array of genes, maintaining chromatin architecture and genome stability. Consequently, impairment of their function or regulation leads to many diseases, with cancer being the most predominant. Interestingly, accumulating evidence indicates that regulation of the expression and functions of MYC are tightly intertwined with BRD4 at both transcriptional and post-transcriptional levels. Here, we review the mechanisms by which MYC and BRD4 are regulated, their functions in governing various molecular mechanisms and the consequences of their dysregulation that lead to disease. We present a perspective of how the regulatory mechanisms for the two proteins could be entwined at multiple points in a BRD4-MYC nexus that leads to the modulation of their functions and disease upon dysregulation.
Collapse
Affiliation(s)
- Aparna Kotekar
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Amit Kumar Singh
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
42
|
Herbert A. Flipons and small RNAs accentuate the asymmetries of pervasive transcription by the reset and sequence-specific microcoding of promoter conformation. J Biol Chem 2023; 299:105140. [PMID: 37544644 PMCID: PMC10474125 DOI: 10.1016/j.jbc.2023.105140] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
The role of alternate DNA conformations such as Z-DNA in the regulation of transcription is currently underappreciated. These structures are encoded by sequences called flipons, many of which are enriched in promoter and enhancer regions. Through a change in their conformation, flipons provide a tunable mechanism to mechanically reset promoters for the next round of transcription. They act as actuators that capture and release energy to ensure that the turnover of the proteins at promoters is optimized to cell state. Likewise, the single-stranded DNA formed as flipons cycle facilitates the docking of RNAs that are able to microcode promoter conformations and canalize the pervasive transcription commonly observed in metazoan genomes. The strand-specific nature of the interaction between RNA and DNA likely accounts for the known asymmetry of epigenetic marks present on the histone tetramers that pair to form nucleosomes. The role of these supercoil-dependent processes in promoter choice and transcriptional interference is reviewed. The evolutionary implications are examined: the resilience and canalization of flipon-dependent gene regulation is contrasted with the rapid adaptation enabled by the spread of flipon repeats throughout the genome. Overall, the current findings underscore the important role of flipons in modulating the readout of genetic information and how little we know about their biology.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery Division, InsideOutBio, Charlestown, Massachusetts, USA.
| |
Collapse
|
43
|
Winter LM, Reinhardt D, Schatter A, Tissen V, Wiora H, Gerlach D, Tontsch-Grunt U, Colbatzky F, Stierstorfer B, Yun SW. Molecular basis of GDF15 induction and suppression by drugs in cardiomyocytes and cancer cells toward precision medicine. Sci Rep 2023; 13:12061. [PMID: 37495707 PMCID: PMC10372009 DOI: 10.1038/s41598-023-38450-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/08/2023] [Indexed: 07/28/2023] Open
Abstract
GDF15 has recently emerged as a key driver of the development of various disease conditions including cancer cachexia. Not only the tumor itself but also adverse effects of chemotherapy have been reported to contribute to increased GDF15. Although regulation of GDF15 transcription by BET domain has recently been reported, the molecular mechanisms of GDF15 gene regulation by drugs are still unknown, leaving uncertainty about the safe and effective therapeutic strategies targeting GDF15. We screened various cardiotoxic drugs and BET inhibitors for their effects on GDF15 regulation in human cardiomyocytes and cancer cell lines and analyzed in-house and public gene signature databases. We found that DNA damaging drugs induce GDF15 in cardiomyocytes more strongly than drugs with other modes of action. In cancer cells, GDF15 induction varied depending on drug- and cell type-specific gene signatures including mutations in PI3KCA, TP53, BRAF and MUC16. GDF15 suppression by BET inhibition is particularly effective in cancer cells with low activity of the PI3K/Akt axis and high extracellular concentrations of pantothenate. Our findings provide insights that the risk for GDF15 overexpression and concomitant cachexia can be reduced by a personalized selection of anticancer drugs and patients for precision medicine.
