1
|
Mitrovich MD, Vahey MD. Genetically Recoding Respiratory Syncytial Virus to Visualize Nucleoprotein Dynamics and Virion Assembly. ACS Infect Dis 2025. [PMID: 39743228 DOI: 10.1021/acsinfecdis.4c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
RNA viruses possess small genomes encoding a limited repertoire of essential and often multifunctional proteins. Although genetically tagging viral proteins provides a powerful tool for dissecting mechanisms of viral replication and infection, it remains a challenge. Here, we leverage genetic code expansion to develop a recoded strain of respiratory syncytial virus (RSV) in which the multifunctional nucleoprotein is site-specifically modified with a noncanonical amino acid. The resulting virus replicates exclusively in cells capable of amber stop codon suppression and is amenable to labeling with tetrazine-modified fluorophores, achieving high signal to background. Virus with labeled nucleoprotein remains functional, retaining ∼70% infectivity relative to unlabeled controls. We leverage this tool to visualize RSV assembly, capturing the transfer of nucleoprotein complexes from cytoplasmic condensates directly to budding viral filaments at the cell surface and to cytoplasmic compartments containing viral surface proteins. Collectively, these results suggest multiple pathways for RSV assembly and establish a framework that may be extended to other viral nucleoproteins.
Collapse
Affiliation(s)
- Margaret Dianne Mitrovich
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Michael D Vahey
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
2
|
London N. Covalent Proximity Inducers. Chem Rev 2024. [PMID: 39692621 DOI: 10.1021/acs.chemrev.4c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Molecules that are able to induce proximity between two proteins are finding ever increasing applications in chemical biology and drug discovery. The ability to introduce an electrophile and make such proximity inducers covalent can offer improved properties such as selectivity, potency, duration of action, and reduced molecular size. This concept has been heavily explored in the context of targeted degradation in particular for bivalent molecules, but recently, additional applications are reported in other contexts, as well as for monovalent molecular glues. This is a comprehensive review of reported covalent proximity inducers, aiming to identify common trends and current gaps in their discovery and application.
Collapse
Affiliation(s)
- Nir London
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Taki M, Kuwahara M, Li C, Tomoda N, Miyashita N, Kan T, Yang J. ARCaDia: single-round screening of a DNA-type targeted covalent binder possessing a latent warhead. Chem Commun (Camb) 2024; 60:14964-14967. [PMID: 39533973 DOI: 10.1039/d4cc04594g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A covalent binder for a target protein was obtained by a direct single-round screening of a latent-warhead-modified DNA library via affinity/reactivity-based co-selection of aptameric deoxyribonucleic acid (ARCaDia), followed by a top k-mer analysis. The optimal position of the conjugated warhead on the selected aptamer was simultaneously identified.
Collapse
Affiliation(s)
- Masumi Taki
- Department of Engineering Science, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
- Institute for Advanced Science, UEC, Chofu 182-8585, Japan
| | - Masayasu Kuwahara
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo 156-8550, Japan
| | - Chaohui Li
- Department of Engineering Science, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| | - Naoko Tomoda
- Department of GI Surgery II, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Naoyuki Miyashita
- Department of Engineering Science, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
- Department of Biological Systems Engineering, Graduate School of Biology-Oriented Science and Technology, KINDAI University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Tetsuo Kan
- Department of Engineering Science, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| | - Jay Yang
- Department of Engineering Science, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
- Department of GI Surgery II, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA.
| |
Collapse
|
4
|
Wang C, Zhou X, Bu T, Liang S, Hao Z, Qu M, Liu Y, Wei M, Xing C, Yang G, Yuan L. Engineered extracellular vesicles as nanosponges for lysosomal degradation of PCSK9. Mol Ther 2024:S1525-0016(24)00761-5. [PMID: 39604267 DOI: 10.1016/j.ymthe.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/31/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a crucial role in the degradation of the low-density lipoprotein receptor (LDLR), and PCSK9 inhibition emerges as an attractive strategy for atherosclerosis management. In this study, extracellular vesicles (EVs) were engineered to nanosponges, which could efficiently adsorb and deliver PCSK9 into lysosomes for degradation. Briefly, nanosponges were engineered by modifying EVs with EGF-A/PTGFRN fusion protein (PCSK9 binding domain EGF-A from the mutant LDLR with higher affinity was fused to the C terminus of prostaglandin F2 receptor negative regulator). The modification endowed the EVs with hundreds of EGF-As displayed on the surface, and thus the capacity to adsorb PCSK9 efficiently. The adsorbed PCSK9 would thus be delivered into lysosomes for degradation when the nanosponges were endocytosed by liver cells, thus releasing endogenous LDLR from degradation. In the ApoE-/- mouse model, tail vein-injected nanosponges were able to degrade PCSK9, increase LDLR expression, lower the LDL-C level, and thus alleviate atherosclerosis. In summary, here we not only develop a novel strategy for PCSK9 inhibition but we also propose a universal method for adsorption and degradation of circulating proteins for disease management.
Collapse
Affiliation(s)
- Chen Wang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Xueying Zhou
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Te Bu
- Department of Gastroenterology, The No. 967 Hospital of PLA Joint Logistics Support Force, Dalian 116011, China
| | - Shuang Liang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Zhenzhen Hao
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Mi Qu
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Yang Liu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Mengying Wei
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China; Military Medical Innovation Center, Fourth Military Medical University, Xi'an 710032, China
| | - Changyang Xing
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| | - Guodong Yang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China; Military Medical Innovation Center, Fourth Military Medical University, Xi'an 710032, China.
| | - Lijun Yuan
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| |
Collapse
|
5
|
Cao L, Yu B, Klauser PC, Zhang P, Li S, Wang L. Arginine Accelerates Sulfur Fluoride Exchange and Phosphorus Fluoride Exchange Reactions between Proteins. Angew Chem Int Ed Engl 2024; 63:e202412843. [PMID: 39113386 PMCID: PMC11560669 DOI: 10.1002/anie.202412843] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Indexed: 10/17/2024]
Abstract
Sulfur fluoride exchange (SuFEx) and phosphorus fluoride exchange (PFEx) click chemistries are advancing research across multiple disciplines. By genetically incorporating latent bioreactive unnatural amino acids (Uaas), these chemistries have been integrated into proteins, enabling precise covalent linkages with biological macromolecules and paving the way for new applications. However, their suboptimal reaction rates in proteins limit effectiveness, and traditional catalytic methods for small molecules are often incompatible with biological systems or in vivo applications. We demonstrated that introducing an arginine adjacent to the latent bioreactive Uaa significantly boosts SuFEx and PFEx reaction rates between proteins. This method is effective across various Uaas, target residues, and protein environments. Notably, it also enables efficient SuFEx reactions in acidic conditions, common in certain cellular compartments and tumor microenvironments, which typically hinder SuFEx reactions. Furthermore, we developed the first covalent cell engager that substantially enhances natural killer cell activation through improved covalent interaction facilitated by arginine. These findings provide mechanistic insights and offer a biocompatible strategy to harness these robust chemistries for advancing biological research and developing new biotherapeutics.
Collapse
Affiliation(s)
| | | | - Paul C. Klauser
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Pan Zhang
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Shanshan Li
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
6
|
Hou B, Ye J, Huang L, Cheng W, Chen F, Zhou H, Pan J, Gao J, Lai Y, Zhao Y, Huang W, Yu H, Xu Z. Tumor-specific delivery of clickable inhibitor for PD-L1 degradation and mitigating resistance of radioimmunotherapy. SCIENCE ADVANCES 2024; 10:eadq3940. [PMID: 39546592 PMCID: PMC11567003 DOI: 10.1126/sciadv.adq3940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Achieving selective and durable inhibition of programmed death ligand 1 (PD-L1) in tumors for T cell activation remains a major challenge in immune checkpoint blockade therapy. We herein presented a set of clickable inhibitors for spatially confined PD-L1 degradation and radioimmunotherapy of cancer. Using metabolic glycan engineering click bioorthogonal chemistry, PD-L1 expressed on tumor cell membranes was labeled with highly active azide groups. This enables covalently binding of the clickable inhibitor with PD-L1 and subsequent PD-L1 degradation. A pH-activatable nanoparticle responding to extracellular acidic pH of tumor was subsequently used to deliver the clickable PD-L1 inhibitor into extracellular tumor microenvironment for depleting PD-L1 on the surface of tumor cell and macrophage membranes in vivo. We further demonstrated that a combination of the clickable PD-L1 inhibitor with radiotherapy (RT) eradicated the established tumor by inhibiting RT-up-regulated PD-L1 in the tumor tissue. Therefore, selective PD-L1 blockade in tumors via the clickable PD-L1 inhibitor offers a versatile approach to promote cancer immunotherapy.
Collapse
Affiliation(s)
- Bo Hou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
| | - Jiayi Ye
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lujia Huang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhao Cheng
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fangmin Chen
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiling Zhou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiaxing Pan
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Gao
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Lai
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yujun Zhao
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wei Huang
- Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haijun Yu
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
7
|
Wang S, Faucher FF, Bertolini M, Kim H, Yu B, Cao L, Roeltgen K, Lovell S, Shanker V, Boyd SD, Wang L, Bartenschlager R, Bogyo M. Identification of Covalent Cyclic Peptide Inhibitors Targeting Protein-Protein Interactions Using Phage Display. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622749. [PMID: 39574763 PMCID: PMC11580984 DOI: 10.1101/2024.11.08.622749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Peptide macrocycles are promising therapeutics for a variety of disease indications due to their overall metabolic stability and potential to make highly selective binding interactions with targets. Recent advances in covalent macrocycle peptide discovery, driven by phage and mRNA display methods, have enabled the rapid identification of highly potent and selective molecules from large libraires of diverse macrocycles. However, there are currently limited examples of macrocycles that can be used to disrupt protein-protein interactions and even fewer examples that function by formation of a covalent bond to a target protein. In this work, we describe a directed counter-selection method that enables identification of covalent macrocyclic ligands targeting a protein-protein interaction using a phage display screening platform. This method utilizes binary and ternary screenings of a chemically modified phage display library, employing the stable and weakly reactive aryl fluorosulfate electrophile. We demonstrate the utility of this approach using the SARS-CoV-2 Spike-ACE2 protein-protein interaction and identify multiple covalent macrocyclic inhibitors that disrupt this interaction. The resulting compounds displayed antiviral activity against live virus that was irreversible after washout due to the covalent binding mechanism. These results highlight the potential of this screening platform for developing covalent macrocyclic drugs that disrupt protein-protein interactions with long lasting effects.
