1
|
Kim SK, Rogers SL, Lu W, Lee BS, Gelfand VI. EB-SUN, a new microtubule plus-end tracking protein in Drosophila. Mol Biol Cell 2024; 35:ar147. [PMID: 39475714 DOI: 10.1091/mbc.e24-09-0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
Microtubule (MT) regulation is essential for oocyte development. In Drosophila, MT stability, polarity, abundance, and orientation undergo dynamic changes across developmental stages. In our effort to identify novel microtubule-associated proteins that regulate MTs in the Drosophila ovary, we identified a previously uncharacterized gene, CG18190, which encodes a novel MT end-binding (EB) protein, which we propose to name EB-SUN. We show that EB-SUN colocalizes with EB1 at growing MT plus-ends in Drosophila S2 cells. Tissue-specific and developmental expression profiles from Paralog Explorer reveal that EB-SUN is predominantly expressed in the ovary and early embryos, while EB1 is ubiquitously expressed. Furthermore, as early as oocyte determination, EB-SUN comets are highly concentrated in oocytes during oogenesis. EB-SUN knockout (KO) results in decreased MT density at the onset of mid-oogenesis (stage 7) and delays oocyte growth during late mid-oogenesis (stage 9). Combining EB-SUN KO with EB1 knockdown (KD) in germ cells significantly further reduces MT density at stage 7. Hatching assays of single protein depletion reveal distinct roles for EB-SUN and EB1 in early embryogenesis, likely due to differences in their expression and binding partners. Notably, all eggs from EB-SUN KO/EB1 KD females fail to hatch, suggesting partial redundancy between these proteins.
Collapse
Affiliation(s)
- Sun K Kim
- Department of Cell and Developmental Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611-3008
| | - Stephen L Rogers
- Department of Biology, Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Wen Lu
- Department of Cell and Developmental Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611-3008
| | - Brad S Lee
- Department of Cell and Developmental Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611-3008
| | - Vladimir I Gelfand
- Department of Cell and Developmental Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611-3008
| |
Collapse
|
2
|
Kim SK, Rogers SL, Lu W, Lee BS, Gelfand VI. EB-SUN, a New Microtubule Plus-End Tracking Protein in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612465. [PMID: 39314338 PMCID: PMC11419005 DOI: 10.1101/2024.09.11.612465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Microtubule (MT) regulation is essential for oocyte development. In Drosophila, MT stability, polarity, abundance, and orientation undergo dynamic changes across developmental stages. In our effort to identify novel microtubule-associated proteins (MAPs) that regulate MTs in the Drosophila ovary, we identified a previously uncharacterized gene, CG18190, encoding a novel MT end-binding (EB) protein, which we propose to name EB-SUN. We show that EB-SUN colocalizes with EB1 at growing microtubule plus-ends in Drosophila S2 cells. Tissue-specific and developmental expression profiles from Paralog Explorer reveal that EB-SUN is predominantly expressed in the ovary and early embryos, while EB1 is ubiquitously expressed. Furthermore, as early as oocyte determination, EB-SUN comets are highly concentrated in oocytes during oogenesis. EB-SUN knockout (KO) results in a decrease in MT density at the onset of mid-oogenesis (Stage 7) and delays oocyte growth during late mid-oogenesis (Stage 9). Combining EB-SUN KO with EB1 knockdown (KD) in germ cells significantly further reduced MT density at Stage 7. Notably, all eggs from EB-SUN KO/EB1 KD females fail to hatch, unlike single gene depletion, suggesting a functional redundancy between these two EB proteins during embryogenesis. Our findings indicate that EB-SUN and EB1 play distinct roles during early embryogenesis.
Collapse
Affiliation(s)
- Sun K Kim
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology Chicago, IL 60611-3008
| | - Stephen L Rogers
- Department of Biology, Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Wen Lu
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology Chicago, IL 60611-3008
| | - Brad S Lee
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology Chicago, IL 60611-3008
| | - Vladimir I Gelfand
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology Chicago, IL 60611-3008
| |
Collapse
|
3
|
Zhang C, Zhang JY, Wang N, Abou El-Ela AS, Shi ZY, You YZ, Ali SA, Zhou WW, Zhu ZR. RNAi-mediated knockdown of papilin gene affects the egg hatching in Nilaparvata lugens. PEST MANAGEMENT SCIENCE 2024; 80:4779-4789. [PMID: 38837578 DOI: 10.1002/ps.8194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/24/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND The brown planthopper (BPH), Nilaparvata lugens, is one of the most destructive pests of rice. Owing to the rapid adaptation of BPH to many pesticides and resistant varieties, identifying putative gene targets for developing RNA interference (RNAi)-based pest management strategies has received much attention for this pest. The glucoprotein papilin is the most abundant component in the basement membranes of many organisms, and its function is closely linked to development. RESULTS In this study, we identified a papilin homologous gene in BPH (NlPpn). Quantitative Real-time PCR analysis showed that the transcript of NlPpn was highly accumulated in the egg stage. RNAi of NlPpn in newly emerged BPH females caused nonhatching phenotypes of their eggs, which may be a consequence of the maldevelopment of their embryos. Moreover, the transcriptomic analysis identified 583 differentially expressed genes between eggs from the dsGFP- and dsNlPpn-treated insects. Among them, the 'structural constituent of cuticle' cluster ranked first among the top 15 enriched GO terms. Consistently, ultrastructural analysis unveiled that dsNlPpn-treated eggs displayed a discrete and distorted serosal endocuticle lamellar structure. Furthermore, the hatchability of BPH eggs was also successfully reduced by the topical application of NlPpn-dsRNA-layered double hydroxide nanosheets onto the adults. CONCLUSION Our findings demonstrate that NlPpn is essential to maintaining the regular structure of the serosal cuticle and the embryonic development in BPH, indicating NlPpn could be a potential target for pest control during the egg stage. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Jin-Yi Zhang
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Ni Wang
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Amr S Abou El-Ela
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Plant Protection Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Zhe-Yi Shi
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Yuan-Zheng You
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Soomro Abid Ali
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Wen-Wu Zhou
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| |
Collapse
|
4
|
Yang L, Zhu A, Aman JM, Denberg D, Kilwein MD, Marmion RA, Johnson ANT, Veraksa A, Singh M, Wühr M, Shvartsman SY. ERK synchronizes embryonic cleavages in Drosophila. Dev Cell 2024:S1534-5807(24)00487-8. [PMID: 39208802 DOI: 10.1016/j.devcel.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Extracellular-signal-regulated kinase (ERK) signaling controls development and homeostasis and is genetically deregulated in human diseases, including neurocognitive disorders and cancers. Although the list of ERK functions is vast and steadily growing, the full spectrum of processes controlled by any specific ERK activation event remains unknown. Here, we show how ERK functions can be systematically identified using targeted perturbations and global readouts of ERK activation. Our experimental model is the Drosophila embryo, where ERK signaling at the embryonic poles has thus far only been associated with the transcriptional patterning of the future larva. Through a combination of live imaging and phosphoproteomics, we demonstrated that ERK activation at the poles is also critical for maintaining the speed and synchrony of embryonic cleavages. The presented approach to interrogating phosphorylation networks identifies a hidden function of a well-studied signaling event and sets the stage for similar studies in other organisms.
Collapse
Affiliation(s)
- Liu Yang
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Audrey Zhu
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Javed M Aman
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
| | - David Denberg
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA
| | - Marcus D Kilwein
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Robert A Marmion
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Alex N T Johnson
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Mona Singh
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
| | - Martin Wühr
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Stanislav Y Shvartsman
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Flatiron Institute, New York, NY 10010, USA.
| |
Collapse
|
5
|
Schindler-Johnson M, Petridou NI. Collective effects of cell cleavage dynamics. Front Cell Dev Biol 2024; 12:1358971. [PMID: 38559810 PMCID: PMC10978805 DOI: 10.3389/fcell.2024.1358971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
A conserved process of early embryonic development in metazoans is the reductive cell divisions following oocyte fertilization, termed cell cleavages. Cell cleavage cycles usually start synchronously, lengthen differentially between the embryonic cells becoming asynchronous, and cease before major morphogenetic events, such as germ layer formation and gastrulation. Despite exhibiting species-specific characteristics, the regulation of cell cleavage dynamics comes down to common controllers acting mostly at the single cell/nucleus level, such as nucleus-to-cytoplasmic ratio and zygotic genome activation. Remarkably, recent work has linked cell cleavage dynamics to the emergence of collective behavior during embryogenesis, including pattern formation and changes in embryo-scale mechanics, raising the question how single-cell controllers coordinate embryo-scale processes. In this review, we summarize studies across species where an association between cell cleavages and collective behavior was made, discuss the underlying mechanisms, and propose that cell-to-cell variability in cell cleavage dynamics can serve as a mechanism of long-range coordination in developing embryos.
Collapse
Affiliation(s)
- Magdalena Schindler-Johnson
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nicoletta I. Petridou
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
6
|
Wong SS, Wainman A, Saurya S, Raff JW. Regulation of centrosome size by the cell-cycle oscillator in Drosophila embryos. EMBO J 2024; 43:414-436. [PMID: 38233576 PMCID: PMC10898259 DOI: 10.1038/s44318-023-00022-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024] Open
Abstract
Mitotic centrosomes assemble when centrioles recruit large amounts of pericentriolar material (PCM) around themselves. In early C. elegans embryos, mitotic centrosome size appears to be set by the limiting amount of a key component. In Drosophila syncytial embryos, thousands of mitotic centrosomes are assembled as the embryo proceeds through 13 rounds of rapid nuclear division, driven by a core cell cycle oscillator. These divisions slow during nuclear cycles 11-13, and we find that centrosomes respond by reciprocally decreasing their growth rate, but increasing their growth period-so that they grow to a relatively consistent size at each cycle. At the start of each cycle, moderate CCO activity initially promotes centrosome growth, in part by stimulating Polo/PLK1 recruitment to centrosomes. Later in each cycle, high CCO activity inhibits centrosome growth by suppressing the centrosomal recruitment and/or maintenance of centrosome proteins. Thus, in fly embryos, mitotic centrosome size appears to be regulated predominantly by the core cell cycle oscillator, rather than by the depletion of a limiting component.