Collapse
Affiliation(s)
- Lisa-Maria Winter
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany
| | - Diana Reinhardt
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany
| | - Ariane Schatter
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany
| | - Vivien Tissen
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany
| | - Heike Wiora
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany
| | - Daniel Gerlach
- Boehringer Ingelheim RCV, GmbH & Co KG, 1120, Vienna, Austria
| | | | - Florian Colbatzky
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany
| | - Birgit Stierstorfer
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany
| | - Seong-Wook Yun
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany.
| |
Collapse
|
44
|
Lista MJ, Jousset AC, Cheng M, Saint-André V, Perrot E, Rodrigues M, Di Primo C, Gadelle D, Toccafondi E, Segeral E, Berlioz-Torrent C, Emiliani S, Mergny JL, Lavigne M. DNA topoisomerase 1 represses HIV-1 promoter activity through its interaction with a guanine quadruplex present in the LTR sequence. Retrovirology 2023; 20:10. [PMID: 37254203 DOI: 10.1186/s12977-023-00625-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/20/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Once integrated in the genome of infected cells, HIV-1 provirus is transcribed by the cellular transcription machinery. This process is regulated by both viral and cellular factors, which are necessary for an efficient viral replication as well as for the setting up of viral latency, leading to a repressed transcription of the integrated provirus. RESULTS In this study, we examined the role of two parameters in HIV-1 LTR promoter activity. We identified DNA topoisomerase1 (TOP1) to be a potent repressor of this promoter and linked this repression to its catalytic domain. Additionally, we confirmed the folding of a Guanine quadruplex (G4) structure in the HIV-1 promoter and its repressive effect. We demonstrated a direct interaction between TOP1 and this G4 structure, providing evidence of a functional relationship between the two repressive elements. Mutations abolishing G4 folding affected TOP1/G4 interaction and hindered G4-dependent inhibition of TOP1 catalytic activity in vitro. As a result, HIV-1 promoter activity was reactivated in a native chromatin environment. Lastly, we noticed an enrichment of predicted G4 sequences in the promoter of TOP1-repressed cellular genes. CONCLUSIONS Our results demonstrate the formation of a TOP1/G4 complex on the HIV-1 LTR promoter and its repressive effect on the promoter activity. They reveal the existence of a new mechanism of TOP1/G4-dependent transcriptional repression conserved between viral and human genes. This mechanism contrasts with the known property of TOP1 as global transcriptional activator and offers new perspectives for anti-cancer and anti-viral strategies.
Collapse
Affiliation(s)
- María José Lista
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Anne-Caroline Jousset
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
- Université de Strasbourg, CNRS UPR 9002, Architecture et réactivité de l'ARN, 67000, Strasbourg, France
| | - Mingpan Cheng
- CNRS UMR 5320, INSERM U1212, ARNA, Univ. Bordeaux, IECB, 33000, Bordeaux, France
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Violaine Saint-André
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Université Paris Cité, 75015, Paris, France
| | - Elouan Perrot
- Institut Pasteur, Departement of Virology, Université Paris Cité, 75015, Paris, France
| | - Melissa Rodrigues
- Institut Pasteur, Departement of Virology, Université Paris Cité, 75015, Paris, France
| | - Carmelo Di Primo
- CNRS UMR 5320, INSERM U1212, ARNA, Univ. Bordeaux, IECB, 33000, Bordeaux, France
| | - Danielle Gadelle
- Institut de Biologie Integrative de la Cellule, CNRS, Université Paris-Saclay, 91198, Gif Sur Yvette, Cedex, France
| | - Elenia Toccafondi
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
- Université de Strasbourg, CNRS UPR 9002, Architecture et réactivité de l'ARN, 67000, Strasbourg, France
| | - Emmanuel Segeral
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | | | - Stéphane Emiliani
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Jean-Louis Mergny
- CNRS UMR 5320, INSERM U1212, ARNA, Univ. Bordeaux, IECB, 33000, Bordeaux, France
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Marc Lavigne
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France.
- Institut Pasteur, Departement of Virology, Université Paris Cité, 75015, Paris, France.
| |
Collapse
|
45
|
Straub S, Sampaio NG. Activation of cytosolic RNA sensors by endogenous ligands: roles in disease pathogenesis. Front Immunol 2023; 14:1092790. [PMID: 37292201 PMCID: PMC10244536 DOI: 10.3389/fimmu.2023.1092790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Early detection of infection is a central and critical component of our innate immune system. Mammalian cells have developed specialized receptors that detect RNA with unusual structures or of foreign origin - a hallmark of many virus infections. Activation of these receptors induces inflammatory responses and an antiviral state. However, it is increasingly appreciated that these RNA sensors can also be activated in the absence of infection, and that this 'self-activation' can be pathogenic and promote disease. Here, we review recent discoveries in sterile activation of the cytosolic innate immune receptors that bind RNA. We focus on new aspects of endogenous ligand recognition uncovered in these studies, and their roles in disease pathogenesis.
