1
|
Mu Q, Wei J, Longest HK, Liu H, Char SN, Hinrichsen JT, Tibbs-Cortes LE, Schoenbaum GR, Yang B, Li X, Yu J. A MYB transcription factor underlying plant height in sorghum qHT7.1 and maize Brachytic 1 loci. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39485941 DOI: 10.1111/tpj.17111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/12/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024]
Abstract
Manipulating plant height is an essential component of crop improvement. Plant height was generally reduced through breeding in wheat, rice, and sorghum to resist lodging and increase grain yield but kept high for bioenergy crops. Here, we positionally cloned a plant height quantitative trait locus (QTL) qHT7.1 as a MYB transcription factor controlling internode elongation, cell proliferation, and cell morphology in sorghum. A 740 bp transposable element insertion in the intronic region caused a partial mis-splicing event, generating a novel transcript that included an additional exon and a premature stop codon, leading to short plant height. The dominant allele had an overall higher expression than the recessive allele across development and internode position, while both alleles' expressions peaked at 46 days after planting and progressively decreased from the top to lower internodes. The orthologue of qHT7.1 was identified to underlie the brachytic1 (br1) locus in maize. A large insertion in exon 3 and a 160 bp insertion at the promoter region were identified in the br1 mutant, while an 18 bp promoter insertion was found to be associated with reduced plant height in a natural recessive allele. CRISPR/Cas9-induced gene knockout of br1 in two maize inbred lines showed significant plant height reduction. These findings revealed functional connections across natural, mutant, and edited alleles of this MYB transcription factor in sorghum and maize. This enriched our understanding of plant height regulation and enhanced our toolbox for fine-tuning plant height for crop improvement.
Collapse
Affiliation(s)
- Qi Mu
- Department of Agronomy, Iowa State University, Ames, 50011, Iowa, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, 19716, Delaware, USA
| | - Jialu Wei
- Department of Agronomy, Iowa State University, Ames, 50011, Iowa, USA
| | - Hallie K Longest
- Department of Agronomy, Iowa State University, Ames, 50011, Iowa, USA
| | - Hua Liu
- Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, 65211, Missouri, USA
| | - Si Nian Char
- Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, 65211, Missouri, USA
| | | | - Laura E Tibbs-Cortes
- Department of Agronomy, Iowa State University, Ames, 50011, Iowa, USA
- USDA-ARS, Wheat Health, Genetics & Quality Research, Pullman, 99164, Washington, USA
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, 50011, Iowa, USA
| | | | - Bing Yang
- Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, 65211, Missouri, USA
- Donald Danforth Plant Science Center, St. Louis, 63132, Missouri, USA
| | - Xianran Li
- USDA-ARS, Wheat Health, Genetics & Quality Research, Pullman, 99164, Washington, USA
| | - Jianming Yu
- Department of Agronomy, Iowa State University, Ames, 50011, Iowa, USA
| |
Collapse
|
2
|
Song W, Xie Y, Liu B, Huang Y, Cheng Z, Zhao Z, Tian D, Geng Y, Guo J, Li C, She D, Zhong Y, Li M, Liu L, Chen J, Sun C, Zhang X, Zhou Z, Lai J, Xin M, Yan L, Zhao J, Zhang X. Single nucleotide polymorphisms in SEPALLATA 2 underlie fruit length variation in cucurbits. THE PLANT CELL 2024; 36:4607-4621. [PMID: 39133577 PMCID: PMC11448892 DOI: 10.1093/plcell/koae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/03/2024] [Indexed: 10/05/2024]
Abstract
Complete disruption of critical genes is generally accompanied by severe growth and developmental defects, which dramatically hinder its utilization in crop breeding. Identifying subtle changes, such as single-nucleotide polymorphisms (SNPs), in critical genes that specifically modulate a favorable trait is a prerequisite to fulfill breeding potential. Here, we found 2 SNPs in the E-class floral organ identity gene cucumber (Cucumis sativus) SEPALLATA2 (CsSEP2) that specifically regulate fruit length. Haplotype (HAP) 1 (8G2667A) and HAP2 (8G2667T) exist in natural populations, whereas HAP3 (8A2667T) is induced by ethyl methanesulfonate mutagenesis. Phenotypic characterization of 4 near-isogenic lines and a mutant line showed that HAP2 fruits are significantly longer than those of HAP1, and those of HAP3 are 37.8% longer than HAP2 fruit. The increasing fruit length in HAP1-3 was caused by a decreasing inhibitory effect on CRABS CLAW (CsCRC) transcription (a reported positive regulator of fruit length), resulting in enhanced cell expansion. Moreover, a 7638G/A-SNP in melon (Cucumis melo) CmSEP2 modulates fruit length in a natural melon population via the conserved SEP2-CRC module. Our findings provide a strategy for utilizing essential regulators with pleiotropic effects during crop breeding.
Collapse
Affiliation(s)
- Weiyuan Song
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Yang Xie
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Normal University of Science & Technology, Qinhuangdao 066004, P. R.China
| | - Bin Liu
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R.China
| | - Yuxiang Huang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Zhihua Cheng
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Zilong Zhao
- Department of Plant Genetics and Breeding, State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, P. R. China
| | - Di Tian
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Yan Geng
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Jingyu Guo
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Chuang Li
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Daixi She
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Yanting Zhong
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Min Li
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Liu Liu
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Jiacai Chen
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Chengzhen Sun
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Normal University of Science & Technology, Qinhuangdao 066004, P. R.China
| | - Xuejun Zhang
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R.China
| | - Zhaoyang Zhou
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Jinsheng Lai
- Department of Plant Genetics and Breeding, State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, P. R. China
| | - Ming Xin
- College of Horticulture and Landscape Architecture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Northeast Agricultural University, Harbin 150030, P. R.China
| | - Liying Yan
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Normal University of Science & Technology, Qinhuangdao 066004, P. R.China
| | - Jianyu Zhao
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| |
Collapse
|
3
|
Dwivedi SL, Heslop-Harrison P, Amas J, Ortiz R, Edwards D. Epistasis and pleiotropy-induced variation for plant breeding. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2788-2807. [PMID: 38875130 DOI: 10.1111/pbi.14405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024]
Abstract
Epistasis refers to nonallelic interaction between genes that cause bias in estimates of genetic parameters for a phenotype with interactions of two or more genes affecting the same trait. Partitioning of epistatic effects allows true estimation of the genetic parameters affecting phenotypes. Multigenic variation plays a central role in the evolution of complex characteristics, among which pleiotropy, where a single gene affects several phenotypic characters, has a large influence. While pleiotropic interactions provide functional specificity, they increase the challenge of gene discovery and functional analysis. Overcoming pleiotropy-based phenotypic trade-offs offers potential for assisting breeding for complex traits. Modelling higher order nonallelic epistatic interaction, pleiotropy and non-pleiotropy-induced variation, and genotype × environment interaction in genomic selection may provide new paths to increase the productivity and stress tolerance for next generation of crop cultivars. Advances in statistical models, software and algorithm developments, and genomic research have facilitated dissecting the nature and extent of pleiotropy and epistasis. We overview emerging approaches to exploit positive (and avoid negative) epistatic and pleiotropic interactions in a plant breeding context, including developing avenues of artificial intelligence, novel exploitation of large-scale genomics and phenomics data, and involvement of genes with minor effects to analyse epistatic interactions and pleiotropic quantitative trait loci, including missing heritability.
Collapse
Affiliation(s)
| | - Pat Heslop-Harrison
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester, UK
| | - Junrey Amas
- Centre for Applied Bioinformatics, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - David Edwards
- Centre for Applied Bioinformatics, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
4
|
Gasparini K, Figueiredo YG, Araújo WL, Peres LE, Zsögön A. De novo domestication in the Solanaceae: advances and challenges. Curr Opin Biotechnol 2024; 89:103177. [PMID: 39106791 DOI: 10.1016/j.copbio.2024.103177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/21/2024] [Accepted: 07/19/2024] [Indexed: 08/09/2024]
Abstract
The advent of highly efficient genome editing (GE) tools, coupled with high-throughput genome sequencing, has paved the way for the accelerated domestication of crop wild relatives. New crops could thus be rapidly created that are well adapted to cope with drought, flooding, soil salinity, or insect damage. De novo domestication avoids the complexity of transferring polygenic stress resistance from wild species to crops. Instead, new crops can be created by manipulating major genes in stress-resistant wild species. However, the genetic basis of certain relevant domestication-related traits often involve epistasis and pleiotropy. Furthermore, pan-genome analyses show that structural variation driving gene expression changes has been selected during domestication. A growing body of work suggests that the Solanaceae family, which includes crop species such as tomatoes, potatoes, eggplants, peppers, and tobacco, is a suitable model group to dissect these phenomena and operate changes in wild relatives to improve agronomic traits rapidly with GE. We briefly discuss the prospects of this exciting novel field in the interface between fundamental and applied plant biology and its potential impact in the coming years.
Collapse
Affiliation(s)
- Karla Gasparini
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Yuri G Figueiredo
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Lázaro Ep Peres
- Laboratory of Hormonal Control of Plant Development. Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900 Piracicaba, SP, Brazil
| | - Agustin Zsögön
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| |
Collapse
|
5
|
Mascher M, Jayakodi M, Shim H, Stein N. Promises and challenges of crop translational genomics. Nature 2024:10.1038/s41586-024-07713-5. [PMID: 39313530 PMCID: PMC7616746 DOI: 10.1038/s41586-024-07713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2024] [Indexed: 09/25/2024]
Abstract
Crop translational genomics applies breeding techniques based on genomic datasets to improve crops. Technological breakthroughs in the past ten years have made it possible to sequence the genomes of increasing numbers of crop varieties and have assisted in the genetic dissection of crop performance. However, translating research findings to breeding applications remains challenging. Here we review recent progress and future prospects for crop translational genomics in bringing results from the laboratory to the field. Genetic mapping, genomic selection and sequence-assisted characterization and deployment of plant genetic resources utilize rapid genotyping of large populations. These approaches have all had an impact on breeding for qualitative traits, where single genes with large phenotypic effects exert their influence. Characterization of the complex genetic architectures that underlie quantitative traits such as yield and flowering time, especially in newly domesticated crops, will require further basic research, including research into regulation and interactions of genes and the integration of genomic approaches and high-throughput phenotyping, before targeted interventions can be designed. Future priorities for translation include supporting genomics-assisted breeding in low-income countries and adaptation of crops to changing environments.
Collapse
Affiliation(s)
- Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Hyeonah Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
- Martin Luther University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
6
|
Schreiber M, Jayakodi M, Stein N, Mascher M. Plant pangenomes for crop improvement, biodiversity and evolution. Nat Rev Genet 2024; 25:563-577. [PMID: 38378816 PMCID: PMC7616794 DOI: 10.1038/s41576-024-00691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2023] [Indexed: 02/22/2024]
Abstract
Plant genome sequences catalogue genes and the genetic elements that regulate their expression. Such inventories further research aims as diverse as mapping the molecular basis of trait diversity in domesticated plants or inquiries into the origin of evolutionary innovations in flowering plants millions of years ago. The transformative technological progress of DNA sequencing in the past two decades has enabled researchers to sequence ever more genomes with greater ease. Pangenomes - complete sequences of multiple individuals of a species or higher taxonomic unit - have now entered the geneticists' toolkit. The genomes of crop plants and their wild relatives are being studied with translational applications in breeding in mind. But pangenomes are applicable also in ecological and evolutionary studies, as they help classify and monitor biodiversity across the tree of life, deepen our understanding of how plant species diverged and show how plants adapt to changing environments or new selection pressures exerted by human beings.
