1
|
Han J, Wang R, Wang M, Yu Z, Zhu L, Zhang J, Zhu J, Zhang S, Xi W, Wu H. Dynamic lateralization in contralateral-projecting corticospinal neurons during motor learning. iScience 2024; 27:111078. [PMID: 39493873 PMCID: PMC11530912 DOI: 10.1016/j.isci.2024.111078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/15/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
Understanding the adaptability of the motor cortex in response to bilateral motor tasks is crucial for advancing our knowledge of neural plasticity and motor learning. Here we aim to investigate the dynamic lateralization of contralateral-projecting corticospinal neurons (cpCSNs) during such tasks. Utilizing in vivo two-photon calcium imaging, we observe cpCSNs in mice performing a "left-right" lever-press task. Our findings reveal heterogeneous populational dynamics in cpCSNs: a marked decrease in activity during ipsilateral motor learning, in contrast to maintained activity during contralateral motor learning. Notably, individual cpCSNs show dynamic shifts in engagement with ipsilateral and contralateral movements, displaying an evolving pattern of activation over successive days. It suggests that cpCSNs exhibit adaptive changes in activation patterns in response to ipsilateral and contralateral movements, highlighting a flexible reorganization during motor learning This reconfiguration underscores the dynamic nature of cortical lateralization in motor learning and offers insights for neuromotor rehabilitation.
Collapse
Affiliation(s)
- Jiawei Han
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Clinical Research Center for Neurological Disease of Zhejiang Province, Hangzhou 310058, China
| | - Ruixue Wang
- Department of Neurosurgery, Third Affiliated Hospital, Naval Medical University, Shanghai 200438, China
- Qiushi Academy for Advanced Studies, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Minmin Wang
- Qiushi Academy for Advanced Studies, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Zhihua Yu
- Department of Critical Care Medicine, Hangzhou Third People’s Hospital, Hangzhou 310058, China
| | - Liang Zhu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Clinical Research Center for Neurological Disease of Zhejiang Province, Hangzhou 310058, China
| | - Junming Zhu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Clinical Research Center for Neurological Disease of Zhejiang Province, Hangzhou 310058, China
| | - Shaomin Zhang
- Qiushi Academy for Advanced Studies, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Wang Xi
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China
- MOE Frontier Science Center for Brain Research and Brain Machine Integration, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Hemmings Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Clinical Research Center for Neurological Disease of Zhejiang Province, Hangzhou 310058, China
| |
Collapse
|
2
|
Li Y, An X, Mulcahey PJ, Qian Y, Xu XH, Zhao S, Mohan H, Suryanarayana SM, Bachschmid-Romano L, Brunel N, Whishaw IQ, Huang ZJ. Cortico-thalamic communication for action coordination in a skilled motor sequence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.25.563871. [PMID: 37961483 PMCID: PMC10634836 DOI: 10.1101/2023.10.25.563871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The coordination of forelimb and orofacial movements to compose an ethological reach-to-consume behavior likely involves neural communication across brain regions. Leveraging wide-field imaging and photo-inhibition to survey across the cortex, we identified a cortical network and a high-order motor area (MOs-c), which coordinate action progression in a mouse reach-and-withdraw-to-drink (RWD) behavior. Electrophysiology and photo-inhibition across multiple projection neuron types within the MOs-c revealed differential contributions of pyramidal tract and corticothalamic (CT MOs ) output channels to action progression and hand-mouth coordination. Notably, CT MOs display sustained firing throughout RWD sequence and selectively enhance RWD-relevant activity in postsynaptic thalamus neurons, which also contribute to action coordination. CT MOs receive converging monosynaptic inputs from forelimb and orofacial sensorimotor areas and are reciprocally connected to thalamic neurons, which project back to the cortical network. Therefore, motor cortex corticothalamic channel may selectively amplify the thalamic integration of cortical and subcortical sensorimotor streams to coordinate a skilled motor sequence.
Collapse
|
3
|
Khanal N, Padawer-Curry JA, Voss T, Schulte KA, Bice AR, Bauer AQ. Concurrent optogenetic motor mapping of multiple limbs in awake mice reveals cortical organization of coordinated movements. Brain Stimul 2024; 17:1229-1240. [PMID: 39476952 DOI: 10.1016/j.brs.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Motor mapping allows for determining the macroscopic organization of motor circuits and corresponding motor movement representations on the cortex. Techniques such as intracortical microstimulation (ICMS) are robust, but can be time consuming and invasive, making them non-ideal for cortex-wide mapping or longitudinal studies. In contrast, optogenetic motor mapping offers a rapid and minimally invasive technique, enabling mapping with high spatiotemporal resolution. However, motor mapping has seen limited use in tracking 3-dimensonal, multi-limb movements in awake animals. This gap has left open questions regarding the underlying organizational principles of motor control of coordinated, ethologically-relevant movements involving multiple limbs. OBJECTIVE Our first objective was to develop Multi-limb Optogenetic Motor Mapping (MOMM) to concurrently map motor movement representations of multiple limbs with high fidelity in awake mice. Having established MOMM, our next objective was determine whether maps of coordinated and ethologically-relevant motor output were topographically organized on the cortex. METHODS We combine optogenetic stimulation with a deep learning driven pose-estimation toolbox, DeepLabCut (DLC), and 3-dimensional triangulation to concurrently map motor movements of multiple limbs in awake mice. RESULTS MOMM consistently revealed cortical topographies for all mapped features within and across mice. Many motor maps overlapped and were topographically similar. Several motor movement representations extended beyond cytoarchitecturally defined somatomotor cortex. Finer articulations of the forepaw resided within gross motor movement representations of the forelimb. Moreover, many cortical sites exhibited concurrent limb coactivation when photostimulated, prompting the identification of several cortical regions harboring coordinated and ethologically-relevant movements. CONCLUSIONS The cortex appears to be topographically organized by motor programs, which are responsible for coordinated, multi-limbed, and behavior-like movements.
Collapse
Affiliation(s)
- Nischal Khanal
- Imaging Science Program, Washington University in St. Louis, St. Louis, Missouri, United States; Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave, St. Louis, MO 63110, United States.
| | - Jonah A Padawer-Curry
- Imaging Science Program, Washington University in St. Louis, St. Louis, Missouri, United States; Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave, St. Louis, MO 63110, United States.
| | - Trevor Voss
- Biophotonics Center, School of Engineering, Vanderbilt University, Keck FEL Center, Suite 200, 410 24th Ave. South, Nashville, TN 37232, United States.
| | - Kevin A Schulte
- University of Missouri School of Medicine, 1 Hospital Dr, Columbia, MO 65212, United States.
| | - Annie R Bice
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave, St. Louis, MO 63110, United States.
| | - Adam Q Bauer
- Imaging Science Program, Washington University in St. Louis, St. Louis, Missouri, United States; Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave, St. Louis, MO 63110, United States; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States.
| |
Collapse
|
4
|
Lu D, Uldry Lavergne CG, Choi S, Park J, Kim J, Zhao S, Desimone Q, Lendaro E, Chen B, Han BX, Wang F, Goldstein N. General anesthesia activates a central anxiolytic center in the BNST. Cell Rep 2024; 43:114909. [PMID: 39460938 DOI: 10.1016/j.celrep.2024.114909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Low doses of general anesthetics like ketamine and dexmedetomidine have anxiolytic properties independent of their sedative effects, but the underlying mechanisms remain unclear. We discovered a population of GABAergic neurons in the oval division of the bed nucleus of the stria terminalis that are activated by multiple anesthetics and the anxiolytic drug diazepam (ovBNSTGA). The majority of ovBNSTGA neurons express neurotensin receptor 1 (Ntsr1) and form circuits with brain regions known to regulate anxiety and stress responses. Optogenetic activation of ovBNSTGA or ovBNSTNtsr1 neurons significantly attenuated anxiety-like behaviors in both naive animals and mice with inflammatory pain, while inhibition of these cells elevated anxiety. Activation of these neurons decreased heart rate and increased heart rate variability, suggesting that they reduce anxiety by modulating autonomic responses. Our study identifies ovBNSTGA/ovBNSTNtsr1 neurons as a common neural substrate mediating the anxiolytic effect of low-dose anesthetics and a potential therapeutic target for treating anxiety-related disorders.
Collapse
Affiliation(s)
- Dongye Lu
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Camille G Uldry Lavergne
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Seonmi Choi
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jaehong Park
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Jiwoo Kim
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Shengli Zhao
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Quinn Desimone
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eva Lendaro
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bin Chen
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bao-Xia Han
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Fan Wang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Nitsan Goldstein
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Wadsley CG, Nguyen T, Horton C, Greenhouse I. Goal-directed action preparation in humans entails a mixture of corticospinal neural computations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602530. [PMID: 39026882 PMCID: PMC11257418 DOI: 10.1101/2024.07.08.602530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The seemingly effortless ability of humans to transition from thinking about actions to initiating them relies on sculpting corticospinal output from primary motor cortex. This study tested whether canonical additive and multiplicative neural computations, well-described in sensory systems, generalize to the corticospinal pathway during human action preparation. We used non-invasive brain stimulation to measure corticospinal input-output across varying action preparation contexts during instructed-delay finger response tasks. Goal-directed action preparation was marked by increased multiplicative gain of corticospinal projections to task-relevant muscles and additive suppression of corticospinal projections to non-selected and task-irrelevant muscles. Individuals who modulated corticospinal gain to a greater extent were faster to initiate prepared responses. Our findings provide physiological evidence of combined additive suppression and gain modulation in the human motor system. We propose these computations support action preparation by enhancing the contrast between selected motor representations and surrounding background activity to facilitate response selection and execution. Key points Neural computations determine what information is transmitted through brain circuits.We investigated whether the motor system uses computations similar to those observed in sensory systems by noninvasively stimulating the corticospinal pathway in humans during goal-directed action preparation.We discovered physiological evidence that corticospinal projections to behaviorally relevant muscles exhibit nonlinear gain computations, while projections to behaviorally irrelevant muscles exhibit linear suppression.Our findings suggest that certain computational principles generalize to the human motor system and serve to enhance the contrast between relevant and background neural activity.These results indicate that neural computations during goal-directed action preparation may support motor control by increasing signal-to-noise within the corticospinal pathway.
Collapse
|
6
|
Sun H, Cai R, Li R, Li M, Gao L, Li X. Conjunctive processing of spatial border and locomotion in retrosplenial cortex during spatial navigation. J Physiol 2024; 602:5017-5038. [PMID: 39216077 DOI: 10.1113/jp286434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Spatial information and dynamic locomotor behaviours are equally important for achieving locomotor goals during spatial navigation. However, it remains unclear how spatial and locomotor information is integrated during the processing of self-initiated spatial navigation. Anatomically, the retrosplenial cortex (RSC) has reciprocal connections with brain regions related to spatial processing, including the hippocampus and para-hippocampus, and also receives inputs from the secondary motor cortex. In addition, RSC is functionally associated with allocentric and egocentric spatial targets and head-turning. So, RSC may be a critical region for integrating spatial and locomotor information. In this study, we first examined the role of RSC in spatial navigation using the Morris water maze and found that mice with inactivated RSC took a longer time and distance to reach their destination. Then, by imaging neuronal activity in freely behaving mice within two open fields of different sizes, we identified a large proportion of border cells, head-turning cells and locomotor speed cells in the superficial layer of RSC. Interestingly, some RSC neurons exhibited conjunctive coding for both spatial and locomotor signals. Furthermore, these conjunctive neurons showed higher prediction accuracy compared with simple spatial or locomotor neurons in special navigator scenes using the border, turning and positive-speed conjunctive cells. Our study reveals that the RSC is an important conjunctive brain region that processes spatial and locomotor information during spatial navigation. KEY POINTS: Retrosplenial cortex (RSC) is indispensable during spatial navigation, which was displayed by the longer time and distance of mice to reach their destination after the inactivation of RSC in a water maze. The superficial layer of RSC has a larger population of spatial-related border cells, and locomotion-related head orientation and speed cells; however, it has few place cells in two-dimensional spatial arenas. Some RSC neurons exhibited conjunctive coding for both spatial and locomotor signals, and the conjunctive neurons showed higher prediction accuracy compared with simple spatial or locomotor neurons in special navigation scenes. Our study reveals that the RSC is an important conjunctive brain region that processes both spatial and locomotor information during spatial navigation.