Collapse
Affiliation(s)
- Sijie Wang
- Department of Pathology, School of Medicine, Stanford University, California 94305, United States
| | - Franco F. Faucher
- Department of Chemistry, School of Humanities and Sciences, Stanford University, California 94305, United States
| | - Matilde Bertolini
- Department of Genetics, School of Medicine, Stanford University, California 94305, United States
| | - Heeyoung Kim
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Bingchen Yu
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California 94158, United States
| | - Li Cao
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California 94158, United States
| | - Katharina Roeltgen
- Department of Pathology, School of Medicine, Stanford University, California 94305, United States
| | - Scott Lovell
- Department of Pathology, School of Medicine, Stanford University, California 94305, United States
| | - Varun Shanker
- Department of Biochemistry, School of Medicine, Stanford University, California 94305, United States
| | - Scott D. Boyd
- Department of Pathology, School of Medicine, Stanford University, California 94305, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California 94158, United States
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Center for Infection Research, Heidelberg Partner Site
| | - Matthew Bogyo
- Department of Pathology, School of Medicine, Stanford University, California 94305, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
8
|
Wang L, Liu Z, Ji P, Ma J, Mou K, Zhou T, Liang Y, Zhang B, Wei M, Yang G, Sun W, Gong L, Yuan L. Ultrasound Guided Local Delivery of Bioorthogonal PDL1 Degrader for Enhanced Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405549. [PMID: 39511869 DOI: 10.1002/smll.202405549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/29/2024] [Indexed: 11/15/2024]
Abstract
Immunotherapy involving PDL1 degradation holds great potential in anti-tumor treatment. Optimal design of PDL1 degraders and subsequent efficient delivery into tumors are essential for expected efficacy, especially when abnormal tumor vasculature is considered. Herein, a nanodroplet-based novel drug delivery platform termed as NDsmTx (nanodroplet-based therapeutics) for ultrasound targeted delivery of PDL1 degrader is designed. Briefly, the shell of the NDsmTx is armed with RGD and mPD1 (a bioorthogonal PD1 mutant produced by genetic codon expansion technology can covalently bind PDL1), and the core is composed of perfluorohexane (PFH, C6F14). The RGD on the NDsmTx recognizes αvβ3 expressed by tumor vasculature, making NDsmTx accumulated in tumor practical and visible by low-frequency ultrasound (LFUS). In turn, inertial cavitation induced by LFUS facilitates mPD1 on the nanodroplet debris penetrating the tumor, where mPD1 covalently binds PDL1 and initiates a lysosomal degradation process. Through both in vitro and in vivo study, the superior performance of NDsmTx in degrading PDL1 and boosting anti-tumor immunity is confirmed. In conclusion, NDsmTx emerge as an alternative to existing PDL1 blockers in tumor immunotherapy.
Collapse
Affiliation(s)
- Lantian Wang
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, Xinsi Road NO. 569th, Xi'an, 710038, P. R. China
| | - Zhaoyou Liu
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, Xinsi Road NO. 569th, Xi'an, 710038, P. R. China
| | - Panpan Ji
- Department of Digestive Surgery, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, P. R. China
| | - Jiao Ma
- Department of Pathology, Helmholtz Sino-German Research Laboratory for Cancer, Tangdu Hospital, Air Force Medical University, Xinsi Road NO. 569th, Xi'an, 710038, P. R. China
| | - Ke Mou
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, Xinsi Road NO. 569th, Xi'an, 710038, P. R. China
| | - Tian Zhou
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, Xinsi Road NO. 569th, Xi'an, 710038, P. R. China
| | - Yuan Liang
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, Xinsi Road NO. 569th, Xi'an, 710038, P. R. China
| | - Bin Zhang
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, Xinsi Road NO. 569th, Xi'an, 710038, P. R. China
| | - Mengying Wei
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, 710032, P. R. China
| | - Guodong Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, 710032, P. R. China
| | - Wenqi Sun
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, Xinsi Road NO. 569th, Xi'an, 710038, P. R. China
| | - Li Gong
- Department of Pathology, Helmholtz Sino-German Research Laboratory for Cancer, Tangdu Hospital, Air Force Medical University, Xinsi Road NO. 569th, Xi'an, 710038, P. R. China
| | - Lijun Yuan
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, Xinsi Road NO. 569th, Xi'an, 710038, P. R. China
| |
Collapse
|
9
|
Dunkelmann DL, Chin JW. Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming. Chem Rev 2024; 124:11008-11062. [PMID: 39235427 PMCID: PMC11467909 DOI: 10.1021/acs.chemrev.4c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Over the past 16 years, genetic code expansion and reprogramming in living organisms has been transformed by advances that leverage the unique properties of pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs. Here we summarize the discovery of the pyrrolysine system and describe the unique properties of PylRS/tRNAPyl pairs that provide a foundation for their transformational role in genetic code expansion and reprogramming. We describe the development of genetic code expansion, from E. coli to all domains of life, using PylRS/tRNAPyl pairs, and the development of systems that biosynthesize and incorporate ncAAs using pyl systems. We review applications that have been uniquely enabled by the development of PylRS/tRNAPyl pairs for incorporating new noncanonical amino acids (ncAAs), and strategies for engineering PylRS/tRNAPyl pairs to add noncanonical monomers, beyond α-L-amino acids, to the genetic code of living organisms. We review rapid progress in the discovery and scalable generation of mutually orthogonal PylRS/tRNAPyl pairs that can be directed to incorporate diverse ncAAs in response to diverse codons, and we review strategies for incorporating multiple distinct ncAAs into proteins using mutually orthogonal PylRS/tRNAPyl pairs. Finally, we review recent advances in the encoded cellular synthesis of noncanonical polymers and macrocycles and discuss future developments for PylRS/tRNAPyl pairs.
Collapse
Affiliation(s)
- Daniel L. Dunkelmann
- Medical
Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England, United Kingdom
- Max
Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jason W. Chin
- Medical
Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England, United Kingdom
| |
Collapse
|
10
|
Cheng J, Wang H, Zhang Y, Wang X, Liu G. Advances in crosslinking chemistry and proximity-enabled strategies: deciphering protein complexes and interactions. Org Biomol Chem 2024; 22:7549-7559. [PMID: 39192765 DOI: 10.1039/d4ob01058b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Mass spectrometry, coupled with innovative crosslinking techniques to decode protein conformations and interactions through uninterrupted signal connections, has undergone remarkable progress in recent years. It is crucial to develop selective crosslinking reagents that minimally disrupt protein structure and dynamics, providing insights into protein network regulation and biological functions. Compared to traditional crosslinkers, new bifunctional chemical crosslinkers exhibit high selectivity and specificity in connecting proximal amino acid residues, resulting in stable molecular crosslinked products. The conjugation with specific amino acid residues like lysine, cysteine, arginine and tyrosine expands the XL-MS toolbox, enabling more precise modeling of target substrates and leading to improved data quality and reliability. Another emerging crosslinking method utilizes unnatural amino acids (UAAs) derived from proximity-enabled reactivity with specific amino acids or sulfur-fluoride exchange (SuFEx) reactions with nucleophilic residues. These UAAs are genetically encoded into proteins for the formation of specific covalent bonds. This technique combines the benefits of genetic encoding for live cell compatibility with chemical crosslinking, providing a valuable method for capturing transient and weak protein-protein interactions (PPIs) for mapping PPI coordinates and improving the pharmacological properties of proteins. With continued advancements in technology and applications, crosslinking mass spectrometry is poised to play an increasingly significant role in guiding our understanding of protein dynamics and function in the future.
Collapse
Affiliation(s)
- Jiongjia Cheng
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Haiying Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Yuchi Zhang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Xiaofeng Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Guangxiang Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| |
Collapse
|
11
|
Xiang S, Zhu C, Zhou Y, Wu W, Zhang Y, Chen C, Wang F. Facile Generation of Neutralizing Antibodies on Tyrosine Phosphorylated IRS1 by Epitope-Directed Elicitation. ACS Chem Biol 2024; 19:2050-2059. [PMID: 39137393 DOI: 10.1021/acschembio.4c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Generating antibodies specific to the functional epitope containing phosphotyrosine remains highly challenging. Here, we create an "epitope-directed immunogen" by incorporating fluorosulfate-l-tyrosine (FSY) with cross-linking activities into a specific tyrosine phosphorylation site of insulin receptor substrate 1 (IRS1) and immunizing mice to elicit site-specific antibody responses. By taking advantage of antibody clonal selection and evolution in vivo, we efficiently identified antibodies that target the IRS1 Y612 epitope and are capable of neutralizing the binding interactions between IRS1 and p85α mediated by the phosphorylation of Y612. This epitope-directed antibody elicitation by encoding the cross-linking reactivity in the immunogen potentially enables a general method for facile generation of neutralizing antibodies to protein tyrosine phosphorylation sites.
Collapse
Affiliation(s)
- Shuqin Xiang
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100408, China
| | - Chaoyang Zhu
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100408, China
| | - Yinjian Zhou
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Weiping Wu
- Suzhou Institute for Biomedical Research, Suzhou 215028, Jiangsu, China
| | - Yuhan Zhang
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Chen Chen
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100408, China
| | - Feng Wang
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- Suzhou Institute for Biomedical Research, Suzhou 215028, Jiangsu, China
- Beijing Translational Center for Biopharmaceuticals, Beijing 100101, China
| |
Collapse
|
12
|
Schnaider L, Tan S, Singh PR, Capuano F, Scott AJ, Hambley R, Lu L, Yang H, Wallace EJ, Jo H, DeGrado WF. SuFEx Chemistry Enables Covalent Assembly of a 280-kDa 18-Subunit Pore-Forming Complex. J Am Chem Soc 2024; 146:25047-25057. [PMID: 39190920 DOI: 10.1021/jacs.4c07920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Proximity-enhanced chemical cross-linking is an invaluable tool for probing protein-protein interactions and enhancing the potency of potential peptide and protein drugs. Here, we extend this approach to covalently stabilize large macromolecular assemblies. We used SuFEx chemistry to covalently stabilize an 18-subunit pore-forming complex, CsgG:CsgF, consisting of nine CsgG membrane protein subunits that noncovalently associate with nine CsgF peptides. Derivatives of the CsgG:CsgF pore have been used for DNA sequencing, which places high demands on the structural stability and homogeneity of the complex. To increase the robustness of the pore, we designed and synthesized derivatives of CsgF-bearing sulfonyl fluorides, which react with CsgG in very high yield to form a covalently stabilized CsgG:CsgF complex. The resulting pores formed highly homogeneous channels when added to artificial membranes. The high yield and rapid reaction rate of the SuFEx reaction prompted molecular dynamics simulations, which revealed that the SO2F groups in the initially formed complex are poised for nucleophilic reaction with a targeted Tyr. These results demonstrate the utility of SuFEx chemistry to structurally stabilize very large (here, 280 kDa) assemblies.