Collapse
Affiliation(s)
- Siu-Shing Wong
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Saroj Saurya
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| |
Collapse
|
7
|
Doerr S, Zhou P, Ragkousi K. Origin and development of primary animal epithelia. Bioessays 2024; 46:e2300150. [PMID: 38009581 PMCID: PMC11164562 DOI: 10.1002/bies.202300150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Epithelia are the first organized tissues that appear during development. In many animal embryos, early divisions give rise to a polarized monolayer, the primary epithelium, rather than a random aggregate of cells. Here, we review the mechanisms by which cells organize into primary epithelia in various developmental contexts. We discuss how cells acquire polarity while undergoing early divisions. We describe cases where oriented divisions constrain cell arrangement to monolayers including organization on top of yolk surfaces. We finally discuss how epithelia emerge in embryos from animals that branched early during evolution and provide examples of epithelia-like arrangements encountered in single-celled eukaryotes. Although divergent and context-dependent mechanisms give rise to primary epithelia, here we trace the unifying principles underlying their formation.
Collapse
Affiliation(s)
- Sophia Doerr
- Department of Biology, Amherst College, Amherst, Massachusetts, USA
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, USA
| | - Phillip Zhou
- Department of Biology, Amherst College, Amherst, Massachusetts, USA
| | | |
Collapse
|
8
|
Mierke CT. Extracellular Matrix Cues Regulate Mechanosensing and Mechanotransduction of Cancer Cells. Cells 2024; 13:96. [PMID: 38201302 PMCID: PMC10777970 DOI: 10.3390/cells13010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Extracellular biophysical properties have particular implications for a wide spectrum of cellular behaviors and functions, including growth, motility, differentiation, apoptosis, gene expression, cell-matrix and cell-cell adhesion, and signal transduction including mechanotransduction. Cells not only react to unambiguously mechanical cues from the extracellular matrix (ECM), but can occasionally manipulate the mechanical features of the matrix in parallel with biological characteristics, thus interfering with downstream matrix-based cues in both physiological and pathological processes. Bidirectional interactions between cells and (bio)materials in vitro can alter cell phenotype and mechanotransduction, as well as ECM structure, intentionally or unintentionally. Interactions between cell and matrix mechanics in vivo are of particular importance in a variety of diseases, including primarily cancer. Stiffness values between normal and cancerous tissue can range between 500 Pa (soft) and 48 kPa (stiff), respectively. Even the shear flow can increase from 0.1-1 dyn/cm2 (normal tissue) to 1-10 dyn/cm2 (cancerous tissue). There are currently many new areas of activity in tumor research on various biological length scales, which are highlighted in this review. Moreover, the complexity of interactions between ECM and cancer cells is reduced to common features of different tumors and the characteristics are highlighted to identify the main pathways of interaction. This all contributes to the standardization of mechanotransduction models and approaches, which, ultimately, increases the understanding of the complex interaction. Finally, both the in vitro and in vivo effects of this mechanics-biology pairing have key insights and implications for clinical practice in tumor treatment and, consequently, clinical translation.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Faculty of Physics and Earth Science, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| |
Collapse
|
9
|
Tam R, Harris TJC. Reshaping the Syncytial Drosophila Embryo with Cortical Actin Networks: Four Main Steps of Early Development. Results Probl Cell Differ 2024; 71:67-90. [PMID: 37996673 DOI: 10.1007/978-3-031-37936-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Drosophila development begins as a syncytium. The large size of the one-cell embryo makes it ideal for studying the structure, regulation, and effects of the cortical actin cytoskeleton. We review four main steps of early development that depend on the actin cortex. At each step, dynamic remodelling of the cortex has specific effects on nuclei within the syncytium. During axial expansion, a cortical actomyosin network assembles and disassembles with the cell cycle, generating cytoplasmic flows that evenly distribute nuclei along the ovoid cell. When nuclei move to the cell periphery, they seed Arp2/3-based actin caps which grow into an array of dome-like compartments that house the nuclei as they divide at the cell cortex. To separate germline nuclei from the soma, posterior germ plasm induces full cleavage of mono-nucleated primordial germ cells from the syncytium. Finally, zygotic gene expression triggers formation of the blastoderm epithelium via cellularization and simultaneous division of ~6000 mono-nucleated cells from a single internal yolk cell. During these steps, the cortex is regulated in space and time, gains domain and sub-domain structure, and undergoes mesoscale interactions that lay a structural foundation of animal development.
Collapse
Affiliation(s)
- Rebecca Tam
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Tony J C Harris
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Fujii K, Kondo T, Kimura A. Enucleation of the C. elegans embryo revealed dynein-dependent spacing between microtubule asters. Life Sci Alliance 2024; 7:e202302427. [PMID: 37931957 PMCID: PMC10627822 DOI: 10.26508/lsa.202302427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
The intracellular positioning of the centrosome, a major microtubule-organizing center, is important for cellular functions. One of the features of centrosome positioning is the spacing between centrosomes; however, the underlying mechanisms are not fully understood. To characterize the spacing activity in Caenorhabditis elegans embryos, a genetic setup was developed to produce enucleated embryos. The centrosome was duplicated multiple times in the enucleated embryo, which enabled us to characterize the chromosome-independent spacing activity between sister and non-sister centrosome pairs. We found that the timely spacing depended on cytoplasmic dynein, and we propose a stoichiometric model of cortical and cytoplasmic pulling forces for the spacing between centrosomes. We also observed dynein-independent but non-muscle myosin II-dependent movement of centrosomes in the later cell cycle phase. The spacing mechanisms revealed in this study are expected to function between centrosomes in general, regardless of the presence of a chromosome/nucleus between them, including centrosome separation and spindle elongation.
Collapse
Affiliation(s)
- Ken Fujii
- https://ror.org/0516ah480 Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies) Mishima, Japan
- https://ror.org/02xg1m795 Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan
| | - Tomo Kondo
- https://ror.org/02xg1m795 Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan
| | - Akatsuki Kimura
- https://ror.org/0516ah480 Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies) Mishima, Japan
- https://ror.org/02xg1m795 Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan
| |
Collapse
|
11
|
Bhatnagar A, Nestler M, Gross P, Kramar M, Leaver M, Voigt A, Grill SW. Axis convergence in C. elegans embryos. Curr Biol 2023; 33:5096-5108.e15. [PMID: 37979577 DOI: 10.1016/j.cub.2023.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/31/2023] [Accepted: 10/25/2023] [Indexed: 11/20/2023]
Abstract
Embryos develop in a surrounding that guides key aspects of their development. For example, the anteroposterior (AP) body axis is always aligned with the geometric long axis of the surrounding eggshell in fruit flies and worms. The mechanisms that ensure convergence of the AP axis with the long axis of the eggshell remain unresolved. We investigate axis convergence in early C. elegans development, where the nascent AP axis, when misaligned, actively re-aligns to converge with the long axis of the egg. We identify two physical mechanisms that underlie axis convergence. First, bulk cytoplasmic flows, driven by actomyosin cortical flows, can directly reposition the AP axis. Second, active forces generated within the pseudocleavage furrow, a transient actomyosin structure similar to a contractile ring, can drive a mechanical re-orientation such that it becomes positioned perpendicular to the long axis of the egg. This in turn ensures AP axis convergence. Numerical simulations, together with experiments that either abolish the pseudocleavage furrow or change the shape of the egg, demonstrate that the pseudocleavage-furrow-dependent mechanism is a major driver of axis convergence. We conclude that active force generation within the actomyosin cortical layer drives axis convergence in the early nematode.
Collapse
Affiliation(s)
- Archit Bhatnagar
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrase 108, Dresden 01037, Germany
| | - Michael Nestler
- Institute of Scientific Computing, Technische Universitӓt Dresden, Zellescher Weg 25, Dresden 01217, Germany
| | - Peter Gross
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrase 108, Dresden 01037, Germany; Biotechnology Center (BIOTEC), Technische Universitӓt Dresden, Tatzberg 47/49, Dresden 01307, Germany
| | - Mirna Kramar
- Biotechnology Center (BIOTEC), Technische Universitӓt Dresden, Tatzberg 47/49, Dresden 01307, Germany
| | - Mark Leaver
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrase 108, Dresden 01037, Germany
| | - Axel Voigt
- Institute of Scientific Computing, Technische Universitӓt Dresden, Zellescher Weg 25, Dresden 01217, Germany; Cluster of Excellence Physics of Life, Technische Universitӓt Dresden, Arnoldstrase 18, Dresden 01307, Germany; Center for Systems Biology Dresden, Pfotenhauerstrase 108, Dresden 01037, Germany.
| | - Stephan W Grill
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrase 108, Dresden 01037, Germany; Cluster of Excellence Physics of Life, Technische Universitӓt Dresden, Arnoldstrase 18, Dresden 01307, Germany; Center for Systems Biology Dresden, Pfotenhauerstrase 108, Dresden 01037, Germany.
| |
Collapse
|
12
|
Arjona MI, Najafi J, Minc N. Cytoplasm mechanics and cellular organization. Curr Opin Cell Biol 2023; 85:102278. [PMID: 37979412 DOI: 10.1016/j.ceb.2023.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/20/2023]
Abstract
As cells organize spatially or divide, they translocate many micron-scale organelles in their cytoplasm. These include endomembrane vesicles, nuclei, microtubule asters, mitotic spindles, or chromosomes. Organelle motion is powered by cytoskeleton forces but is opposed by viscoelastic forces imparted by the surrounding crowded cytoplasm medium. These resistive forces associated to cytoplasm physcial properties remain generally underappreciated, yet reach significant values to slow down organelle motion or even limit their displacement by springing them back towards their original position. The cytoplasm may also be itself organized in time and space, being for example stiffer or more fluid at certain locations or during particular cell cycle phases. Thus, cytoplasm mechanics may be viewed as a labile module that contributes to organize cells. We here review emerging methods, mechanisms, and concepts to study cytoplasm mechanical properties and their function in organelle positioning, cellular organization and division.