Collapse
Affiliation(s)
- Hao Sun
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Nanhu Brain-computer Interface Institute, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Ruolan Cai
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Li
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Lixia Gao
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Nanhu Brain-computer Interface Institute, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xinjian Li
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, China
| |
Collapse
|
7
|
Chen W, Wu J, Yang C, Li S, Liu Z, An Y, Wang X, Cao J, Xu J, Duan Y, Yuan X, Zhang X, Zhou Y, Ip JPK, Fu AKY, Ip NY, Yao Z, Liu K. Lipin1 depletion coordinates neuronal signaling pathways to promote motor and sensory axon regeneration after spinal cord injury. Proc Natl Acad Sci U S A 2024; 121:e2404395121. [PMID: 39292743 PMCID: PMC11441493 DOI: 10.1073/pnas.2404395121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/05/2024] [Indexed: 09/20/2024] Open
Abstract
Adult central nervous system (CNS) neurons down-regulate growth programs after injury, leading to persistent regeneration failure. Coordinated lipids metabolism is required to synthesize membrane components during axon regeneration. However, lipids also function as cell signaling molecules. Whether lipid signaling contributes to axon regeneration remains unclear. In this study, we showed that lipin1 orchestrates mechanistic target of rapamycin (mTOR) and STAT3 signaling pathways to determine axon regeneration. We established an mTOR-lipin1-phosphatidic acid/lysophosphatidic acid-mTOR loop that acts as a positive feedback inhibitory signaling, contributing to the persistent suppression of CNS axon regeneration following injury. In addition, lipin1 knockdown (KD) enhances corticospinal tract (CST) sprouting after unilateral pyramidotomy and promotes CST regeneration following complete spinal cord injury (SCI). Furthermore, lipin1 KD enhances sensory axon regeneration after SCI. Overall, our research reveals that lipin1 functions as a central regulator to coordinate mTOR and STAT3 signaling pathways in the CNS neurons and highlights the potential of lipin1 as a promising therapeutic target for promoting the regeneration of motor and sensory axons after SCI.
Collapse
Affiliation(s)
- Weitao Chen
- Biomedical Research Institute, Shenzhen Peking University–The Hong Kong University of Science and Technology Medical Center, Shenzhen518036, China
| | - Junqiang Wu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Chao Yang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong518057, China
| | - Suying Li
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen518057, China
- Shenzhen Key Laboratory of Food Biological Safety Control, Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen518057, China
| | - Zhewei Liu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yongyan An
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xuejie Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Jiaming Cao
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jiahui Xu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong518057, China
| | - Yangyang Duan
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong518057, China
| | - Xue Yuan
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Xin Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiren Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jacque Pak Kan Ip
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Amy K. Y. Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong518057, China
| | - Nancy Y. Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong518057, China
| | - Zhongping Yao
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen518057, China
- Shenzhen Key Laboratory of Food Biological Safety Control, Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen518057, China
| | - Kai Liu
- Biomedical Research Institute, Shenzhen Peking University–The Hong Kong University of Science and Technology Medical Center, Shenzhen518036, China
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong518057, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
8
|
Fait BW, Cotto B, Murakami TC, Hagemann-Jensen M, Zhan H, Freivald C, Turbek I, Gao Y, Yao Z, Way SW, Zeng H, Tasic B, Steward O, Heintz N, Schmidt EF. Spontaneously regenerative corticospinal neurons in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612115. [PMID: 39314356 PMCID: PMC11419066 DOI: 10.1101/2024.09.09.612115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The spinal cord receives inputs from the cortex via corticospinal neurons (CSNs). While predominantly a contralateral projection, a less-investigated minority of its axons terminate in the ipsilateral spinal cord. We analyzed the spatial and molecular properties of these ipsilateral axons and their post-synaptic targets in mice and found they project primarily to the ventral horn, including directly to motor neurons. Barcode-based reconstruction of the ipsilateral axons revealed a class of primarily bilaterally-projecting CSNs with a distinct cortical distribution. The molecular properties of these ipsilaterally-projecting CSNs (IP-CSNs) are strikingly similar to the previously described molecular signature of embryonic-like regenerating CSNs. Finally, we show that IP-CSNs are spontaneously regenerative after spinal cord injury. The discovery of a class of spontaneously regenerative CSNs may prove valuable to the study of spinal cord injury. Additionally, this work suggests that the retention of juvenile-like characteristics may be a widespread phenomenon in adult nervous systems.
Collapse
|
9
|
Bollu T, Whitehead SC, Prasad N, Walker J, Shyamkumar N, Subramaniam R, Kardon B, Cohen I, Goldberg JH. Motor cortical inactivation impairs corrective submovements in mice performing a hold-still center-out reach task. J Neurophysiol 2024; 132:829-848. [PMID: 39081209 PMCID: PMC11427071 DOI: 10.1152/jn.00241.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Holding still and aiming reaches to spatial targets may depend on distinct neural circuits. Using automated homecage training and a sensitive joystick, we trained freely moving mice to contact a joystick, hold their forelimb still, and then reach to rewarded target locations. Mice learned the task by initiating forelimb sequences with clearly resolved submillimeter-scale micromovements followed by millimeter-scale reaches to learned spatial targets. Hundreds of thousands of trajectories were decomposed into millions of kinematic submovements, while photoinhibition was used to test roles of motor cortical areas. Inactivation of both caudal and rostral forelimb areas preserved the ability to produce aimed reaches, but reduced reach speed. Inactivation specifically of contralateral caudal forelimb area (CFA) additionally impaired the ability to aim corrective submovements to remembered locations following target undershoots. Our findings show that motor cortical inactivations reduce the gain of forelimb movements but that inactivation specifically of contralateral CFA impairs corrective movements important for reaching a target location.NEW & NOTEWORTHY To test the role of different cortical areas in holding still and reaching to targets, this study combined home-cage training with optogenetic silencing as mice engaged in a learned center-out-reach task. Inactivation specifically of contralateral caudal forelimb area (CFA) impaired corrective movements necessary to reach spatial targets to earn reward.
Collapse
Affiliation(s)
- Tejapratap Bollu
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States
| | - Samuel C Whitehead
- Department of Physics, Cornell University, Ithaca, New York, United States
| | - Nikil Prasad
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States
| | - Jackson Walker
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States
| | - Nitin Shyamkumar
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States
| | - Raghav Subramaniam
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States
| | - Brian Kardon
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, New York, United States
| | - Jesse H Goldberg
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States
| |
Collapse
|
10
|
Koh N, Ma Z, Sarup A, Kristl AC, Agrios M, Young M, Miri A. Selective direct motor cortical influence during naturalistic climbing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.18.545509. [PMID: 39229015 PMCID: PMC11370436 DOI: 10.1101/2023.06.18.545509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
It remains poorly resolved when and how motor cortical output directly influences limb muscle activity through descending projections, which impedes mechanistic understanding of cortical movement control. Here we addressed this in mice performing an ethologically inspired all-limb climbing behavior. We quantified the direct influence of forelimb primary motor cortex (caudal forelimb area, CFA) on muscle activity comprehensively across the muscle activity states that occur during climbing. We found that CFA informs muscle activity pattern, mainly by selectively activating certain muscles while exerting much smaller, bidirectional effects on their antagonists. From Neuropixel recordings, we identified linear combinations (components) of motor cortical activity that covary with these effects, finding that these components differ from those that covary with muscle activity or kinematics. Collectively, our results reveal an instructive direct motor cortical influence on limb muscles that is selective within a motor behavior and reliant on a new type of neural activity subspace.
Collapse
|
11
|
Khanal N, Padawer-Curry J, Voss T, Schulte K, Bice A, Bauer A. Concurrent optogenetic motor mapping of multiple limbs in awake mice reveals cortical organization of coordinated movements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602302. [PMID: 39005269 PMCID: PMC11245104 DOI: 10.1101/2024.07.05.602302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Motor mapping allows for determining the macroscopic organization of motor circuits and corresponding motor movement representations on the cortex. Techniques such as intracortical microstimulation (ICMS) are robust, but can be time consuming and invasive, making them non-ideal for cortex-wide mapping or longitudinal studies. In contrast, optogenetic motor mapping offers a rapid and minimally invasive technique, enabling mapping with high spatiotemporal resolution. However, motor mapping has seen limited use in tracking 3-dimensonal, multi-limb movements in awake animals. This gap has left open questions regarding the underlying organizational principles of motor control of coordinated, ethologically relevant movements involving multiple limbs. Objective Our first objective was to develop Multi-limb Optogenetic Motor Mapping (MOMM) to concurrently map motor movement representations of multiple limbs with high fidelity in awake mice. Having established MOMM, our next objective was determine whether maps of coordinated and ethologically relevant motor output were topographically organized on the cortex. Methods We combine optogenetic stimulation with a deep learning driven pose-estimation toolbox, DeepLabCut (DLC), and 3-dimentional triangulation to concurrently map motor movements of multiple limbs in awake mice. Results MOMM consistently revealed cortical topographies for all mapped features within and across mice. Many motor maps overlapped and were topographically similar. Several motor movement representations extended beyond cytoarchitecturally defined somatomotor cortex. Finer articulations of the forepaw resided within gross motor movement representations of the forelimb. Moreover, many cortical sites exhibited concurrent limb coactivation when photostimulated, prompting the identification of several cortical regions harboring coordinated and ethologically relevant movements. Conclusions The cortex appears to be topographically organized by motor programs, which are responsible for coordinated, multi-limbed, and behavioral-like movements.
Collapse
|
12
|
Nishiyama M, Kalambogias J, Imai F, Yang E, Lang S, de Nooij JC, Yoshida Y. Anatomical and functional analysis of the corticospinal tract in an FRDA mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601178. [PMID: 39005321 PMCID: PMC11244874 DOI: 10.1101/2024.06.28.601178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Friedreich's ataxia (FRDA) is one of the most common hereditary ataxias. It is caused by a GAA repeat in the first intron of the FXN gene, which encodes an essential mitochondrial protein. Patients suffer from progressive motor dysfunction due to the degeneration of mechanoreceptive and proprioceptive neurons in dorsal root ganglia (DRG) and cerebellar dentate nucleus neurons, especially at early disease stages. Postmortem analyses of FRDA patients also indicate pathological changes in motor cortex including in the projection neurons that give rise to the cortical spinal tract (CST). Yet, it remains poorly understood how early in the disease cortical spinal neurons (CSNs) show these alterations, or whether CSN/CST pathology resembles the abnormalities observed in other tissues affected by FXN loss. To address these questions, we examined CSN driven motor behaviors and pathology in the YG8JR FRDA mouse model. We find that FRDA mice show impaired motor skills, exhibit significant reductions in CSN functional output, and, among other pathological changes, show abnormal mitochondrial distributions in CSN neurons and CST axonal tracts. Moreover, some of these alterations were observed as early as two months of age, suggesting that CSN/CST pathology may be an earlier event in FRDA disease than previously appreciated. These studies warrant a detailed mechanistic understanding of how FXN loss impacts CSN health and functionality.
Collapse
Affiliation(s)
- Misa Nishiyama
- Burke Neurological Institute, White Plains, New York, United States
| | - John Kalambogias
- Burke Neurological Institute, White Plains, New York, United States
- Department of Neurology, Columbia University, New York, NY, USA
| | - Fumiyasu Imai
- Burke Neurological Institute, White Plains, New York, United States
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, United States
| | - Emily Yang
- Burke Neurological Institute, White Plains, New York, United States
| | - Sonia Lang
- Burke Neurological Institute, White Plains, New York, United States
| | | | - Yutaka Yoshida
- Burke Neurological Institute, White Plains, New York, United States
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, United States
- Neural Circuit Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
13
|
Imai F, Matsuura K, Yang E, Klinefelter K, Alexandrou G, Letelier A, Takatani H, Osakada F, Yoshida Y. Layer Va neurons, as major presynaptic partners of corticospinal neurons, play critical roles in skilled movements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601172. [PMID: 38979259 PMCID: PMC11230360 DOI: 10.1101/2024.06.28.601172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Corticospinal neurons (CSNs) are located in the cortex and projecting into the spinal cord. The activation of CSNs, which is associated with skilled motor behaviors, induces the activation of interneurons in the spinal cord. Eventually, motor neuron activation is induced by corticospinal circuits to coordinate muscle activation. Therefore, elucidating how the activation of CSNs in the brain is regulated is necessary for understanding the roles of CSNs in skilled motor behaviors. However, the presynaptic partners of CSNs in the brain remain to be identified. Here, we performed transsynaptic rabies virus-mediated brain-wide mapping to identify presynaptic partners of CSNs (pre-CSNs). We found that pre-CSNs are located in all cortical layers, but major pre-CSNs are located in layer Va. A small population of pre-CSNs are also located outside the cortex, such as in the thalamus. Inactivation of layer Va neurons in Tlx3-Cre mice results in deficits in skilled reaching and grasping behaviors, suggesting that, similar to CSNs, layer Va neurons are critical for skilled movements. Finally, we examined whether the connectivity of CSNs is altered after spinal cord injury (SCI). We found that unlike connections between CNSs and postsynaptic neurons, connections between pre-CSNs and CSNs do not change after SCI.