Collapse
Affiliation(s)
- Mona Schreiber
- Department of Biology, University of Marburg, Marburg, Germany
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| |
Collapse
|
7
|
Huerga-Fernández S, Detry N, Orman-Ligeza B, Bouché F, Hanikenne M, Périlleux C. JOINTLESS Maintains Inflorescence Meristem Identity in Tomato. PLANT & CELL PHYSIOLOGY 2024; 65:1197-1211. [PMID: 38635460 PMCID: PMC11287206 DOI: 10.1093/pcp/pcae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
JOINTLESS (J) was isolated in tomato (Solanum lycopersicum) from mutants lacking a flower pedicel abscission zone (AZ) and encodes a MADS-box protein of the SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24 subfamily. The loss of J function also causes the return to leaf initiation in the inflorescences, indicating a pivotal role in inflorescence meristem identity. Here, we compared jointless (j) mutants in different accessions that exhibit either an indeterminate shoot growth, producing regular sympodial segments, or a determinate shoot growth, due to the reduction of sympodial segments and causal mutation of the SELF-PRUNING (SP) gene. We observed that the inflorescence phenotype of j mutants is stronger in indeterminate (SP) accessions such as Ailsa Craig (AC), than in determinate (sp) ones, such as Heinz (Hz). Moreover, RNA-seq analysis revealed that the return to vegetative fate in j mutants is accompanied by expression of SP, which supports conversion of the inflorescence meristem to sympodial shoot meristem in j inflorescences. Other markers of vegetative meristems such as APETALA2c and branching genes such as BRANCHED 1 (BRC1a/b) were differentially expressed in the inflorescences of j(AC) mutant. We also found in the indeterminate AC accession that J represses homeotic genes of B- and C-classes and that its overexpression causes an oversized leafy calyx phenotype and has a dominant negative effect on AZ formation. A model is therefore proposed where J, by repressing shoot fate and influencing reproductive organ formation, acts as a key determinant of inflorescence meristems.
Collapse
Affiliation(s)
- Samuel Huerga-Fernández
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Nathalie Detry
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Beata Orman-Ligeza
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Frédéric Bouché
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
- Laboratory of Plant Translational Biology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Marc Hanikenne
- Laboratory of Plant Translational Biology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Claire Périlleux
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| |
Collapse
|
8
|
Fu G, Yu S, Wu K, Yang M, Altaf MA, Wu Z, Deng Q, Lu X, Fu H, Wang Z, Cheng S. Genome-wide association study and candidate gene identification for agronomic traits in 182 upward-growing fruits of C. frutescens and C. annuum. Sci Rep 2024; 14:14691. [PMID: 38926509 PMCID: PMC11208541 DOI: 10.1038/s41598-024-65332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Pepper agronomic traits serve as pivotal indicators for characterizing germplasm attributes and correlations. It is important to study differential genotypic variation through phenotypic differences of target traits. Whole genome resequencing was used to sequence the whole genome among different individuals of species with known reference genomes and annotations, and based on this, differential analyses of individuals or populations were carried out to identify SNPs for agronomic traits related to pepper. This study conducted a genome-wide association study encompassing 26 key agronomic traits in 182 upward-growing fruits of C. frutescens and C. annuum. The population structure (phylogenetics, population structure, population principal component analysis, genetic relationship) and linkage disequilibrium analysis were realized to ensure the accuracy and reliability of GWAS results, and the optimal statistical model was determined. A total of 929 SNPs significantly associated with 26 agronomic traits, were identified, alongside the detection of 519 candidate genes within 100 kb region adjacent to these SNPs. Additionally, through gene annotation and expression pattern scrutiny, genes such as GAUT1, COP10, and DDB1 correlated with fruit traits in Capsicum frutescens and Capsicum annuum were validated via qRT-PCR. In the CH20 (Capsicum annuum) and YB-4 (Capsicum frutescens) cultivars, GAUT1 and COP10 were cloned with cDNA lengths of 1065 bp and 561 bp, respectively, exhibiting only a small number of single nucleotide variations and nucleotide deletions. This validation provides a robust reference for molecular marker-assisted breeding of pepper agronomic traits, offering both genetic resources and theoretical foundations for future endeavors in molecular marker-assisted breeding for pepper.
Collapse
Affiliation(s)
- Genying Fu
- Key Laboratory for Quality Regulation of Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Shuang Yu
- Key Laboratory for Quality Regulation of Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Kun Wu
- Key Laboratory for Quality Regulation of Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Mengxian Yang
- Key Laboratory for Quality Regulation of Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Muhammad Ahsan Altaf
- Key Laboratory for Quality Regulation of Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Zhuo Wu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Qin Deng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Xu Lu
- Key Laboratory for Quality Regulation of Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Huizhen Fu
- Key Laboratory for Quality Regulation of Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Shanhan Cheng
- Key Laboratory for Quality Regulation of Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
9
|
Cammareri M, Frary A, Frary A, Grandillo S. Genetic and Biotechnological Approaches to Improve Fruit Bioactive Content: A Focus on Eggplant and Tomato Anthocyanins. Int J Mol Sci 2024; 25:6811. [PMID: 38928516 PMCID: PMC11204163 DOI: 10.3390/ijms25126811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Anthocyanins are a large group of water-soluble flavonoid pigments. These specialized metabolites are ubiquitous in the plant kingdom and play an essential role not only in plant reproduction and dispersal but also in responses to biotic and abiotic stresses. Anthocyanins are recognized as important health-promoting and chronic-disease-preventing components in the human diet. Therefore, interest in developing food crops with improved levels and compositions of these important nutraceuticals is growing. This review focuses on work conducted to elucidate the genetic control of the anthocyanin pathway and modulate anthocyanin content in eggplant (Solanum melongena L.) and tomato (Solanum lycopersicum L.), two solanaceous fruit vegetables of worldwide relevance. While anthocyanin levels in eggplant fruit have always been an important quality trait, anthocyanin-based, purple-fruited tomato cultivars are currently a novelty. As detailed in this review, this difference in the anthocyanin content of the cultivated germplasm has largely influenced genetic studies as well as breeding and transgenic approaches to improve the anthocyanin content/profile of these two important solanaceous crops. The information provided should be of help to researchers and breeders in devising strategies to address the increasing consumer demand for nutraceutical foods.
Collapse
Affiliation(s)
- Maria Cammareri
- Institute of Biosciences and BioResources (IBBR), Research Division Portici, National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy;
| | - Amy Frary
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA;
| | - Anne Frary
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir 35433, Turkey
| | - Silvana Grandillo
- Institute of Biosciences and BioResources (IBBR), Research Division Portici, National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy;
| |
Collapse
|
10
|
Patel-Tupper D, Kelikian A, Leipertz A, Maryn N, Tjahjadi M, Karavolias NG, Cho MJ, Niyogi KK. Multiplexed CRISPR-Cas9 mutagenesis of rice PSBS1 noncoding sequences for transgene-free overexpression. SCIENCE ADVANCES 2024; 10:eadm7452. [PMID: 38848363 PMCID: PMC11160471 DOI: 10.1126/sciadv.adm7452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Understanding CRISPR-Cas9's capacity to produce native overexpression (OX) alleles would accelerate agronomic gains achievable by gene editing. To generate OX alleles with increased RNA and protein abundance, we leveraged multiplexed CRISPR-Cas9 mutagenesis of noncoding sequences upstream of the rice PSBS1 gene. We isolated 120 gene-edited alleles with varying non-photochemical quenching (NPQ) capacity in vivo-from knockout to overexpression-using a high-throughput screening pipeline. Overexpression increased OsPsbS1 protein abundance two- to threefold, matching fold changes obtained by transgenesis. Increased PsbS protein abundance enhanced NPQ capacity and water-use efficiency. Across our resolved genetic variation, we identify the role of 5'UTR indels and inversions in driving knockout/knockdown and overexpression phenotypes, respectively. Complex structural variants, such as the 252-kb duplication/inversion generated here, evidence the potential of CRISPR-Cas9 to facilitate significant genomic changes with negligible off-target transcriptomic perturbations. Our results may inform future gene-editing strategies for hypermorphic alleles and have advanced the pursuit of gene-edited, non-transgenic rice plants with accelerated relaxation of photoprotection.
Collapse
Affiliation(s)
- Dhruv Patel-Tupper
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Armen Kelikian
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Anna Leipertz
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Nina Maryn
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Michelle Tjahjadi
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Nicholas G. Karavolias
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Myeong-Je Cho
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Krishna K. Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
11
|
Nagamine A, Ezura H. Genome editing of DWARF and SELF-PRUNING rapidly confers traits suitable for plant factories while retaining useful traits in tomato. BREEDING SCIENCE 2024; 74:59-72. [PMID: 39246432 PMCID: PMC11375428 DOI: 10.1270/jsbbs.23063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/14/2024] [Indexed: 09/10/2024]
Abstract
Plant factories with artificial light are less affected than open-air areas to environmental factors in crop cultivation and are attracting attention as one of the solutions to the world's food problems. However, the cost of cultivation in plant factories is higher than open-air cultivation, and currently, profitable factory-grown crop varieties are limited to those that are small or have a short growing period. Tomatoes are one of the main crops consumed around the world, but due to their large plant height and width, they are not yet suitable for mass production in plant factories. In this study, the DWARF (D) and SELF-PRUNING (SP) genes of the GABA hyperaccumulating tomato variety #87-17 were genome-edited by the CRISPR-Cas9 method to produce dwarf tomato plants. The desired traits were obtained in the T1 genome-edited generation, and the fruit traits were almost the same as those of the original variety. On the other hand, the F2 cross between #87-17 and Micro-Tom containing the d and sp mutations was dwarfed, but the fruit phenotype was a mixture of the traits of the two varieties. This indicates that genome editing of these two genes using CRISPR-Cas9 can efficiently impart traits suitable for plant factory cultivation while retaining the useful traits of the original cultivar.
Collapse
Affiliation(s)
- Ai Nagamine
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennnodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroshi Ezura
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennnodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
12
|
Zhang J, Hu Z, Xie Q, Dong T, Li J, Chen G. Two SEPALLATA MADS-Box Genes, SlMBP21 and SlMADS1, Have Cooperative Functions Required for Sepal Development in Tomato. Int J Mol Sci 2024; 25:2489. [PMID: 38473738 PMCID: PMC10931843 DOI: 10.3390/ijms25052489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
MADS-box transcription factors have crucial functions in numerous physiological and biochemical processes during plant growth and development. Previous studies have reported that two MADS-box genes, SlMBP21 and SlMADS1, play important regulatory roles in the sepal development of tomato, respectively. However, the functional relationships between these two genes are still unknown. In order to investigate this, we simultaneously studied these two genes in tomato. Phylogenetic analysis showed that they were classified into the same branch of the SEPALLATA (SEP) clade. qRT-PCR displayed that both SlMBP21 and SlMADS1 transcripts are preferentially accumulated in sepals, and are increased with flower development. During sepal development, SlMBP21 is increased but SlMADS1 is decreased. Using the RNAi, tomato plants with reduced SlMBP21 mRNA generated enlarged and fused sepals, while simultaneous inhibition of SlMBP21 and SlMADS1 led to larger (longer and wider) and fused sepals than that in SlMBP21-RNAi lines. qRT-PCR results exhibited that the transcripts of genes relating to sepal development, ethylene, auxin and cell expansion were dramatically changed in SlMBP21-RNAi sepals, especially in SlMBP21-SlMADS1-RNAi sepals. Yeast two-hybrid assay displayed that SlMBP21 can interact with SlMBP21, SlAP2a, TAGL1 and RIN, and SlMADS1 can interact with SlAP2a and RIN, respectively. In conclusion, SlMBP21 and SlMADS1 cooperatively regulate sepal development in tomato by impacting the expression or activities of other related regulators or via interactions with other regulatory proteins.