Collapse
Affiliation(s)
- María Isabel Arjona
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, France
| | - Javad Najafi
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, France
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, France.
| |
Collapse
|
13
|
Fei C, Dunkel J. Fly embryo nuclei riding on two-fluid flow. Proc Natl Acad Sci U S A 2023; 120:e2317219120. [PMID: 37939065 PMCID: PMC10665796 DOI: 10.1073/pnas.2317219120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Affiliation(s)
- Chenyi Fei
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
14
|
Htet PH, Lauga E. Cortex-driven cytoplasmic flows in elongated cells: fluid mechanics and application to nuclear transport in Drosophila embryos. J R Soc Interface 2023; 20:20230428. [PMID: 37963561 PMCID: PMC10645513 DOI: 10.1098/rsif.2023.0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Abstract
The Drosophila melanogaster embryo, an elongated multi-nucleated cell, is a classical model system for eukaryotic development and morphogenesis. Recent work has shown that bulk cytoplasmic flows, driven by cortical contractions along the walls of the embryo, enable the uniform spreading of nuclei along the anterior-posterior axis necessary for proper embryonic development. Here, we propose two mathematical models to characterize cytoplasmic flows driven by tangential cortical contractions in elongated cells. Assuming Newtonian fluid flow at low Reynolds number in a spheroidal cell, we first compute the flow field exactly, thereby bypassing the need for numerical computations. We then apply our results to recent experiments on nuclear transport in cell cycles 4-6 of Drosophila embryo development. By fitting the cortical contractions in our model to measurements, we reveal that experimental cortical flows enable near-optimal axial spreading of nuclei. A second mathematical approach, applicable to general elongated cell geometries, exploits a long-wavelength approximation to produce an even simpler solution, with errors below [Formula: see text] compared with the full model. An application of this long-wavelength result to transport leads to fully analytical solutions for the nuclear concentration that capture the essential physics of the system, including optimal axial spreading of nuclei.
Collapse
Affiliation(s)
- Pyae Hein Htet
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
| |
Collapse
|
15
|
Hernández-López C, Puliafito A, Xu Y, Lu Z, Di Talia S, Vergassola M. Two-fluid dynamics and micron-thin boundary layers shape cytoplasmic flows in early Drosophila embryos. Proc Natl Acad Sci U S A 2023; 120:e2302879120. [PMID: 37878715 PMCID: PMC10622894 DOI: 10.1073/pnas.2302879120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/22/2023] [Indexed: 10/27/2023] Open
Abstract
Cytoplasmic flows are widely emerging as key functional players in development. In early Drosophila embryos, flows drive the spreading of nuclei across the embryo. Here, we combine hydrodynamic modeling with quantitative imaging to develop a two-fluid model that features an active actomyosin gel and a passive viscous cytosol. Gel contractility is controlled by the cell cycle oscillator, the two fluids being coupled by friction. In addition to recapitulating experimental flow patterns, our model explains observations that remained elusive and makes a series of predictions. First, the model captures the vorticity of cytosolic flows, which highlights deviations from Stokes' flow that were observed experimentally but remained unexplained. Second, the model reveals strong differences in the gel and cytosol motion. In particular, a micron-sized boundary layer is predicted close to the cortex, where the gel slides tangentially while the cytosolic flow cannot slip. Third, the model unveils a mechanism that stabilizes the spreading of nuclei with respect to perturbations of their initial positions. This self-correcting mechanism is argued to be functionally important for proper nuclear spreading. Fourth, we use our model to analyze the effects of flows on the transport of the morphogen Bicoid and the establishment of its gradients. Finally, the model predicts that the flow strength should be reduced if the shape of the domain is more round, which is experimentally confirmed in Drosophila mutants. Thus, our two-fluid model explains flows and nuclear positioning in early Drosophila, while making predictions that suggest novel future experiments.
Collapse
Affiliation(s)
| | | | - Yitong Xu
- Department of Cell Biology, Duke University Medical Center, Durham, NC27710
| | - Ziqi Lu
- Department of Cell Biology, Duke University Medical Center, Durham, NC27710
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC27710
| | - Massimo Vergassola
- Department of Physics, École Normale Supérieure, Paris75005, France
- Department of Physics, University of California, San Diego, CA92075
| |
Collapse
|
16
|
Kilwein MD, Johnson MR, Thomalla JM, Mahowald AP, Welte MA. Drosophila embryos spatially sort their nutrient stores to facilitate their utilization. Development 2023; 150:dev201423. [PMID: 36805634 PMCID: PMC10108605 DOI: 10.1242/dev.201423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023]
Abstract
Animal embryos are provided by their mothers with a diverse nutrient supply that is crucial for development. In Drosophila, the three most abundant nutrients (triglycerides, proteins and glycogen) are sequestered in distinct storage structures: lipid droplets (LDs), yolk vesicles (YVs) and glycogen granules (GGs). Using transmission electron microscopy as well as live and fixed sample fluorescence imaging, we find that all three storage structures are dispersed throughout the egg but are then spatially allocated to distinct tissues by gastrulation: LDs largely to the peripheral epithelium, YVs and GGs to the central yolk cell. To confound the embryo's ability to sort its nutrients, we employ Jabba and mauve mutants to generate LD-GG and LD-YV compound structures. In these mutants, LDs are mis-sorted to the yolk cell and their turnover is delayed. Our observations demonstrate dramatic spatial nutrient sorting in early embryos and provide the first evidence for its functional importance.
Collapse
Affiliation(s)
- Marcus D. Kilwein
- Department of Biology, University of Rochester, Rochester, NY 14620, USA
| | - Matthew R. Johnson
- Department of Biology, University of Rochester, Rochester, NY 14620, USA
| | | | | | - Michael A. Welte
- Department of Biology, University of Rochester, Rochester, NY 14620, USA
| |
Collapse
|
17
|
Kilwein MD, Dao TK, Welte MA. Drosophila embryos allocate lipid droplets to specific lineages to ensure punctual development and redox homeostasis. PLoS Genet 2023; 19:e1010875. [PMID: 37578970 PMCID: PMC10449164 DOI: 10.1371/journal.pgen.1010875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 08/24/2023] [Accepted: 07/17/2023] [Indexed: 08/16/2023] Open
Abstract
Lipid droplets (LDs) are ubiquitous organelles that facilitate neutral lipid storage in cells, including energy-dense triglycerides. They are found in all investigated metazoan embryos where they are thought to provide energy for development. Intriguingly, early embryos of diverse metazoan species asymmetrically allocate LDs amongst cellular lineages, a process which can involve massive intracellular redistribution of LDs. However, the biological reason for asymmetric lineage allocation is unknown. To address this issue, we utilize the Drosophila embryo where the cytoskeletal mechanisms that drive allocation are well characterized. We disrupt allocation by two different means: Loss of the LD protein Jabba results in LDs adhering inappropriately to glycogen granules; loss of Klar alters the activities of the microtubule motors that move LDs. Both mutants cause the same dramatic change in LD tissue inheritance, shifting allocation of the majority of LDs to the yolk cell instead of the incipient epithelium. Embryos with such mislocalized LDs do not fully consume their LDs and are delayed in hatching. Through use of a dPLIN2 mutant, which appropriately localizes a smaller pool of LDs, we find that failed LD transport and a smaller LD pool affect embryogenesis in a similar manner. Embryos of all three mutants display overlapping changes in their transcriptome and proteome, suggesting that lipid deprivation results in a shared embryonic response and a widespread change in metabolism. Excitingly, we find abundant changes related to redox homeostasis, with many proteins related to glutathione metabolism upregulated. LD deprived embryos have an increase in peroxidized lipids and rely on increased utilization of glutathione-related proteins for survival. Thus, embryos are apparently able to mount a beneficial response upon lipid stress, rewiring their metabolism to survive. In summary, we demonstrate that early embryos allocate LDs into specific lineages for subsequent optimal utilization, thus protecting against oxidative stress and ensuring punctual development.
Collapse
Affiliation(s)
- Marcus D. Kilwein
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - T. Kim Dao
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Michael A. Welte
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
18
|
McGorty RJ, Currie CJ, Michel J, Sasanpour M, Gunter C, Lindsay KA, Rust MJ, Katira P, Das M, Ross JL, Robertson-Anderson RM. Kinesin and myosin motors compete to drive rich multiphase dynamics in programmable cytoskeletal composites. PNAS NEXUS 2023; 2:pgad245. [PMID: 37575673 PMCID: PMC10416814 DOI: 10.1093/pnasnexus/pgad245] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023]
Abstract
The cellular cytoskeleton relies on diverse populations of motors, filaments, and binding proteins acting in concert to enable nonequilibrium processes ranging from mitosis to chemotaxis. The cytoskeleton's versatile reconfigurability, programmed by interactions between its constituents, makes it a foundational active matter platform. However, current active matter endeavors are limited largely to single force-generating components acting on a single substrate-far from the composite cytoskeleton in cells. Here, we engineer actin-microtubule (MT) composites, driven by kinesin and myosin motors and tuned by crosslinkers, to ballistically restructure and flow with speeds that span three orders of magnitude depending on the composite formulation and time relative to the onset of motor activity. Differential dynamic microscopy analyses reveal that kinesin and myosin compete to delay the onset of acceleration and suppress discrete restructuring events, while passive crosslinking of either actin or MTs has an opposite effect. Our minimal advection-diffusion model and spatial correlation analyses correlate these dynamics to structure, with motor antagonism suppressing reconfiguration and demixing, while crosslinking enhances clustering. Despite the rich formulation space and emergent formulation-dependent structures, the nonequilibrium dynamics across all composites and timescales can be organized into three classes-slow isotropic reorientation, fast directional flow, and multimode restructuring. Moreover, our mathematical model demonstrates that diverse structural motifs can arise simply from the interplay between motor-driven advection and frictional drag. These general features of our platform facilitate applicability to other active matter systems and shed light on diverse ways that cytoskeletal components can cooperate or compete to enable wide-ranging cellular processes.