Collapse
|
14
|
Takatani H, Fujita N, Imai F, Yoshida Y. Forelimb motor recovery by modulating extrinsic and intrinsic signaling as well as neuronal activity after the cervical spinal cord injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.22.600167. [PMID: 38979293 PMCID: PMC11230274 DOI: 10.1101/2024.06.22.600167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Singular strategies for promoting axon regeneration and motor recovery after spinal cord injury (SCI) have been attempted with limited success. Here, we propose the combinatorial approach of deleting extrinsic and intrinsic factors paired with neural stimulation, will enhance adaptive axonal growth and motor recovery after SCI. We previously showed the deletion of RhoA and Pten in corticospinal neurons inhibits axon dieback and promotes axon sprouting after lumbar SCI. Here, we examined the effects of RhoA;Pten deletion coupled with neural stimulation after cervical SCI. This combinatorial approach promoted more boutons on injured corticospinal neurons in the spinal cord compared to sole RhoA;Pten deletion. Although RhoA;Pten deletion does not promote motor recovery in the forelimb after SCI, stimulating corticospinal neurons in those mice results in partial motor recovery. These results demonstrate that a combinatorial approach that pairs genetic modifications with neuronal stimulation can promote axon sprouting and motor recovery following SCI.
Collapse
Affiliation(s)
- Hirohide Takatani
- Burke Neurological Institute, White Plains, New York, United States
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, United States
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoki Fujita
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Fumiyasu Imai
- Burke Neurological Institute, White Plains, New York, United States
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, United States
| | - Yutaka Yoshida
- Burke Neurological Institute, White Plains, New York, United States
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, United States
- Neural Circuit Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Lead contact
| |
Collapse
|
15
|
Phillips CD, Hodge AT, Myers CC, Leventhal DK, Burgess CR. Striatal Dopamine Contributions to Skilled Motor Learning. J Neurosci 2024; 44:e0240242024. [PMID: 38806248 PMCID: PMC11211718 DOI: 10.1523/jneurosci.0240-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Coordinated multijoint limb and digit movements-"manual dexterity"-underlie both specialized skills (e.g., playing the piano) and more mundane tasks (e.g., tying shoelaces). Impairments in dexterous skill cause significant disability, as occurs with motor cortical injury, Parkinson's disease, and a range of other pathologies. Clinical observations, as well as basic investigations, suggest that corticostriatal circuits play a critical role in learning and performing dexterous skills. Furthermore, dopaminergic signaling in these regions is implicated in synaptic plasticity and motor learning. Nonetheless, the role of striatal dopamine signaling in skilled motor learning remains poorly understood. Here, we use fiber photometry paired with a genetically encoded dopamine sensor to investigate striatal dopamine release in both male and female mice as they learn and perform a skilled reaching task. Dopamine rapidly increases during a skilled reach and peaks near pellet consumption. In the dorsolateral striatum, dopamine dynamics are faster than in the dorsomedial and ventral striatum. Across training, as reaching performance improves, dopamine signaling shifts from pellet consumption to cues that predict pellet availability, particularly in medial and ventral areas of the striatum. Furthermore, performance prediction errors are present across the striatum, with reduced dopamine release after an unsuccessful reach. These findings show that dopamine dynamics during skilled motor behaviors change with learning and are differentially regulated across striatal subregions.
Collapse
Affiliation(s)
- Chris D Phillips
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas 75080
| | - Alexander T Hodge
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Courtney C Myers
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Daniel K Leventhal
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109
- Parkinson's Disease Foundation Research Center of Excellence, University of Michigan, Ann Arbor, Michigan 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109
- Department of Neurology, VA Ann Arbor Health System, Ann Arbor, Michigan 48109
| | - Christian R Burgess
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
16
|
Zhang Z, Su J, Tang J, Chung L, Page JC, Winter CC, Liu Y, Kegeles E, Conti S, Zhang Y, Biundo J, Chalif JI, Hua CY, Yang Z, Yao X, Yang Y, Chen S, Schwab JM, Wang KH, Chen C, Prerau MJ, He Z. Spinal projecting neurons in rostral ventromedial medulla co-regulate motor and sympathetic tone. Cell 2024; 187:3427-3444.e21. [PMID: 38733990 PMCID: PMC11193620 DOI: 10.1016/j.cell.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/27/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Many behaviors require the coordinated actions of somatic and autonomic functions. However, the underlying mechanisms remain elusive. By opto-stimulating different populations of descending spinal projecting neurons (SPNs) in anesthetized mice, we show that stimulation of excitatory SPNs in the rostral ventromedial medulla (rVMM) resulted in a simultaneous increase in somatomotor and sympathetic activities. Conversely, opto-stimulation of rVMM inhibitory SPNs decreased both activities. Anatomically, these SPNs innervate both sympathetic preganglionic neurons and motor-related regions in the spinal cord. Fiber-photometry recording indicated that the activities of rVMM SPNs correlate with different levels of muscle and sympathetic tone during distinct arousal states. Inhibiting rVMM excitatory SPNs reduced basal muscle and sympathetic tone, impairing locomotion initiation and high-speed performance. In contrast, silencing the inhibitory population abolished muscle atonia and sympathetic hypoactivity during rapid eye movement (REM) sleep. Together, these results identify rVMM SPNs as descending spinal projecting pathways controlling the tone of both the somatomotor and sympathetic systems.
Collapse
Affiliation(s)
- Zicong Zhang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Junfeng Su
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jing Tang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Leeyup Chung
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jessica C Page
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Carla C Winter
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA; Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
| | - Yuchu Liu
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Evgenii Kegeles
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA; PhD Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Sara Conti
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yu Zhang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jason Biundo
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Joshua I Chalif
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Charles Y Hua
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Zhiyun Yang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Xue Yao
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yang Yang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shuqiang Chen
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
| | - Jan M Schwab
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA; Departments of Neurology and Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kuan Hong Wang
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Chinfei Chen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Michael J Prerau
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Fan F, Yin T, Wu B, Zheng J, Deng J, Wu G, Hu S. The role of spinal neurons targeted by corticospinal neurons in central poststroke neuropathic pain. CNS Neurosci Ther 2024; 30:e14813. [PMID: 38887838 PMCID: PMC11183184 DOI: 10.1111/cns.14813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Central poststroke pain (CPSP) is one of the primary sequelae following stroke, yet its underlying mechanisms are poorly understood. METHODS By lesioning the lateral thalamic nuclei, we first established a CPSP model that exhibits mechanical and thermal hypersensitivity. Innocuous mechanical stimuli following the thalamic lesion evoked robust neural activation in somatosensory corticospinal neurons (CSNs), as well as in the deep dorsal horn, where low threshold mechanosensory afferents terminate. In this study, we used viral-based mapping and intersectional functional manipulations to decipher the role of somatosensory CSNs and their spinal targets in the CPSP pathophysiology. RESULTS We first mapped the post-synaptic spinal targets of lumbar innervating CSNs using an anterograde trans-synaptic AAV1-based strategy and showed these spinal interneurons were activated by innocuous tactile stimuli post-thalamic lesion. Functionally, tetanus toxin-based chronic inactivation of spinal neurons targeted by CSNs prevented the development of CPSP. Consistently, transient chemogenetic silencing of these neurons alleviated established mechanical pain hypersensitivity and innocuous tactile stimuli evoked aversion linked to the CPSP. In contrast, chemogenetic activation of these neurons was insufficient to induce robust mechanical allodynia typically observed in the CPSP. CONCLUSION The CSNs and their spinal targets are required but insufficient for the establishment of CPSP hypersensitivity. Our study provided novel insights into the neural mechanisms underlying CPSP and potential therapeutic interventions to treat refractory central neuropathic pain conditions.
Collapse
Affiliation(s)
- Fenqqi Fan
- Department of Pain, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Tianze Yin
- Department of Pain, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Biwu Wu
- Department of Neurosurgery and Neurocritical Care, Huashan HospitalFudan UniversityShanghaiChina
| | - Jiajun Zheng
- Department of Neurosurgery and Neurocritical Care, Huashan HospitalFudan UniversityShanghaiChina
| | - Jiaojiao Deng
- Department of Neurosurgery and Neurocritical Care, Huashan HospitalFudan UniversityShanghaiChina
| | - Gang Wu
- Department of Neurosurgery and Neurocritical Care, Huashan HospitalFudan UniversityShanghaiChina
| | - Shukun Hu
- Department of Neurosurgery and Neurocritical Care, Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
18
|
Li H, Feng J, Chen M, Xin M, Chen X, Liu W, Wang L, Wang KH, He J. Cholecystokinin facilitates motor skill learning by modulating neuroplasticity in the motor cortex. eLife 2024; 13:e83897. [PMID: 38700136 PMCID: PMC11068356 DOI: 10.7554/elife.83897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Cholecystokinin (CCK) is an essential modulator for neuroplasticity in sensory and emotional domains. Here, we investigated the role of CCK in motor learning using a single pellet reaching task in mice. Mice with a knockout of Cck gene (Cck-/-) or blockade of CCK-B receptor (CCKBR) showed defective motor learning ability; the success rate of retrieving reward remained at the baseline level compared to the wildtype mice with significantly increased success rate. We observed no long-term potentiation upon high-frequency stimulation in the motor cortex of Cck-/- mice, indicating a possible association between motor learning deficiency and neuroplasticity in the motor cortex. In vivo calcium imaging demonstrated that the deficiency of CCK signaling disrupted the refinement of population neuronal activity in the motor cortex during motor skill training. Anatomical tracing revealed direct projections from CCK-expressing neurons in the rhinal cortex to the motor cortex. Inactivation of the CCK neurons in the rhinal cortex that project to the motor cortex bilaterally using chemogenetic methods significantly suppressed motor learning, and intraperitoneal application of CCK4, a tetrapeptide CCK agonist, rescued the motor learning deficits of Cck-/- mice. In summary, our results suggest that CCK, which could be provided from the rhinal cortex, may surpport motor skill learning by modulating neuroplasticity in the motor cortex.
Collapse
Affiliation(s)
- Hao Li
- Departments of Neuroscience and Biomedical Sciences, City University of Hong KongHong KongChina
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of SciencesHong KongChina
| | - Jingyu Feng
- Departments of Neuroscience and Biomedical Sciences, City University of Hong KongHong KongChina
| | - Mengying Chen
- Departments of Neuroscience and Biomedical Sciences, City University of Hong KongHong KongChina
| | - Min Xin
- Departments of Neuroscience and Biomedical Sciences, City University of Hong KongHong KongChina
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of SciencesHong KongChina
| | - Xi Chen
- Departments of Neuroscience and Biomedical Sciences, City University of Hong KongHong KongChina
| | - Wenhao Liu
- Departments of Neuroscience and Biomedical Sciences, City University of Hong KongHong KongChina
| | - Liping Wang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Kuan Hong Wang
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical CenterRochesterUnited States
| | - Jufang He
- Departments of Neuroscience and Biomedical Sciences, City University of Hong KongHong KongChina
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of SciencesHong KongChina
| |
Collapse
|
19
|
Marino F, Moreno-López Y, Hollis E. Corticospinal Modulation of Precision Movements. Neurosci Insights 2024; 19:26331055241249497. [PMID: 38680210 PMCID: PMC11056087 DOI: 10.1177/26331055241249497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/09/2024] [Indexed: 05/01/2024] Open
Abstract
Recently we demonstrated a critical role for temporal coding of corticospinal activity in a prehension movement requiring precise forelimb control. Learning of precision isometric pull drives large-scale remodeling of corticospinal motor networks. Optogenetic modulation of corticospinal activity and full transection of the corticospinal tract disrupted critical functions of the network in expert animals resulting in impaired modulation of precise movements. In contrast, we observed more widespread corticospinal co-activation and limited temporal coding on a similar, yet more simplistic prehension task, adaptive isometric pull. Disrupting corticospinal neuron activity had much more limited effects on adaptive isometric pull, which was found to be corticospinal independent by transection of the corticospinal tract. Here we discuss these results in context of known roles for corticospinal and corticostriatal neurons in motor control, as well as some of the questions our study raised.