Collapse
Affiliation(s)
- Jianling Zhang
- Laboratory of Plant Germplasm Innovation and Utilization, School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
| | - Tingting Dong
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
| |
Collapse
|
13
|
Sun S, Liu Z, Wang X, Song J, Fang S, Kong J, Li R, Wang H, Cui X. Genetic control of thermomorphogenesis in tomato inflorescences. Nat Commun 2024; 15:1472. [PMID: 38368437 PMCID: PMC10874430 DOI: 10.1038/s41467-024-45722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/02/2024] [Indexed: 02/19/2024] Open
Abstract
Understanding how plants alter their development and architecture in response to ambient temperature is crucial for breeding resilient crops. Here, we identify the quantitative trait locus qMULTIPLE INFLORESCENCE BRANCH 2 (qMIB2), which modulates inflorescence branching in response to high ambient temperature in tomato (Solanum lycopersicum). The non-functional mib2 allele may have been selected in large-fruited varieties to ensure larger and more uniform fruits under varying temperatures. MIB2 gene encodes a homolog of the Arabidopsis thaliana transcription factor SPATULA; its expression is induced in meristems at high temperature. MIB2 directly binds to the promoter of its downstream gene CONSTANS-Like1 (SlCOL1) by recognizing the conserved G-box motif to activate SlCOL1 expression in reproductive meristems. Overexpressing SlCOL1 rescue the reduced inflorescence branching of mib2, suggesting how the MIB2-SlCOL1 module helps tomato inflorescences adapt to high temperature. Our findings reveal the molecular mechanism underlying inflorescence thermomorphogenesis and provide a target for breeding climate-resilient crops.
Collapse
Affiliation(s)
- Shuai Sun
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiqiang Liu
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaotian Wang
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jia Song
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Siyu Fang
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jisheng Kong
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ren Li
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Xia Cui
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
14
|
Schuh A, Felderhoff TJ, Marla S, Morris GP. Precise colocalization of sorghum's major chilling tolerance locus with Tannin1 due to tight linkage drag rather than antagonistic pleiotropy. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:42. [PMID: 38308687 PMCID: PMC10838249 DOI: 10.1007/s00122-023-04534-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/19/2023] [Indexed: 02/05/2024]
Abstract
Chilling tolerance in crops can increase resilience through longer growing seasons, drought escape, and nitrogen use efficiency. In sorghum (Sorghum bicolor [L.] Moench), breeding for chilling tolerance has been stymied by coinheritance of the largest-effect chilling tolerance locus, qSbCT04.62, with the major gene underlying undesirable grain proanthocyanidins, WD40 transcriptional regulator Tannin1. To test if this coinheritance is due to antagonistic pleiotropy of Tannin1, we developed and studied near-isogenic lines (NILs) carrying chilling tolerant haplotypes at qCT04.62. Whole-genome sequencing of the NILs revealed introgressions spanning part of the qCT04.62 confidence interval, including the Tannin1 gene and an ortholog of Arabidopsis cold regulator CBF/DREB1G. Segregation pattern of grain tannin in NILs confirmed the presence of wildtype Tannin1 and the reconstitution of a functional MYB-bHLH-WD40 regulatory complex. Low-temperature germination did not differ between NILs, suggesting that Tannin1 does not modulate this component of chilling tolerance. Similarly, NILs did not differ in seedling growth rate under either of two contrasting controlled environment chilling scenarios. Finally, while the chilling tolerant parent line had notably different photosynthetic responses from the susceptible parent line - including greater non-photochemical quenching before, during, and after chilling - the NIL responses match the susceptible parent. Thus, our findings suggest that tight linkage drag, not pleiotropy, underlies the precise colocalization of Tan1 with qCT04.62 and the qCT04.62 quantitative trait nucleotide lies outside the NIL introgressions. Breaking linkage at this locus should advance chilling tolerance breeding in sorghum and the identification of a novel chilling tolerance regulator.
Collapse
Affiliation(s)
- Anthony Schuh
- Department of Soil and Crop Science, Colorado State University, Fort Collins, CO, 80526, USA
| | - Terry J Felderhoff
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Sandeep Marla
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Geoffrey P Morris
- Department of Soil and Crop Science, Colorado State University, Fort Collins, CO, 80526, USA.
| |
Collapse
|
15
|
Baranov D, Dolgov S, Timerbaev V. New Advances in the Study of Regulation of Tomato Flowering-Related Genes Using Biotechnological Approaches. PLANTS (BASEL, SWITZERLAND) 2024; 13:359. [PMID: 38337892 PMCID: PMC10856997 DOI: 10.3390/plants13030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
The tomato is a convenient object for studying reproductive processes, which has become a classic. Such complex processes as flowering and fruit setting require an understanding of the fundamental principles of molecular interaction, the structures of genes and proteins, the construction of signaling pathways for transcription regulation, including the synchronous actions of cis-regulatory elements (promoter and enhancer), trans-regulatory elements (transcription factors and regulatory RNAs), and transposable elements and epigenetic regulators (DNA methylation and acetylation, chromatin structure). Here, we discuss the current state of research on tomatoes (2017-2023) devoted to studying the function of genes that regulate flowering and signal regulation systems using genome-editing technologies, RNA interference gene silencing, and gene overexpression, including heterologous expression. Although the central candidate genes for these regulatory components have been identified, a complete picture of their relationship has yet to be formed. Therefore, this review summarizes the latest achievements related to studying the processes of flowering and fruit set. This work attempts to display the gene interaction scheme to better understand the events under consideration.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Sergey Dolgov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
16
|
Zhang Y, Shen C, Shi J, Shi J, Zhang D. Boosting Triticeae crop grain yield by manipulating molecular modules to regulate inflorescence architecture: insights and knowledge from other cereal crops. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:17-35. [PMID: 37935244 DOI: 10.1093/jxb/erad386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
One of the challenges for global food security is to reliably and sustainably improve the grain yield of cereal crops. One solution is to modify the architecture of the grain-bearing inflorescence to optimize for grain number and size. Cereal inflorescences are complex structures, with determinacy, branching patterns, and spikelet/floret growth patterns that vary by species. Recent decades have witnessed rapid advancements in our understanding of the genetic regulation of inflorescence architecture in rice, maize, wheat, and barley. Here, we summarize current knowledge on key genetic factors underlying the different inflorescence morphologies of these crops and model plants (Arabidopsis and tomato), focusing particularly on the regulation of inflorescence meristem determinacy and spikelet meristem identity and determinacy. We also discuss strategies to identify and utilize these superior alleles to optimize inflorescence architecture and, ultimately, improve crop grain yield.
Collapse
Affiliation(s)
- Yueya Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
| | - Chaoqun Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
| | - Jin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya 572025, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya 572025, China
- School of Agriculture, Food, and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia
| |
Collapse
|
17
|
Lindsay P, Swentowsky KW, Jackson D. Cultivating potential: Harnessing plant stem cells for agricultural crop improvement. MOLECULAR PLANT 2024; 17:50-74. [PMID: 38130059 DOI: 10.1016/j.molp.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Meristems are stem cell-containing structures that produce all plant organs and are therefore important targets for crop improvement. Developmental regulators control the balance and rate of cell divisions within the meristem. Altering these regulators impacts meristem architecture and, as a consequence, plant form. In this review, we discuss genes involved in regulating the shoot apical meristem, inflorescence meristem, axillary meristem, root apical meristem, and vascular cambium in plants. We highlight several examples showing how crop breeders have manipulated developmental regulators to modify meristem growth and alter crop traits such as inflorescence size and branching patterns. Plant transformation techniques are another innovation related to plant meristem research because they make crop genome engineering possible. We discuss recent advances on plant transformation made possible by studying genes controlling meristem development. Finally, we conclude with discussions about how meristem research can contribute to crop improvement in the coming decades.
Collapse
Affiliation(s)
- Penelope Lindsay
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
18
|
Schartl M, Lu Y. Validity of Xiphophorus fish as models for human disease. Dis Model Mech 2024; 17:dmm050382. [PMID: 38299666 PMCID: PMC10855230 DOI: 10.1242/dmm.050382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Platyfish and swordtails of the genus Xiphophorus provide a well-established model for melanoma research and have become well known for this feature. Recently, modelling approaches for other human diseases in Xiphophorus have been developed or are emerging. This Review provides a comprehensive summary of these models and discusses how findings from basic biological and molecular studies and their translation to medical research demonstrate that Xiphophorus models have face, construct and predictive validity for studying a broad array of human diseases. These models can thus improve our understanding of disease mechanisms to benefit patients.
Collapse
Affiliation(s)
- Manfred Schartl
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
- Developmental Biochemistry, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Yuan Lu
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| |
Collapse
|
19
|
Lee ES, Heo J, Bang WY, Chougule KM, Waminal NE, Hong NT, Kim MJ, Beak HK, Kim YJ, Priatama RA, Jang JI, Cha KI, Son SH, Rajendran S, Choo Y, Bae JH, Kim CM, Lee YK, Bae S, Jones JDG, Sohn KH, Lee J, Kim HH, Hong JC, Ware D, Kim K, Park SJ. Engineering homoeologs provide a fine scale for quantitative traits in polyploid. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2458-2472. [PMID: 37530518 PMCID: PMC10651150 DOI: 10.1111/pbi.14141] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
Numerous staple crops exhibit polyploidy and are difficult to genetically modify. However, recent advances in genome sequencing and editing have enabled polyploid genome engineering. The hexaploid black nightshade species Solanum nigrum has immense potential as a beneficial food supplement. We assembled its genome at the scaffold level. After functional annotations, we identified homoeologous gene sets, with similar sequence and expression profiles, based on comparative analyses of orthologous genes with close diploid relatives Solanum americanum and S. lycopersicum. Using CRISPR-Cas9-mediated mutagenesis, we generated various mutation combinations in homoeologous genes. Multiple mutants showed quantitative phenotypic changes based on the genotype, resulting in a broad-spectrum effect on the quantitative traits of hexaploid S. nigrum. Furthermore, we successfully improved the fruit productivity of Boranong, an orphan cultivar of S. nigrum suggesting that engineering homoeologous genes could be useful for agricultural improvement of polyploid crops.