Collapse
Affiliation(s)
- Ryan J McGorty
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA
| | - Christopher J Currie
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA
| | - Jonathan Michel
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Mehrzad Sasanpour
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA
| | - Christopher Gunter
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
| | - K Alice Lindsay
- Department of Physics, Syracuse University, Syracuse, NY 13244, USA
| | - Michael J Rust
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Parag Katira
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
| | - Moumita Das
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Jennifer L Ross
- Department of Physics, Syracuse University, Syracuse, NY 13244, USA
| | | |
Collapse
|
19
|
Li T, Jin Y, Wu J, Ren Z. Beyond energy provider: multifunction of lipid droplets in embryonic development. Biol Res 2023; 56:38. [PMID: 37438836 DOI: 10.1186/s40659-023-00449-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023] Open
Abstract
Since the discovery, lipid droplets (LDs) have been recognized to be sites of cellular energy reserves, providing energy when necessary to sustain cellular life activities. Many studies have reported large numbers of LDs in eggs and early embryos from insects to mammals. The questions of how LDs are formed, what role they play, and what their significance is for embryonic development have been attracting the attention of researchers. Studies in recent years have revealed that in addition to providing energy for embryonic development, LDs in eggs and embryos also function to resist lipotoxicity, resist oxidative stress, inhibit bacterial infection, and provide lipid and membrane components for embryonic development. Removal of LDs from fertilized eggs or early embryos artificially leads to embryonic developmental arrest and defects. This paper reviews recent studies to explain the role and effect mechanisms of LDs in the embryonic development of several species and the genes involved in the regulation. The review contributes to understanding the embryonic development mechanism and provides new insight for the diagnosis and treatment of diseases related to embryonic developmental abnormalities.
Collapse
Affiliation(s)
- Tai Li
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| | - Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| | - Jian Wu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
20
|
Shamipour S, Hofmann L, Steccari I, Kardos R, Heisenberg CP. Yolk granule fusion and microtubule aster formation regulate cortical granule translocation and exocytosis in zebrafish oocytes. PLoS Biol 2023; 21:e3002146. [PMID: 37289834 DOI: 10.1371/journal.pbio.3002146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/03/2023] [Indexed: 06/10/2023] Open
Abstract
Dynamic reorganization of the cytoplasm is key to many core cellular processes, such as cell division, cell migration, and cell polarization. Cytoskeletal rearrangements are thought to constitute the main drivers of cytoplasmic flows and reorganization. In contrast, remarkably little is known about how dynamic changes in size and shape of cell organelles affect cytoplasmic organization. Here, we show that within the maturing zebrafish oocyte, the surface localization of exocytosis-competent cortical granules (Cgs) upon germinal vesicle breakdown (GVBD) is achieved by the combined activities of yolk granule (Yg) fusion and microtubule aster formation and translocation. We find that Cgs are moved towards the oocyte surface through radially outward cytoplasmic flows induced by Ygs fusing and compacting towards the oocyte center in response to GVBD. We further show that vesicles decorated with the small Rab GTPase Rab11, a master regulator of vesicular trafficking and exocytosis, accumulate together with Cgs at the oocyte surface. This accumulation is achieved by Rab11-positive vesicles being transported by acentrosomal microtubule asters, the formation of which is induced by the release of CyclinB/Cdk1 upon GVBD, and which display a net movement towards the oocyte surface by preferentially binding to the oocyte actin cortex. We finally demonstrate that the decoration of Cgs by Rab11 at the oocyte surface is needed for Cg exocytosis and subsequent chorion elevation, a process central in egg activation. Collectively, these findings unravel a yet unrecognized role of organelle fusion, functioning together with cytoskeletal rearrangements, in orchestrating cytoplasmic organization during oocyte maturation.
Collapse
Affiliation(s)
- Shayan Shamipour
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Laura Hofmann
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Irene Steccari
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Roland Kardos
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | |
Collapse
|
21
|
Colgren J, Burkhardt P. Evolution: Was the nuclear-to-cytoplasmic ratio a key factor in the origin of animal multicellularity? Curr Biol 2023; 33:R298-R300. [PMID: 37098330 DOI: 10.1016/j.cub.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The ichthyosporean Sphaeroforma arctica, a protist closely related to animals, displays coenocytic development followed by cellularization and cell release. A new study reveals that the nuclear-to-cytoplasmic ratio drives cellularization in these fascinating organisms.
Collapse
Affiliation(s)
- Jeffrey Colgren
- Michael Sars Centre, University of Bergen, 5008 Bergen, Norway.
| | - Pawel Burkhardt
- Michael Sars Centre, University of Bergen, 5008 Bergen, Norway.
| |
Collapse
|
22
|
Dutta S, Farhadifar R, Lu W, Kabacaoğlu G, Blackwell R, Stein DB, Lakonishok M, Gelfand VI, Shvartsman SY, Shelley MJ. Self-organized intracellular twisters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.534476. [PMID: 37066165 PMCID: PMC10104069 DOI: 10.1101/2023.04.04.534476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Life in complex systems, such as cities and organisms, comes to a standstill when global coordination of mass, energy, and information flows is disrupted. Global coordination is no less important in single cells, especially in large oocytes and newly formed embryos, which commonly use fast fluid flows for dynamic reorganization of their cytoplasm. Here, we combine theory, computing, and imaging to investigate such flows in the Drosophila oocyte, where streaming has been proposed to spontaneously arise from hydrodynamic interactions among cortically anchored microtubules loaded with cargo-carrying molecular motors. We use a fast, accurate, and scalable numerical approach to investigate fluid-structure interactions of 1000s of flexible fibers and demonstrate the robust emergence and evolution of cell-spanning vortices, or twisters. Dominated by a rigid body rotation and secondary toroidal components, these flows are likely involved in rapid mixing and transport of ooplasmic components.
Collapse
Affiliation(s)
- Sayantan Dutta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ
- Center of Computational Biology, Flatiron Institute, New York, NY
| | - Reza Farhadifar
- Center of Computational Biology, Flatiron Institute, New York, NY
| | - Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | - Robert Blackwell
- Center of Computational Biology, Flatiron Institute, New York, NY
| | - David B Stein
- Center of Computational Biology, Flatiron Institute, New York, NY
| | - Margot Lakonishok
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Vladimir I Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ
- Center of Computational Biology, Flatiron Institute, New York, NY
- Department of Molecular Biology and Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ
| | - Michael J Shelley
- Center of Computational Biology, Flatiron Institute, New York, NY
- Courant Institute of Mathematical Sciences, New York University, New York, NY
| |
Collapse
|
23
|
López CH, Puliafito A, Xu Y, Lu Z, Di Talia S, Vergassola M. Two-fluid dynamics and micron-thin boundary layers shape cytoplasmic flows in early Drosophila embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532979. [PMID: 36993669 PMCID: PMC10055070 DOI: 10.1101/2023.03.16.532979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cytoplasmic flows are widely emerging as key functional players in development. In early Drosophila embryos, flows drive the spreading of nuclei across the embryo. Here, we combine hydrodynamic modeling with quantitative imaging to develop a two-fluid model that features an active actomyosin gel and a passive viscous cytosol. Gel contractility is controlled by the cell cycle oscillator, the two fluids being coupled by friction. In addition to recapitulating experimental flow patterns, our model explains observations that remained elusive, and makes a series of new predictions. First, the model captures the vorticity of cytosolic flows, which highlights deviations from Stokes' flow that were observed experimentally but remained unexplained. Second, the model reveals strong differences in the gel and cytosol motion. In particular, a micron-sized boundary layer is predicted close to the cortex, where the gel slides tangentially whilst the cytosolic flow cannot slip. Third, the model unveils a mechanism that stabilizes the spreading of nuclei with respect to perturbations of their initial positions. This self-correcting mechanism is argued to be functionally important for proper nuclear spreading. Fourth, we use our model to analyze the effects of flows on the transport of the morphogen Bicoid, and the establishment of its gradients. Finally, the model predicts that the flow strength should be reduced if the shape of the domain is more round, which is experimentally confirmed in Drosophila mutants. Thus, our two-fluid model explains flows and nuclear positioning in early Drosophila, while making predictions that suggest novel future experiments.