Collapse
Affiliation(s)
- Sarah Straub
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Natalia G. Sampaio
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
46
|
Patel HP, Coppola S, Pomp W, Aiello U, Brouwer I, Libri D, Lenstra TL. DNA supercoiling restricts the transcriptional bursting of neighboring eukaryotic genes. Mol Cell 2023; 83:1573-1587.e8. [PMID: 37207624 DOI: 10.1016/j.molcel.2023.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 02/14/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
DNA supercoiling has emerged as a major contributor to gene regulation in bacteria, but how DNA supercoiling impacts transcription dynamics in eukaryotes is unclear. Here, using single-molecule dual-color nascent transcription imaging in budding yeast, we show that transcriptional bursting of divergent and tandem GAL genes is coupled. Temporal coupling of neighboring genes requires rapid release of DNA supercoils by topoisomerases. When DNA supercoils accumulate, transcription of one gene inhibits transcription at its adjacent genes. Transcription inhibition of the GAL genes results from destabilized binding of the transcription factor Gal4. Moreover, wild-type yeast minimizes supercoiling-mediated inhibition by maintaining sufficient levels of topoisomerases. Overall, we discover fundamental differences in transcriptional control by DNA supercoiling between bacteria and yeast and show that rapid supercoiling release in eukaryotes ensures proper gene expression of neighboring genes.
Collapse
Affiliation(s)
- Heta P Patel
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Stefano Coppola
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Wim Pomp
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Umberto Aiello
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Ineke Brouwer
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Domenico Libri
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Tineke L Lenstra
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
47
|
Kumar S, Gahramanov V, Patel S, Yaglom J, Kaczmarczyk L, Alexandrov IA, Gerlitz G, Salmon-Divon M, Sherman MY. Evolution of Resistance to Irinotecan in Cancer Cells Involves Generation of Topoisomerase-Guided Mutations in Non-Coding Genome That Reduce the Chances of DNA Breaks. Int J Mol Sci 2023; 24:ijms24108717. [PMID: 37240063 DOI: 10.3390/ijms24108717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/01/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Resistance to chemotherapy is a leading cause of treatment failure. Drug resistance mechanisms involve mutations in specific proteins or changes in their expression levels. It is commonly understood that resistance mutations happen randomly prior to treatment and are selected during the treatment. However, the selection of drug-resistant mutants in culture could be achieved by multiple drug exposures of cloned genetically identical cells and thus cannot result from the selection of pre-existent mutations. Accordingly, adaptation must involve the generation of mutations de novo upon drug treatment. Here we explored the origin of resistance mutations to a widely used Top1 inhibitor, irinotecan, which triggers DNA breaks, causing cytotoxicity. The resistance mechanism involved the gradual accumulation of recurrent mutations in non-coding regions of DNA at Top1-cleavage sites. Surprisingly, cancer cells had a higher number of such sites than the reference genome, which may define their increased sensitivity to irinotecan. Homologous recombination repairs of DNA double-strand breaks at these sites following initial drug exposures gradually reverted cleavage-sensitive "cancer" sequences back to cleavage-resistant "normal" sequences. These mutations reduced the generation of DNA breaks upon subsequent exposures, thus gradually increasing drug resistance. Together, large target sizes for mutations and their Top1-guided generation lead to their gradual and rapid accumulation, synergistically accelerating the development of resistance.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Valid Gahramanov
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Shivani Patel
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Julia Yaglom
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Lukasz Kaczmarczyk
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Ivan A Alexandrov
- Department of Anatomy and Anthropology & Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gabi Gerlitz
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | | | - Michael Y Sherman
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| |
Collapse
|
48
|