Collapse
Affiliation(s)
- Lee Schnaider
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94143, United States
| | - Sophia Tan
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94143, United States
| | | | | | | | | | - Lei Lu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94143, United States
| | - Hyunjun Yang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94143, United States
| | | | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94143, United States
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
13
|
Koch NG, Budisa N. Evolution of Pyrrolysyl-tRNA Synthetase: From Methanogenesis to Genetic Code Expansion. Chem Rev 2024; 124:9580-9608. [PMID: 38953775 PMCID: PMC11363022 DOI: 10.1021/acs.chemrev.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Over 20 years ago, the pyrrolysine encoding translation system was discovered in specific archaea. Our Review provides an overview of how the once obscure pyrrolysyl-tRNA synthetase (PylRS) tRNA pair, originally responsible for accurately translating enzymes crucial in methanogenic metabolic pathways, laid the foundation for the burgeoning field of genetic code expansion. Our primary focus is the discussion of how to successfully engineer the PylRS to recognize new substrates and exhibit higher in vivo activity. We have compiled a comprehensive list of ncAAs incorporable with the PylRS system. Additionally, we also summarize recent successful applications of the PylRS system in creating innovative therapeutic solutions, such as new antibody-drug conjugates, advancements in vaccine modalities, and the potential production of new antimicrobials.
Collapse
Affiliation(s)
- Nikolaj G. Koch
- Department
of Chemistry, Institute of Physical Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Nediljko Budisa
- Biocatalysis
Group, Institute of Chemistry, Technische
Universität Berlin, 10623 Berlin, Germany
- Chemical
Synthetic Biology Chair, Department of Chemistry, University of Manitoba, Winnipeg MB R3T 2N2, Canada
| |
Collapse
|
14
|
Lyu Y, Yang F, Sundaresh B, Rosconi F, van Opijnen T, Gao J. Covalent Inhibition of a Host-Pathogen Protein-Protein Interaction Reduces the Infectivity of Streptococcus pneumoniae. JACS AU 2024; 4:2484-2491. [PMID: 39055144 PMCID: PMC11267552 DOI: 10.1021/jacsau.4c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024]
Abstract
The ever-expanding antibiotic resistance urgently calls for novel antibacterial therapeutics, especially those with a new mode of action. We report herein our exploration of protein-protein interaction (PPI) inhibition as a new mechanism to thwart bacterial pathogenesis. Specifically, we describe potent and specific inhibitors of the pneumococcal surface protein PspC, an important virulence factor that facilitates the infection of Streptococcus pneumoniae. Specifically, PspC has been documented to recruit human complement factor H (hFH) to suppress host complement activation and/or promote the bacterial attachment to host tissues. The CCP9 domain of hFH was recombinantly expressed to inhibit the PspC-hFH interaction as demonstrated on live pneumococcal cells. The inhibitor allowed for the first pharmacological intervention of the PspC-hFH interaction. This PPI inhibition reduced pneumococci's attachment to epithelial cells and also resensitized the D39 strain of S. pneumoniae for opsonization. Importantly, we have further devised covalent versions of CCP9, which afforded long-lasting PspC inhibition with low nanomolar potency. Overall, our results showcase the promise of PPI inhibition for combating bacterial infections as well as the power of covalent inhibitors.
Collapse
Affiliation(s)
- Yuhan Lyu
- Department
of Chemistry, Merkert Chemistry Center, Boston College, Chestnut
Hill, Massachusetts 02467, United States
| | - Fan Yang
- Department
of Chemistry, Merkert Chemistry Center, Boston College, Chestnut
Hill, Massachusetts 02467, United States
| | - Bharathi Sundaresh
- Department
of Biology, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Federico Rosconi
- Department
of Biology, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Tim van Opijnen
- Broad
Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, United States
| | - Jianmin Gao
- Department
of Chemistry, Merkert Chemistry Center, Boston College, Chestnut
Hill, Massachusetts 02467, United States
| |
Collapse
|
15
|
Wen X, Chen M, Li Z, Liu W, Xu K, Wang J, Zhao X. Site-specific immobilization of Cysteinyl leukotriene receptor 1 through enzymatic DNA-protein conjugation strategy for lead screening. J Chromatogr A 2024; 1727:464948. [PMID: 38759460 DOI: 10.1016/j.chroma.2024.464948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Immobilization of functional protein, especially G protein-coupled receptors (GPCRs), is particularly significant in various fields such as the development of assays for diagnosis, lead compound screening, as well as drug-protein interaction analysis. However, there are still some challenges with the immobilized proteins such as undefined loads, orientations, and the loss of activity. Herein, we introduced a DNA conjugation strategy into the immobilization of Cysteinyl leukotriene receptor 1(CysLTR1) which enables exquisite molecular control and higher activity of the receptor. We used the bacterial relaxases VirD2 as an immobilized tag fused at the C terminus of CysLTR1. Tyrosine residue(Y29) at the core binding site of the VirD2 tag can react with the single-strand piece of DNA(T-DNA) in the form of a covalent bond. Inspired by this strategy, we developed a new immobilization method by mixing the T-DNA-modified silica gel with the cell lysate containing the expressed VirD2-tagged CysLTR1 for 1 hour. We found that the successful formation of DNA-protein conjugate enables the immobilization of CysLTR1 fast, site-specific, and with minimal loss of activity. The feasibility of the immobilized CysLTR1 was evaluated in drug-protein binding interaction by frontal analysis and adsorption energy distribution analysis. The binding of pranlukast, zafirlukast, and MK571 to the immobilized CysLTR1 was realized, and the association constants presented good agreement between the two methods. Rosmarinic acid was retained in the immobilized CysLTR1 column, and the in-vitro test revealed that the compound binds to the receptor in one type of binding site mode. Despite these results, we concluded that the DNA-protein conjugate strategy will probably open up the possibilities for capturing other functional proteins in covalent and site-specific modes from the complex matrices and the immobilized receptor preserves the potential in fishing out lead compounds from natural products.
Collapse
Affiliation(s)
- Xin Wen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Minyu Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zimeng Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Weiyao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ke Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jing Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
16
|
Cao L, Wang L. Biospecific Chemistry for Covalent Linking of Biomacromolecules. Chem Rev 2024; 124:8516-8549. [PMID: 38913432 PMCID: PMC11240265 DOI: 10.1021/acs.chemrev.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Interactions among biomacromolecules, predominantly noncovalent, underpin biological processes. However, recent advancements in biospecific chemistry have enabled the creation of specific covalent bonds between biomolecules, both in vitro and in vivo. This Review traces the evolution of biospecific chemistry in proteins, emphasizing the role of genetically encoded latent bioreactive amino acids. These amino acids react selectively with adjacent natural groups through proximity-enabled bioreactivity, enabling targeted covalent linkages. We explore various latent bioreactive amino acids designed to target different protein residues, ribonucleic acids, and carbohydrates. We then discuss how these novel covalent linkages can drive challenging protein properties and capture transient protein-protein and protein-RNA interactions in vivo. Additionally, we examine the application of covalent peptides as potential therapeutic agents and site-specific conjugates for native antibodies, highlighting their capacity to form stable linkages with target molecules. A significant focus is placed on proximity-enabled reactive therapeutics (PERx), a pioneering technology in covalent protein therapeutics. We detail its wide-ranging applications in immunotherapy, viral neutralization, and targeted radionuclide therapy. Finally, we present a perspective on the existing challenges within biospecific chemistry and discuss the potential avenues for future exploration and advancement in this rapidly evolving field.
Collapse
Affiliation(s)
- Li Cao
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
17
|
Liu DD, Ding W, Cheng JT, Wei Q, Lin Y, Zhu TY, Tian J, Sun K, Zhang L, Lu P, Yang F, Liu C, Tang S, Yang B. Characterize direct protein interactions with enrichable, cleavable and latent bioreactive unnatural amino acids. Nat Commun 2024; 15:5221. [PMID: 38890329 PMCID: PMC11189575 DOI: 10.1038/s41467-024-49517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Latent bioreactive unnatural amino acids (Uaas) have been widely used in the development of covalent drugs and identification of protein interactors, such as proteins, DNA, RNA and carbohydrates. However, it is challenging to perform high-throughput identification of Uaa cross-linking products due to the complexities of protein samples and the data analysis processes. Enrichable Uaas can effectively reduce the complexities of protein samples and simplify data analysis, but few cross-linked peptides were identified from mammalian cell samples with these Uaas. Here we develop an enrichable and multiple amino acids reactive Uaa, eFSY, and demonstrate that eFSY is MS cleavable when eFSY-Lys and eFSY-His are the cross-linking products. An identification software, AixUaa is developed to decipher eFSY mass cleavable data. We systematically identify direct interactomes of Thioredoxin 1 (Trx1) and Selenoprotein M (SELM) with eFSY and AixUaa.
Collapse
Affiliation(s)
- Dan-Dan Liu
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wenlong Ding
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jin-Tao Cheng
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Qiushi Wei
- School of Biological Science and Medical Engineering & School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Yinuo Lin
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
| | - Tian-Yi Zhu
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jing Tian
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
| | - Ke Sun
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Long Zhang
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Peilong Lu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Fan Yang
- Department of Biophysics, Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Chao Liu
- School of Biological Science and Medical Engineering & School of Engineering Medicine, Beihang University, Beijing, 100191, China.
| | - Shibing Tang
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China.
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China.
| | - Bing Yang
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
18
|
Cao L, Yu B, Li S, Zhang P, Li Q, Wang L. Genetically Enabling Phosphorus Fluoride Exchange Click Chemistry in Proteins. Chem 2024; 10:1868-1884. [PMID: 38975291 PMCID: PMC11225796 DOI: 10.1016/j.chempr.2024.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Phosphorus Fluoride Exchange (PFEx), recently debuted in small molecules, represents the forefront of click chemistry. To explore PFEx's potential in biological settings, we developed amino acids PFY and PFK featuring phosphoramidofluoridates and incorporated them into proteins through genetic code expansion. PFY/PFK selectively reacted with nearby His, Tyr, Lys, or Cys in proteins, both in vitro and in living cells, demonstrating that proximity enabled PFEx reactivity without external reagents. The reaction with His showed unique pH-dependent properties and created thermally sensitive linkages. Additionally, Na2SiO3 enhanced PFEx reactions with Tyr and Cys. PFEx, by generating defined covalent P-N/O linkages, extends the utility of phosphorus linkages in proteins, aligning with nature's use of phosphate connectors in other biomolecules. More versatile and durable than SuFEx, PFEx in proteins expands the latent bioreactive arsenal for covalent protein engineering and will facilitate the broad application of this potent click chemistry in biological and biomedical fields.