Collapse
Affiliation(s)
| | | | - Edmund Hollis
- Burke Neurological Institute, White Plains, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
20
|
Carmona LM, Thomas ED, Smith K, Tasic B, Costa RM, Nelson A. Topographical and cell type-specific connectivity of rostral and caudal forelimb corticospinal neuron populations. Cell Rep 2024; 43:113993. [PMID: 38551963 PMCID: PMC11100358 DOI: 10.1016/j.celrep.2024.113993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/07/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024] Open
Abstract
Corticospinal neurons (CSNs) synapse directly on spinal neurons, a diverse assortment of cells with unique structural and functional properties necessary for body movements. CSNs modulating forelimb behavior fractionate into caudal forelimb area (CFA) and rostral forelimb area (RFA) motor cortical populations. Despite their prominence, the full diversity of spinal neurons targeted by CFA and RFA CSNs is uncharted. Here, we use anatomical and RNA sequencing methods to show that CSNs synapse onto a remarkably selective group of spinal cell types, favoring inhibitory populations that regulate motoneuron activity and gate sensory feedback. CFA and RFA CSNs target similar spinal neuron types, with notable exceptions that suggest that these populations differ in how they influence behavior. Finally, axon collaterals of CFA and RFA CSNs target similar brain regions yet receive highly divergent inputs. These results detail the rules of CSN connectivity throughout the brain and spinal cord for two regions critical for forelimb behavior.
Collapse
Affiliation(s)
- Lina Marcela Carmona
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Eric D Thomas
- Allen Institute for Brain Science, Allen Institute, Seattle, WA, USA
| | - Kimberly Smith
- Allen Institute for Brain Science, Allen Institute, Seattle, WA, USA
| | - Bosiljka Tasic
- Allen Institute for Brain Science, Allen Institute, Seattle, WA, USA
| | - Rui M Costa
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Allen Institute for Brain Science, Allen Institute, Seattle, WA, USA
| | - Anders Nelson
- Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
21
|
Wu B, Yang L, Xi C, Yao H, Chen L, Fan F, Wu G, Du Z, Hu J, Hu S. Corticospinal-specific Shh overexpression in combination with rehabilitation promotes CST axonal sprouting and skilled motor functional recovery after ischemic stroke. Mol Neurobiol 2024; 61:2186-2196. [PMID: 37864058 DOI: 10.1007/s12035-023-03642-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/06/2023] [Indexed: 10/22/2023]
Abstract
Ischemic stroke often leads to permanent neurological impairments, largely due to limited neuroplasticity in adult central nervous system. Here, we first showed that the expression of Sonic Hedgehog (Shh) in corticospinal neurons (CSNs) peaked at the 2nd postnatal week, when corticospinal synaptogenesis occurs. Overexpression of Shh in adult CSNs did not affect motor functions and had borderline effects on promoting the recovery of skilled locomotion following ischemic stroke. In contrast, CSNs-specific Shh overexpression significantly enhanced the efficacy of rehabilitative training, resulting in robust axonal sprouting and synaptogenesis of corticospinal axons into the denervated spinal cord, along with significantly improved behavioral outcomes. Mechanistically, combinatory treatment led to additional mTOR activation in CSNs when compared to that evoked by rehabilitative training alone. Taken together, our study unveiled a role of Shh, a morphogen involved in early development, in enhancing neuroplasticity, which significantly improved the outcomes of rehabilitative training. These results thus provide novel insights into the design of combinatory treatment for stroke and traumatic central nervous system injuries.
Collapse
Affiliation(s)
- Biwu Wu
- Department of Neurosurgery and Neurocritical Care, Affiliated Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200042, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Lei Yang
- Department of Neurosurgery and Neurocritical Care, Affiliated Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200042, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Caihua Xi
- Department of Neurosurgery and Neurocritical Care, Affiliated Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200042, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Haijun Yao
- Department of Neurosurgery and Neurocritical Care, Affiliated Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200042, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Long Chen
- Department of Neurosurgery and Neurocritical Care, Affiliated Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200042, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Fengqi Fan
- Pain Department of Yueyang Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gang Wu
- Department of Neurosurgery and Neurocritical Care, Affiliated Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200042, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Zhouying Du
- Department of Neurosurgery and Neurocritical Care, Affiliated Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200042, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Jin Hu
- Department of Neurosurgery and Neurocritical Care, Affiliated Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200042, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Shukun Hu
- Department of Neurosurgery and Neurocritical Care, Affiliated Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200042, China.
- National Center for Neurological Disorders, Shanghai, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.
- Neurosurgical Institute of Fudan University, Shanghai, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.
| |
Collapse
|
22
|
Taub DG, Jiang Q, Pietrafesa F, Su J, Carroll A, Greene C, Blanchard MR, Jain A, El-Rifai M, Callen A, Yager K, Chung C, He Z, Chen C, Woolf CJ. The secondary somatosensory cortex gates mechanical and heat sensitivity. Nat Commun 2024; 15:1289. [PMID: 38346995 PMCID: PMC10861531 DOI: 10.1038/s41467-024-45729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024] Open
Abstract
The cerebral cortex is vital for the processing and perception of sensory stimuli. In the somatosensory axis, information is received primarily by two distinct regions, the primary (S1) and secondary (S2) somatosensory cortices. Top-down circuits stemming from S1 can modulate mechanical and cooling but not heat stimuli such that circuit inhibition causes blunted perception. This suggests that responsiveness to particular somatosensory stimuli occurs in a modality specific fashion and we sought to determine additional cortical substrates. In this work, we identify in a mouse model that inhibition of S2 output increases mechanical and heat, but not cooling sensitivity, in contrast to S1. Combining 2-photon anatomical reconstruction with chemogenetic inhibition of specific S2 circuits, we discover that S2 projections to the secondary motor cortex (M2) govern mechanical and heat sensitivity without affecting motor performance or anxiety. Taken together, we show that S2 is an essential cortical structure that governs mechanical and heat sensitivity.
Collapse
Affiliation(s)
- Daniel G Taub
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Qiufen Jiang
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Francesca Pietrafesa
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Junfeng Su
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Aloe Carroll
- College of Sciences, Northeastern University, Boston, MA, USA
| | - Caitlin Greene
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Aakanksha Jain
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Mahmoud El-Rifai
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Alexis Callen
- Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA, USA
| | - Katherine Yager
- Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA, USA
| | - Clara Chung
- Department of Neuroscience, Boston University, Boston, MA, USA
| | - Zhigang He
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Chinfei Chen
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Clifford J Woolf
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Phillips CD, Myers CC, Leventhal DK, Burgess CR. Striatal dopamine contributions to skilled motor learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579240. [PMID: 38370850 PMCID: PMC10871330 DOI: 10.1101/2024.02.06.579240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Coordinated multi-joint limb and digit movements - "manual dexterity" - underlie both specialized skills (e.g., playing the piano) and more mundane tasks (e.g., tying shoelaces). Impairments in dexterous skill cause significant disability, as occurs with motor cortical injury, Parkinson's Disease, and a range of other pathologies. Clinical observations, as well as basic investigations, suggest that cortico-striatal circuits play a critical role in learning and performing dexterous skills. Furthermore, dopaminergic signaling in these regions is implicated in synaptic plasticity and motor learning. Nonetheless, the role of striatal dopamine signaling in skilled motor learning remains poorly understood. Here, we use fiber photometry paired with a genetically encoded dopamine sensor to investigate striatal dopamine release as mice learn and perform a skilled reaching task. Dopamine rapidly increases during a skilled reach and peaks near pellet consumption. In dorsolateral striatum, dopamine dynamics are faster than in dorsomedial and ventral striatum. Across training, as reaching performance improves, dopamine signaling shifts from pellet consumption to cues that predict pellet availability, particularly in medial and ventral areas of striatum. Furthermore, performance prediction errors are present across the striatum, with reduced dopamine release after an unsuccessful reach. These findings show that dopamine dynamics during skilled motor behaviors change with learning and are differentially regulated across striatal subregions.
Collapse
Affiliation(s)
- Chris D. Phillips
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA, 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA, 48109
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA, 75080
| | - Courtney C. Myers
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA, 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Daniel K. Leventhal
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA, 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA, 48109
- Parkinson Disease Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA, 48109
- Department of Neurology, VA Ann Arbor Health System, Ann Arbor, MI, USA, 48109
| | - Christian R. Burgess
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA, 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA, 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA, 48109
| |
Collapse
|
24
|
Winter CC, Jacobi A, Su J, Chung L, van Velthoven CTJ, Yao Z, Lee C, Zhang Z, Yu S, Gao K, Duque Salazar G, Kegeles E, Zhang Y, Tomihiro MC, Zhang Y, Yang Z, Zhu J, Tang J, Song X, Donahue RJ, Wang Q, McMillen D, Kunst M, Wang N, Smith KA, Romero GE, Frank MM, Krol A, Kawaguchi R, Geschwind DH, Feng G, Goodrich LV, Liu Y, Tasic B, Zeng H, He Z. A transcriptomic taxonomy of mouse brain-wide spinal projecting neurons. Nature 2023; 624:403-414. [PMID: 38092914 PMCID: PMC10719099 DOI: 10.1038/s41586-023-06817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023]
Abstract
The brain controls nearly all bodily functions via spinal projecting neurons (SPNs) that carry command signals from the brain to the spinal cord. However, a comprehensive molecular characterization of brain-wide SPNs is still lacking. Here we transcriptionally profiled a total of 65,002 SPNs, identified 76 region-specific SPN types, and mapped these types into a companion atlas of the whole mouse brain1. This taxonomy reveals a three-component organization of SPNs: (1) molecularly homogeneous excitatory SPNs from the cortex, red nucleus and cerebellum with somatotopic spinal terminations suitable for point-to-point communication; (2) heterogeneous populations in the reticular formation with broad spinal termination patterns, suitable for relaying commands related to the activities of the entire spinal cord; and (3) modulatory neurons expressing slow-acting neurotransmitters and/or neuropeptides in the hypothalamus, midbrain and reticular formation for 'gain setting' of brain-spinal signals. In addition, this atlas revealed a LIM homeobox transcription factor code that parcellates the reticulospinal neurons into five molecularly distinct and spatially segregated populations. Finally, we found transcriptional signatures of a subset of SPNs with large soma size and correlated these with fast-firing electrophysiological properties. Together, this study establishes a comprehensive taxonomy of brain-wide SPNs and provides insight into the functional organization of SPNs in mediating brain control of bodily functions.
Collapse
Affiliation(s)
- Carla C Winter
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- PhD Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
- Harvard-MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
| | - Anne Jacobi
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
- F. Hoffman-La Roche, pRED, Basel, Switzerland.
| | - Junfeng Su
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Leeyup Chung
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | | | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Changkyu Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Zicong Zhang
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shuguang Yu
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Kun Gao
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Geraldine Duque Salazar
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Evgenii Kegeles
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- PhD Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Yu Zhang
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Makenzie C Tomihiro
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yiming Zhang
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Zhiyun Yang
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Junjie Zhu
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jing Tang
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Xuan Song
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Ryan J Donahue
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Qing Wang
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | - Ning Wang
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Gabriel E Romero
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Michelle M Frank
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Alexandra Krol
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Riki Kawaguchi
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Daniel H Geschwind
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Yuanyuan Liu
- Somatosensation and Pain Unit, National Institute of Dental and Craniofacial Research, National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA.
| | - Zhigang He
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Lin X, Wang X, Zhang Y, Chu G, Liang J, Zhang B, Lu Y, Steward O, Luo J. Synergistic effect of chemogenetic activation of corticospinal motoneurons and physical exercise in promoting functional recovery after spinal cord injury. Exp Neurol 2023; 370:114549. [PMID: 37774765 DOI: 10.1016/j.expneurol.2023.114549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Single therapeutic interventions have not yet been successful in restoring function after spinal cord injury. Accordingly, combinatorial interventions targeting multiple factors may hold greater promise for achieving maximal functional recovery. In this study, we applied a combinatorial approach of chronic chemogenetic neuronal activation and physical exercise including treadmill running and forelimb training tasks to promote functional recovery. In a mouse model of cervical (C5) dorsal hemisection of the spinal cord, which transects almost all descending corticospinal tract axons, combining selective activation of corticospinal motoneurons (CMNs) by intersectional chemogenetics with physical exercise significantly promoted functional recovery evaluated by the grid walking test, grid hanging test, rotarod test, and single pellet-reaching tasks. Electromyography and histological analysis showed increased activation of forelimb muscles via chemogenetic stimuli, and a greater density of vGlut1+ innervation in spinal cord grey matter rostral to the injury, suggesting enhanced neuroplasticity and connectivity. Combined therapy also enhanced activation of mTOR signaling and reduced apoptosis in spinal motoneurons, Counts revealed increased numbers of detectable choline acetyltransferase-positive motoneurons in the ventral horn. Taken together, the findings from this study validate a novel combinatorial approach to enhance motor function after spinal cord injury.