Kumar S, Sherman MY. Resistance to TOP-1 Inhibitors: Good Old Drugs Still Can Surprise Us. Int J Mol Sci 2023; 24:ijms24087233. [PMID: 37108395 PMCID: PMC10138578 DOI: 10.3390/ijms24087233] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Irinotecan (SN-38) is a potent and broad-spectrum anticancer drug that targets DNA topoisomerase I (Top1). It exerts its cytotoxic effects by binding to the Top1-DNA complex and preventing the re-ligation of the DNA strand, leading to the formation of lethal DNA breaks. Following the initial response to irinotecan, secondary resistance is acquired relatively rapidly, compromising its efficacy. There are several mechanisms contributing to the resistance, which affect the irinotecan metabolism or the target protein. In addition, we have demonstrated a major resistance mechanism associated with the elimination of hundreds of thousands of Top1 binding sites on DNA that can arise from the repair of prior Top1-dependent DNA cleavages. Here, we outline the major mechanisms of irinotecan resistance and highlight recent advancements in the field. We discuss the impact of resistance mechanisms on clinical outcomes and the potential strategies to overcome resistance to irinotecan. The elucidation of the underlying mechanisms of irinotecan resistance can provide valuable insights for the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Michael Y Sherman
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| |
Collapse
|
49
|
Stoeger T. The Road Less Traveled: Uncovering the Convergence Toward Specific Pleiotropic Phenotypes in Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534472. [PMID: 37034589 PMCID: PMC10081180 DOI: 10.1101/2023.03.28.534472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Aging is a complex process influenced by a wide range of environmental and molecular factors. Despite this complexity, individuals tend to age in highly similar ways, leading to the question of what drives this convergence. Recent research, including my own discoveries, suggests that the length of transcript molecules plays a crucial role in age-dependent changes to the transcriptome. Drawing inspiration from the road trip analogy of cellular transcription, I propose that a non-linear scaling law drives convergence towards specific pleiotropic phenotypes in biological aging. This scaling law is based on the notion that molecular changes observed during aging may reflect unspecific damage to cellular physiology. By validating this hypothesis, I can improve our understanding of biological aging and identify new candidate compounds for anti-aging interventions, as well as re-identify one known intervention. This work has actionable implications for improving human health and extending lifespans.
Collapse
Affiliation(s)
- Thomas Stoeger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
50
|
de Vasconcelos Junior AA, Tirado-Vélez JM, Martín-Galiano AJ, Megias D, Ferrándiz MJ, Hernández P, Amblar M, de la Campa AG. StaR Is a Positive Regulator of Topoisomerase I Activity Involved in Supercoiling Maintenance in Streptococcus pneumoniae. Int J Mol Sci 2023; 24:ijms24065973. [PMID: 36983048 PMCID: PMC10053502 DOI: 10.3390/ijms24065973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
The DNA topoisomerases gyrase and topoisomerase I as well as the nucleoid-associated protein HU maintain supercoiling levels in Streptococcus pneumoniae, a main human pathogen. Here, we characterized, for the first time, a topoisomerase I regulator protein (StaR). In the presence of sub-inhibitory novobiocin concentrations, which inhibit gyrase activity, higher doubling times were observed in a strain lacking staR, and in two strains in which StaR was over-expressed either under the control of the ZnSO4-inducible PZn promoter (strain ΔstaRPZnstaR) or of the maltose-inducible PMal promoter (strain ΔstaRpLS1ROMstaR). These results suggest that StaR has a direct role in novobiocin susceptibility and that the StaR level needs to be maintained within a narrow range. Treatment of ΔstaRPZnstaR with inhibitory novobiocin concentrations resulted in a change of the negative DNA supercoiling density (σ) in vivo, which was higher in the absence of StaR (σ = -0.049) than when StaR was overproduced (σ = -0.045). We have located this protein in the nucleoid by using super-resolution confocal microscopy. Through in vitro activity assays, we demonstrated that StaR stimulates TopoI relaxation activity, while it has no effect on gyrase activity. Interaction between TopoI and StaR was detected both in vitro and in vivo by co-immunoprecipitation. No alteration of the transcriptome was associated with StaR amount variation. The results suggest that StaR is a new streptococcal nucleoid-associated protein that activates topoisomerase I activity by direct protein-protein interaction.
Collapse
Affiliation(s)
| | - Jose M Tirado-Vélez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Antonio J Martín-Galiano
- Unidades Centrales Científico-Técnicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Diego Megias
- Unidad de Microscopía Confocal, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - María-José Ferrándiz
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Pablo Hernández
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Mónica Amblar
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Adela G de la Campa
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
- Presidencia, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| |
Collapse
|