Collapse
Affiliation(s)
- Li Cao
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Bingchen Yu
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Shanshan Li
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Pan Zhang
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qingke Li
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lei Wang
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Lead contact
| |
Collapse
|
19
|
Zhang J, Wang X, Huang Q, Ye J, Wang J. Genetically Encoded Epoxide Warhead for Precise and Versatile Covalent Targeting of Proteins. J Am Chem Soc 2024; 146:16173-16183. [PMID: 38819260 PMCID: PMC11177858 DOI: 10.1021/jacs.4c03974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Genetically encoding a proximal reactive warhead into the protein binder/drug has emerged as an efficient strategy for covalently binding to protein targets, enabling broad applications. To expand the reactivity scope for targeting the diverse natural residues under physiological conditions, the development of a genetically encoded reactive warhead with excellent stability and broad reactivity is highly desired. Herein, we reported the genetic encoding of epoxide-containing tyrosine (EPOY) for developing covalent protein drugs. Our study demonstrates that EPOY, when incorporated into a nanobody (KN035), can cross-link with different side chains (mutations) at the same position of PD-L1 protein. Significantly, a single genetically encoded reactive warhead that is capable of covalent and site-specific targeting to 10 different nucleophilic residues was achieved for the first time. This would largely expand the scope of covalent warhead and inspire the development of covalent warheads for both small-molecule drugs and protein drugs. Furthermore, we incorporate the EPOY into a designed ankyrin repeat protein (DarpinK13) to create the covalent binders of KRAS. This covalent KRAS binder holds the potential to achieve pan-covalent targeting of KRAS based on the structural similarity among all oncogenic KRAS mutants while avoiding off-target binding to NRAS/HRAS through a covalent interaction with KRAS-specific residues (H95 and E107). We envision that covalently targeting to H95 will be a promising strategy for the development of covalent pan-KRAS inhibitors in the future.
Collapse
Affiliation(s)
| | | | | | - Jinsong Ye
- Department of Chemistry,
Research Center for Chemical Biology and Omics Analysis, College of
Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jie Wang
- Department of Chemistry,
Research Center for Chemical Biology and Omics Analysis, College of
Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
20
|
Yi HB, Lee S, Seo K, Kim H, Kim M, Lee HS. Cellular and Biophysical Applications of Genetic Code Expansion. Chem Rev 2024; 124:7465-7530. [PMID: 38753805 DOI: 10.1021/acs.chemrev.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Despite their diverse functions, proteins are inherently constructed from a limited set of building blocks. These compositional constraints pose significant challenges to protein research and its practical applications. Strategically manipulating the cellular protein synthesis system to incorporate novel building blocks has emerged as a critical approach for overcoming these constraints in protein research and application. In the past two decades, the field of genetic code expansion (GCE) has achieved significant advancements, enabling the integration of numerous novel functionalities into proteins across a variety of organisms. This technological evolution has paved the way for the extensive application of genetic code expansion across multiple domains, including protein imaging, the introduction of probes for protein research, analysis of protein-protein interactions, spatiotemporal control of protein function, exploration of proteome changes induced by external stimuli, and the synthesis of proteins endowed with novel functions. In this comprehensive Review, we aim to provide an overview of cellular and biophysical applications that have employed GCE technology over the past two decades.
Collapse
Affiliation(s)
- Han Bin Yi
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Seungeun Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Kyungdeok Seo
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyeongjo Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Minah Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
21
|
Cui XY, Li Z, Kong Z, Liu Y, Meng H, Wen Z, Wang C, Chen J, Xu M, Li Y, Gao J, Zhu W, Hao Z, Huo L, Liu S, Yang Z, Liu Z. Covalent targeted radioligands potentiate radionuclide therapy. Nature 2024; 630:206-213. [PMID: 38778111 DOI: 10.1038/s41586-024-07461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Targeted radionuclide therapy, in which radiopharmaceuticals deliver potent radionuclides to tumours for localized irradiation, has addressed unmet clinical needs and improved outcomes for patients with cancer1-4. A therapeutic radiopharmaceutical must achieve both sustainable tumour targeting and fast clearance from healthy tissue, which remains a major challenge5,6. A targeted ligation strategy that selectively fixes the radiopharmaceutical to the target protein in the tumour would be an ideal solution. Here we installed a sulfur (VI) fluoride exchange (SuFEx) chemistry-based linker on radiopharmaceuticals to prevent excessively fast tumour clearance. When the engineered radiopharmaceutical binds to the tumour-specific protein, the system undergoes a binding-to-ligation transition and readily conjugates to the tyrosine residues through the 'click' SuFEx reaction. The application of this strategy to a fibroblast activation protein (FAP) inhibitor (FAPI) triggered more than 80% covalent binding to the protein and almost no dissociation for six days. In mice, SuFEx-engineered FAPI showed 257% greater tumour uptake than did the original FAPI, and increased tumour retention by 13-fold. The uptake in healthy tissues was rapidly cleared. In a pilot imaging study, this strategy identified more tumour lesions in patients with cancer than did other methods. SuFEx-engineered FAPI also successfully achieved targeted β- and α-radionuclide therapy, causing nearly complete tumour regression in mice. Another SuFEx-engineered radioligand that targets prostate-specific membrane antigen (PSMA) also showed enhanced therapeutic efficacy. Considering the broad scope of proteins that can potentially be ligated to SuFEx warheads, it might be possible to adapt this strategy to other cancer targets.
Collapse
Affiliation(s)
- Xi-Yang Cui
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
- Changping Laboratory, Beijing, P. R. China
| | - Zhu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, P. R. China
| | - Ziren Kong
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Yu Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Hao Meng
- Changping Laboratory, Beijing, P. R. China
| | - Zihao Wen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Changlun Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Junyi Chen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Mengxin Xu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
- Changping Laboratory, Beijing, P. R. China
| | - Yiyan Li
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Jingyue Gao
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Wenjia Zhu
- Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine and State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Zhixin Hao
- Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine and State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Li Huo
- Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine and State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Shaoyan Liu
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, P. R. China
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China.
- Changping Laboratory, Beijing, P. R. China.
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, P. R. China.
- Peking University-Tsinghua University Center for Life Sciences, Peking University, Beijing, P. R. China.
| |
Collapse
|
22
|
Hillebrand L, Liang XJ, Serafim RAM, Gehringer M. Emerging and Re-emerging Warheads for Targeted Covalent Inhibitors: An Update. J Med Chem 2024; 67:7668-7758. [PMID: 38711345 DOI: 10.1021/acs.jmedchem.3c01825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Covalent inhibitors and other types of covalent modalities have seen a revival in the past two decades, with a variety of new targeted covalent drugs having been approved in recent years. A key feature of such molecules is an intrinsically reactive group, typically a weak electrophile, which enables the irreversible or reversible formation of a covalent bond with a specific amino acid of the target protein. This reactive group, often called the "warhead", is a critical determinant of the ligand's activity, selectivity, and general biological properties. In 2019, we summarized emerging and re-emerging warhead chemistries to target cysteine and other amino acids (Gehringer, M.; Laufer, S. A. J. Med. Chem. 2019, 62, 5673-5724; DOI: 10.1021/acs.jmedchem.8b01153). Since then, the field has rapidly evolved. Here we discuss the progress on covalent warheads made since our last Perspective and their application in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Laura Hillebrand
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Xiaojun Julia Liang
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
23
|
Ye H, Zhu Y, Kong Y, Wen H, Lu W, Wang D, Tang S, Zhan M, Lu G, Shao C, Wang N, Hao H. Carbene Footprinting Directs Design of Genetically Encoded Proximity-Reactive Protein Binders. Anal Chem 2024; 96:7566-7576. [PMID: 38684118 DOI: 10.1021/acs.analchem.4c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Genetically encoding proximal-reactive unnatural amino acids (PrUaas), such as fluorosulfate-l-tyrosine (FSY), into natural proteins of interest (POI) confer the POI with the ability to covalently bind to its interacting proteins (IPs). The PrUaa-incorporated POIs hold promise for blocking undesirable POI-IP interactions. Selecting appropriate PrUaa anchor sites is crucial, but it remains challenging with the current methodology, which heavily relies on crystallography to identify the proximal residues between the POIs and the IPs for the PrUaa anchorage. To address the challenge, here, we propose a footprinting-directed genetically encoded covalent binder (footprinting-GECB) approach. This approach employs carbene footprinting, a structural mass spectrometry (MS) technique that quantifies the extent of labeling of the POI following the addition of its IP, and thus identifies the responsive residues. By genetically encoding PrUaa into these responsive sites, POI variants with covalent bonding ability to its IP can be produced without the need for crystallography. Using the POI-IP model, KRAS/RAF1, we showed that engineering FSY at the footprint-assigned KRAS residue resulted in a KRAS variant that can bind irreversibly to RAF1. Additionally, we inserted FSY at the responsive residue in RAF1 upon footprinting the oncogenic KRASG12D/RAF1, which lacks crystal structure, and generated a covalent binder to KRASG12D. Together, we demonstrated that by adopting carbene footprinting to direct PrUaa anchorage, we can greatly expand the opportunities for designing covalent protein binders for PPIs without relying on crystallography. This holds promise for creating effective PPI inhibitors and supports both fundamental research and biotherapeutics development.
Collapse
Affiliation(s)
- Hui Ye
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Yinxue Zhu
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Ying Kong
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Hongtao Wen
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Wenjie Lu
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Dexiang Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Shuo Tang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing 210023, Jiangsu, China
| | - Mengru Zhan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing 210023, Jiangsu, China
| | - Gaoyuan Lu
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Chang Shao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Nanxi Wang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing 210023, Jiangsu, China
| | - Haiping Hao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| |
Collapse
|
24
|
Guo QR, Cao YJ. Applications of genetic code expansion technology in eukaryotes. Protein Cell 2024; 15:331-363. [PMID: 37847216 PMCID: PMC11074999 DOI: 10.1093/procel/pwad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023] Open
Abstract
Unnatural amino acids (UAAs) have gained significant attention in protein engineering and drug development owing to their ability to introduce new chemical functionalities to proteins. In eukaryotes, genetic code expansion (GCE) enables the incorporation of UAAs and facilitates posttranscriptional modification (PTM), which is not feasible in prokaryotic systems. GCE is also a powerful tool for cell or animal imaging, the monitoring of protein interactions in target cells, drug development, and switch regulation. Therefore, there is keen interest in utilizing GCE in eukaryotic systems. This review provides an overview of the application of GCE in eukaryotic systems and discusses current challenges that need to be addressed.