Collapse
Affiliation(s)
- Xueling Lin
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiuping Wang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuejin Zhang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guangpin Chu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingwen Liang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Zhang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California Irvine School of Medicine, USA; Department of Anatomy & Neurobiology, University of California Irvine School of Medicine, USA; Department of Neurobiology & Behavior, University of California Irvine, USA; Department of Neurosurgery, University of California Irvine School of Medicine, USA.
| | - Juan Luo
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
26
|
Carmona LM, Thomas ET, Smith K, Tasic B, Costa RM, Nelson A. Topographical and cell type-specific connectivity of rostral and caudal forelimb corticospinal neuron populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567623. [PMID: 38014164 PMCID: PMC10680840 DOI: 10.1101/2023.11.17.567623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Corticospinal neurons (CSNs) synapse directly on spinal neurons, a diverse group of neurons with unique structural and functional properties necessary for body movements. CSNs modulating forelimb behavior fractionate into caudal forelimb area (CFA) and rostral forelimb area (RFA) motor cortical populations. Despite their prominence, no studies have mapped the diversity of spinal cell types targeted by CSNs, let alone compare CFA and RFA populations. Here we use anatomical and RNA-sequencing methods to show that CSNs synapse onto a remarkably selective group of spinal cell types, favoring inhibitory populations that regulate motoneuron activity and gate sensory feedback. CFA and RFA CSNs target similar spinal cell types, with notable exceptions that suggest these populations differ in how they influence behavior. Finally, axon collaterals of CFA and RFA CSNs target similar brain regions yet receive surprisingly divergent inputs. These results detail the rules of CSN connectivity throughout the brain and spinal cord for two regions critical for forelimb behavior.
Collapse
|
27
|
Shinotsuka T, Tanaka YR, Terada SI, Hatano N, Matsuzaki M. Layer 5 Intratelencephalic Neurons in the Motor Cortex Stably Encode Skilled Movement. J Neurosci 2023; 43:7130-7148. [PMID: 37699714 PMCID: PMC10601372 DOI: 10.1523/jneurosci.0428-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/29/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023] Open
Abstract
The primary motor cortex (M1) and the dorsal striatum play a critical role in motor learning and the retention of learned behaviors. Motor representations of corticostriatal ensembles emerge during motor learning. In the coordinated reorganization of M1 and the dorsal striatum for motor learning, layer 5a (L5a) which connects M1 to the ipsilateral and contralateral dorsal striatum, should be a key layer. Although M1 L5a neurons represent movement-related activity in the late stage of learning, it is unclear whether the activity is retained as a memory engram. Here, using Tlx3-Cre male transgenic mice, we conducted two-photon calcium imaging of striatum-projecting L5a intratelencephalic (IT) neurons in forelimb M1 during late sessions of a self-initiated lever-pull task and in sessions after 6 d of nontraining following the late sessions. We found that trained male animals exhibited stable motor performance before and after the nontraining days. At the same time, we found that M1 L5a IT neurons strongly represented the well-learned forelimb movement but not uninstructed orofacial movements. A subset of M1 L5a IT neurons consistently coded the well-learned forelimb movement before and after the nontraining days. Inactivation of M1 IT neurons after learning impaired task performance when the lever was made heavier or when the target range of the pull distance was narrowed. These results suggest that a subset of M1 L5a IT neurons continuously represent skilled movement after learning and serve to fine-tune the kinematics of well-learned movement.SIGNIFICANCE STATEMENT Motor memory persists even when it is not used for a while. IT neurons in L5a of the M1 gradually come to represent skilled forelimb movements during motor learning. However, it remains to be determined whether these changes persist over a long period and how these neurons contribute to skilled movements. Here, we show that a subset of M1 L5a IT neurons retain information for skilled forelimb movements even after nontraining days. Furthermore, suppressing the activity of these neurons during skilled forelimb movements impaired behavioral stability and adaptability. Our results suggest the importance of M1 L5a IT neurons for tuning skilled forelimb movements over a long period.
Collapse
Affiliation(s)
- Takanori Shinotsuka
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Yasuhiro R Tanaka
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
- Brain Science Institute, Tamagawa University, Machida, Tokyo 194-8610, Japan
| | - Shin-Ichiro Terada
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Natsuki Hatano
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Masanori Matsuzaki
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence, University of Tokyo Institutes for Advanced Study, Tokyo 113-0033, Japan
- Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| |
Collapse
|
28
|
Mastwal S, Li X, Stowell R, Manion M, Zhang W, Kim NS, Yoon KJ, Song H, Ming GL, Wang KH. Adolescent neurostimulation of dopamine circuit reverses genetic deficits in frontal cortex function. eLife 2023; 12:RP87414. [PMID: 37830916 PMCID: PMC10575630 DOI: 10.7554/elife.87414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Dopamine system dysfunction is implicated in adolescent-onset neuropsychiatric disorders. Although psychosis symptoms can be alleviated by antipsychotics, cognitive symptoms remain unresponsive and novel paradigms investigating the circuit substrates underlying cognitive deficits are critically needed. The frontal cortex and its dopaminergic input from the midbrain are implicated in cognitive functions and undergo maturational changes during adolescence. Here, we used mice carrying mutations in Arc or Disc1 to model mesofrontal dopamine circuit deficiencies and test circuit-based neurostimulation strategies to restore cognitive functions. We found that in a memory-guided spatial navigation task, frontal cortical neurons were activated coordinately at the decision-making point in wild-type but not Arc-/- mice. Chemogenetic stimulation of midbrain dopamine neurons or optogenetic stimulation of frontal cortical dopamine axons in a limited adolescent period consistently reversed genetic defects in mesofrontal innervation, task-coordinated neuronal activity, and memory-guided decision-making at adulthood. Furthermore, adolescent stimulation of dopamine neurons also reversed the same cognitive deficits in Disc1+/- mice. Our findings reveal common mesofrontal circuit alterations underlying the cognitive deficits caused by two different genes and demonstrate the feasibility of adolescent neurostimulation to reverse these circuit and behavioral deficits. These results may suggest developmental windows and circuit targets for treating cognitive deficits in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Surjeet Mastwal
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental HealthBethesdaUnited States
| | - Xinjian Li
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental HealthBethesdaUnited States
| | - Rianne Stowell
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical CenterRochesterUnited States
| | - Matthew Manion
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental HealthBethesdaUnited States
| | - Wenyu Zhang
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental HealthBethesdaUnited States
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical CenterRochesterUnited States
| | - Nam-Shik Kim
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Ki-Jun Yoon
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Hongjun Song
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Guo-Li Ming
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Kuan Hong Wang
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental HealthBethesdaUnited States
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical CenterRochesterUnited States
| |
Collapse
|
29
|
Xu T, Jin Z, Yang M, Chen Z, Xiong H. Whole brain inputs to major descending pathways of the anterior lateral motor cortex. J Neurophysiol 2023; 130:278-290. [PMID: 37377198 DOI: 10.1152/jn.00112.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023] Open
Abstract
The anterior lateral motor cortex (ALM) is critical to subsequent correct movements and plays a vital role in predicting specific future movements. Different descending pathways of the ALM are preferentially involved in different roles in movements. However, the circuit function mechanisms of these different pathways may be concealed in the anatomy circuit. Clarifying the anatomy inputs of these pathways should provide some helpful information for elucidating these function mechanisms. Here, we used a retrograde trans-synaptic rabies virus to systematically generate, analyze, and compare whole brain maps of inputs to the thalamus (TH)-, medulla oblongata (Med)-, superior colliculus (SC)-, and pontine nucleus (Pons)-projecting ALM neurons in C57BL/6J mice. Fifty-nine separate regions from nine major brain areas projecting to the descending pathways of the ALM were identified. Brain-wide quantitative analyses revealed identical whole brain input patterns between these descending pathways. Most inputs to the pathways originated from the ipsilateral side of the brain, with most innervations provided by the cortex and TH. The contralateral side of the brain also sent sparse projections, but these were rare, emanating only from the cortex and cerebellum. Nevertheless, the inputs received by TH-, Med-, SC-, and Pons-projecting ALM neurons had different weights, potentially laying an anatomical foundation for understanding the diverse functions of well-defined descending pathways of the ALM. Our findings provide anatomical information to help elucidate the precise connections and diverse functions of the ALM.NEW & NOTEWORTHY Distinct descending pathways of anterior lateral motor cortex (ALM) share common inputs. These inputs are with varied weights. Most inputs were from the ipsilateral side of brain. Preferential inputs were provided by cortex and thalamus (TH).
Collapse
Affiliation(s)
- Tonghui Xu
- Department of Laboratory Animal Science, Fudan University, Shanghai, People's Republic of China
| | - Zitao Jin
- Institute of Life Science, Nanchang University, Nanchang, People's Republic of China
| | - Mei Yang
- Department of Laboratory Animal Science, Fudan University, Shanghai, People's Republic of China
| | - Zhilong Chen
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, People's Republic of China
- Piedmont Medical Technology Co., Ltd., Zhuhai, People's Republic of China
| | - Huan Xiong
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, People's Republic of China
| |
Collapse
|
30
|
Mastwal S, Li X, Stowell R, Manion M, Zhang W, Kim NS, Yoon KJ, Song H, Ming GL, Wang KH. Adolescent neurostimulation of dopamine circuit reverses genetic deficits in frontal cortex function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.526987. [PMID: 36778456 PMCID: PMC9915739 DOI: 10.1101/2023.02.03.526987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dopamine system dysfunction is commonly implicated in adolescent-onset neuropsychiatric disorders. Although psychosis symptoms can be alleviated by antipsychotics, cognitive symptoms remain unresponsive to such pharmacological treatments and novel research paradigms investigating the circuit substrates underlying cognitive deficits are critically needed. The frontal cortex and its dopaminergic input from the midbrain are implicated in cognitive functions and undergo maturational changes during adolescence. Here, we used mice carrying mutations in the Arc or DISC1 genes to model mesofrontal dopamine circuit deficiencies and test circuit-based neurostimulation strategies to restore cognitive functions. We found that in a memory-guided spatial navigation task, frontal cortical neurons were activated coordinately at the decision-making point in wild-type but not Arc mutant mice. Chemogenetic stimulation of midbrain dopamine neurons or optogenetic stimulation of frontal cortical dopamine axons in a limited adolescent period consistently reversed genetic defects in mesofrontal innervation, task-coordinated neuronal activity, and memory-guided decision-making at adulthood. Furthermore, adolescent stimulation of dopamine neurons also reversed the same cognitive deficits in DISC1 mutant mice. Our findings reveal common mesofrontal circuit alterations underlying the cognitive deficits caused by two different genes and demonstrate the feasibility of adolescent neurostimulation to reverse these circuit and behavioral deficits. These results may suggest developmental windows and circuit targets for treating cognitive deficits in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Surjeet Mastwal
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental Health, Bethesda, MD 20892
| | - Xinjian Li
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental Health, Bethesda, MD 20892
| | - Rianne Stowell
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY 14642
| | - Matthew Manion
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental Health, Bethesda, MD 20892
| | - Wenyu Zhang
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental Health, Bethesda, MD 20892
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY 14642
| | - Nam-Shik Kim
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ki-jun Yoon
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Hongjun Song
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Guo-li Ming
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kuan Hong Wang
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental Health, Bethesda, MD 20892
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
31
|
Zahler SH, Taylor DE, Wright BS, Wong JY, Shvareva VA, Park YA, Feinberg EH. Hindbrain modules differentially transform activity of single collicular neurons to coordinate movements. Cell 2023; 186:3062-3078.e20. [PMID: 37343561 PMCID: PMC10424787 DOI: 10.1016/j.cell.2023.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/10/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023]
Abstract
Seemingly simple behaviors such as swatting a mosquito or glancing at a signpost involve the precise coordination of multiple body parts. Neural control of coordinated movements is widely thought to entail transforming a desired overall displacement into displacements for each body part. Here we reveal a different logic implemented in the mouse gaze system. Stimulating superior colliculus (SC) elicits head movements with stereotyped displacements but eye movements with stereotyped endpoints. This is achieved by individual SC neurons whose branched axons innervate modules in medulla and pons that drive head movements with stereotyped displacements and eye movements with stereotyped endpoints, respectively. Thus, single neurons specify a mixture of endpoints and displacements for different body parts, not overall displacement, with displacements for different body parts computed at distinct anatomical stages. Our study establishes an approach for unraveling motor hierarchies and identifies a logic for coordinating movements and the resulting pose.