Collapse
Affiliation(s)
- Eun Song Lee
- Division of Biological SciencesWonkwang UniversityIksanKorea
| | - Jung Heo
- Division of Biological SciencesWonkwang UniversityIksanKorea
- Division of Applied Life Science (BK21 four) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC)Gyeongsang National UniversityJinjuKorea
| | - Woo Young Bang
- Biological and Genetic Resources Assessment DivisionNational Institute of Biological ResourcesIncheonKorea
| | | | - Nomar Espinosa Waminal
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany
- BioScience Institute, Department of Chemistry & Life ScienceSahmyook UniversitySeoulKorea
| | - Nguyen Thi Hong
- BioScience Institute, Department of Chemistry & Life ScienceSahmyook UniversitySeoulKorea
| | - Min Ji Kim
- Division of Biological SciencesWonkwang UniversityIksanKorea
| | - Hong Kwan Beak
- Division of Biological SciencesWonkwang UniversityIksanKorea
| | - Yong Jun Kim
- Division of Biological SciencesWonkwang UniversityIksanKorea
| | - Ryza A. Priatama
- Division of Biological SciencesWonkwang UniversityIksanKorea
- Institute of Plasma TechnologyKorea Institute of Fusion EnergyGunsan‐siKorea
| | - Ji In Jang
- Division of Biological SciencesWonkwang UniversityIksanKorea
- Division of Applied Life Science (BK21 four) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC)Gyeongsang National UniversityJinjuKorea
| | - Kang Il Cha
- Division of Biological SciencesWonkwang UniversityIksanKorea
| | - Seung Han Son
- Division of Biological SciencesWonkwang UniversityIksanKorea
| | | | - Young‐Kug Choo
- Division of Biological SciencesWonkwang UniversityIksanKorea
| | - Jong Hyang Bae
- Division of Horticulture IndustryWonkwang UniversityIksanKorea
| | - Chul Min Kim
- Division of Horticulture IndustryWonkwang UniversityIksanKorea
| | - Young Koung Lee
- Institute of Plasma TechnologyKorea Institute of Fusion EnergyGunsan‐siKorea
| | - Sangsu Bae
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulSouth Korea
| | - Jonathan D. G. Jones
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
| | - Kee Hoon Sohn
- Department of Agricultural Biotechnology, Plant Immunity Research Center, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| | - Jiyoung Lee
- Korean Collection for Type Cultures (KCTC), Biological Resource CenterKorea Research Institute of Bioscience and BiotechnologyJeongeupKorea
| | - Hyun Hee Kim
- BioScience Institute, Department of Chemistry & Life ScienceSahmyook UniversitySeoulKorea
| | - Jong Chan Hong
- Division of Applied Life Science (BK21 four) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC)Gyeongsang National UniversityJinjuKorea
| | - Doreen Ware
- Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
- U.S. Department of Agriculture‐Agricultural Research ServiceNEA Robert W. Holley Center for Agriculture and HealthIthacaNYUSA
| | - Keunhwa Kim
- Division of Biological SciencesWonkwang UniversityIksanKorea
- Division of Applied Life Science (BK21 four) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC)Gyeongsang National UniversityJinjuKorea
| | - Soon Ju Park
- Division of Biological SciencesWonkwang UniversityIksanKorea
- Division of Applied Life Science (BK21 four) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC)Gyeongsang National UniversityJinjuKorea
| |
Collapse
|
20
|
Rieu P, Arnoux-Courseaux M, Tichtinsky G, Parcy F. Thinking outside the F-box: how UFO controls angiosperm development. THE NEW PHYTOLOGIST 2023; 240:945-959. [PMID: 37664990 DOI: 10.1111/nph.19234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/19/2023] [Indexed: 09/05/2023]
Abstract
The formation of inflorescences and flowers is essential for the successful reproduction of angiosperms. In the past few decades, genetic studies have identified the LEAFY transcription factor and the UNUSUAL FLORAL ORGANS (UFO) F-box protein as two major regulators of flower development in a broad range of angiosperm species. Recent research has revealed that UFO acts as a transcriptional cofactor, redirecting the LEAFY floral regulator to novel cis-elements. In this review, we summarize the various roles of UFO across species, analyze past results in light of new discoveries and highlight the key questions that remain to be solved.
Collapse
Affiliation(s)
- Philippe Rieu
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 ave des martyrs, F-38054, Grenoble, France
| | - Moïra Arnoux-Courseaux
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 ave des martyrs, F-38054, Grenoble, France
| | - Gabrielle Tichtinsky
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 ave des martyrs, F-38054, Grenoble, France
| | - François Parcy
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 ave des martyrs, F-38054, Grenoble, France
| |
Collapse
|
21
|
Zemach I, Alseekh S, Tadmor-Levi R, Fisher J, Torgeman S, Trigerman S, Nauen J, Hayut SF, Mann V, Rochsar E, Finkers R, Wendenburg R, Osorio S, Bergmann S, Lunn JE, Semel Y, Hirschberg J, Fernie AR, Zamir D. Multi-year field trials provide a massive repository of trait data on a highly diverse population of tomato and uncover novel determinants of tomato productivity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1136-1151. [PMID: 37150955 DOI: 10.1111/tpj.16268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/21/2023] [Accepted: 04/29/2023] [Indexed: 05/09/2023]
Abstract
Tomato (Solanum lycopersicum) is a prominent fruit with rich genetic resources for crop improvement. By using a phenotype-guided screen of over 7900 tomato accessions from around the world, we identified new associations for complex traits such as fruit weight and total soluble solids (Brix). Here, we present the phenotypic data from several years of trials. To illustrate the power of this dataset we use two case studies. First, evaluation of color revealed allelic variation in phytoene synthase 1 that resulted in differently colored or even bicolored fruit. Secondly, in view of the negative relationship between fruit weight and Brix, we pre-selected a subset of the collection that includes high and low Brix values in each category of fruit size. Genome-wide association analysis allowed us to detect novel loci associated with total soluble solid content and fruit weight. In addition, we developed eight F2 biparental intraspecific populations. Furthermore, by taking a phenotype-guided approach we were able to isolate individuals with high Brix values that were not compromised in terms of yield. In addition, the demonstration of novel results despite the high number of previous genome-wide association studies of these traits in tomato suggests that adoption of a phenotype-guided pre-selection of germplasm may represent a useful strategy for finding target genes for breeding.
Collapse
Affiliation(s)
- Itay Zemach
- The Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Roni Tadmor-Levi
- The Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Josef Fisher
- The Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Shai Torgeman
- The Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Shay Trigerman
- The Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Julia Nauen
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Shdema Filler Hayut
- Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Varda Mann
- Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Edan Rochsar
- The Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Richard Finkers
- Plant Breeding, Wageningen Plant Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Regina Wendenburg
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Sonia Osorio
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Department of Molecular Biology and Biochemistry, Instituto de Hortofruticultura Subtropical y Mediterranea "La Mayora", University of Malaga-Consejo Superior de Investigaciones Cientıficas, Malaga, Spain
| | - Susan Bergmann
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - John E Lunn
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Yaniv Semel
- Phenome Networks, 10 Plaut Street, Science Park, 76706, Rehovot, Israel
| | - Joseph Hirschberg
- Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Dani Zamir
- The Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
22
|
Chen YH, Lu J, Yang X, Huang LC, Zhang CQ, Liu QQ, Li QF. Gene editing of non-coding regulatory DNA and its application in crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6158-6175. [PMID: 37549968 DOI: 10.1093/jxb/erad313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
The development of the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) system has provided precise and efficient strategies to edit target genes and generate transgene-free crops. Significant progress has been made in the editing of protein-coding genes; however, studies on the editing of non-coding DNA with regulatory roles lags far behind. Non-coding regulatory DNAs, including those which can be transcribed into long non-coding RNAs (lncRNAs), and miRNAs, together with cis-regulatory elements (CREs), play crucial roles in regulating plant growth and development. Therefore, the combination of CRISPR/Cas technology and non-coding regulatory DNA has great potential to generate novel alleles that affect various agronomic traits of crops, thus providing valuable genetic resources for crop breeding. Herein, we review recent advances in the roles of non-coding regulatory DNA, attempts to edit non-coding regulatory DNA for crop improvement, and potential application of novel editing tools in modulating non-coding regulatory DNA. Finally, the existing problems, possible solutions, and future applications of gene editing of non-coding regulatory DNA in modern crop breeding practice are also discussed.
Collapse
Affiliation(s)
- Yu-Hao Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jun Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xia Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Li-Chun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Chang-Quan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Qian-Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
23
|
Rahmati Ishka M, Julkowska M. Tapping into the plasticity of plant architecture for increased stress resilience. F1000Res 2023; 12:1257. [PMID: 38434638 PMCID: PMC10905174 DOI: 10.12688/f1000research.140649.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 03/05/2024] Open
Abstract
Plant architecture develops post-embryonically and emerges from a dialogue between the developmental signals and environmental cues. Length and branching of the vegetative and reproductive tissues were the focus of improvement of plant performance from the early days of plant breeding. Current breeding priorities are changing, as we need to prioritize plant productivity under increasingly challenging environmental conditions. While it has been widely recognized that plant architecture changes in response to the environment, its contribution to plant productivity in the changing climate remains to be fully explored. This review will summarize prior discoveries of genetic control of plant architecture traits and their effect on plant performance under environmental stress. We review new tools in phenotyping that will guide future discoveries of genes contributing to plant architecture, its plasticity, and its contributions to stress resilience. Subsequently, we provide a perspective into how integrating the study of new species, modern phenotyping techniques, and modeling can lead to discovering new genetic targets underlying the plasticity of plant architecture and stress resilience. Altogether, this review provides a new perspective on the plasticity of plant architecture and how it can be harnessed for increased performance under environmental stress.
Collapse
|
24
|
Naveed S, Gandhi N, Billings G, Jones Z, Campbell BT, Jones M, Rustgi S. Alterations in Growth Habit to Channel End-of-Season Perennial Reserves towards Increased Yield and Reduced Regrowth after Defoliation in Upland Cotton ( Gossypium hirsutum L.). Int J Mol Sci 2023; 24:14174. [PMID: 37762483 PMCID: PMC10532291 DOI: 10.3390/ijms241814174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Cotton (Gossypium spp.) is the primary source of natural textile fiber in the U.S. and a major crop in the Southeastern U.S. Despite constant efforts to increase the cotton fiber yield, the yield gain has stagnated. Therefore, we undertook a novel approach to improve the cotton fiber yield by altering its growth habit from perennial to annual. In this effort, we identified genotypes with high-expression alleles of five floral induction and meristem identity genes (FT, SOC1, FUL, LFY, and AP1) from an Upland cotton mini-core collection and crossed them in various combinations to develop cotton lines with annual growth habit, optimal flowering time, and enhanced productivity. To facilitate the characterization of genotypes with the desired combinations of stacked alleles, we identified molecular markers associated with the gene expression traits via genome-wide association analysis using a 63 K SNP Array. Over 14,500 SNPs showed polymorphism and were used for association analysis. A total of 396 markers showed associations with expression traits. Of these 396 markers, 159 were mapped to genes, 50 to untranslated regions, and 187 to random genomic regions. Biased genomic distribution of associated markers was observed where more trait-associated markers mapped to the cotton D sub-genome. Many quantitative trait loci coincided at specific genomic regions. This observation has implications as these traits could be bred together. The analysis also allowed the identification of candidate regulators of the expression patterns of these floral induction and meristem identity genes whose functions will be validated.