Collapse
Affiliation(s)
- Qiao-ru Guo
- State Key Laboratory of Chemical Oncogenomic, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yu J Cao
- State Key Laboratory of Chemical Oncogenomic, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
25
|
Wang W, Li J, Xu L, Dong J. N-Fluorosulfonyl Guanidine: An Entry to N-Guanyl Sulfamides and Sulfamates. Org Lett 2024; 26:3202-3207. [PMID: 38578703 DOI: 10.1021/acs.orglett.4c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Here, we present the straightforward synthesis of N-fluorosulfonyl guanidine (1) from two industrial feedstocks, guanidine hydrochloride and sulfuryl fluoride (SO2F2), using SuFEx chemistry. Compound 1 exhibits excellent stability under ambient conditions and displays unique SuFEx reactivity toward amines and phenols to generate N-guanyl sulfamides and sulfamates that have rarely been accessed. Notably, water serves as an effective solvent in this process. Our protocol provides a reliable pathway for the synthesis and investigation of these novel guanidine-containing molecules.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Translational Medicine, National Facility for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jingyuan Li
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Long Xu
- Institute of Translational Medicine, National Facility for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiajia Dong
- Institute of Translational Medicine, National Facility for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
26
|
Cheng L, Wang Y, Guo Y, Zhang SS, Xiao H. Advancing protein therapeutics through proximity-induced chemistry. Cell Chem Biol 2024; 31:428-445. [PMID: 37802076 PMCID: PMC10960704 DOI: 10.1016/j.chembiol.2023.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/21/2023] [Accepted: 09/15/2023] [Indexed: 10/08/2023]
Abstract
Recent years have seen a remarkable growth in the field of protein-based medical treatments. Nevertheless, concerns have arisen regarding the cytotoxicity limitations, low affinity, potential immunogenicity, low stability, and challenges to modify these proteins. To overcome these obstacles, proximity-induced chemistry has emerged as a next-generation strategy for advancing protein therapeutics. This method allows site-specific modification of proteins with therapeutic agents, improving their effectiveness without extensive engineering. In addition, this innovative approach enables spatial control of the reaction based on proximity, facilitating the formation of irreversible covalent bonds between therapeutic proteins and their targets. This capability becomes particularly valuable in addressing challenges such as the low affinity frequently encountered between therapeutic proteins and their targets, as well as the limited availability of small molecules for specific protein targets. As a result, proximity-induced chemistry is reshaping the field of protein drug preparation and propelling the revolution in novel protein therapeutics.
Collapse
Affiliation(s)
- Linqi Cheng
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Yixian Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Yiming Guo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Sophie S Zhang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA; Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005, USA; Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, USA.
| |
Collapse
|
27
|
Shi Y, Bashian EE, Hou Y, Wu P. Chemical immunology: Recent advances in tool development and applications. Cell Chem Biol 2024; 31:S2451-9456(24)00080-1. [PMID: 38508196 PMCID: PMC11393185 DOI: 10.1016/j.chembiol.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 03/22/2024]
Abstract
Immunology was one of the first biological fields to embrace chemical approaches. The development of new chemical approaches and techniques has provided immunologists with an impressive arsenal of tools to address challenges once considered insurmountable. This review focuses on advances at the interface of chemistry and immunobiology over the past two decades that have not only opened new avenues in basic immunological research, but also revolutionized drug development for the treatment of cancer and autoimmune diseases. These include chemical approaches to understand and manipulate antigen presentation and the T cell priming process, to facilitate immune cell trafficking and regulate immune cell functions, and therapeutic applications of chemical approaches to disease control and treatment.
Collapse
Affiliation(s)
- Yujie Shi
- Department of Molecular and Cellular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Eleanor E Bashian
- Department of Molecular and Cellular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yingqin Hou
- Department of Molecular and Cellular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Peng Wu
- Department of Molecular and Cellular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
28
|
Du S, Hu X, Menéndez-Arias L, Zhan P, Liu X. Target-based drug design strategies to overcome resistance to antiviral agents: opportunities and challenges. Drug Resist Updat 2024; 73:101053. [PMID: 38301487 DOI: 10.1016/j.drup.2024.101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
Viral infections have a major impact in human health. Ongoing viral transmission and escalating selective pressure have the potential to favor the emergence of vaccine- and antiviral drug-resistant viruses. Target-based approaches for the design of antiviral drugs can play a pivotal role in combating drug-resistant challenges. Drug design computational tools facilitate the discovery of novel drugs. This review provides a comprehensive overview of current drug design strategies employed in the field of antiviral drug resistance, illustrated through the description of a series of successful applications. These strategies include technologies that enhance compound-target affinity while minimizing interactions with mutated binding pockets. Furthermore, emerging approaches such as virtual screening, targeted protein/RNA degradation, and resistance analysis during drug design have been harnessed to curtail the emergence of drug resistance. Additionally, host targeting antiviral drugs offer a promising avenue for circumventing viral mutation. The widespread adoption of these refined drug design strategies will effectively address the prevailing challenge posed by antiviral drug resistance.
Collapse
Affiliation(s)
- Shaoqing Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xueping Hu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, PR China
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| |
Collapse
|
29
|
Giltrap A, Yuan Y, Davis BG. Late-Stage Functionalization of Living Organisms: Rethinking Selectivity in Biology. Chem Rev 2024; 124:889-928. [PMID: 38231473 PMCID: PMC10870719 DOI: 10.1021/acs.chemrev.3c00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/18/2024]
Abstract
With unlimited selectivity, full post-translational chemical control of biology would circumvent the dogma of genetic control. The resulting direct manipulation of organisms would enable atomic-level precision in "editing" of function. We argue that a key aspect that is still missing in our ability to do this (at least with a high degree of control) is the selectivity of a given chemical reaction in a living organism. In this Review, we systematize existing illustrative examples of chemical selectivity, as well as identify needed chemical selectivities set in a hierarchy of anatomical complexity: organismo- (selectivity for a given organism over another), tissuo- (selectivity for a given tissue type in a living organism), cellulo- (selectivity for a given cell type in an organism or tissue), and organelloselectivity (selectivity for a given organelle or discrete body within a cell). Finally, we analyze more traditional concepts such as regio-, chemo-, and stereoselective reactions where additionally appropriate. This survey of late-stage biomolecule methods emphasizes, where possible, functional consequences (i.e., biological function). In this way, we explore a concept of late-stage functionalization of living organisms (where "late" is taken to mean at a given state of an organism in time) in which programmed and selective chemical reactions take place in life. By building on precisely analyzed notions (e.g., mechanism and selectivity) we believe that the logic of chemical methodology might ultimately be applied to increasingly complex molecular constructs in biology. This could allow principles developed at the simple, small-molecule level to progress hierarchically even to manipulation of physiology.
Collapse
Affiliation(s)
- Andrew
M. Giltrap
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Yizhi Yuan
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Benjamin G. Davis
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| |
Collapse
|
30
|
Galan SRG, Raj R, Mamalis D, Jones LH, Mohammed S, Davis BG. The Minimum Protein Staple? - Towards 'bio'-Baldwin's rules via inter-phosphosite linking in the MEK1 activation loop. Chem Sci 2024; 15:1306-1317. [PMID: 38274071 PMCID: PMC10806838 DOI: 10.1039/d3sc04631a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/25/2023] [Indexed: 01/27/2024] Open
Abstract
In small molecule organic chemistry, the heuristic insight into ring-forming processes that was enabled by Baldwin's rules some 50 years ago proved a step-change in the role of mechanistically guided synthesis. It created a lens upon and marker of fundamental stereoelectronic and conformation-guided chemical processes. However, despite the widespread role of stereoelectronics and conformational control in Biology, no equivalent coherent exploitation of trapped, ring-forming processes yet exists in biomolecules. In the development of a minimal ring-closing process in intact proteins that might prove suitable in a coherent rule-set, we have tested endo-trig ring-closing conjugate thioether lanthionine (Lan) -CH2-S-CH2- formation as a limiting cyclization. Spontaneous Lan formation in proteins is rare if not non-existent and when found in natural product cyclic peptides it requires the mediation of corresponding biosynthetic enzymes as well as productive reactive conformations to guide it. Here, we show that within a conformationally flexible and functionally important protein loop - the MAPK kinase phosphorylation-targeted activation loop - Lan ring-closing is possible. Ring-closing proves to be critically dependent on the location of a trig electrophilic site in just one of two regioisomeric potential precursors to allow phosphosite-to-phosphosite 'stapling'. This first example of spontaneous protein thioether ring-closing/'stapling' and its accessibility from just one precursor (despite the potential for both to form an identical 'staple') now reveals the potential for Lan formation not only as an accessible form of minimal stapling in proteins but also as an exquisitely sensitive probe of associated protein geometries. We suggest that the use of this (as well as the development of other such, intramolecular protein traps that are dependent on inherent protein-controlled reactivity rather than forced crosslinking) may allow the broader trapping and mapping of relevant, even minor, protein states. In this way, protein ring formation may enable a form of extended 'bio-Baldwin's rules' that help to delineate relevant protein conformational space.