Collapse
Affiliation(s)
| | - Alberto Puliafito
- Department of Oncology, University of Turin, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Str. Prov. 142, km 3.95, 10060 Candiolo, Italy
| | - Yitong Xu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA and
| | - Ziqi Lu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA and
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA and
| | - Massimo Vergassola
- École Normale Supérieure, 75005 Paris, France
- Department of Physics, University of California San Diego, San Diego, CA 92075, USA
| |
Collapse
|
24
|
Olivetta M, Dudin O. The nuclear-to-cytoplasmic ratio drives cellularization in the close animal relative Sphaeroforma arctica. Curr Biol 2023; 33:1597-1605.e3. [PMID: 36996815 DOI: 10.1016/j.cub.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 03/31/2023]
Abstract
The ratio of nuclear content to cytoplasmic volume (N/C ratio) is a key regulator driving the maternal-to-zygotic transition in most animal embryos. Altering this ratio often impacts zygotic genome activation and deregulates the timing and outcome of embryogenesis.1,2,3 Despite being ubiquitous across animals, little is known about when the N/C ratio evolved to control multicellular development. Such capacity either originated with the emergence of animal multicellularity or was co-opted from the mechanisms present in unicellular organisms.4 An effective strategy to tackle this question is to investigate the close relatives of animals exhibiting life cycles with transient multicellular stages.5 Among these are ichthyosporeans, a lineage of protists undergoing coenocytic development followed by cellularization and cell release.6,7,8 During cellularization, a transient multicellular stage resembling animal epithelia is generated, offering a unique opportunity to examine whether the N/C ratio regulates multicellular development. Here, we use time-lapse microscopy to characterize how the N/C ratio affects the life cycle of the best-studied ichthyosporean model, Sphaeroforma arctica. We uncover that the last stages of cellularization coincide with a significant increase in the N/C ratio. Increasing the N/C ratio by reducing the coenocytic volume accelerates cellularization, whereas decreasing the N/C ratio by lowering the nuclear content halts it. Moreover, centrifugation and pharmacological inhibitor experiments suggest that the N/C ratio is locally sensed at the cortex and relies on phosphatase activity. Altogether, our results show that the N/C ratio drives cellularization in S. arctica, suggesting that its capacity to control multicellular development predates animal emergence.
Collapse
|
25
|
Abstract
Cells are the smallest building blocks of all living eukaryotic organisms, usually ranging from a couple of micrometers (for example, platelets) to hundreds of micrometers (for example, neurons and oocytes) in size. In eukaryotic cells that are more than 100 µm in diameter, very often a self-organized large-scale movement of cytoplasmic contents, known as cytoplasmic streaming, occurs to compensate for the physical constraints of large cells. In this Review, we discuss cytoplasmic streaming in multiple cell types and the mechanisms driving this event. We particularly focus on the molecular motors responsible for cytoplasmic movements and the biological roles of cytoplasmic streaming in cells. Finally, we describe bulk intercellular flow that transports cytoplasmic materials to the oocyte from its sister germline cells to drive rapid oocyte growth.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008, USA
| | - Vladimir I. Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008, USA
| |
Collapse
|
26
|
Najafi J, Dmitrieff S, Minc N. Size- and position-dependent cytoplasm viscoelasticity through hydrodynamic interactions with the cell surface. Proc Natl Acad Sci U S A 2023; 120:e2216839120. [PMID: 36802422 PMCID: PMC9992773 DOI: 10.1073/pnas.2216839120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023] Open
Abstract
Many studies of cytoplasm rheology have focused on small components in the submicrometer scale. However, the cytoplasm also baths large organelles like nuclei, microtubule asters, or spindles that often take significant portions of cells and move across the cytoplasm to regulate cell division or polarization. Here, we translated passive components of sizes ranging from few up to ~50 percents of the cell diameter, through the vast cytoplasm of live sea urchin eggs, with calibrated magnetic forces. Creep and relaxation responses indicate that for objects larger than the micron size, the cytoplasm behaves as a Jeffreys material, viscoelastic at short timescales, and fluidizing at longer times. However, as component size approached that of cells, cytoplasm viscoelastic resistance increased in a nonmonotonic manner. Flow analysis and simulations suggest that this size-dependent viscoelasticity emerges from hydrodynamic interactions between the moving object and the static cell surface. This effect also yields to position-dependent viscoelasticity with objects initially closer to the cell surface being harder to displace. These findings suggest that the cytoplasm hydrodynamically couples large organelles to the cell surface to restrain their motion, with important implications for cell shape sensing and cellular organization.
Collapse
Affiliation(s)
- Javad Najafi
- Université de Paris, CNRS, Institut Jacques Monod,75006Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75013Paris, France
| | - Serge Dmitrieff
- Université de Paris, CNRS, Institut Jacques Monod,75006Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75013Paris, France
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod,75006Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75013Paris, France
| |
Collapse
|
27
|
McCartney B, Dudin O. Cellularization across eukaryotes: Conserved mechanisms and novel strategies. Curr Opin Cell Biol 2023; 80:102157. [PMID: 36857882 DOI: 10.1016/j.ceb.2023.102157] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/02/2023]
Abstract
Many eukaryotes form multinucleated cells during their development. Some cells persist as such during their lifetime, others choose to cleave each nucleus individually using a specialized cytokinetic process known as cellularization. What is cellularization and how is it achieved across the eukaryotic tree of life? Are there common pathways among all species supporting a shared ancestry, or are there key differences, suggesting independent evolutionary paths? In this review, we discuss common strategies and key mechanistic differences in how cellularization is executed across vastly divergent eukaryotic species. We present a number of novel methods and non-model organisms that may provide important insight into the evolutionary origins of cellularization.
Collapse
Affiliation(s)
- Brooke McCartney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Omaya Dudin
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
| |
Collapse
|
28
|
Crellin HA, Buckley CE. Using Optogenetics to Investigate the Shared Mechanisms of Apical-Basal Polarity and Mitosis. Cells Tissues Organs 2023; 213:161-180. [PMID: 36599311 DOI: 10.1159/000528796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/18/2022] [Indexed: 01/05/2023] Open
Abstract
The initiation of apical-basal (AB) polarity and the process of mitotic cell division are both characterised by the generation of specialised plasma membrane and cortical domains. These are generated using shared mechanisms, such as asymmetric protein accumulation, Rho GTPase signalling, cytoskeletal reorganisation, vesicle trafficking, and asymmetric phosphoinositide distribution. In epithelial tissue, the coordination of AB polarity and mitosis in space and time is important both during initial epithelial development and to maintain tissue integrity and ensure appropriate cell differentiation at later stages. Whilst significant progress has been made in understanding the mechanisms underlying cell division and AB polarity, it has so far been challenging to fully unpick the complex interrelationship between polarity, signalling, morphogenesis, and cell division. However, the recent emergence of optogenetic protein localisation techniques is now allowing researchers to reversibly control protein activation, localisation, and signalling with high spatiotemporal resolution. This has the potential to revolutionise our understanding of how subcellular processes such as AB polarity are integrated with cell behaviours such as mitosis and how these processes impact whole tissue morphogenesis. So far, these techniques have been used to investigate processes such as cleavage furrow ingression, mitotic spindle positioning, and in vivo epithelial morphogenesis. This review describes some of the key shared mechanisms of cell division and AB polarity establishment, how they are coordinated during development and how the advance of optogenetic techniques is furthering this research field.
Collapse
Affiliation(s)
- Helena A Crellin
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Clare E Buckley
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
29
|
Maryu G, Yang Q. Nuclear-cytoplasmic compartmentalization of cyclin B1-Cdk1 promotes robust timing of mitotic events. Cell Rep 2022; 41:111870. [PMID: 36577372 DOI: 10.1016/j.celrep.2022.111870] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/15/2022] [Accepted: 12/01/2022] [Indexed: 12/28/2022] Open
Abstract
The cyclin-dependent kinase (Cdk1) oscillator is widely characterized in homogenized cytosolic extracts, leaving unclear the impact of nucleocytoplasmic compartmentalization. Here, by developing a Förster resonance energy transfer (FRET) biosensor, we track Cdk1 spatiotemporal dynamics in reconstituted cells with or without side by side and find compartmentalization significantly modulates clock properties previously found in bulk studies. Although nucleus-absent cells display highly tunable frequency, the nucleus-present cells maintain constant frequency against cyclin B1 variations. Despite high expression variability, cyclin degraded within the same duration, enabling a robust mitotic phase. Moreover, Cdk1 and cyclin B1 cycle rigorously out-of-phase, ensuring wide phase-plane orbits, essential for oscillation robustness. Although Cdk1 in homogeneous extracts is well known for delayed switch-like activation, we find active cyclin B1-Cdk1 accumulates in nuclei, without delay, until the nuclear envelope breakdown (NEB) when another abrupt activation triggers anaphase. Cdk1 biphasic activation and spatial compartmentalization may together coordinate the accurate ordering of different downstream events.
Collapse
Affiliation(s)
- Gembu Maryu
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qiong Yang
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
30
|
Fan H, Barnes C, Hwang H, Zhang K, Yang J. Precise modulation of embryonic development through optogenetics. Genesis 2022; 60:e23505. [PMID: 36478118 PMCID: PMC9847014 DOI: 10.1002/dvg.23505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed enormous progress in optogenetics, which uses photo-sensitive proteins to control signal transduction in live cells and animals. The ever-increasing amount of optogenetic tools, however, could overwhelm the selection of appropriate optogenetic strategies. In this work, we summarize recent progress in this emerging field and highlight the application of opsin-free optogenetics in studying embryonic development, focusing on new insights gained into optical induction of morphogenesis, cell polarity, cell fate determination, tissue differentiation, neuronal regeneration, synaptic plasticity, and removal of cells during development.
Collapse
Affiliation(s)
- Huaxun Fan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Collin Barnes
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hyojeong Hwang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA,Authors for correspondence: Kai Zhang, Ph.D., , 600 South Mathews Avenue, 314 B Roger Adams Laboratory,Urbana, Illinois 61801, USA, Phone: 1-217-300-0582; Jing Yang, Ph.D., , 2001 S Lincoln Ave, VMBSB3411, Urbana, Illinois 61802, USA, Phone: 1-217-333-6825
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA,Authors for correspondence: Kai Zhang, Ph.D., , 600 South Mathews Avenue, 314 B Roger Adams Laboratory,Urbana, Illinois 61801, USA, Phone: 1-217-300-0582; Jing Yang, Ph.D., , 2001 S Lincoln Ave, VMBSB3411, Urbana, Illinois 61802, USA, Phone: 1-217-333-6825
| |
Collapse
|
31
|
Cell cycle: Making waves to coordinate the entry into mitosis. Curr Biol 2022; 32:R1262-R1264. [PMID: 36413966 DOI: 10.1016/j.cub.2022.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
How do very large cells coordinate their entry into mitosis? A new study shows that the bistability of the Cdk/Cyclin system allows cells to generate either 'trigger waves' or 'sweep waves' that drive cells into mitosis in different ways with distinct consequences.