Collapse
Affiliation(s)
- Salman Naveed
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (M.J.)
| | - Nitant Gandhi
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (M.J.)
| | - Grant Billings
- Department of Crop & Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Zachary Jones
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (M.J.)
| | - B. Todd Campbell
- USDA-ARS Coastal Plains Soil, Water, and Plant Research Center, Florence, SC 29501, USA;
| | - Michael Jones
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (M.J.)
| | - Sachin Rustgi
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (M.J.)
| |
Collapse
|
25
|
Alseekh S, Karakas E, Zhu F, Wijesingha Ahchige M, Fernie AR. Plant biochemical genetics in the multiomics era. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4293-4307. [PMID: 37170864 PMCID: PMC10433942 DOI: 10.1093/jxb/erad177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
Our understanding of plant biology has been revolutionized by modern genetics and biochemistry. However, biochemical genetics can be traced back to the foundation of Mendelian genetics; indeed, one of Mendel's milestone discoveries of seven characteristics of pea plants later came to be ascribed to a mutation in a starch branching enzyme. Here, we review both current and historical strategies for the elucidation of plant metabolic pathways and the genes that encode their component enzymes and regulators. We use this historical review to discuss a range of classical genetic phenomena including epistasis, canalization, and heterosis as viewed through the lens of contemporary high-throughput data obtained via the array of approaches currently adopted in multiomics studies.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Esra Karakas
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070 Wuhan, China
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
26
|
Zahn IE, Roelofsen C, Angenent GC, Bemer M. TM3 and STM3 Promote Flowering Together with FUL2 and MBP20, but Act Antagonistically in Inflorescence Branching in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2754. [PMID: 37570908 PMCID: PMC10420972 DOI: 10.3390/plants12152754] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
The moment at which a plant transitions to reproductive development is paramount to its life cycle and is strictly controlled by many genes. The transcription factor SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) plays a central role in this process in Arabidopsis. However, the role of SOC1 in tomato (Solanum lycopersicum) has been sparsely studied. Here, we investigated the function of four tomato SOC1 homologs in the floral transition and inflorescence development. We thoroughly characterized the SOC1-like clade throughout the Solanaceae and selected four tomato homologs that are dynamically expressed upon the floral transition. We show that of these homologs, TOMATO MADS 3 (TM3) and SISTER OF TM3 (STM3) promote the primary and sympodial transition to flowering, while MADS-BOX PROTEIN 23 (MBP23) and MBP18 hardly contribute to flowering initiation in the indeterminate cultivar Moneyberg. Protein-protein interaction assays and whole-transcriptome analysis during reproductive meristem development revealed that TM3 and STM3 interact and share many targets with FRUITFULL (FUL) homologs, including cytokinin regulators. Furthermore, we observed that mutating TM3/STM3 affects inflorescence development, but counteracts the inflorescence-branching phenotype of ful2 mbp20. Collectively, this indicates that TM3/STM3 promote the floral transition together with FUL2/MBP20, while these transcription factors have opposite functions in inflorescence development.
Collapse
Affiliation(s)
- Iris E. Zahn
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (I.E.Z.); (G.C.A.)
| | - Chris Roelofsen
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (I.E.Z.); (G.C.A.)
| | - Gerco C. Angenent
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (I.E.Z.); (G.C.A.)
- Business Unit Bioscience, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Marian Bemer
- Business Unit Bioscience, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
27
|
Kocaoglan EG, Radhakrishnan D, Nakayama N. Synthetic developmental biology: molecular tools to re-design plant shoots and roots. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3864-3876. [PMID: 37155965 PMCID: PMC10826796 DOI: 10.1093/jxb/erad169] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
Plant morphology and anatomy strongly influence agricultural yield. Crop domestication has strived for desirable growth and developmental traits, such as larger and more fruits and semi-dwarf architecture. Genetic engineering has accelerated rational, purpose-driven engineering of plant development, but it can be unpredictable. Developmental pathways are complex and riddled with environmental and hormonal inputs, as well as feedback and feedforward interactions, which occur at specific times and places in a growing multicellular organism. Rational modification of plant development would probably benefit from precision engineering based on synthetic biology approaches. This review outlines recently developed synthetic biology technologies for plant systems and highlights their potential for engineering plant growth and development. Streamlined and high-capacity genetic construction methods (Golden Gate DNA Assembly frameworks and toolkits) allow fast and variation-series cloning of multigene transgene constructs. This, together with a suite of gene regulation tools (e.g. cell type-specific promoters, logic gates, and multiplex regulation systems), is starting to enable developmental pathway engineering with predictable outcomes in model plant and crop species.
Collapse
Affiliation(s)
- Elif Gediz Kocaoglan
- Department of Bioengineering, Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Dhanya Radhakrishnan
- Department of Bioengineering, Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Naomi Nakayama
- Department of Bioengineering, Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
28
|
Israeli A, Schubert R, Man N, Teboul N, Serrani Yarce JC, Rosowski EE, Wu MF, Levy M, Efroni I, Ljung K, Hause B, Reed JW, Ori N. Modulating auxin response stabilizes tomato fruit set. PLANT PHYSIOLOGY 2023; 192:2336-2355. [PMID: 37032117 PMCID: PMC10315294 DOI: 10.1093/plphys/kiad205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/01/2023]
Abstract
Fruit formation depends on successful fertilization and is highly sensitive to weather fluctuations that affect pollination. Auxin promotes fruit initiation and growth following fertilization. Class A auxin response factors (Class A ARFs) repress transcription in the absence of auxin and activate transcription in its presence. Here, we explore how multiple members of the ARF family regulate fruit set and fruit growth in tomato (Solanum lycopersicum) and Arabidopsis thaliana, and test whether reduction of SlARF activity improves yield stability in fluctuating temperatures. We found that several tomato Slarf mutant combinations produced seedless parthenocarpic fruits, most notably mutants deficient in SlARF8A and SlARF8B genes. Arabidopsis Atarf8 mutants deficient in the orthologous gene had less complete parthenocarpy than did tomato Slarf8a Slarf8b mutants. Conversely, Atarf6 Atarf8 double mutants had reduced fruit growth after fertilization. AtARF6 and AtARF8 likely switch from repression to activation of fruit growth in response to a fertilization-induced auxin increase in gynoecia. Tomato plants with reduced SlARF8A and SlARF8B gene dosage had substantially higher yield than the wild type under controlled or ambient hot and cold growth conditions. In field trials, partial reduction in the SlARF8 dose increased yield under extreme temperature with minimal pleiotropic effects. The stable yield of the mutant plants resulted from a combination of early onset of fruit set, more fruit-bearing branches and more flowers setting fruits. Thus, ARF8 proteins mediate the control of fruit set, and relieving this control with Slarf8 mutations may be utilized in breeding to increase yield stability in tomato and other crops.
Collapse
Affiliation(s)
- Alon Israeli
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot 76100, Israel
| | - Ramona Schubert
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle 06120, Germany
| | - Nave Man
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot 76100, Israel
| | - Naama Teboul
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot 76100, Israel
| | | | - Emily E Rosowski
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Miin-Feng Wu
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Matan Levy
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot 76100, Israel
| | - Idan Efroni
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot 76100, Israel
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle 06120, Germany
| | - Jason W Reed
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Naomi Ori
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot 76100, Israel
| |
Collapse
|
29
|
Li Q, Luo S, Zhang L, Feng Q, Song L, Sapkota M, Xuan S, Wang Y, Zhao J, van der Knaap E, Chen X, Shen S. Molecular and genetic regulations of fleshy fruit shape and lessons from Arabidopsis and rice. HORTICULTURE RESEARCH 2023; 10:uhad108. [PMID: 37577396 PMCID: PMC10419822 DOI: 10.1093/hr/uhad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/12/2023] [Indexed: 08/15/2023]
Abstract
Fleshy fruit shape is an important external quality trait influencing the usage of fruits and consumer preference. Thus, modification of fruit shape has become one of the major objectives for crop improvement. However, the underlying mechanisms of fruit shape regulation are poorly understood. In this review we summarize recent progress in the genetic basis of fleshy fruit shape regulation using tomato, cucumber, and peach as examples. Comparative analyses suggest that the OFP-TRM (OVATE Family Protein - TONNEAU1 Recruiting Motif) and IQD (IQ67 domain) pathways are probably conserved in regulating fruit shape by primarily modulating cell division patterns across fleshy fruit species. Interestingly, cucumber homologs of FRUITFULL (FUL1), CRABS CLAW (CRC) and 1-aminocyclopropane-1-carboxylate synthase 2 (ACS2) were found to regulate fruit elongation. We also outline the recent progress in fruit shape regulation mediated by OFP-TRM and IQD pathways in Arabidopsis and rice, and propose that the OFP-TRM pathway and IQD pathway coordinate regulate fruit shape through integration of phytohormones, including brassinosteroids, gibberellic acids, and auxin, and microtubule organization. In addition, functional redundancy and divergence of the members of each of the OFP, TRM, and IQD families are also shown. This review provides a general overview of current knowledge in fruit shape regulation and discusses the possible mechanisms that need to be addressed in future studies.
Collapse
Affiliation(s)
- Qiang Li
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Shuangxia Luo
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Liying Zhang
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Qian Feng
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Lijun Song
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Manoj Sapkota
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Shuxin Xuan
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Yanhua Wang
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Jianjun Zhao
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Xueping Chen
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Shuxing Shen
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| |
Collapse
|
30
|
Wang X, Liu Z, Bai J, Sun S, Song J, Li R, Cui X. Antagonistic regulation of target genes by the SISTER OF TM3-JOINTLESS2 complex in tomato inflorescence branching. THE PLANT CELL 2023; 35:2062-2078. [PMID: 36881857 PMCID: PMC10226558 DOI: 10.1093/plcell/koad065] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 05/30/2023]
Abstract
Inflorescence branch number is a yield-related trait controlled by cell fate determination in meristems. Two MADS-box transcription factors (TFs)-SISTER OF TM3 (STM3) and JOINTLESS 2 (J2)-have opposing regulatory roles in inflorescence branching. However, the mechanisms underlying their regulatory functions in inflorescence determinacy remain unclear. Here, we characterized the functions of these TFs in tomato (Solanum lycopersicum) floral meristem and inflorescence meristem (IM) through chromatin immunoprecipitation and sequencing analysis of their genome-wide occupancy. STM3 and J2 activate or repress the transcription of a set of common putative target genes, respectively, through recognition and binding to CArG box motifs. FRUITFULL1 (FUL1) is a shared putative target of STM3 and J2 and these TFs antagonistically regulate FUL1 in inflorescence branching. Moreover, STM3 physically interacts with J2 to mediate its cytosolic redistribution and restricts J2 repressor activity by reducing its binding to target genes. Conversely, J2 limits STM3 regulation of target genes by transcriptional repression of the STM3 promoter and reducing STM3-binding activity. Our study thus reveals an antagonistic regulatory relationship in which STM3 and J2 control tomato IM determinacy and branch number.
Collapse
Affiliation(s)
- Xiaotian Wang
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhiqiang Liu
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingwei Bai
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuai Sun
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jia Song
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ren Li
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xia Cui
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
31
|
Ning Y, Wei K, Li S, Zhang L, Chen Z, Lu F, Yang P, Yang M, Liu X, Liu X, Wang X, Cao X, Wang X, Guo Y, Liu L, Li X, Du Y, Li J, Huang Z. Fine Mapping of fw6.3, a Major-Effect Quantitative Trait Locus That Controls Fruit Weight in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112065. [PMID: 37299049 DOI: 10.3390/plants12112065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 06/12/2023]
Abstract
Tomato (Solanum lycopersicum) is a widely consumed vegetable, and the tomato fruit weight is a key yield component. Many quantitative trait loci (QTLs) controlling tomato fruit weight have been identified, and six of them have been fine-mapped and cloned. Here, four loci controlling tomato fruit weight were identified in an F2 population through QTL seq.; fruit weight 6.3 (fw6.3) was a major-effect QTL and its percentage of variation explanation (R2) was 0.118. This QTL was fine-mapped to a 62.6 kb interval on chromosome 6. According to the annotated tomato genome (version SL4.0, annotation ITAG4.0), this interval contained seven genes, including Solyc06g074350 (the SELF-PRUNING gene), which was likely the candidate gene underlying variation in fruit weight. The SELF-PRUNING gene contained a single-nucleotide polymorphism that resulted in an amino acid substitution in the protein sequence. The large-fruit allele of fw6.3 (fw6.3HG) was overdominant to the small-fruit allele fw6.3RG. The soluble solids content was also increased by fw6.3HG. These findings provide valuable information that will aid the cloning of the FW6.3 gene and ongoing efforts to breed tomato plants with higher yield and quality via molecular marker-assisted selection.