Collapse
Affiliation(s)
- Sébastien R G Galan
- Department of Chemistry, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Ritu Raj
- Department of Chemistry, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Dimitrios Mamalis
- Department of Chemistry, University of Oxford Mansfield Road Oxford OX1 3TA UK
- The Rosalind Franklin Institute Oxfordshire OX11 0FA UK
| | - Lyn H Jones
- Dana-Farber Cancer Institute Boston Massachusetts USA
| | - Shabaz Mohammed
- Department of Chemistry, University of Oxford Mansfield Road Oxford OX1 3TA UK
- The Rosalind Franklin Institute Oxfordshire OX11 0FA UK
| | - Benjamin G Davis
- Department of Chemistry, University of Oxford Mansfield Road Oxford OX1 3TA UK
- The Rosalind Franklin Institute Oxfordshire OX11 0FA UK
- Department of Pharmacology, University of Oxford Mansfield Road Oxford OX1 3QT UK
| |
Collapse
|
31
|
Fuchs N, Zhang L, Calvo-Barreiro L, Kuncewicz K, Gabr M. Inhibitors of Immune Checkpoints: Small Molecule- and Peptide-Based Approaches. J Pers Med 2024; 14:68. [PMID: 38248769 PMCID: PMC10817355 DOI: 10.3390/jpm14010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
The revolutionary progress in cancer immunotherapy, particularly the advent of immune checkpoint inhibitors, marks a significant milestone in the fight against malignancies. However, the majority of clinically employed immune checkpoint inhibitors are monoclonal antibodies (mAbs) with several limitations, such as poor oral bioavailability and immune-related adverse effects (irAEs). Another major limitation is the restriction of the efficacy of mAbs to a subset of cancer patients, which triggered extensive research efforts to identify alternative approaches in targeting immune checkpoints aiming to overcome the restricted efficacy of mAbs. This comprehensive review aims to explore the cutting-edge developments in targeting immune checkpoints, focusing on both small molecule- and peptide-based approaches. By delving into drug discovery platforms, we provide insights into the diverse strategies employed to identify and optimize small molecules and peptides as inhibitors of immune checkpoints. In addition, we discuss recent advances in nanomaterials as drug carriers, providing a basis for the development of small molecule- and peptide-based platforms for cancer immunotherapy. Ongoing research focused on the discovery of small molecules and peptide-inspired agents targeting immune checkpoints paves the way for developing orally bioavailable agents as the next-generation cancer immunotherapies.
Collapse
Affiliation(s)
- Natalie Fuchs
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| | - Longfei Zhang
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| | - Laura Calvo-Barreiro
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| | - Katarzyna Kuncewicz
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
- Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Moustafa Gabr
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| |
Collapse
|
32
|
Wang Y, Zhou Y, Yang L, Lei L, He B, Cao J, Gao H. Challenges Coexist with Opportunities: Spatial Heterogeneity Expression of PD-L1 in Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303175. [PMID: 37934012 PMCID: PMC10767451 DOI: 10.1002/advs.202303175] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/28/2023] [Indexed: 11/08/2023]
Abstract
Cancer immunotherapy using anti-programmed death-ligand 1 (PD-L1) antibodies has been used in various clinical applications and achieved certain results. However, such limitations as autoimmunity, tumor hyperprogression, and overall low patient response rate impede its further clinical application. Mounting evidence has revealed that PD-L1 is not only present in tumor cell membrane but also in cytoplasm, exosome, or even nucleus. Among these, the dynamic and spatial heterogeneous expression of PD-L1 in tumors is mainly responsible for the unsatisfactory efficacy of PD-L1 antibodies. Hence, numerous studies focus on inhibiting or degrading PD-L1 to improve immune response, while a comprehensive understanding of the molecular mechanisms underlying spatial heterogeneity of PD-L1 can fundamentally transform the current status of PD-L1 antibodies in clinical development. Herein, the concept of spatial heterogeneous expression of PD-L1 is creatively introduced, encompassing the structure and biological functions of various kinds of PD-L1 (including mPD-L1, cPD-L1, nPD-L1, and exoPD-L1). Then an in-depth analysis of the regulatory mechanisms and potential therapeutic targets of PD-L1 is provided, seeking to offer a solid basis for future investigation. Moreover, the current status of agents is summarized, especially small molecular modulators development directed at these new targets, offering a novel perspective on potential PD-L1 therapeutics strategies.
Collapse
Affiliation(s)
- Yazhen Wang
- National Engineering Research Center for BiomaterialsCollege of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041P. R. China
| | - Yang Zhou
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041P. R. China
| | - Lianyi Yang
- National Engineering Research Center for BiomaterialsCollege of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
| | - Lei Lei
- National Engineering Research Center for BiomaterialsCollege of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
| | - Bin He
- National Engineering Research Center for BiomaterialsCollege of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
| | - Jun Cao
- National Engineering Research Center for BiomaterialsCollege of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
| | - Huile Gao
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041P. R. China
| |
Collapse
|
33
|
Liu M, Wu C, Wang R, Qiu J, She Z, Qu J, Xia J. Modulating Liquid-Liquid Phase Separation of Nck Adaptor Protein against Enteropathogenic Escherichia coli Infection. ACS CENTRAL SCIENCE 2023; 9:2358-2368. [PMID: 38161366 PMCID: PMC10755736 DOI: 10.1021/acscentsci.3c01068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/21/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Signaling proteins often form biomolecular condensates through liquid-liquid phase separation (LLPS) during intracellular signal transduction. Modulating the LLPS property of intracellular protein condensates will redirect intracellular signals and provide a potential way to regulate cellular physiology. Phosphorylation of multiple tyrosine residues of the transmembrane receptor nephrin is known to drive the LLPS of the adaptor protein Nck and neuronal Wiskott-Aldrich Syndrome protein (N-WASP) and form the Nck signaling complex. Phosphorylation of the translocated intimin receptor (Tir) in the host cell may recruit this enteropathogenic Escherichia coli (EPEC) virulence factor to the Nck signaling complex and lead to the entry of EPEC into the intestine cell. In this work, we first identified a phosphotyrosine (pY)-containing peptide 3pY based on the sequence similarity of nephrin and Tir; 3pY promoted the LLPS of Nck and N-WASP, mimicking the role of phosphorylated nephrin. Next, we designed a covalent blocker of Nck, peptide p1 based on the selected pY peptides, which site-selectively reacted with the SH2 domain of Nck (Nck-SH2) at Lys331 through a proximity-induced reaction. The covalent reaction of p1 with Nck blocked the protein binding site of Nck-SH2 and disintegrated the 3pY/Nck/N-WASP condensates. In the presence of membrane-translocating peptide L17E, p1 entered Caco-2 cells in the cytosol, reduced the number of Nck puncta, and rendered Caco-2 cells resistant to EPEC infection. Site-selective covalent blockage of Nck thereby disintegrates intracellular Nck condensates, inhibits actin reorganization, and shuts down the entrance pathway of EPEC. This work showcases the promotion or inhibition of protein phase separation by synthetic peptides and the use of reactive peptides as LLPS disruptors and signal modulators.
Collapse
Affiliation(s)
- Min Liu
- Department
of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Chunjian Wu
- Department
of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Rui Wang
- Pingshan
Translational Medicine Center, Shenzhen
Bay Laboratory, Shenzhen 518118, China
| | - Jiaming Qiu
- Department
of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhentao She
- Departments
of Electronic and Computer Engineering, Center of Systems Biology
and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jianan Qu
- Departments
of Electronic and Computer Engineering, Center of Systems Biology
and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jiang Xia
- Department
of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
34
|
Wang J, Pan X, Hai P, Zheng Y, Zhang J, Shan Y. A bifunctional agent for efficient imaging of PD-L1 and antimelanoma activity. Bioorg Chem 2023; 141:106912. [PMID: 37839142 DOI: 10.1016/j.bioorg.2023.106912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Immune checkpoint inhibitors targeting PD-L1 lead to challenging patterns of efficacy and toxicity. Herein, by focusing on tracing the molecular biomarker of response to efficacy, we formulated a central hypothesis for the construction of theranostic functional monoclonal antibody incorporation with tracing ability based on fluorescence turn-on and controllable release strategies. Functional atezolizumab was constructed by in situ assembly of both biorthogonal group and controllable release group. The theranostic monoclonal antibodies achieved quantitative monitoring of PD-L1 on cells with different expression levels through biorthogonal light-up fluorescence, followed by the release of atezolizumab in combination with high tumor reduction conditions to promote immune activation. The combination of bio-orthogonal reaction-driven fluorescence turn-on and tumor microenvironment-responsive controllable release afforded theranostic bifunctional monoclonal antibodies for the detection of PD-L1 and combination therapy. Remarkably, these novel theranostics might be used as probes for fluorescent imaging and simultaneously achieving potent antitumor efficacy.
Collapse
Affiliation(s)
- Jin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ping Hai
- NMPA Key Laboratory for Quality Control of Traditional Chinese and Tibetan Medicine, Qinghai Provincial Drug Inspection and Testing Institute, Xining 810016, China
| | - Yongbiao Zheng
- NMPA Key Laboratory for Quality Control of Traditional Chinese and Tibetan Medicine, Qinghai Provincial Drug Inspection and Testing Institute, Xining 810016, China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Yuanyuan Shan
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
35
|
Wang J, Wang W, Ma F, Qian H. A hidden translatome in tumors-the coding lncRNAs. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2755-2772. [PMID: 37154857 DOI: 10.1007/s11427-022-2289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/29/2022] [Indexed: 05/10/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been extensively identified in eukaryotic genomes and have been shown to play critical roles in the development of multiple cancers. Through the application and development of ribosome analysis and sequencing technologies, advanced studies have discovered the translation of lncRNAs. Although lncRNAs were originally defined as noncoding RNAs, many lncRNAs actually contain small open reading frames that are translated into peptides. This opens a broad area for the functional investigation of lncRNAs. Here, we introduce prospective methods and databases for screening lncRNAs with functional polypeptides. We also summarize the specific lncRNA-encoded proteins and their molecular mechanisms that promote or inhibit cancerous. Importantly, the role of lncRNA-encoded peptides/proteins holds promise in cancer research, but some potential challenges remain unresolved. This review includes reports on lncRNA-encoded peptides or proteins in cancer, aiming to provide theoretical basis and related references to facilitate the discovery of more functional peptides encoded by lncRNA, and to further develop new anti-cancer therapeutic targets as well as clinical biomarkers of diagnosis and prognosis.
Collapse
Affiliation(s)
- Jinsong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenna Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fei Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
36
|
Gabizon R, Tivon B, Reddi RN, van den Oetelaar MCM, Amartely H, Cossar PJ, Ottmann C, London N. A simple method for developing lysine targeted covalent protein reagents. Nat Commun 2023; 14:7933. [PMID: 38040731 PMCID: PMC10692228 DOI: 10.1038/s41467-023-42632-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/16/2023] [Indexed: 12/03/2023] Open
Abstract
Peptide-based covalent probes can target shallow protein surfaces not typically addressable using small molecules, yet there is a need for versatile approaches to convert native peptide sequences into covalent binders that can target a broad range of residues. Here we report protein-based thio-methacrylate esters-electrophiles that can be installed easily on unprotected peptides and proteins via cysteine side chains, and react efficiently and selectively with cysteine and lysine side chains on the target. Methacrylate phosphopeptides derived from 14-3-3-binding proteins irreversibly label 14-3-3σ via either lysine or cysteine residues, depending on the position of the electrophile. Methacrylate peptides targeting a conserved lysine residue exhibit pan-isoform binding of 14-3-3 proteins both in lysates and in extracellular media. Finally, we apply this approach to develop protein-based covalent binders. A methacrylate-modified variant of the colicin E9 immunity protein irreversibly binds to the E9 DNAse, resulting in significantly higher thermal stability relative to the non-covalent complex. Our approach offers a simple and versatile route to convert peptides and proteins into potent covalent binders.