Collapse
Affiliation(s)
- Sebastian H Zahler
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David E Taylor
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brennan S Wright
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joey Y Wong
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Varvara A Shvareva
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yusol A Park
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Evan H Feinberg
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
32
|
Taub DG, Jiang Q, Pietrafesa F, Su J, Greene C, Blanchard MR, Jain A, El-Rifai M, Callen A, Yager K, Chung C, He Z, Chen C, Woolf CJ. The Secondary Somatosensory Cortex Gates Mechanical and Thermal Sensitivity. RESEARCH SQUARE 2023:rs.3.rs-2976953. [PMID: 37461707 PMCID: PMC10350168 DOI: 10.21203/rs.3.rs-2976953/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
The cerebral cortex is vital for the perception and processing of sensory stimuli. In the somatosensory axis, information is received by two distinct regions, the primary (S1) and secondary (S2) somatosensory cortices. Top-down circuits stemming from S1 can modulate mechanical and cooling but not heat stimuli such that circuit inhibition causes blunted mechanical and cooling perception. Using optogenetics and chemogenetics, we find that in contrast to S1, an inhibition of S2 output increases mechanical and heat, but not cooling sensitivity. Combining 2-photon anatomical reconstruction with chemogenetic inhibition of specific S2 circuits, we discover that S2 projections to the secondary motor cortex (M2) govern mechanical and thermal sensitivity without affecting motor or cognitive function. This suggests that while S2, like S1, encodes specific sensory information, that S2 operates through quite distinct neural substrates to modulate responsiveness to particular somatosensory stimuli and that somatosensory cortical encoding occurs in a largely parallel fashion.
Collapse
Affiliation(s)
- Daniel G. Taub
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Qiufen Jiang
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Francesca Pietrafesa
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Junfeng Su
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Caitlin Greene
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | | | - Aakanksha Jain
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Mahmoud El-Rifai
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Alexis Callen
- Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA, USA
| | - Katherine Yager
- Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA, USA
| | - Clara Chung
- Department of Neuroscience, Boston University, Boston, MA, USA
| | - Zhigang He
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Chinfei Chen
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Clifford J. Woolf
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Shaw L, Wang KH, Mitchell J. Fast prediction in marmoset reach-to-grasp movements for dynamic prey. Curr Biol 2023; 33:2557-2565.e4. [PMID: 37279754 PMCID: PMC10330526 DOI: 10.1016/j.cub.2023.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/31/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023]
Abstract
Primates have evolved sophisticated, visually guided reaching behaviors for interacting with dynamic objects, such as insects, during foraging.1,2,3,4,5 Reaching control in dynamic natural conditions requires active prediction of the target's future position to compensate for visuo-motor processing delays and to enhance online movement adjustments.6,7,8,9,10,11,12 Past reaching research in non-human primates mainly focused on seated subjects engaged in repeated ballistic arm movements to either stationary targets or targets that instantaneously change position during the movement.13,14,15,16,17 However, those approaches impose task constraints that limit the natural dynamics of reaching. A recent field study in marmoset monkeys highlights predictive aspects of visually guided reaching during insect prey capture among wild marmoset monkeys.5 To examine the complementary dynamics of similar natural behavior within a laboratory context, we developed an ecologically motivated, unrestrained reach-to-grasp task involving live crickets. We used multiple high-speed video cameras to capture the movements of common marmosets (Callithrix jacchus) and crickets stereoscopically and applied machine vision algorithms for marker-free object and hand tracking. Contrary to estimates under traditional constrained reaching paradigms, we find that reaching for dynamic targets can operate at incredibly short visuo-motor delays around 80 ms, rivaling the speeds that are typical of the oculomotor systems during closed-loop visual pursuit.18 Multivariate linear regression modeling of the kinematic relationships between the hand and cricket velocity revealed that predictions of the expected future location can compensate for visuo-motor delays during fast reaching. These results suggest a critical role of visual prediction facilitating online movement adjustments for dynamic prey.
Collapse
Affiliation(s)
- Luke Shaw
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Kuan Hong Wang
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Jude Mitchell
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14611, USA.
| |
Collapse
|
34
|
Wolsh CC, Brown RM, Brown AR, Pratt GA, Boychuk JA. Extensive complex neocortical movement topography devolves to simple output following experimental stroke in mice. Front Syst Neurosci 2023; 17:1162664. [PMID: 37350800 PMCID: PMC10282139 DOI: 10.3389/fnsys.2023.1162664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
The neocortex encodes complex and simple motor outputs in all mammalian species that have been tested. Given that changes in neocortical reorganization (and corresponding corticospinal output) have been implicated in long term motor recovery after stroke injury, there remains a need to understand this biology in order to expedite and optimize clinical care. Here, changes in the neocortical topography of complex and simple movement outputs were evaluated in mice following experimental middle cerebral artery occlusion (MCAo). Neocortical motor output was defined using long-duration parameters of intracortical microstimulation (LD-ICMS) based on area and spatial coordinates of separate motor output types to build upon our recent report in uninjured mice. LD-ICMS test sites that elicited complex (multi-joint) movement, simple (single skeletal joint) movement, as well as co-elicited FORELIMB + HINDLIMB responses were detected and recorded. Forelimb reaching behavior was assessed using the single pellet reaching (SPR) task. At 6 weeks post-surgery, behavioral deficits persisted and neocortical territories for separate movements exhibited differences in neocortical area, and spatial location, and differed between MCAo-Injured animals (i.e., the MCAo group) and Sham-Injured animals (i.e., the Control group). MCAo-Injury reduced neocortical area of complex movements while increasing area of simple movements. Limited effects of injury were detected for spatial coordinates of neocortical movements. Significant positive correlations were detected between final SPR performance and either area of complex retract or area of co-occurring FORELIMB + HINDLIMB sites.
Collapse
Affiliation(s)
| | | | | | | | - Jeffery Allen Boychuk
- Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
35
|
Taub DG, Jiang Q, Pietrafesa F, Su J, Greene C, Blanchard MR, Jain A, El-Rifai M, Callen A, Yager K, Chung C, He Z, Chen C, Woolf CJ. The Secondary Somatosensory Cortex Gates Mechanical and Thermal Sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541449. [PMID: 37293011 PMCID: PMC10245795 DOI: 10.1101/2023.05.19.541449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The cerebral cortex is vital for the perception and processing of sensory stimuli. In the somatosensory axis, information is received by two distinct regions, the primary (S1) and secondary (S2) somatosensory cortices. Top-down circuits stemming from S1 can modulate mechanical and cooling but not heat stimuli such that circuit inhibition causes blunted mechanical and cooling perception. Using optogenetics and chemogenetics, we find that in contrast to S1, an inhibition of S2 output increases mechanical and heat, but not cooling sensitivity. Combining 2-photon anatomical reconstruction with chemogenetic inhibition of specific S2 circuits, we discover that S2 projections to the secondary motor cortex (M2) govern mechanical and thermal sensitivity without affecting motor or cognitive function. This suggests that while S2, like S1, encodes specific sensory information, that S2 operates through quite distinct neural substrates to modulate responsiveness to particular somatosensory stimuli and that somatosensory cortical encoding occurs in a largely parallel fashion.
Collapse
|
36
|
Itoh Y, Sahni V, Shnider SJ, McKee H, Macklis JD. Inter-axonal molecular crosstalk via Lumican proteoglycan sculpts murine cervical corticospinal innervation by distinct subpopulations. Cell Rep 2023; 42:112182. [PMID: 36934325 PMCID: PMC10167627 DOI: 10.1016/j.celrep.2023.112182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/07/2022] [Accepted: 02/14/2023] [Indexed: 03/19/2023] Open
Abstract
How CNS circuits sculpt their axonal arbors into spatially and functionally organized domains is not well understood. Segmental specificity of corticospinal connectivity is an exemplar for such regional specificity of many axon projections. Corticospinal neurons (CSN) innervate spinal and brainstem targets with segmental precision, controlling voluntary movement. Multiple molecularly distinct CSN subpopulations innervate the cervical cord for evolutionarily enhanced precision of forelimb movement. Evolutionarily newer CSNBC-lat exclusively innervate bulbar-cervical targets, while CSNmedial are heterogeneous; distinct subpopulations extend axons to either bulbar-cervical or thoraco-lumbar segments. We identify that Lumican controls balance of cervical innervation between CSNBC-lat and CSNmedial axons during development, which is maintained into maturity. Lumican, an extracellular proteoglycan expressed by CSNBC-lat, non-cell-autonomously suppresses cervical collateralization by multiple CSNmedial subpopulations. This inter-axonal molecular crosstalk between CSN subpopulations controls murine corticospinal circuitry refinement and forelimb dexterity. Such crosstalk is generalizable beyond the corticospinal system for evolutionary incorporation of new neuron populations into preexisting circuitry.
Collapse
Affiliation(s)
- Yasuhiro Itoh
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Vibhu Sahni
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Sara J Shnider
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Holly McKee
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
37
|
Tsuchimochi R, Yamagami K, Kubo N, Amimoto N, Raudzus F, Samata B, Kikuchi T, Doi D, Yoshimoto K, Mihara A, Takahashi J. Viral delivery of L1CAM promotes axonal extensions by embryonic cerebral grafts in mouse brain. Stem Cell Reports 2023; 18:899-914. [PMID: 36963389 PMCID: PMC10147836 DOI: 10.1016/j.stemcr.2023.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/26/2023] Open
Abstract
Cell replacement therapy is expected as a new and more radical treatment against brain damage. We previously reported that transplanted human cerebral organoids extend their axons along the corticospinal tract in rodent brains. The axons reached the spinal cord but were still sparse. Therefore, this study optimized the host brain environment by the adeno-associated virus (AAV)-mediated expression of axon guidance proteins in mouse brain. Among netrin-1, SEMA3, and L1CAM, only L1CAM significantly promoted the axonal extension of mouse embryonic brain tissue-derived grafts. L1CAM was also expressed by donor neurons, and this promotion was exerted in a haptotactic manner by their homophilic binding. Primary cortical neurons cocultured on L1CAM-expressing HEK-293 cells supported this mechanism. These results suggest that optimizing the host environment by the AAV-mediated expression of axon guidance molecules enhances the effect of cell replacement therapy.
Collapse
Affiliation(s)
- Ryosuke Tsuchimochi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Keitaro Yamagami
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Naoko Kubo
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Naoya Amimoto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Fabian Raudzus
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Bumpei Samata
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Tetsuhiro Kikuchi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Daisuke Doi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Aya Mihara
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| |
Collapse
|
38
|
Brown AR, Mitra S, Teskey GC, Boychuk JA. Complex forelimb movements and cortical topography evoked by intracortical microstimulation in male and female mice. Cereb Cortex 2023; 33:1866-1875. [PMID: 35511684 PMCID: PMC9977357 DOI: 10.1093/cercor/bhac178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 11/12/2022] Open
Abstract
The motor cortex is crucial for the voluntary control of skilled movement in mammals and is topographically organized into representations of the body (motor maps). Intracortical microstimulation of the motor cortex with long-duration pulse trains (LD-ICMS; ~500 ms) evokes complex movements, occurring in multiple joints or axial muscles, with characteristic movement postures and cortical topography across a variety of mammalian species. Although the laboratory mouse is extensively used in basic and pre-clinical research, high-resolution motor maps elicited with electrical LD-ICMS in both sexes of the adult mouse has yet to be reported. To address this knowledge gap, we performed LD-ICMS of the forelimb motor cortex in both male (n = 10) and naturally cycling female (n = 8) C57/BL6J mice under light ketamine-xylazine anesthesia. Complex and simple movements were evoked from historically defined caudal (CFA) and rostral (RFA) forelimb areas. Four complex forelimb movements were identified consisting of Elevate, Advance, Dig, and Retract postures with characteristic movement sequences and endpoints. Furthermore, evoked complex forelimb movements and cortical topography in mice were organized within the CFA in a unique manner relative to a qualitative comparison with the rat.