Collapse
|
32
|
Hayden L, Hur W, Vergassola M, Di Talia S. Manipulating the nature of embryonic mitotic waves. Curr Biol 2022; 32:4989-4996.e3. [PMID: 36332617 PMCID: PMC9691596 DOI: 10.1016/j.cub.2022.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/05/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Early embryogenesis is characterized by rapid and synchronous cleavage divisions, which are often controlled by wave-like patterns of Cdk1 activity. Two mechanisms have been proposed for mitotic waves: sweep and trigger waves.1,2 The two mechanisms give rise to different wave speeds, dependencies on physical and molecular parameters, and spatial profiles of Cdk1 activity: upward sweeping gradients versus traveling wavefronts. Both mechanisms hinge on the transient bistability governing the cell cycle and are differentiated by the speed of the cell-cycle progression: sweep and trigger waves arise for rapid and slow drives, respectively. Here, using quantitative imaging of Cdk1 activity and theory, we illustrate that sweep waves are the dominant mechanism in Drosophila embryos and test two fundamental predictions on the transition from sweep to trigger waves. We demonstrate that sweep waves can be turned into trigger waves if the cell cycle is slowed down genetically or if significant delays in the cell-cycle progression are introduced across the embryo by altering nuclear density. Our genetic experiments demonstrate that Polo kinase is a major rate-limiting regulator of the blastoderm divisions, and genetic perturbations reducing its activity can induce the transition from sweep to trigger waves. Furthermore, we show that changes in temperature cause an essentially uniform slowdown of interphase and mitosis. That results in sweep waves being observed across a wide temperature range despite the cell-cycle durations being significantly different. Collectively, our combination of theory and experiments elucidates the nature of mitotic waves in Drosophila embryogenesis, their control mechanisms, and their mutual transitions.
Collapse
Affiliation(s)
- Luke Hayden
- Department of Cell Biology, Research Drive, Duke University School of Medicine, Durham, NC 27710, USA
| | - Woonyung Hur
- Department of Cell Biology, Research Drive, Duke University School of Medicine, Durham, NC 27710, USA
| | - Massimo Vergassola
- Laboratoire de Physique de l'École Normale Supérieure, CNRS, PSL Research University, Sorbonne Université, 24 Rue Lhomond, 75005 Paris, France; Department of Physics, University of California, San Diego, 9500 Gillman Drive, La Jolla, CA 92093, USA.
| | - Stefano Di Talia
- Department of Cell Biology, Research Drive, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
33
|
Padilla JR, Ferreira LM, Folker ES. Nuclear movement in multinucleated cells. Development 2022; 149:dev200749. [PMID: 36305464 PMCID: PMC10655921 DOI: 10.1242/dev.200749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nuclear movement is crucial for the development of many cell types and organisms. Nuclear movement is highly conserved, indicating its necessity for cellular function and development. In addition to mononucleated cells, there are several examples of cells in which multiple nuclei exist within a shared cytoplasm. These multinucleated cells and syncytia have important functions for development and homeostasis. Here, we review a subset of the developmental contexts in which the regulation of the movement and positioning of multiple nuclei are well understood, including pronuclear migration, the Drosophila syncytial blastoderm, the Caenorhabditis elegans hypodermis, skeletal muscle and filamentous fungi. We apply the principles learned from these models to other systems.
Collapse
Affiliation(s)
- Jorel R. Padilla
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | | | - Eric S. Folker
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
34
|
Bagnat M, Daga B, Di Talia S. Morphogenetic Roles of Hydrostatic Pressure in Animal Development. Annu Rev Cell Dev Biol 2022; 38:375-394. [PMID: 35804476 PMCID: PMC9675319 DOI: 10.1146/annurev-cellbio-120320-033250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During organismal development, organs and systems are built following a genetic blueprint that produces structures capable of performing specific physiological functions. Interestingly, we have learned that the physiological activities of developing tissues also contribute to their own morphogenesis. Specifically, physiological activities such as fluid secretion and cell contractility generate hydrostatic pressure that can act as a morphogenetic force. Here, we first review the role of hydrostatic pressure in tube formation during animal development and discuss mathematical models of lumen formation. We then illustrate specific roles of the notochord as a hydrostatic scaffold in anterior-posterior axis development in chordates. Finally, we cover some examples of how fluid flows influence morphogenetic processes in other developmental contexts. Understanding how fluid forces act during development will be key for uncovering the self-organizing principles that control morphogenesis.
Collapse
Affiliation(s)
- Michel Bagnat
- Department of Cell Biology, Duke University, Durham, North Carolina, USA;
| | - Bijoy Daga
- Department of Cell Biology, Duke University, Durham, North Carolina, USA;
| | - Stefano Di Talia
- Department of Cell Biology, Duke University, Durham, North Carolina, USA;
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA
| |
Collapse
|
35
|
Diegmiller R, Nunley H, Shvartsman SY, Imran Alsous J. Quantitative models for building and growing fated small cell networks. Interface Focus 2022; 12:20210082. [PMID: 35865502 PMCID: PMC9184967 DOI: 10.1098/rsfs.2021.0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Small cell clusters exhibit numerous phenomena typically associated with complex systems, such as division of labour and programmed cell death. A conserved class of such clusters occurs during oogenesis in the form of germline cysts that give rise to oocytes. Germline cysts form through cell divisions with incomplete cytokinesis, leaving cells intimately connected through intercellular bridges that facilitate cyst generation, cell fate determination and collective growth dynamics. Using the well-characterized Drosophila melanogaster female germline cyst as a foundation, we present mathematical models rooted in the dynamics of cell cycle proteins and their interactions to explain the generation of germline cell lineage trees (CLTs) and highlight the diversity of observed CLT sizes and topologies across species. We analyse competing models of symmetry breaking in CLTs to rationalize the observed dynamics and robustness of oocyte fate specification, and highlight remaining gaps in knowledge. We also explore how CLT topology affects cell cycle dynamics and synchronization and highlight mechanisms of intercellular coupling that underlie the observed collective growth patterns during oogenesis. Throughout, we point to similarities across organisms that warrant further investigation and comment on the extent to which experimental and theoretical findings made in model systems extend to other species.
Collapse
Affiliation(s)
- Rocky Diegmiller
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Hayden Nunley
- Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Stanislav Y. Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA,Department of Molecular Biology, Princeton University, Princeton, NJ, USA,Flatiron Institute, Simons Foundation, New York, NY, USA
| | | |
Collapse
|
36
|
Nuclear speed and cycle length co-vary with local density during syncytial blastoderm formation in a cricket. Nat Commun 2022; 13:3889. [PMID: 35794113 PMCID: PMC9259616 DOI: 10.1038/s41467-022-31212-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/09/2022] [Indexed: 12/20/2022] Open
Abstract
The blastoderm is a broadly conserved stage of early animal development, wherein cells form a layer at the embryo’s periphery. The cellular behaviors underlying blastoderm formation are varied and poorly understood. In most insects, the pre-blastoderm embryo is a syncytium: nuclei divide and move throughout the shared cytoplasm, ultimately reaching the cortex. In Drosophila melanogaster, some early nuclear movements result from pulsed cytoplasmic flows that are coupled to synchronous divisions. Here, we show that the cricket Gryllus bimaculatus has a different solution to the problem of creating a blastoderm. We quantified nuclear dynamics during blastoderm formation in G. bimaculatus embryos, finding that: (1) cytoplasmic flows are unimportant for nuclear movement, and (2) division cycles, nuclear speeds, and the directions of nuclear movement are not synchronized, instead being heterogeneous in space and time. Moreover, nuclear divisions and movements co-vary with local nuclear density. We show that several previously proposed models for nuclear movements in D. melanogaster cannot explain the dynamics of G. bimaculatus nuclei. We introduce a geometric model based on asymmetric pulling forces on nuclei, which recapitulates the patterns of nuclear speeds and orientations of both unperturbed G. bimaculatus embryos, and of embryos physically manipulated to have atypical nuclear densities. Early in insect embryo development, many nuclei share one large cell, travel varied paths and self-organize into a single layer. Donoughe et al. illuminate this process with live-imaging, modeling, and experimental changes to the embryo’s shape.
Collapse
|
37
|
Abstract
Tight spatiotemporal control of cellular behavior and cell fate decisions is paramount to the formation of multicellular organisms during embryonic development. Intercellular communication via signaling pathways mediates this control. Interestingly, these signaling pathways are not static, but dynamic and change in activity over time. Signaling oscillations as a specific type of dynamics are found in various signaling pathways and model systems. Functions of oscillations include the regulation of periodic events or the transmission of information by encoding signals in the dynamic properties of a signaling pathway. For instance, signaling oscillations in neural or pancreatic progenitor cells modulate their proliferation and differentiation. Oscillations between neighboring cells can also be synchronized, leading to the emergence of waves traveling through the tissue. Such population-wide signaling oscillations regulate for example the consecutive segmentation of vertebrate embryos, a process called somitogenesis. Here, we outline our current understanding of signaling oscillations in embryonic development, how signaling oscillations are generated, how they are studied and how they contribute to the regulation of embryonic development.
Collapse
|
38
|
Abstract
Embryonic development hinges on effective coordination of molecular events across space and time. Waves have recently emerged as constituting an ubiquitous mechanism that ensures rapid spreading of regulatory signals across embryos, as well as reliable control of their patterning, namely, for the emergence of body plan structures. In this article, we review a selection of recent quantitative work on signaling waves and present an overview of the theory of waves. Our aim is to provide a succinct yet comprehensive guiding reference for the theoretical frameworks by which signaling waves can arise in embryos. We start, then, from reaction-diffusion systems, both static and time dependent; move to excitable dynamics; and conclude with systems of coupled oscillators. We link these theoretical models to molecular mechanisms recently elucidated for the control of mitotic waves in early embryos, patterning of the vertebrate body axis, micropattern cultures, and bone regeneration. Our goal is to inspire experimental work that will advance theory in development and connect its predictions to quantitative biological observations.