Collapse
Affiliation(s)
- Ronen Gabizon
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Barr Tivon
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Rambabu N Reddi
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maxime C M van den Oetelaar
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Hadar Amartely
- Wolfson Centre for Applied Structural Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Peter J Cossar
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Nir London
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
37
|
Qiang L, Huili Z, Leilei Z, Xiaoyan W, Hui W, Biao H, Yigang W, Fang H, Yiqiang W. Intratumoral delivery of a Tim-3 antibody-encoding oncolytic adenovirus engages an effective antitumor immune response in liver cancer. J Cancer Res Clin Oncol 2023; 149:18201-18213. [PMID: 38078962 DOI: 10.1007/s00432-023-05501-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND AND PURPOSE The use of oncolytic viruses as a gene therapy vector is an area of active biomedical research, particularly in the context of cancer treatment. However, the actual therapeutic success of this approach to tumor elimination remains limited. As such, the present study was developed with the goal of simultaneously enhancing the antitumor efficacy of oncolytic viruses and the local immune response by combining the Ad-GD55 oncolytic adenovirus and an antibody specific for the TIM-3 immune checkpoint molecule (α-TIM-3). APPROACH AND KEY RESULTS The results of Virus and cell-mediated cytotoxicity assay, qPCR, and Western immunoblotting showed that Ad-GD55-α-Tim-3 oncolytic adenovirus is capable of inducing α-TIM-3 expression within hepatoma cells upon infection, and Ad-GD55-α-TIM-3 exhibited inhibitory efficacy superior to that of Ad-GD55 when used to treat these tumor cells together with the induction of enhanced intracellular immunity. In vivo experiments revealed that Ad-GD55-α-TIM-3 administration was sufficient to inhibit tumor growth and engage in a more robust local immune response within the simulated tumor immune microenvironment. CONCLUSION AND IMPLICATIONS These results highlighted the promising therapeutic effects of Ad-GD55-α-TIM-3 oncolytic adenovirus against HCC in vitro and in vivo. As such, this Ad-GD55-α-TIM-3 oncolytic adenovirus may represent a viable approach to the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Li Qiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Surgical Department of Duchang County Second People's Hospital, Jiujiang, 332600, China
| | - Zhang Huili
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhang Leilei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wang Xiaoyan
- Oncology Department, Zhejiang Xiaoshan HospitaI, Hangzhou, China
| | - Wang Hui
- Oncology Department, Zhejiang Xiaoshan HospitaI, Hangzhou, China
| | - Huang Biao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wang Yigang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Huang Fang
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China.
| | - Wang Yiqiang
- Surgical Department of Duchang County Second People's Hospital, Jiujiang, 332600, China.
| |
Collapse
|
38
|
Qin Z, Zhang K, He P, Zhang X, Xie M, Fu Y, Gu C, Zhu Y, Tong A, Wei H, Zhang C, Xiang Y. Discovering covalent inhibitors of protein-protein interactions from trillions of sulfur(VI) fluoride exchange-modified oligonucleotides. Nat Chem 2023; 15:1705-1714. [PMID: 37653229 DOI: 10.1038/s41557-023-01304-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/24/2023] [Indexed: 09/02/2023]
Abstract
Molecules that covalently engage target proteins are widely used as activity-based probes and covalent drugs. The performance of these covalent inhibitors is, however, often compromised by the paradox of efficacy and risk, which demands a balance between reactivity and selectivity. The challenge is more evident when targeting protein-protein interactions owing to their low ligandability and undefined reactivity. Here we report sulfur(VI) fluoride exchange (SuFEx) in vitro selection, a general platform for high-throughput discovery of covalent inhibitors from trillions of SuFEx-modified oligonucleotides. With SuFEx in vitro selection, we identified covalent inhibitors that cross-link distinct residues of the SARS-CoV-2 spike protein at its protein-protein interaction interface with the human angiotensin-converting enzyme 2. A separate suite of covalent inhibitors was isolated for the human complement C5 protein. In both cases, we observed a clear disconnection between binding affinity and cross-linking reactivity, indicating that direct search for the aimed reactivity-as enabled by SuFEx in vitro selection-is vital for discovering covalent inhibitors of high selectivity and potency.
Collapse
Affiliation(s)
- Zichen Qin
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Kaining Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Ping He
- CAS Key Laboratory of Special Pathogens and Biosafety, Centre for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xue Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| | - Miao Xie
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| | - Yucheng Fu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunmei Gu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
- Beijing Institute of Collaborative Innovation (BICI), Beijing, China
| | - Yiying Zhu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Aijun Tong
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Centre for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Xiang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China.
| |
Collapse
|
39
|
Lake BM, Rullo AF. Offsetting Low-Affinity Carbohydrate Binding with Covalency to Engage Sugar-Specific Proteins for Tumor-Immune Proximity Induction. ACS CENTRAL SCIENCE 2023; 9:2064-2075. [PMID: 38033792 PMCID: PMC10683482 DOI: 10.1021/acscentsci.3c01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Indexed: 12/02/2023]
Abstract
Carbohydrate-binding receptors are often used by the innate immune system to potentiate inflammation, target endocytosis/destruction, and adaptive immunity (e.g., CD206, DC-SIGN, MBL, and anticarbohydrate antibodies). To access this class of receptors for cancer immunotherapy, a growing repertoire of bifunctional proximity-inducing therapeutics use high-avidity multivalent carbohydrate binding domains to offset the intrinsically low affinity associated with monomeric carbohydrate-protein binding interactions (Kd ≈ 10-3-10-6 M). For applications aimed at recruiting anticarbohydrate antibodies to tumor cells, large synthetic scaffolds are used that contain both a tumor-binding domain (TBD) and a multivalent antibody-binding domain (ABD) comprising multiple l-rhamnose monosaccharides. This allows for stable bridging between tumor cells and antibodies, which activates tumoricidal immune function. Problematically, such multivalent macromolecules can face limitations including synthetic and/or structural complexity and the potential for off-target immune engagement. We envisioned that small bifunctional "proximity-inducing" molecules containing a low-affinity monovalent ABD could efficiently engage carbohydrate-binding receptors for tumor-immune proximity by coupling weak binding with covalent engagement. Typical covalent drugs and electrophilic chimeras use high-affinity ligands to promote the fast covalent engagement of target proteins (i.e., large kinact/KI), driven by a favorably small KI for binding. We hypothesized the much less favorable KI associated with carbohydrate-protein binding interactions can be offset by a favorably large kinact for the covalent labeling step. In the current study, we test this hypothesis in the context of a model system that uses rhamnose-specific antibodies to induce tumor-immune proximity and tumoricidal function. We discovered that synthetic chimeric molecules capable of preorganizing an optimal electrophile (i.e., SuFEx vs activated ester) for protein engagement can rapidly covalently engage natural sources of antirhamnose antibody using only a single low-affinity rhamnose monosaccharide ABD. Strikingly, we observe chimeric molecules lacking an electrophile, which can only noncovalently bind the antibody, completely lack tumoricidal function. This is in stark contrast to previous work targeting small molecule hapten and peptide-specific antibodies. Our findings underscore the utility of covalency as a strategy to engage low-affinity carbohydrate-specific proteins for tumor-immune proximity induction.
Collapse
Affiliation(s)
- Benjamin
P. M. Lake
- Department
of Medicine, McMaster Immunology Research Center, Center
for Discovery in Cancer Research, Department of Biochemistry and Biomedical
Sciences, and Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton Ontario, Canada
| | - Anthony F. Rullo
- Department
of Medicine, McMaster Immunology Research Center, Center
for Discovery in Cancer Research, Department of Biochemistry and Biomedical
Sciences, and Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton Ontario, Canada
| |
Collapse
|
40
|
Cruite J, Nowak R, Donovan KA, Ficarro SB, Huang H, Liu H, Liu Y, Marto JA, Metivier RJ, Fischer ES, Jones LH. Covalent Stapling of the Cereblon Sensor Loop Histidine Using Sulfur-Heterocycle Exchange. ACS Med Chem Lett 2023; 14:1576-1581. [PMID: 37974938 PMCID: PMC10641907 DOI: 10.1021/acsmedchemlett.3c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023] Open
Abstract
Site-specific modification of amino acid residues in protein binding pockets using sulfonyl exchange chemistry expands the druggable proteome by enabling the development of covalent modulators that target residues beyond cysteine. Sulfonyl fluoride and triazole electrophiles were incorporated previously into the cereblon (CRBN) molecular glue degrader EM12, to covalently engage His353 within the CRBN sensor loop, but these probes had poor human plasma stability. Attenuation of intrinsic reactivity through the development of sulfonyl pyrazoles, imidazoles, and nucleobases enhanced plasma stability, and several compounds retained efficient labeling of His353. For example, sulfonyl imidazole EM12-SO2Im covalently blocked the CRBN binding site and possessed excellent metabolic stability in human plasma, liver microsomes, and hepatocytes. These results highlight the potential suitability of sulfonyl imidazole and related sulfur(VI)-diazole exchange (SuDEx) warheads for covalent drug development and further exemplify the therapeutic promise of site-specific histidine targeting.