Collapse
Affiliation(s)
- Andrew R Brown
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - Shaarang Mitra
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - G Campbell Teskey
- Dept. of Cell Biology & Anatomy, Cumming School of Medicine, Calgary, Alberta T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Jeffery A Boychuk
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| |
Collapse
|
39
|
Yang W, Kanodia H, Arber S. Structural and functional map for forelimb movement phases between cortex and medulla. Cell 2023; 186:162-177.e18. [PMID: 36608651 PMCID: PMC9842395 DOI: 10.1016/j.cell.2022.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
The cortex influences movement by widespread top-down projections to many nervous system regions. Skilled forelimb movements require brainstem circuitry in the medulla; however, the logic of cortical interactions with these neurons remains unexplored. Here, we reveal a fine-grained anatomical and functional map between anterior cortex (AC) and medulla in mice. Distinct cortical regions generate three-dimensional synaptic columns tiling the lateral medulla, topographically matching the dorso-ventral positions of postsynaptic neurons tuned to distinct forelimb action phases. Although medial AC (MAC) terminates ventrally and connects to forelimb-reaching-tuned neurons and its silencing impairs reaching, lateral AC (LAC) influences dorsally positioned neurons tuned to food handling, and its silencing impairs handling. Cortico-medullary neurons also extend collaterals to other subcortical structures through a segregated channel interaction logic. Our findings reveal a precise alignment between cortical location, its function, and specific forelimb-action-tuned medulla neurons, thereby clarifying interaction principles between these two key structures and beyond.
Collapse
Affiliation(s)
- Wuzhou Yang
- Biozentrum, Department of Cell Biology, University of Basel, 4056 Basel, Switzerland,Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Harsh Kanodia
- Biozentrum, Department of Cell Biology, University of Basel, 4056 Basel, Switzerland,Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Silvia Arber
- Biozentrum, Department of Cell Biology, University of Basel, 4056 Basel, Switzerland,Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland,Corresponding author
| |
Collapse
|
40
|
Boato F, Guan X, Zhu Y, Ryu Y, Voutounou M, Rynne C, Freschlin CR, Zumbo P, Betel D, Matho K, Makarov SN, Wu Z, Son YJ, Nummenmaa A, Huang JZ, Edwards DJ, Zhong J. Activation of MAP2K signaling by genetic engineering or HF-rTMS promotes corticospinal axon sprouting and functional regeneration. Sci Transl Med 2023; 15:eabq6885. [PMID: 36599003 DOI: 10.1126/scitranslmed.abq6885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Facilitating axon regeneration in the injured central nervous system remains a challenging task. RAF-MAP2K signaling plays a key role in axon elongation during nervous system development. Here, we show that conditional expression of a constitutively kinase-activated BRAF in mature corticospinal neurons elicited the expression of a set of transcription factors previously implicated in the regeneration of zebrafish retinal ganglion cell axons and promoted regeneration and sprouting of corticospinal tract (CST) axons after spinal cord injury in mice. Newly sprouting axon collaterals formed synaptic connections with spinal interneurons, resulting in improved recovery of motor function. Noninvasive suprathreshold high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) activated the BRAF canonical downstream effectors MAP2K1/2 and modulated the expression of a set of regeneration-related transcription factors in a pattern consistent with that induced by BRAF activation. HF-rTMS enabled CST axon regeneration and sprouting, which was abolished in MAP2K1/2 conditional null mice. These data collectively demonstrate a central role of MAP2K signaling in augmenting the growth capacity of mature corticospinal neurons and suggest that HF-rTMS might have potential for treating spinal cord injury by modulating MAP2K signaling.
Collapse
Affiliation(s)
- Francesco Boato
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Xiaofei Guan
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yanjie Zhu
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Youngjae Ryu
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mariel Voutounou
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Christopher Rynne
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chase R Freschlin
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Paul Zumbo
- Applied Bioinformatics Core, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Doron Betel
- Applied Bioinformatics Core, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Katie Matho
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sergey N Makarov
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Electrical and Computer Engineering Department, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Zhuhao Wu
- Icahn School of Medicine at Mount Sinai, New York, NY 10065, USA
| | - Young-Jin Son
- Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, PA 19140, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Josh Z Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dylan J Edwards
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Moss Rehabilitation Research Institute, Elkins Park, PA 19027, USA.,Thomas Jefferson University, Philadelphia, PA 19108, USA.,Exercise Medicine Research Institute, School of Biomedical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| | - Jian Zhong
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
41
|
Manion MTC, Glasper ER, Wang KH. A sex difference in mouse dopaminergic projections from the midbrain to basolateral amygdala. Biol Sex Differ 2022; 13:75. [PMID: 36585727 PMCID: PMC9801632 DOI: 10.1186/s13293-022-00486-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Dopaminergic circuits play important roles in the motivational control of behavior and dysfunction in dopaminergic circuits have been implicated in several psychiatric disorders, such as schizophrenia and depression. While these disorders exhibit different incidence rates in men and women, the potential sex differences in the underlying neural circuits are not well-understood. Previous anatomical tracing studies in mammalian species have revealed a prominent circuit projection connecting the dopaminergic midbrain ventral tegmental area (VTA) to the basolateral amygdala (BLA), which is involved in emotional processing and associative learning. However, whether there is any sex difference in this anatomical circuit remains unknown. METHODS To study the potential sex differences in the VTA-to-BLA dopaminergic circuit, we injected two viral vectors encoding fluorescent reporters of axons and synaptic boutons (AAV-FLEX-tdTomato and AAV-FLEX-SynaptophysinGFP, respectively) into the VTA of a mouse transgenic driver line (tyrosine hydroxylase promoter-driven Cre, or TH-Cre), which restricts the reporter expression to dopaminergic neurons. We then used confocal fluorescent microscopy to image the distribution and density of dopaminergic axons and synaptic boutons in serial sections of both male and female mouse brain. RESULTS We found that the overall labeling intensity of VTA-to-BLA dopaminergic projections is intermediate among forebrain dopaminergic pathways, significantly higher than the projections to the prefrontal cortex, but lower than the projections to the nucleus accumbens. Within the amygdala areas, dopaminergic axons are concentrated in BLA. Although the size of BLA and the density of dopaminergic axons within BLA are similar between male and female mice, the density of dopaminergic synaptic boutons in BLA is significantly higher in male brain than female brain. CONCLUSIONS Our results demonstrate an anatomical sex difference in mouse dopaminergic innervations from the VTA to BLA. This finding may provide a structural foundation to study neural circuit mechanisms underlying sex differences in motivational and emotional behaviors and related psychiatric dysfunctions.
Collapse
Affiliation(s)
- Matthew T. C. Manion
- grid.416868.50000 0004 0464 0574Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892 USA ,grid.164295.d0000 0001 0941 7177Department of Psychology, University of Maryland, College Park, MD 20742 USA ,grid.164295.d0000 0001 0941 7177Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742 USA
| | - Erica R. Glasper
- grid.164295.d0000 0001 0941 7177Department of Psychology, University of Maryland, College Park, MD 20742 USA ,grid.164295.d0000 0001 0941 7177Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742 USA ,grid.261331.40000 0001 2285 7943Department of Neuroscience and Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH 43235 USA
| | - Kuan Hong Wang
- grid.416868.50000 0004 0464 0574Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892 USA ,grid.412750.50000 0004 1936 9166Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY 14642 USA
| |
Collapse
|
42
|
Downregulation of UBE4B promotes CNS axon regrowth and functional recovery after stroke. iScience 2022; 26:105885. [PMID: 36654858 PMCID: PMC9840934 DOI: 10.1016/j.isci.2022.105885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/27/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
The limited intrinsic regrowth capacity of corticospinal axons impedes functional recovery after cortical stroke. Although the mammalian target of rapamycin (mTOR) and p53 pathways have been identified as the key intrinsic pathways regulating CNS axon regrowth, little is known about the key upstream regulatory mechanism by which these two major pathways control CNS axon regrowth. By screening genes that regulate ubiquitin-mediated degradation of the p53 proteins in mice, we found that ubiquitination factor E4B (UBE4B) represses axonal regrowth in retinal ganglion cells and corticospinal neurons. We found that axonal regrowth induced by UBE4B depletion depended on the cooperative activation of p53 and mTOR. Importantly, overexpression of UbV.E4B, a competitive inhibitor of UBE4B, in corticospinal neurons promoted corticospinal axon sprouting and facilitated the recovery of corticospinal axon-dependent function in a cortical stroke model. Thus, our findings provide a translatable strategy for restoring corticospinal tract-dependent functions after cortical stroke.
Collapse
|
43
|
Ronzano R, Skarlatou S, Barriga BK, Bannatyne BA, Bhumbra GS, Foster JD, Moore JD, Lancelin C, Pocratsky AM, Özyurt MG, Smith CC, Todd AJ, Maxwell DJ, Murray AJ, Pfaff SL, Brownstone RM, Zampieri N, Beato M. Spinal premotor interneurons controlling antagonistic muscles are spatially intermingled. eLife 2022; 11:e81976. [PMID: 36512397 PMCID: PMC9844990 DOI: 10.7554/elife.81976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Elaborate behaviours are produced by tightly controlled flexor-extensor motor neuron activation patterns. Motor neurons are regulated by a network of interneurons within the spinal cord, but the computational processes involved in motor control are not fully understood. The neuroanatomical arrangement of motor and premotor neurons into topographic patterns related to their controlled muscles is thought to facilitate how information is processed by spinal circuits. Rabies retrograde monosynaptic tracing has been used to label premotor interneurons innervating specific motor neuron pools, with previous studies reporting topographic mediolateral positional biases in flexor and extensor premotor interneurons. To more precisely define how premotor interneurons contacting specific motor pools are organized, we used multiple complementary viral-tracing approaches in mice to minimize systematic biases associated with each method. Contrary to expectations, we found that premotor interneurons contacting motor pools controlling flexion and extension of the ankle are highly intermingled rather than segregated into specific domains like motor neurons. Thus, premotor spinal neurons controlling different muscles process motor instructions in the absence of clear spatial patterns among the flexor-extensor circuit components.
Collapse
Affiliation(s)
- Remi Ronzano
- Department of Neuromuscular Diseases, University College LondonLondonUnited Kingdom
| | | | - Bianca K Barriga
- Gene Expression Laboratory, Salk Institute for Biological StudiesLa JollaUnited States
- Biological Sciences Graduate Program, University of California, San DiegoSan DiegoUnited States
| | - B Anne Bannatyne
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Gardave Singh Bhumbra
- Department of Neuroscience Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Joshua D Foster
- Department of Neuroscience Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Jeffrey D Moore
- Howard Hughes Medical Institute and Department of Molecular and Cellular Biology, Center for Brain Science, Harvard UniversityCambridgeUnited States
| | - Camille Lancelin
- Department of Neuromuscular Diseases, University College LondonLondonUnited Kingdom
| | - Amanda M Pocratsky
- Department of Neuromuscular Diseases, University College LondonLondonUnited Kingdom
| | | | - Calvin Chad Smith
- Department of Neuromuscular Diseases, University College LondonLondonUnited Kingdom
| | - Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - David J Maxwell
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Andrew J Murray
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College LondonLondonUnited Kingdom
| | - Samuel L Pfaff
- Gene Expression Laboratory, Salk Institute for Biological StudiesLa JollaUnited States
| | - Robert M Brownstone
- Department of Neuromuscular Diseases, University College LondonLondonUnited Kingdom
| | | | - Marco Beato
- Department of Neuroscience Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| |
Collapse
|
44
|
Lyu C, Yu C, Sun G, Zhao Y, Cai R, Sun H, Wang X, Jia G, Fan L, Chen X, Zhou L, Shen Y, Gao L, Li X. Deconstruction of Vermal Cerebellum in Ramp Locomotion in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2203665. [PMID: 36373709 PMCID: PMC9811470 DOI: 10.1002/advs.202203665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The cerebellum is involved in encoding balance, posture, speed, and gravity during locomotion. However, most studies are carried out on flat surfaces, and little is known about cerebellar activity during free ambulation on slopes. Here, it has been imaged the neuronal activity of cerebellar molecular interneurons (MLIs) and Purkinje cells (PCs) using a miniaturized microscope while a mouse is walking on a slope. It has been found that the neuronal activity of vermal MLIs specifically enhanced during uphill and downhill locomotion. In addition, a subset of MLIs is activated during entire uphill or downhill positions on the slope and is modulated by the slope inclines. In contrast, PCs showed counter-balanced neuronal activity to MLIs, which reduced activity at the ramp peak. So, PCs may represent the ramp environment at the population level. In addition, chemogenetic inactivation of lobule V of the vermis impaired uphill locomotion. These results revealed a novel micro-circuit in the vermal cerebellum that regulates ambulatory behavior in 3D terrains.