Collapse
Affiliation(s)
- Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Massimo Vergassola
- Laboratoire de physique de l'École Normale Supérieure, CNRS, PSL Research University, Sorbonne Université, Paris, France;
- Department of Physics, University of California, San Diego, California, USA
| |
Collapse
|
39
|
Hayden L, Chao A, Deneke VE, Vergassola M, Puliafito A, Di Talia S. Cullin-5 mutants reveal collective sensing of the nucleocytoplasmic ratio in Drosophila embryogenesis. Curr Biol 2022; 32:2084-2092.e4. [PMID: 35334230 PMCID: PMC9090985 DOI: 10.1016/j.cub.2022.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 11/28/2022]
Abstract
In most metazoans, early embryonic development is characterized by rapid division cycles that pause before gastrulation at the midblastula transition (MBT).1 These cleavage divisions are accompanied by cytoskeletal rearrangements that ensure proper nuclear positioning. However, the molecular mechanisms controlling nuclear positioning are not fully elucidated. In Drosophila, early embryogenesis unfolds in a multinucleated syncytium. Nuclei rapidly move across the anterior-posterior (AP) axis at cell cycles 4-6 in a process driven by actomyosin contractility and cytoplasmic flows.2,3 In shackleton (shkl) mutants, this axial spreading is impaired.4 Here, we show that shkl mutants carry mutations in the cullin-5 (cul-5) gene. Live imaging experiments show that Cul-5 is downstream of the cell cycle but is required for cortical actomyosin contractility. The nuclear spreading phenotype of cul-5 mutants can be rescued by reducing Src activity, suggesting that a major target of cul-5 is Src kinase. cul-5 mutants display gradients of nuclear density across the AP axis that we exploit to study cell-cycle control as a function of the N/C ratio. We found that the N/C ratio is sensed collectively in neighborhoods of about 100 μm, and such collective sensing is required for a precise MBT, in which all the nuclei in the embryo pause their division cycle. Moreover, we found that the response to the N/C ratio is slightly graded along the AP axis. These two features can be linked to Cdk1 dynamics. Collectively, we reveal a new pathway controlling nuclear positioning and provide a dissection of how nuclear cycles respond to the N/C ratio.
Collapse
Affiliation(s)
- Luke Hayden
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anna Chao
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Victoria E Deneke
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Massimo Vergassola
- Laboratoire de physique de l'École Normale Supérieure, CNRS, PSL Research University, Sorbonne Université, Paris, France; Department of Physics, University of California, San Diego, La Jolla, CA, USA
| | - Alberto Puliafito
- Candiolo Cancer Institute, FPO-IRCCS, Laboratory of Cell Migration, 10060 Candiolo, Italy; Department of Oncology, Università di Torino, 10060 Candiolo, Italy
| | - Stefano Di Talia
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
40
|
Berezney J, Goode BL, Fraden S, Dogic Z. Extensile to contractile transition in active microtubule-actin composites generates layered asters with programmable lifetimes. Proc Natl Acad Sci U S A 2022; 119:e2115895119. [PMID: 35086931 PMCID: PMC8812548 DOI: 10.1073/pnas.2115895119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
We study a reconstituted composite system consisting of an active microtubule network interdigitated with a passive network of entangled F-actin filaments. Increasing the concentration of filamentous actin controls the emergent dynamics, inducing a transition from turbulent-like flows to bulk contractions. At intermediate concentrations, where the active stresses change their symmetry from anisotropic extensile to isotropic contracting, the composite separates into layered asters that coexist with the background turbulent fluid. Contracted onion-like asters have a radially extending microtubule-rich cortex that envelops alternating layers of microtubules and F-actin. These self-regulating structures undergo internal reorganization, which appears to minimize the surface area and maintain the ordered layering, even when undergoing aster merging events. Finally, the layered asters are metastable structures. Their lifetime, which ranges from minutes to hours, is encoded in the material properties of the composite. These results challenge the current models of active matter. They demonstrate self-organized dynamical states and patterns evocative of those observed in the cytoskeleton do not require precise biochemical regulation, but can arise from purely mechanical interactions of actively driven filamentous materials.
Collapse
Affiliation(s)
- John Berezney
- Department of Physics, Brandeis University, Waltham, MA 02454
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Seth Fraden
- Department of Physics, Brandeis University, Waltham, MA 02454
| | - Zvonimir Dogic
- Department of Physics, Brandeis University, Waltham, MA 02454;
- Department of Physics, University of California, Santa Barbara, CA 93106
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106
| |
Collapse
|
41
|
de-Carvalho J, Tlili S, Hufnagel L, Saunders TE, Telley IA. Aster repulsion drives short-ranged ordering in the Drosophila syncytial blastoderm. Development 2022; 149:274085. [DOI: 10.1242/dev.199997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/17/2021] [Indexed: 12/28/2022]
Abstract
ABSTRACT
Biological systems are highly complex, yet notably ordered structures can emerge. During syncytial stage development of the Drosophila melanogaster embryo, nuclei synchronously divide for nine cycles within a single cell, after which most of the nuclei reach the cell cortex. The arrival of nuclei at the cortex occurs with remarkable positional order, which is important for subsequent cellularisation and morphological transformations. Yet, the mechanical principles underlying this lattice-like positional order of nuclei remain untested. Here, using quantification of nuclei position and division orientation together with embryo explants, we show that short-ranged repulsive interactions between microtubule asters ensure the regular distribution and maintenance of nuclear positions in the embryo. Such ordered nuclear positioning still occurs with the loss of actin caps and even the loss of the nuclei themselves; the asters can self-organise with similar distribution to nuclei in the wild-type embryo. The explant assay enabled us to deduce the nature of the mechanical interaction between pairs of nuclei. We used this to predict how the nuclear division axis orientation changes upon nucleus removal from the embryo cortex, which we confirmed in vivo with laser ablation. Overall, we show that short-ranged microtubule-mediated repulsive interactions between asters are important for ordering in the early Drosophila embryo and minimising positional irregularity.
Collapse
Affiliation(s)
- Jorge de-Carvalho
- Physics of Intracellular Organization Group, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Sham Tlili
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Lars Hufnagel
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Timothy E. Saunders
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
- Department of Biological Sciences, National University of Singapore, 117411Singapore
- Institute of Molecular and Cellular Biology, A*Star, Proteos, 138632 Singapore
- Warwick Medical School, University of Warwick, Coventry, CV4 7HL, UK
| | - Ivo A. Telley
- Physics of Intracellular Organization Group, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
42
|
Deshpande O, de-Carvalho J, Vieira DV, Telley IA. Astral microtubule cross-linking safeguards uniform nuclear distribution in the Drosophila syncytium. J Cell Biol 2022; 221:212810. [PMID: 34766978 PMCID: PMC8594625 DOI: 10.1083/jcb.202007209] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/24/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022] Open
Abstract
The early insect embryo develops as a multinucleated cell distributing the genome uniformly to the cell cortex. Mechanistic insight for nuclear positioning beyond cytoskeletal requirements is missing. Contemporary hypotheses propose actomyosin-driven cytoplasmic movement transporting nuclei or repulsion of neighbor nuclei driven by microtubule motors. Here, we show that microtubule cross-linking by Feo and Klp3A is essential for nuclear distribution and internuclear distance maintenance in Drosophila. Germline knockdown causes irregular, less-dense nuclear delivery to the cell cortex and smaller distribution in ex vivo embryo explants. A minimal internuclear distance is maintained in explants from control embryos but not from Feo-inhibited embryos, following micromanipulation-assisted repositioning. A dimerization-deficient Feo abolishes nuclear separation in embryo explants, while the full-length protein rescues the genetic knockdown. We conclude that Feo and Klp3A cross-linking of antiparallel microtubule overlap generates a length-regulated mechanical link between neighboring microtubule asters. Enabled by a novel experimental approach, our study illuminates an essential process of embryonic multicellularity.
Collapse
Affiliation(s)
- Ojas Deshpande
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, Oeiras, Portugal
| | - Jorge de-Carvalho
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, Oeiras, Portugal
| | - Diana V Vieira
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, Oeiras, Portugal
| | - Ivo A Telley
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, Oeiras, Portugal
| |
Collapse
|
43
|
Abstract
Optogenetics is a powerful technique that allows the control of protein function with high spatiotemporal precision using light. Here, we describe the application of this method to control tissue mechanics during Drosophila embryonic development. We detail optogenetic protocols to either increase or decrease cell contractility and analyze the interplay between cell-cell interaction, tissue geometry, and force transmission during gastrulation.
Collapse
Affiliation(s)
- Daniel Krueger
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit, Heidelberg, Germany
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands
| | - Stefano De Renzis
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit, Heidelberg, Germany.
| |
Collapse
|
44
|
Kilwein MD, Welte MA. Visualizing Cytoskeleton-Dependent Trafficking of Lipid-Containing Organelles in Drosophila Embryos. JOURNAL OF VISUALIZED EXPERIMENTS : JOVE 2021:10.3791/63291. [PMID: 34958089 PMCID: PMC8983024 DOI: 10.3791/63291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Early Drosophila embryos are large cells containing a vast array of conventional and embryo-specific organelles. During the first three hours of embryogenesis, these organelles undergo dramatic movements powered by actin-based cytoplasmic streaming and motor-driven trafficking along microtubules. The development of a multitude of small, organelle-specific fluorescent probes (FPs) makes it possible to visualize a wide range of different lipid-containing structures in any genotype, allowing live imaging without requiring a genetically encoded fluorophore. This protocol shows how to inject vital dyes and molecular probes into Drosophila embryos to monitor the trafficking of specific organelles by live imaging. This approach is demonstrated by labeling lipid droplets (LDs) and following their bulk movement by particle image velocimetry (PIV). This protocol provides a strategy amenable to the study of other organelles, including lysosomes, mitochondria, yolk vesicles, and the ER, and for tracking the motion of individual LDs along microtubules. Using commercially available dyes brings the benefits of separation into the violet/blue and far-red regions of the spectrum. By multiplex co-labeling of organelles and/or cytoskeletal elements via microinjection, all the genetic resources in Drosophila are available for trafficking studies without the need to introduce fluorescently tagged proteins. Unlike genetically encoded fluorophores, which have low quantum yields and bleach easily, many of the available dyes allow for rapid and simultaneous capture of several channels with high photon yields.