Collapse
Affiliation(s)
- Yu Ning
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Wei
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shanshan Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Li Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ziyue Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Feifei Lu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pei Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengxia Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaolin Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoyan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaotian Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xue Cao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoxuan Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanmei Guo
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongchen Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junming Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zejun Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
32
|
Sun S, Wang X, Liu Z, Bai J, Song J, Li R, Cui X. Tomato APETALA2 family member SlTOE1 regulates inflorescence branching by repressing SISTER OF TM3. PLANT PHYSIOLOGY 2023; 192:293-306. [PMID: 36747310 PMCID: PMC10152655 DOI: 10.1093/plphys/kiad075] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 05/03/2023]
Abstract
Inflorescence architecture directly impacts yield potential in most crops. As a model of sympodial plants, tomato (Solanum lycopersicum) inflorescence exhibits highly structural plasticity. However, the genetic regulatory network of inflorescence architecture in tomato remains unclear. Here, we investigated a modulator of inflorescence branching in tomato, TARGET OF EAT1 (SlTOE1), an APETALA2 (AP2) family member found to be predominantly expressed in the floral meristem (FM) of tomato. sltoe1 knockout mutants displayed highly branched inflorescences and defective floral organs. Transcriptome analysis revealed that SISTER OF TM3 (STM3) and certain floral development-related genes were upregulated in the flower meristem of sltoe1. SlTOE1 could directly bind the promoters of STM3 and Tomato MADS-box gene 3 (TM3) to repress their transcription. Simultaneous mutation of STM3 and TM3 partially restored the inflorescence branching of the sltoe1cr mutants, suggesting that SlTOE1 regulates inflorescence development, at least in part through an SlTOE1STM3/TM3 module. Genetic analysis showed that SlTOE1 and ENHANCER OF JOINTLESS 2 (EJ2) additively regulate tomato inflorescence branching; their double mutants showed more extensive inflorescence branching. Our findings uncover a pathway controlling tomato inflorescence branching and offer deeper insight into the functions of AP2 subfamily members.
Collapse
Affiliation(s)
- Shuai Sun
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, China Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaotian Wang
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, China Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiqiang Liu
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, China Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingwei Bai
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, China Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jia Song
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, China Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ren Li
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, China Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xia Cui
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, China Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
33
|
Siqueira JA, Batista-Silva W, Zsögön A, Fernie AR, Araújo WL, Nunes-Nesi A. Plant domestication: setting biological clocks. TRENDS IN PLANT SCIENCE 2023; 28:597-608. [PMID: 36822959 DOI: 10.1016/j.tplants.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 05/22/2023]
Abstract
Through domestication of wild species, humans have induced large changes in the developmental and circadian clocks of plants. As a result of these changes, modern crops are more productive and adaptive to contrasting environments from the center of origin of their wild ancestors, albeit with low genetic variability and abiotic stress tolerance. Likewise, a complete restructuring of plant metabolic timekeeping probably occurred during crop domestication. Here, we highlight that contrasting timings among organs in wild relatives of crops allowed them to recognize environmental adversities faster. We further propose that connections among biological clocks, which were established during plant domestication, may represent a fundamental source of genetic variation to improve crop resilience and yield.
Collapse
Affiliation(s)
- João Antonio Siqueira
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Willian Batista-Silva
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Agustin Zsögön
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| |
Collapse
|
34
|
Chen J, Hu Y, Hao P, Tsering T, Xia J, Zhang Y, Roth O, Njo MF, Sterck L, Hu Y, Zhao Y, Geelen D, Geisler M, Shani E, Beeckman T, Vanneste S. ABCB-mediated shootward auxin transport feeds into the root clock. EMBO Rep 2023; 24:e56271. [PMID: 36718777 PMCID: PMC10074126 DOI: 10.15252/embr.202256271] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/29/2022] [Accepted: 01/10/2023] [Indexed: 02/01/2023] Open
Abstract
Although strongly influenced by environmental conditions, lateral root (LR) positioning along the primary root appears to follow obediently an internal spacing mechanism dictated by auxin oscillations that prepattern the primary root, referred to as the root clock. Surprisingly, none of the hitherto characterized PIN- and ABCB-type auxin transporters seem to be involved in this LR prepatterning mechanism. Here, we characterize ABCB15, 16, 17, 18, and 22 (ABCB15-22) as novel auxin-transporting ABCBs. Knock-down and genome editing of this genetically linked group of ABCBs caused strongly reduced LR densities. These phenotypes were correlated with reduced amplitude, but not reduced frequency of the root clock oscillation. High-resolution auxin transport assays and tissue-specific silencing revealed contributions of ABCB15-22 to shootward auxin transport in the lateral root cap (LRC) and epidermis, thereby explaining the reduced auxin oscillation. Jointly, these data support a model in which LRC-derived auxin contributes to the root clock amplitude.
Collapse
Affiliation(s)
- Jian Chen
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems Biology, VIBGhentBelgium
| | - Yangjie Hu
- School of Plant Sciences and Food SecurityTel‐Aviv UniversityTel‐AvivIsrael
| | - Pengchao Hao
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Tashi Tsering
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Jian Xia
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Yuqin Zhang
- School of Plant Sciences and Food SecurityTel‐Aviv UniversityTel‐AvivIsrael
| | - Ohad Roth
- School of Plant Sciences and Food SecurityTel‐Aviv UniversityTel‐AvivIsrael
| | - Maria F Njo
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems Biology, VIBGhentBelgium
| | - Lieven Sterck
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems Biology, VIBGhentBelgium
| | - Yun Hu
- Section of Cell and Developmental BiologyUniversity of California San DiegoLa JollaCAUSA
| | - Yunde Zhao
- Section of Cell and Developmental BiologyUniversity of California San DiegoLa JollaCAUSA
| | - Danny Geelen
- Department of Plants and CropsGhent UniversityGhentBelgium
| | - Markus Geisler
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Eilon Shani
- School of Plant Sciences and Food SecurityTel‐Aviv UniversityTel‐AvivIsrael
| | - Tom Beeckman
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems Biology, VIBGhentBelgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems Biology, VIBGhentBelgium
- Department of Plants and CropsGhent UniversityGhentBelgium
- Lab of Plant Growth AnalysisGhent University Global CampusIncheonRepublic of Korea
| |
Collapse
|
35
|
Li J, Zhu R, Zhang M, Cao B, Li X, Song B, Liu Z, Wu J. Natural variations in the PbCPK28 promoter regulate sugar content through interaction with PbTST4 and PbVHA-A1 in pear. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:124-141. [PMID: 36710644 DOI: 10.1111/tpj.16126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Soluble sugars play an important role in plant growth, development and fruit quality. Pear fruits have demonstrated a considerable improvement in sugar quality during their long history of selection. However, little is known about the underlying molecular mechanisms accompanying the changes in fruit sugar content as a result of selection by horticulturists. Here, we identified a calcium-dependent protein kinase (PbCPK28), which is located on LG15 and is present within a selective sweep region, thus linked to the quantitative trait loci for soluble solids. Association analysis indicates that a single nucleotide polymorphism-13 variation (SNP13T/C ) in the PbCPK28 regulatory region led to fructose content diversity in pear. Elevated expression of PbCPK28 resulted in significantly increased fructose levels in pear fruits. Furthermore, PbCPK28 interacts with and phosphorylates PbTST4, a proton antiporter, thereby coupling the sugar import into the vacuole with proton export. We demonstrated that residues S277 and S314 of PbTST4 are crucial for its function. Additionally, PbCPK28 interacts with and phosphorylates the vacuolar hydrogen proton pump PbVHA-A1, which could provide proton motive forces for PbTST4. We also found that the T11 and Y120 phosphorylation sites in PbVHA-A1 are essential for its function. Evolution analysis and yeast-two-hybrid results support that the CPK-TST/CPK-VHA-A regulatory network is highly conserved in plants, especially the corresponding phosphorylation sites. Together, our work identifies an agriculturally important natural variation and an important regulatory network, allowing genetic improvement of fruit sugar contents in pears through modulation of PbCPK28 expression and phosphorylation of PbTST4 and PbVHA-A1.
Collapse
Affiliation(s)
- Jiaming Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Rongxiang Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Mingyue Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Beibei Cao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiaolong Li
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, 311200, China
| | - Bobo Song
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, 20742, USA
| | - Jun Wu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, 210014, China
| |
Collapse
|
36
|
Tonutti P, Brizzolara S, Beckles DM. Reducing crop losses by gene-editing control of organ developmental physiology. Curr Opin Biotechnol 2023; 81:102925. [PMID: 37003167 DOI: 10.1016/j.copbio.2023.102925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 04/03/2023]
Abstract
Some physiological processes in reproductive organs, if not controlled, can lead to crop loss even in the absence of environmental stress. These processes may occur pre- or post- harvest, and in diverse species and include abscission processes in cereal grain, e.g., shattering and in immature fruit, e.g., preharvest drop, preharvest sprouting of cereals, and postharvest senescence in fruit. Some of the molecular mechanisms and genetic determinants underlying these processes are now better detailed, making it possible to refine them by gene editing. Here, we discuss using advanced genomics to identify genetic determinants underlying crop physiological traits. Examples of improved phenotypes developed for preharvest problems are provided, and suggestions for reducing postharvest fruit losses by gene and promoter editing were made.
Collapse
Affiliation(s)
- Pietro Tonutti
- Crop Science Research Center, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Stefano Brizzolara
- Crop Science Research Center, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Diane M Beckles
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
37
|
Zhao S, Zhang C, Wang L, Luo M, Zhang P, Wang Y, Malik WA, Wang Y, Chen P, Qiu X, Wang C, Lu H, Xiang Y, Liu Y, Ruan J, Qian Q, Zhi H, Chang Y. A prolific and robust whole-genome genotyping method using PCR amplification via primer-template mismatched annealing. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:633-645. [PMID: 36269601 DOI: 10.1111/jipb.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Whole-genome genotyping methods are important for breeding. However, it has been challenging to develop a robust method for simultaneous foreground and background genotyping that can easily be adapted to different genes and species. In our study, we accidently discovered that in adapter ligation-mediated PCR, the amplification by primer-template mismatched annealing (PTMA) along the genome could generate thousands of stable PCR products. Based on this observation, we consequently developed a novel method for simultaneous foreground and background integrated genotyping by sequencing (FBI-seq) using one specific primer, in which foreground genotyping is performed by primer-template perfect annealing (PTPA), while background genotyping employs PTMA. Unlike DNA arrays, multiple PCR, or genome target enrichments, FBI-seq requires little preliminary work for primer design and synthesis, and it is easily adaptable to different foreground genes and species. FBI-seq therefore provides a prolific, robust, and accurate method for simultaneous foreground and background genotyping to facilitate breeding in the post-genomics era.