Collapse
Affiliation(s)
- Chenfei Lyu
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and TechnologyZhejiang University School of MedicineHangzhou310027China
| | - Chencen Yu
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and TechnologyZhejiang University School of MedicineHangzhou310027China
| | - Guanglong Sun
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and TechnologyZhejiang University School of MedicineHangzhou310027China
| | - Yue Zhao
- Department of Physiology and Department of PsychiatrySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
| | - Ruolan Cai
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and TechnologyZhejiang University School of MedicineHangzhou310027China
| | - Hao Sun
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and TechnologyZhejiang University School of MedicineHangzhou310027China
- Key Laboratory for Biomedical Engineering of Ministry of EducationCollege of Biomedical Engineering and Instrument Science, Zhejiang UniversityHangzhou310027China
| | - Xintai Wang
- Department of Physiology and Department of PsychiatrySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
| | - Guoqiang Jia
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and TechnologyZhejiang University School of MedicineHangzhou310027China
| | - Lingzhu Fan
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and TechnologyZhejiang University School of MedicineHangzhou310027China
| | - Xi Chen
- Department of NeuroscienceCity University of Hong KongKowloonHong KongChina
| | - Lin Zhou
- Department of Physiology and Department of PsychiatrySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
| | - Ying Shen
- Department of Physiology and Department of PsychiatrySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
| | - Lixia Gao
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and TechnologyZhejiang University School of MedicineHangzhou310027China
- Key Laboratory for Biomedical Engineering of Ministry of EducationCollege of Biomedical Engineering and Instrument Science, Zhejiang UniversityHangzhou310027China
- MOE Frontier Science Center for Brain Science and Brain‐machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhou310027China
| | - Xinjian Li
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and TechnologyZhejiang University School of MedicineHangzhou310027China
- MOE Frontier Science Center for Brain Science and Brain‐machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhou310027China
- Key Laboratory of Medical Neurobiology of Zhejiang ProvinceHangzhou310027China
| |
Collapse
|
45
|
Restoring After Central Nervous System Injuries: Neural Mechanisms and Translational Applications of Motor Recovery. Neurosci Bull 2022; 38:1569-1587. [DOI: 10.1007/s12264-022-00959-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/29/2022] [Indexed: 11/06/2022] Open
Abstract
AbstractCentral nervous system (CNS) injuries, including stroke, traumatic brain injury, and spinal cord injury, are leading causes of long-term disability. It is estimated that more than half of the survivors of severe unilateral injury are unable to use the denervated limb. Previous studies have focused on neuroprotective interventions in the affected hemisphere to limit brain lesions and neurorepair measures to promote recovery. However, the ability to increase plasticity in the injured brain is restricted and difficult to improve. Therefore, over several decades, researchers have been prompted to enhance the compensation by the unaffected hemisphere. Animal experiments have revealed that regrowth of ipsilateral descending fibers from the unaffected hemisphere to denervated motor neurons plays a significant role in the restoration of motor function. In addition, several clinical treatments have been designed to restore ipsilateral motor control, including brain stimulation, nerve transfer surgery, and brain–computer interface systems. Here, we comprehensively review the neural mechanisms as well as translational applications of ipsilateral motor control upon rehabilitation after CNS injuries.
Collapse
|
46
|
Resta F, Montagni E, de Vito G, Scaglione A, Allegra Mascaro AL, Pavone FS. Large-scale all-optical dissection of motor cortex connectivity shows a segregated organization of mouse forelimb representations. Cell Rep 2022; 41:111627. [PMID: 36351410 PMCID: PMC10073205 DOI: 10.1016/j.celrep.2022.111627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/22/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
In rodent motor cortex, the rostral forelimb area (RFA) and the caudal forelimb area (CFA) are major actors in orchestrating the control of complex forelimb movements. However, their intrinsic connectivity and reciprocal functional organization are still unclear, limiting our understanding of how the brain coordinates and executes voluntary movements. Here, we causally probe cortical connectivity and activation patterns triggered by transcranial optogenetic stimulation of ethologically relevant complex movements exploiting a large-scale all-optical method in awake mice. Results show specific activation features for each movement class, providing evidence for a segregated functional organization of CFA and RFA. Importantly, we identify a second discrete lateral grasping representation area, namely the lateral forelimb area (LFA), with unique connectivity and activation patterns. Therefore, we propose the LFA as a distinct forelimb representation in the mouse somatotopic motor map.
Collapse
Affiliation(s)
- Francesco Resta
- European Laboratory for Non-linear Spectroscopy, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino, Italy.
| | - Elena Montagni
- European Laboratory for Non-linear Spectroscopy, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Giuseppe de Vito
- European Laboratory for Non-linear Spectroscopy, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy
| | - Alessandro Scaglione
- European Laboratory for Non-linear Spectroscopy, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Anna Letizia Allegra Mascaro
- European Laboratory for Non-linear Spectroscopy, University of Florence, 50019 Sesto Fiorentino, Italy; Neuroscience Institute, National Research Council, 56124 Pisa, Italy.
| | - Francesco Saverio Pavone
- European Laboratory for Non-linear Spectroscopy, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino, Italy; National Institute of Optics, National Research Council, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
47
|
Gao Z, Pang Z, Lei G, Chen Y, Cai Z, Zhu S, Lin W, Qiu Z, Wang Y, Shen Y, Xu W. Crossing nerve transfer drives sensory input-dependent plasticity for motor recovery after brain injury. SCIENCE ADVANCES 2022; 8:eabn5899. [PMID: 36044580 PMCID: PMC9432844 DOI: 10.1126/sciadv.abn5899] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Restoring limb movements after central nervous system injury remains a substantial challenge. Recent studies proved that crossing nerve transfer surgery could rebuild physiological connectivity between the contralesional cortex and the paralyzed arm to compensate for the lost function after brain injury. However, the neural mechanism by which this surgery mediates motor recovery remains still unclear. Here, using a clinical mouse model, we showed that this surgery can restore skilled forelimb function in adult mice with unilateral cortical lesion by inducing cortical remapping and promoting corticospinal tract sprouting. After reestablishing the ipsilateral descending pathway, resecting of the artificially rebuilt peripheral nerve did not affect motor improvements. Furthermore, retaining the sensory afferent, but not the motor efferent, of the transferred nerve was sufficient for inducing brain remapping and facilitating motor restoration. Thus, our results demonstrate that surgically rebuilt sensory input triggers neural plasticity for accelerating motor recovery, which provides an approach for treating central nervous system injuries.
Collapse
Affiliation(s)
- Zhengrun Gao
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhen Pang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Gaowei Lei
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiming Chen
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zeyu Cai
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuai Zhu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Weishan Lin
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zilong Qiu
- The National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yizheng Wang
- The National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Yundong Shen
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- The National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
- Department of Hand and Upper Extremity Surgery, Jing‘an District Central Hospital, Fudan University, Shanghai, China
| | - Wendong Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- The National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
- Department of Hand and Upper Extremity Surgery, Jing‘an District Central Hospital, Fudan University, Shanghai, China
- Institutes of Brain Science, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center of Brain Science, Fudan University, Shanghai, China
- Co-innovation Center of Neuroregeneration, Nantong University, 226000 Nantong, China
- Research Unit of Synergistic Reconstruction of Upper and Lower Limbs After Brain Injury, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
48
|
Lu T, Shinozaki M, Nagoshi N, Nakamura M, Okano H. Long Preservation of AAV-Transduced Fluorescence by a Modified Organic Solvent-Based Clearing Method. Int J Mol Sci 2022; 23:ijms23179637. [PMID: 36077034 PMCID: PMC9455935 DOI: 10.3390/ijms23179637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
The development of tissue clearing technologies allows 3D imaging of whole tissues and organs, especially in studies of the central nervous system innervated throughout the body. Although the three-dimensional imaging of solvent-cleared organs (3DISCO) method provides a powerful clearing capacity and high transparency, the rapid quenching of endogenous fluorescence and peroxide removal process decreases its practicability. This study provides a modified method named tDISCO to solve these limitations. The tDISCO protocol can preserve AAV-transduced endogenous EGFP fluorescence for months and achieve high transparency in a fast and simple clearing process. In addition to the brain, tDISCO was applied to other organs and even hard bone tissue. tDISCO also enabled us to visualize the long projection neurons and axons with high resolution. This method provides a fast and simple clearing protocol for 3D visualization of the AAV- transduced long projection neurons throughout the brain and spinal cord.
Collapse
Affiliation(s)
- Tao Lu
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Correspondence: (M.N.); (H.O.)
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Correspondence: (M.N.); (H.O.)
| |
Collapse
|
49
|
O'Neill N, Mah KM, Badillo-Martinez A, Jann V, Bixby JL, Lemmon VP. Markerless tracking enables distinction between strategic compensation and functional recovery after spinal cord injury. Exp Neurol 2022; 354:114085. [PMID: 35460760 DOI: 10.1016/j.expneurol.2022.114085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/27/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022]
Abstract
Injuries to the cervical spinal cord represent around 60% of all spinal cord injuries (SCIs). A major priority for patients with cervical SCIs is the recovery of any hand or arm function. The similarities between human and rodent "reach-to-eat movements" indicate that analyzing mouse forelimb reaching behavior may be a method of identifying clinically relevant treatments for people with cervical SCIs. One popular behavioral measure of forelimb functional recovery comprises the Single Pellet Retrieval Task (SPRT). The most common outcome measure for this task, however (percentage of pellets successfully retrieved), cannot readily distinguish between recovery of pre-injury motor patterns and strategic compensation. Our objective was to establish outcome measures for the SPRT that are readily adopted by different investigators and capable of measuring recovery of limb function after SCI. We used a simple semi-automated approach to high-speed tracking of mouse forepaw movements during pellet retrieval. DeepLabCut™, a machine learning based computer vision software package, was used to track individual features of the mouse forepaw, allowing a more detailed assessment of reaching behavior after SCI. Interestingly, kinematic analysis of movements pre- and post-injury illuminated persistent deficits in specific features of the reaching motor patterns, namely pronation and paw trajectory, that were poorly correlated with recovery of the ability to successfully retrieve pellets. Thus, we have developed an inexpensive method for detailed analysis of mouse reach-to-eat behavior following SCI. Further, our results suggest that binary success/fail outcome measures primarily assess an animal's ability to compensate rather than a restoration of normal function in the injured pathways and networks.
Collapse
Affiliation(s)
- Nick O'Neill
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kar Men Mah
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Abdiel Badillo-Martinez
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - John L Bixby
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Institute for Data Science and Computing, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Dept. of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Vance P Lemmon
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Dept. of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Institute for Data Science and Computing, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
50
|
Sohn J, Suzuki M, Youssef M, Hatada S, Larkum ME, Kawaguchi Y, Kubota Y. Presynaptic supervision of cortical spine dynamics in motor learning. SCIENCE ADVANCES 2022; 8:eabm0531. [PMID: 35895812 PMCID: PMC9328689 DOI: 10.1126/sciadv.abm0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
In mammalian neocortex, learning triggers the formation and turnover of new postsynaptic spines on pyramidal cell dendrites. However, the biological principles of spine reorganization during learning remain elusive because the identity of their presynaptic neuronal partners is unknown. Here, we show that two presynaptic neural circuits supervise distinct programs of spine dynamics to execute learning. We imaged spine dynamics in motor cortex during learning and performed post hoc identification of their afferent presynaptic neurons. New spines that appeared during learning formed small transient contacts with corticocortical neurons that were eliminated on skill acquisition. In contrast, persistent spines with axons from thalamic neurons were formed and enlarged. These results suggest that pyramidal cell dendrites in motor cortex use a neural circuit division of labor during skill learning, with dynamic teaching contacts from top-down intracortical axons followed by synaptic memory formation driven by thalamic axons. Dual spine supervision may govern diverse skill learning in the neocortex.
Collapse
Affiliation(s)
- Jaerin Sohn
- Division of Cerebral Circuitry, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan
| | - Mototaka Suzuki
- Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Mohammed Youssef
- Division of Cerebral Circuitry, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan
- Department of Animal Physiology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Sayuri Hatada
- Division of Cerebral Circuitry, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan
| | - Matthew E. Larkum
- Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, 10117 Berlin, Germany
| | - Yasuo Kawaguchi
- Division of Cerebral Circuitry, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8787, Japan
- Brain Science Institute, Tamagawa University, Machida, Tokyo 194-8610, Japan
| | - Yoshiyuki Kubota
- Division of Cerebral Circuitry, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8787, Japan
- Support Unit for Electron Microscopy Techniques, Research Resources Division, RIKEN Center for Brain Science, Wako 351-0198, Japan
| |
Collapse
|