Collapse
|
45
|
Wu X, Kong K, Xiao W, Liu F. Attractive internuclear force drives the collective behavior of nuclear arrays in Drosophila embryos. PLoS Comput Biol 2021; 17:e1009605. [PMID: 34797833 PMCID: PMC8641897 DOI: 10.1371/journal.pcbi.1009605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 12/03/2021] [Accepted: 10/31/2021] [Indexed: 11/25/2022] Open
Abstract
The collective behavior of the nuclear array in Drosophila embryos during nuclear cycle (NC) 11 to NC14 is crucial in controlling cell size, establishing developmental patterns, and coordinating morphogenesis. After live imaging on Drosophila embryos with light sheet microscopy, we extract the nuclear trajectory, speed, and internuclear distance with an automatic nuclear tracing method. We find that the nuclear speed shows a period of standing waves along the anterior-posterior (AP) axis after each metaphase as the nuclei collectively migrate towards the embryo poles and partially move back. And the maximum nuclear speed dampens by 28-45% in the second half of the standing wave. Moreover, the nuclear density is 22-42% lower in the pole region than the middle of the embryo during the interphase of NC12-14. To find mechanical rules controlling the collective motion and packing patterns of the nuclear array, we use a deep neural network (DNN) to learn the underlying force field from data. We apply the learned spatiotemporal attractive force field in the simulations with a particle-based model. And the simulations recapitulate nearly all the observed characteristic collective behaviors of nuclear arrays in Drosophila embryos.
Collapse
Affiliation(s)
- Xiaoxuan Wu
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Kakit Kong
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, China
| | - Wenlei Xiao
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Feng Liu
- Center for Quantitative Biology, Peking University, Beijing, China
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, China
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
46
|
Deshpande O, Telley IA. Nuclear positioning during development: Pushing, pulling and flowing. Semin Cell Dev Biol 2021; 120:10-21. [PMID: 34642103 DOI: 10.1016/j.semcdb.2021.09.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 01/13/2023]
Abstract
The positioning of the nucleus, the central organelle of the cell, is an active and regulated process crucially linked to cell cycle, differentiation, migration, and polarity. Alterations in positioning have been correlated with cell and tissue function deficiency and genetic or chemical manipulation of nuclear position is embryonic lethal. Nuclear positioning is a precursor for symmetric or asymmetric cell division which is accompanied by fate determination of the daughter cells. Nuclear positioning also plays a key role during early embryonic developmental stages in insects, such as Drosophila, where hundreds of nuclei divide without cytokinesis and are distributed within the large syncytial embryo at roughly regular spacing. While the cytoskeletal elements and the linker proteins to the nucleus are fairly well characterised, including some of the force generating elements driving nuclear movement, there is considerable uncertainty about the biophysical mechanism of nuclear positioning, while the field is debating different force models. In this review, we highlight the current body of knowledge, discuss cell context dependent models of nuclear positioning, and outline open questions.
Collapse
Affiliation(s)
- Ojas Deshpande
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Ivo A Telley
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
47
|
Colonnetta MM, Abrahante JE, Schedl P, Gohl DM, Deshpande G. CLAMP regulates zygotic genome activation in Drosophila embryos. Genetics 2021; 219:iyab107. [PMID: 34849887 PMCID: PMC8633140 DOI: 10.1093/genetics/iyab107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/15/2020] [Indexed: 11/13/2022] Open
Abstract
Embryonic patterning is critically dependent on zygotic genome activation (ZGA). In Drosophila melanogaster embryos, the pioneer factor Zelda directs ZGA, possibly in conjunction with other factors. Here, we have explored the novel involvement of Chromatin-Linked Adapter for MSL Proteins (CLAMP) during ZGA. CLAMP binds thousands of sites genome-wide throughout early embryogenesis. Interestingly, CLAMP relocates to target promoter sequences across the genome when ZGA is initiated. Although there is a considerable overlap between CLAMP and Zelda binding sites, the proteins display distinct temporal dynamics. To assess whether CLAMP occupancy affects gene expression, we analyzed transcriptomes of embryos zygotically compromised for either clamp or zelda and found that transcript levels of many zygotically activated genes are similarly affected. Importantly, compromising either clamp or zelda disrupted the expression of critical segmentation and sex determination genes bound by CLAMP (and Zelda). Furthermore, clamp knockdown embryos recapitulate other phenotypes observed in Zelda-depleted embryos, including nuclear division defects, centrosome aberrations, and a disorganized actomyosin network. Based on these data, we propose that CLAMP acts in concert with Zelda to regulate early zygotic transcription.
Collapse
Affiliation(s)
- Megan M Colonnetta
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Juan E Abrahante
- University of Minnesota Informatics Institute, Minneapolis, MN 55455, USA
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Daryl M Gohl
- University of Minnesota Genomics Center, Minneapolis, MN 55455, USA
| | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
48
|
Nabais C, Pessoa D, de-Carvalho J, van Zanten T, Duarte P, Mayor S, Carneiro J, Telley IA, Bettencourt-Dias M. Plk4 triggers autonomous de novo centriole biogenesis and maturation. J Cell Biol 2021; 220:211915. [PMID: 33760919 PMCID: PMC7995200 DOI: 10.1083/jcb.202008090] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/14/2020] [Accepted: 02/18/2021] [Indexed: 12/23/2022] Open
Abstract
Centrioles form centrosomes and cilia. In most proliferating cells, centrioles assemble through canonical duplication, which is spatially, temporally, and numerically regulated by the cell cycle and the presence of mature centrioles. However, in certain cell types, centrioles assemble de novo, yet by poorly understood mechanisms. Herein, we established a controlled system to investigate de novo centriole biogenesis, using Drosophila melanogaster egg explants overexpressing Polo-like kinase 4 (Plk4), a trigger for centriole biogenesis. We show that at a high Plk4 concentration, centrioles form de novo, mature, and duplicate, independently of cell cycle progression and of the presence of other centrioles. Plk4 concentration determines the temporal onset of centriole assembly. Moreover, our results suggest that distinct biochemical kinetics regulate de novo and canonical biogenesis. Finally, we investigated which other factors modulate de novo centriole assembly and found that proteins of the pericentriolar material (PCM), and in particular γ-tubulin, promote biogenesis, likely by locally concentrating critical components.
Collapse
Affiliation(s)
| | | | | | | | - Paulo Duarte
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Satyajit Mayor
- National Centre for Biological Sciences, Bangalore, India
| | | | - Ivo A Telley
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | |
Collapse
|
49
|
The early Drosophila embryo as a model system for quantitative biology. Cells Dev 2021; 168:203722. [PMID: 34298230 DOI: 10.1016/j.cdev.2021.203722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/03/2021] [Accepted: 07/13/2021] [Indexed: 11/20/2022]
Abstract
With the rise of new tools, from controlled genetic manipulations and optogenetics to improved microscopy, it is now possible to make clear, quantitative and reproducible measurements of biological processes. The humble fruit fly Drosophila melanogaster, with its ease of genetic manipulation combined with excellent imaging accessibility, has become a major model system for performing quantitative in vivo measurements. Such measurements are driving a new wave of interest from physicists and engineers, who are developing a range of testable dynamic models of active systems to understand fundamental biological processes. The reproducibility of the early Drosophila embryo has been crucial for understanding how biological systems are robust to unavoidable noise during development. Insights from quantitative in vivo experiments in the Drosophila embryo are having an impact on our understanding of critical biological processes, such as how cells make decisions and how complex tissue shape emerges. Here, to highlight the power of using Drosophila embryogenesis for quantitative biology, I focus on three main areas: (1) formation and robustness of morphogen gradients; (2) how gene regulatory networks ensure precise boundary formation; and (3) how mechanical interactions drive packing and tissue folding. I further discuss how such data has driven advances in modelling.
Collapse
|
50
|
Nolet FE, Gelens L. Mitotic waves in an import-diffusion model with multiple nuclei in a shared cytoplasm. Biosystems 2021; 208:104478. [PMID: 34246690 DOI: 10.1016/j.biosystems.2021.104478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 11/29/2022]
Abstract
Nuclei import and export proteins, including cell cycle regulators. These import-export processes are modulated periodically by the cell cycle, for example due to the periodic assembly and breakdown of the nuclear envelope. As such, replicated DNA can be segregated between the two daughter cells and the proteins that were localized in the nucleus are free to diffuse throughout the cytoplasm. Here, we study a mathematical import-diffusion model to show how proteins, i.e. cell cycle regulators, could be redistributed in the cytoplasm by nuclei that periodically toggle between interphase and mitosis. We show that when the cell cycle period depends on the local concentration of regulators, the model exhibits mitotic waves. We discuss how the velocity and spatial origin of these mitotic waves depend on the different model parameters. This work is motivated by recent in vitro experiments reporting on mitotic waves in cycling cell-free extracts made with Xenopus laevis frog eggs, where multiple nuclei share the same cytoplasm. Such experiments have shown that nuclei act as pacemakers for the cell cycle and thus play an important role in collectively defining the spatial origin of mitotic waves.
Collapse
Affiliation(s)
- F E Nolet
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Belgium.
| | - L Gelens
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Belgium.
| |
Collapse
|