Collapse
Affiliation(s)
- Sheng Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Cuicui Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Liqun Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Minxuan Luo
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Peng Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yue Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Waqar Afzal Malik
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yue Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Peng Chen
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Xianjin Qiu
- College of Agriculture, Yangtze University, Jingzhou, 434023, China
| | - Chongrong Wang
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Hong Lu
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yong Xiang
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yuwen Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Jue Ruan
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Qian Qian
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Haijian Zhi
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuxiao Chang
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
38
|
Nakayama H, Ichihashi Y, Kimura S. Diversity of tomato leaf form provides novel insights into breeding. BREEDING SCIENCE 2023; 73:76-85. [PMID: 37168814 PMCID: PMC10165341 DOI: 10.1270/jsbbs.22061] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 05/13/2023]
Abstract
Tomato (Solanum lycopersicum L.) is cultivated widely globally. The crop exhibits tremendous morphological variations because of its long breeding history. Apart from the commercial tomato varieties, wild species and heirlooms are grown in certain regions of the world. Since the fruit constitutes the edible part, much of the agronomical research is focused on it. However, recent studies have indicated that leaf morphology influences fruit quality. As leaves are specialized photosynthetic organs and the vascular systems transport the photosynthetic products to sink organs, the architectural characteristics of the leaves have a strong influence on the final fruit quality. Therefore, comprehensive research focusing on both the fruit and leaf morphology is required for further tomato breeding. This review summarizes an overview of knowledge of the basic tomato leaf development, morphological diversification, and molecular mechanisms behind them and emphasizes its importance in breeding. Finally, we discuss how these findings and knowledge can be applied to future tomato breeding.
Collapse
Affiliation(s)
- Hokuto Nakayama
- Graduate School of Science, Department of Biological Sciences, The University of Tokyo, Science Build. #2, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
- Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, CA 95616, U.S.A.
- Corresponding author (e-mail: )
| | | | - Seisuke Kimura
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-Ku, Kyoto 603-8555, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-Ku, Kyoto 603-8555, Japan
| |
Collapse
|
39
|
Errum A, Rehman N, Uzair M, Inam S, Ali GM, Khan MR. CRISPR/Cas9 editing of wheat Ppd-1 gene homoeologs alters spike architecture and grain morphometric traits. Funct Integr Genomics 2023; 23:66. [PMID: 36840774 DOI: 10.1007/s10142-023-00989-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/26/2023]
Abstract
Mutations in Photoperiod-1 (Ppd-1) gene are known to modify flowering time and yield in wheat. We cloned TaPpd-1 from wheat and found high similarity among the three homoeologs of TaPpd-1. To clarify the characteristics of TaPpd-1 homoeologs in different photoperiod conditions for inflorescence architecture and yield, we used CRISPR/Cas9 system to generate Tappd-1 mutant plants by simultaneous modification of the three homoeologs of wheat Ppd-1. Tappd-1 mutant plants showed no off-target mutations. Four T0-edited lines under short-day length and three lines under long-day length conditions with the mutation frequency of 25% and 21%, respectively. These putative transgenic plants of all the lines were self-fertilized and generated T1 and T2 progenies and were evaluated by phenotypic and expression analysis. Results demonstrated that simultaneously edited TaPpd-1- A1, B1, and D1 homoeologs gene copies in T2_SDL-8-4, T2_SDL-4-5, T2_SDL-3-9, and T2_LDL-10-9 showed similar spike inflorescence, flowering time, and significantly increase in 1000-grain weight, grain area, grain width, grain length, plant height, and spikelets per spike due to mutation in both alleles of Ppd-B1 and Ppd-D1 homoeologs but only spike length was decreased in T2_SDL-8-4, T2_SDL-4-5, and T2_LDL-13-3 mutant lines due to mutation in both alleles of Ppd-A1 homoeolog under both conditions. Our results indicate that all TaPpd1 gene homoeologs influence wheat spike development by affecting both late flowering and earlier flowering but single mutant TaPpd-A1 homoeolog affect lowest as compared to the combination with double mutants of TaPpd-B1 and TaPpd-D1, TaPpd-A1 and TaPpd-B1, and TaPpd-A1 and TaPpd-D1 homoeologs for yield enhancement. Our findings further raised the idea that the relative expression of the various genomic copies of TaPpd-1 homoeologs may have an impact on the spike inflorescence architecture and grain morphometric features in wheat cultivars.
Collapse
Affiliation(s)
- Aliya Errum
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan
- PARC Institute of Advanced Studies in Agriculture (PIASA), Islamabad, Pakistan
| | - Nazia Rehman
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan
| | - Safeena Inam
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan
| | | | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan.
| |
Collapse
|
40
|
He J, Alonge M, Ramakrishnan S, Benoit M, Soyk S, Reem NT, Hendelman A, Van Eck J, Schatz MC, Lippman ZB. Establishing Physalis as a Solanaceae model system enables genetic reevaluation of the inflated calyx syndrome. THE PLANT CELL 2023; 35:351-368. [PMID: 36268892 PMCID: PMC9806562 DOI: 10.1093/plcell/koac305] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The highly diverse Solanaceae family contains several widely studied models and crop species. Fully exploring, appreciating, and exploiting this diversity requires additional model systems. Particularly promising are orphan fruit crops in the genus Physalis, which occupy a key evolutionary position in the Solanaceae and capture understudied variation in traits such as inflorescence complexity, fruit ripening and metabolites, disease and insect resistance, self-compatibility, and most notable, the striking inflated calyx syndrome (ICS), an evolutionary novelty found across angiosperms where sepals grow exceptionally large to encapsulate fruits in a protective husk. We recently developed transformation and genome editing in Physalis grisea (groundcherry). However, to systematically explore and unlock the potential of this and related Physalis as genetic systems, high-quality genome assemblies are needed. Here, we present chromosome-scale references for P. grisea and its close relative Physalis pruinosa and use these resources to study natural and engineered variations in floral traits. We first rapidly identified a natural structural variant in a bHLH gene that causes petal color variation. Further, and against expectations, we found that CRISPR-Cas9-targeted mutagenesis of 11 MADS-box genes, including purported essential regulators of ICS, had no effect on inflation. In a forward genetics screen, we identified huskless, which lacks ICS due to mutation of an AP2-like gene that causes sepals and petals to merge into a single whorl of mixed identity. These resources and findings elevate Physalis to a new Solanaceae model system and establish a paradigm in the search for factors driving ICS.
Collapse
Affiliation(s)
- Jia He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Michael Alonge
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Srividya Ramakrishnan
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Matthias Benoit
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Sebastian Soyk
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Nathan T Reem
- Boyce Thompson Institute, Ithaca, New York 14853, USA
| | - Anat Hendelman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Joyce Van Eck
- Boyce Thompson Institute, Ithaca, New York 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Michael C Schatz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
41
|
Napier JD, Heckman RW, Juenger TE. Gene-by-environment interactions in plants: Molecular mechanisms, environmental drivers, and adaptive plasticity. THE PLANT CELL 2023; 35:109-124. [PMID: 36342220 PMCID: PMC9806611 DOI: 10.1093/plcell/koac322] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/03/2022] [Indexed: 05/13/2023]
Abstract
Plants demonstrate a broad range of responses to environmental shifts. One of the most remarkable responses is plasticity, which is the ability of a single plant genotype to produce different phenotypes in response to environmental stimuli. As with all traits, the ability of plasticity to evolve depends on the presence of underlying genetic diversity within a population. A common approach for evaluating the role of genetic variation in driving differences in plasticity has been to study genotype-by-environment interactions (G × E). G × E occurs when genotypes produce different phenotypic trait values in response to different environments. In this review, we highlight progress and promising methods for identifying the key environmental and genetic drivers of G × E. Specifically, methodological advances in using algorithmic and multivariate approaches to understand key environmental drivers combined with new genomic innovations can greatly increase our understanding about molecular responses to environmental stimuli. These developing approaches can be applied to proliferating common garden networks that capture broad natural environmental gradients to unravel the underlying mechanisms of G × E. An increased understanding of G × E can be used to enhance the resilience and productivity of agronomic systems.
Collapse
Affiliation(s)
- Joseph D Napier
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Robert W Heckman
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Thomas E Juenger
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, 78712, USA
| |
Collapse
|
42
|
Rosado-Souza L, Yokoyama R, Sonnewald U, Fernie AR. Understanding source-sink interactions: Progress in model plants and translational research to crops. MOLECULAR PLANT 2023; 16:96-121. [PMID: 36447435 DOI: 10.1016/j.molp.2022.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/25/2022] [Indexed: 06/16/2023]
Abstract
Agriculture is facing a massive increase in demand per hectare as a result of an ever-expanding population and environmental deterioration. While we have learned much about how environmental conditions and diseases impact crop yield, until recently considerably less was known concerning endogenous factors, including within-plant nutrient allocation. In this review, we discuss studies of source-sink interactions covering both fundamental research in model systems under controlled growth conditions and how the findings are being translated to crop plants in the field. In this respect we detail efforts aimed at improving and/or combining C3, C4, and CAM modes of photosynthesis, altering the chloroplastic electron transport chain, modulating photorespiration, adopting bacterial/algal carbon-concentrating mechanisms, and enhancing nitrogen- and water-use efficiencies. Moreover, we discuss how modulating TCA cycle activities and primary metabolism can result in increased rates of photosynthesis and outline the opportunities that evaluating natural variation in photosynthesis may afford. Although source, transport, and sink functions are all covered in this review, we focus on discussing source functions because the majority of research has been conducted in this field. Nevertheless, considerable recent evidence, alongside the evidence from classical studies, demonstrates that both transport and sink functions are also incredibly important determinants of yield. We thus describe recent evidence supporting this notion and suggest that future strategies for yield improvement should focus on combining improvements in each of these steps to approach yield optimization.
Collapse
Affiliation(s)
- Laise Rosado-Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Ryo Yokoyama
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Uwe Sonnewald
- Department of Biochemistry, University of Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
43
|
Lu L, Arif S, Yu JM, Lee JW, Park YH, Tucker ML, Kim J. Involvement of IDA-HAE Module in Natural Development of Tomato Flower Abscission. PLANTS (BASEL, SWITZERLAND) 2023; 12:185. [PMID: 36616314 PMCID: PMC9823658 DOI: 10.3390/plants12010185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The unwanted detachment of organs such as flowers, leaves, and fruits from the main body of a plant (abscission) has significant effects on agricultural practice. Both timely and precise regulation of organ abscission from a plant is crucial as it influences the agricultural yield. The tomato (Solanum lycopersicum) has become a model system for research on organ abscission. Here, we characterized four tomato natural abscission variants named jointless (j), functionally impaired jointless (fij), functionally impaired jointless like (fij like), and normal joint (NJ), based on their cellular features within the flower abscission zones (AZ). Using eight INFLORESCENCE DEFICIENT IN ABSCISSION (SlIDA) genes and eight HAESA genes (SlHAE) identified in the genome sequence of tomato, we analyzed the pattern of gene expression during flower abscission. The AZ-specific expression for three tomato abscission polygalacturonases (SlTAPGs) in the development of flower AZ, and the progression of abscission validated our natural abscission system. Compared to that of j, fij, and fij like variants, the AZ-specific expression for SlIDA, SlIDL2, SlIDL3, SlIDL4, and SlIDL5 in the NJ largely corelated and increased with the process of abscission. Of eight SlHAE genes examined, the expression for SlHSL6 and SlHSL7 were found to be AZ-specific and increased as abscission progressed in the NJ variant. Unlike the result of gene expression obtained from natural abscission system, an in silico analysis of transcriptional binding sites uncovered that SlIDA genes (SlIDA, SlIDL6, and SlIDL7) are predominantly under the control of environmental stress, while most of the SlHSL genes are affiliated with the broader context in developmental processes and stress responses. Our result presents the potential bimodal transcriptional regulation of the tomato IDA-HAE module associated with flower abscission in tomatoes.
Collapse
Affiliation(s)
- Lu Lu
- Department of Horticultural Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Samiah Arif
- Department of Horticultural Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jun Myoung Yu
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - June Woo Lee
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea
- Quality Assurance Team, Quality Assurance Department, Nongwoobio Co., Ltd., Yeoju 12655, Republic of Korea
| | - Young-Hoon Park
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea
| | - Mark Leo Tucker
- Soybean Genomics and Improvement Lab, Agriculture Research Service, United States Department of Agriculture, Building 006, BARC-West, Beltsville, MD 20705, USA
| | - Joonyup Kim
- Department of Horticultural Science, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
44
|
Monniaux M, Vandenbussche M. Flower Development in the Solanaceae. Methods Mol Biol 2023; 2686:39-58. [PMID: 37540353 DOI: 10.1007/978-1-0716-3299-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Flower development is the process leading from a reproductive meristem to a mature flower with fully developed floral organs. This multi-step process is complex and involves thousands of genes in intertwined regulatory pathways; navigating through the FLOR-ID website will give an impression of this complexity and of the astonishing amount of work that has been carried on the topic (Bouché et al., Nucleic Acids Res 44:D1167-D1171, 2016). Our understanding of flower development mostly comes from the model species Arabidopsis thaliana, but numerous other studies outside of Brassicaceae have helped apprehend the conservation of these mechanisms in a large evolutionary context (Moyroud and Glover, Curr Biol 27:R941-R951, 2017; Smyth, New Phytol 220:70-86, 2018; Soltis et al., Ann Bot 100:155-163, 2007). Integrating additional species and families to the research on this topic can only advance our understanding of flower development and its evolution.In this chapter, we review the contribution that the Solanaceae family has made to the comprehension of flower development. While many of the general features of flower development (i.e., the key molecular players involved in flower meristem identity, inflorescence architecture or floral organ development) are similar to Arabidopsis, our main objective in this chapter is to highlight the points of divergence and emphasize specificities of the Solanaceae. We will not discuss the large topics of flowering time regulation, inflorescence architecture and fruit development, and we will restrict ourselves to the mechanisms included in a time window after the floral transition and before the fertilization. Moreover, this review will not be exhaustive of the large amount of work carried on the topic, and the choices that we made to describe in large details some stories from the literature are based on the soundness of the functional work performed, and surely as well on our own preferences and expertise.First, we will give a brief overview of the Solanaceae family and some of its specificities. Then, our focus will be on the molecular mechanisms controlling floral organ identity, for which extended functional work in petunia led to substantial revisions to the famous ABC model. Finally, after reviewing some studies on floral organ initiation and growth, we will discuss floral organ maturation, using the examples of the inflated calyx of the Chinese lantern Physalis and petunia petal pigmentation.
Collapse
Affiliation(s)
- Marie Monniaux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France.
| | - Michiel Vandenbussche
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France.
| |
Collapse
|
45
|
Zhang Z, Wang W, Ali S, Luo X, Xie L. CRISPR/Cas9-Mediated Multiple Knockouts in Abscisic Acid Receptor Genes Reduced the Sensitivity to ABA during Soybean Seed Germination. Int J Mol Sci 2022; 23:ijms232416173. [PMID: 36555815 PMCID: PMC9784318 DOI: 10.3390/ijms232416173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/04/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Abscisic acid (ABA) is an important plant hormone that regulates numerous functions in plant growth, development, and stress responses. Several proteins regulate the ABA signal transduction mechanism in response to environmental stress. Among them, the PYR1/PYL/RCAR family act as ABA receptors. This study used the CRISPR/Cas9 gene-editing system with a single gRNA to knock out three soybean PYL genes: GmPYL17, GmPYL18, and GmPYL19. The gRNA may efficiently cause varying degrees of deletion of GmPYL17, GmPYL18, and GmPYL19 gene target sequences, according to the genotyping results of T0 plants. A subset of induced alleles was successfully transferred to progeny. In the T2 generation, we obtained double and triple mutant genotypes. At the seed germination stage, CRISPR/Cas9-created GmPYL gene knockout mutants, particularly gmpyl17/19 double mutants, are less susceptible to ABA than the wild type. RNA-Seq was used to investigate the differentially expressed genes related to the ABA response from germinated seedlings under diverse treatments using three biological replicates. The gmpyl17/19-1 double mutant was less susceptible to ABA during seed germination, and mutant plant height and branch number were higher than the wild type. Under ABA stress, the GO enrichment analysis showed that certain positive germination regulators were activated, which reduced ABA sensitivity and enhanced seed germination. This research gives a theoretical basis for a better understanding of the ABA signaling pathway and the participation of the key component at their molecular level, which helps enhance soybean abiotic stress tolerance. Furthermore, this research will aid breeders in regulating and improving soybean production and quality under various stress conditions.
Collapse
Affiliation(s)
- Zhaohan Zhang
- Key Laboratory of Saline-Alkali Vegetative Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang 261325, China
| | - Wanpeng Wang
- Key Laboratory of Saline-Alkali Vegetative Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shahid Ali
- Key Laboratory of Saline-Alkali Vegetative Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xiao Luo
- Peking University Institute of Advanced Agricultural Sciences, Weifang 261325, China
- Correspondence: (X.L.); (L.X.)
| | - Linan Xie
- Key Laboratory of Saline-Alkali Vegetative Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
- Correspondence: (X.L.); (L.X.)
| |
Collapse
|
46
|
Alonge M, Lebeigle L, Kirsche M, Jenike K, Ou S, Aganezov S, Wang X, Lippman ZB, Schatz MC, Soyk S. Automated assembly scaffolding using RagTag elevates a new tomato system for high-throughput genome editing. Genome Biol 2022; 23:258. [PMID: 36522651 PMCID: PMC9753292 DOI: 10.1186/s13059-022-02823-7] [Citation(s) in RCA: 195] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Advancing crop genomics requires efficient genetic systems enabled by high-quality personalized genome assemblies. Here, we introduce RagTag, a toolset for automating assembly scaffolding and patching, and we establish chromosome-scale reference genomes for the widely used tomato genotype M82 along with Sweet-100, a new rapid-cycling genotype that we developed to accelerate functional genomics and genome editing in tomato. This work outlines strategies to rapidly expand genetic systems and genomic resources in other plant species.
Collapse
Affiliation(s)
- Michael Alonge
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ludivine Lebeigle
- Center for Integrative Genomics, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Melanie Kirsche
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Katie Jenike
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Shujun Ou
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sergey Aganezov
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Xingang Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Sebastian Soyk
- Center for Integrative Genomics, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
47
|
Wang W, Yu Z, He F, Bai G, Trick HN, Akhunova A, Akhunov E. Multiplexed promoter and gene editing in wheat using a virus-based guide RNA delivery system. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2332-2341. [PMID: 36070109 PMCID: PMC9674318 DOI: 10.1111/pbi.13910] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/20/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
The low efficiency of genetic transformation and gene editing across diverse cultivars hinder the broad application of CRISPR technology for crop improvement. The development of virus-based methods of CRISPR-Cas system delivery into the plant cells holds great promise to overcome these limitations. Here, we perform direct inoculation of wheat leaves with the barley stripe mosaic virus (BSMV) transcripts to deliver guide RNAs (sgRNA) into the Cas9-expressing wheat. We demonstrate that wheat inoculation with the pool of BSMV-sgRNAs could be used to generate heritable precise deletions in the promoter region of a transcription factor and to perform multiplexed editing of agronomic genes. We transfer the high-expressing locus of Cas9 into adapted spring and winter cultivars by marker-assisted introgression and use of the BSMV-sgRNAs to edit two agronomic genes. A strategy presented in our study could be applied to any adapted cultivar for creating new cis-regulatory diversity or large-scale editing of multiple genes in biological pathways or QTL regions, opening possibilities for the effective engineering of crop genomes, and accelerating gene discovery and trait improvement efforts.
Collapse
Affiliation(s)
- Wei Wang
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
- Wheat Genetic Resources CenterKansas State UniversityManhattanKSUSA
| | - Zitong Yu
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
- Wheat Genetic Resources CenterKansas State UniversityManhattanKSUSA
| | - Fei He
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
- Present address:
State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Guihua Bai
- Hard Winter Wheat Genetics Research UnitUSDA‐ARSManhattanKSUSA
| | - Harold N. Trick
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| | - Alina Akhunova
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
- Integrated Genomic FacilityKansas State UniversityManhattanKSUSA
| | - Eduard Akhunov
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
- Wheat Genetic Resources CenterKansas State UniversityManhattanKSUSA
| |
Collapse
|
48
|
Ul Haq SI, Zheng D, Feng N, Jiang X, Qiao F, He JS, Qiu QS. Progresses of CRISPR/Cas9 genome editing in forage crops. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153860. [PMID: 36371870 DOI: 10.1016/j.jplph.2022.153860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mediated-genome editing has evolved into a powerful tool that is widely used in plant species to induce editing in the genome for analyzing gene function and crop improvement. CRISPR/Cas9 is an RNA-guided genome editing tool consisting of a Cas9 nuclease and a single-guide RNA (sgRNA). The CRISPR/Cas9 system enables more accurate and efficient genome editing in crops. In this review, we summarized the advances of the CRISPR/Cas9 technology in plant genome editing and its applications in forage crops. We described briefly about the development of CRISPR/Cas9 technology in plant genome editing. We assessed the progress of CRISPR/Cas9-mediated targeted-mutagenesis in various forage crops, including alfalfa, Medicago truncatula, Hordeum vulgare, Sorghum bicolor, Setaria italica and Panicum virgatum. The potentials and challenges of CRISPR/Cas9 in forage breeding were discussed.
Collapse
Affiliation(s)
- Syed Inzimam Ul Haq
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Xingyu Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Feng Qiao
- Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810016, China
| | - Jin-Sheng He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, 730000, China; Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810016, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| |
Collapse
|
49
|
Hoffman NE. USDA's revised biotechnology regulation's contribution to increasing agricultural sustainability and responding to climate change. FRONTIERS IN PLANT SCIENCE 2022; 13:1055529. [PMID: 36507369 PMCID: PMC9726801 DOI: 10.3389/fpls.2022.1055529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Biotechnology can provide a valuable tool to meet UN Sustainable Development Goals and U.S. initiatives to find climate solutions and improve agricultural sustainability. The literature contains hundreds of examples of crops that may serve this purpose, yet most remain un-launched due to high regulatory barriers. Recently the USDA revised its biotechnology regulations to make them more risk-proportionate, science-based, and streamlined. Here, we review some of the promising leads that may enable agriculture to contribute to UN sustainability goals. We further describe and discuss how the revised biotechnology regulation would hypothetically apply to these cases.
Collapse
|
50
|
Jian L, Yan J, Liu J. De Novo Domestication in the Multi-Omics Era. PLANT & CELL PHYSIOLOGY 2022; 63:1592-1606. [PMID: 35762778 DOI: 10.1093/pcp/pcac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Most cereal crops were domesticated within the last 12,000 years and subsequently spread around the world. These crops have been nourishing the world by supplying a primary energy and nutrient source, thereby playing a critical role in determining the status of human health and sustaining the global population. Here, we review the major challenges of future agriculture and emphasize the utilization of wild germplasm. De novo domestication is one of the most straightforward strategies to manipulate domestication-related and/or other genes with known function, and thereby introduce desired traits into wild plants. We also summarize known causal variations and their corresponding pathways in order to better understand the genetic basis of crop evolution, and how this knowledge could facilitate de novo domestication. Indeed knowledge-driven de novo domestication has great potential for the development of new sustainable crops that have climate-resilient high yield with low resource input and meet individual nutrient needs. Finally, we discuss current opportunities for and barriers to knowledge-driven de novo domestication.
Collapse
Affiliation(s)
- Liumei Jian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jie Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|