Collapse
Affiliation(s)
- Justin
T. Cruite
- Center
for Protein Degradation, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Radosław
P. Nowak
- Center
for Protein Degradation, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Katherine A. Donovan
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Scott B. Ficarro
- Department
of Cancer Biology, Department of Oncologic Pathology, Blais Proteomics
Center, and Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston Massachusetts 02215, United States
- Department
of Pathology, Brigham and Women’s
Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Huang Huang
- Center
for Protein Degradation, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Hu Liu
- Center
for Protein Degradation, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Yingpeng Liu
- Center
for Protein Degradation, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Jarrod A. Marto
- Department
of Cancer Biology, Department of Oncologic Pathology, Blais Proteomics
Center, and Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston Massachusetts 02215, United States
- Department
of Pathology, Brigham and Women’s
Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Rebecca J. Metivier
- Center
for Protein Degradation, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
| | - Eric S. Fischer
- Center
for Protein Degradation, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Lyn H. Jones
- Center
for Protein Degradation, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
41
|
Tang G, Wang W, Wang X, Ding K, Ngan SC, Chen JY, Sze SK, Gao L, Yuan P, Lu X, Yao SQ. Cell-active, irreversible covalent inhibitors that selectively target the catalytic lysine of EGFR by using fluorosulfate-based SuFEx chemistry. Eur J Med Chem 2023; 259:115671. [PMID: 37499291 DOI: 10.1016/j.ejmech.2023.115671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
EGFR signaling is involved in multiple cellular processes including cell proliferation, differentiation and development, making this protein kinase one of the most valuable drug targets for the treatment of non-small cell lung carcinomas (NSCLC). Herein, we describe the design and synthesis of a series of potential covalent inhibitors targeting the catalytically conserved lysine (K745) of EGFR on the basis of Erlotinib, an FDA-approved first-generation EGFR drug. Different amine-reactive electrophiles were introduced at positions on the Erlotinib scaffold proximal to K745 in EGFR. The optimized compound 26 (as well as its close analog 30), possessing a novel arylfluorosulfate group (ArOSO2F), showed excellent in vitro potency (as low as 0.19 nM in independent IC50 determination) and selectivity against EGFR and many of its drug-resistant mutants. Both intact protein mass spectrometry (MS) and site-mapping analysis revealed that compound 26 covalently bound to EGFR at K745 through the formation of a sulfamate. In addition, compound 26 displayed good anti-proliferative potency against EGFR-overexpressing HCC827 cells by inhibiting endogenous EGFR autophosphorylation. The pharmacokinetic studies of compound 26 demonstrated the druggable potential of other ArOSO2F-containing compounds. Finally, competitive activity-based protein profiling (ABPP), cellular thermal shift assay (CETSA), as well as cellular wash-out experiments, all showed compound 26 to be the first cell-active, fluorosulfate-based targeted covalent inhibitor (TCI) of protein kinases capable of covalently engaging the catalytically conserved lysine of its target in live mammalian cells.
Collapse
Affiliation(s)
- Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, China
| | - Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, 510632, China; State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - SoFong Cam Ngan
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Jiao-Yu Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, China
| | - Siu Kwan Sze
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, China
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, China.
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
42
|
Zheng H, Li G, Min J, Xu X, Huang W. Lysosome and related protein degradation technologies. Drug Discov Today 2023; 28:103767. [PMID: 37708931 DOI: 10.1016/j.drudis.2023.103767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Recently, targeted protein degradation technologies based on lysosomal pathways have been developed. Lysosome-based targeted protein degradation technology has a broad range of substrates and the potential to degrade intracellular and extracellular proteins, protein aggregates, damaged organelles and non-protein molecules. Thus, they hold great promise for drug R&D. This study has focused on the biogenesis of lysosomes, their basic functions, lysosome-associated diseases and targeted protein degradation technologies through the lysosomal pathway. In addition, we thoroughly examine the potential applications and limitations of this technology and engage in insightful discussions on potential avenues for future research. Our primary objective is to foster preclinical research on this technology and facilitate its successful clinical implementation.
Collapse
Affiliation(s)
- Hongmei Zheng
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China
| | - Gangjian Li
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China
| | - Jingli Min
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China
| | - Xiangwei Xu
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Wenhai Huang
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China.
| |
Collapse
|
43
|
Nowak RP, Ragosta L, Huerta F, Liu H, Ficarro SB, Cruite JT, Metivier RJ, Donovan KA, Marto JA, Fischer ES, Zerfas BL, Jones LH. Development of a covalent cereblon-based PROTAC employing a fluorosulfate warhead. RSC Chem Biol 2023; 4:906-912. [PMID: 37920397 PMCID: PMC10619143 DOI: 10.1039/d3cb00103b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/31/2023] [Indexed: 11/04/2023] Open
Abstract
Many cereblon (CRBN) ligands have been used to develop proteolysis targeting chimeras (PROTACs), but all are reversible binders of the E3 ubiquitin ligase. We recently described the use of sulfonyl exchange chemistry to design binders that covalently engage histidine 353 in CRBN for the first time. Here we show that covalent CRBN ligands can be used to develop efficient PROTAC degraders. We demonstrate that the fluorosulfate PROTAC FS-ARV-825 covalently labels CRBN in vitro, and in cells the BRD4 degrader is insensitive to wash-out and competition by potent reversible CRBN ligands, reflecting enhanced pharmacodynamics. We anticipate that covalent CRBN-based PROTACs will enhance degradation efficiencies, thus expanding the scope of addressable targets using the heterobifunctional degrader modality.
Collapse
Affiliation(s)
- Radosław P Nowak
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA USA
| | - Leah Ragosta
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
| | - Fidel Huerta
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
| | - Hu Liu
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
| | - Scott B Ficarro
- Department of Cancer Biology, Department of Oncologic Pathology, and Blais Proteomics Center, and Center for Emergent Drug Targets, Dana-Farber Cancer Institute Boston MA USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School Boston MA 02115 USA
| | - Justin T Cruite
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
| | - Rebecca J Metivier
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA USA
| | - Katherine A Donovan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA USA
| | - Jarrod A Marto
- Department of Cancer Biology, Department of Oncologic Pathology, and Blais Proteomics Center, and Center for Emergent Drug Targets, Dana-Farber Cancer Institute Boston MA USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School Boston MA 02115 USA
| | - Eric S Fischer
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA USA
| | - Breanna L Zerfas
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
| | - Lyn H Jones
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
| |
Collapse
|
44
|
Chen L, Xin X, Zhang Y, Li S, Zhao X, Li S, Xu Z. Advances in Biosynthesis of Non-Canonical Amino Acids (ncAAs) and the Methods of ncAAs Incorporation into Proteins. Molecules 2023; 28:6745. [PMID: 37764520 PMCID: PMC10534643 DOI: 10.3390/molecules28186745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The functional pool of canonical amino acids (cAAs) has been enriched through the emergence of non-canonical amino acids (ncAAs). NcAAs play a crucial role in the production of various pharmaceuticals. The biosynthesis of ncAAs has emerged as an alternative to traditional chemical synthesis due to its environmental friendliness and high efficiency. The breakthrough genetic code expansion (GCE) technique developed in recent years has allowed the incorporation of ncAAs into target proteins, giving them special functions and biological activities. The biosynthesis of ncAAs and their incorporation into target proteins within a single microbe has become an enticing application of such molecules. Based on that, in this study, we first review the biosynthesis methods for ncAAs and analyze the difficulties related to biosynthesis. We then summarize the GCE methods and analyze their advantages and disadvantages. Further, we review the application progress of ncAAs and anticipate the challenges and future development directions of ncAAs.
Collapse
Affiliation(s)
- Liang Chen
- College of Bioengineering, Beijing Polytechnic, Beijing 100176, China; (X.X.); (Y.Z.); (S.L.); (X.Z.); (S.L.); (Z.X.)
| | | | | | | | | | | | | |
Collapse
|
45
|
Fu J, Li S, Deng L, Zhao X, Yu Z. A genetically encodable and fluorogenic photo-crosslinker via photo-induced defluorination acyl fluoride exchange. Chem Commun (Camb) 2023; 59:11073-11076. [PMID: 37624030 DOI: 10.1039/d3cc02771f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
We report a genetically encodable m-trifluoromethylaniline modified L-lysine (m-TFMAK) which defluorinates upon light activation and covalently conjugates to native residues via acyl fluoride exchange. The encoded m-TFMAK photo-crosslinks with temporal controllability, residue selectivity, and fluorogenic tracking features, making it suitable for identifying protein interactions in living systems.
Collapse
Affiliation(s)
- Jielin Fu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Sitong Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Lijun Deng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Xiaohu Zhao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Zhipeng Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| |
Collapse
|
46
|
Li Z, Ma S, Zhang S, Ma Z, Du L, Li M. Degradation of extracellular and membrane proteins in targeted therapy: Status quo and quo vadis. Drug Discov Today 2023; 28:103716. [PMID: 37467880 DOI: 10.1016/j.drudis.2023.103716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Targeted protein degradation (TPD) strategies, such as proteolysis-targeting chimeras (PROTACs) only work for intracellular protein degradation because they involve the intracellular protein degradation machinery. Several new technologies have emerged in recent years for TPD of extracellular and membrane proteins. Even though some progress has been demonstrated in the extracellular and membrane protein degradation field, the application of these technologies is still in its infancy. In this review, we survey the therapeutic potential of existing technologies by summarizing and reviewing discoveries and hurdles in extracellular and membrane protein-of-interest (POI) degradation.
Collapse
Affiliation(s)
- Zhenzhen Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Siyue Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shuxin Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
47
|
Yu B, Cao L, Li S, Klauser PC, Wang L. The proximity-enabled sulfur fluoride exchange reaction in the protein context. Chem Sci 2023; 14:7913-7921. [PMID: 37502323 PMCID: PMC10370592 DOI: 10.1039/d3sc01921g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
The proximity-enabled sulfur(vi) fluoride exchange (SuFEx) reaction generates specific covalent linkages between proteins in cells and in vivo, which opens innovative avenues for studying elusive protein-protein interactions and developing potent covalent protein drugs. To exploit the power and expand the applications of covalent proteins, covalent linkage formation between proteins is the critical step, for which fundamental kinetic and essential properties remain unexplored. Herein, we systematically studied SuFEx kinetics in different proteins and conditions. In contrast to in small molecules, SuFEx in interacting proteins conformed with a two-step mechanism involving noncovalent binding, followed by covalent bond formation, exhibiting nonlinear rate dependence on protein concentration. The protein SuFEx rate consistently changed with protein binding affinity as well as chemical reactivity of the functional group and was impacted by target residue identity and solution pH. In addition, kinetic analyses of nanobody SR4 binding with SARS-CoV-2 spike protein revealed that viral target mutations did not abolish covalent binding but decreased the SuFEx rate with affinity decrease. Moreover, off-target cross-linking of a SuFEx-capable nanobody in human serum was not detected, and the SuFEx-generated protein linkage was stable at cellular acidic pHs, suggesting SuFEx suitability for in vivo usage. These results advanced our understanding of SuFEx reactivity and kinetics in proteins, which is invaluable for ongoing exploration of SuFEx-enabled covalent proteins for basic biological research and creative biotherapeutics.
Collapse
Affiliation(s)
- Bingchen Yu
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco 555 Mission Bay Blvd. South San Francisco California 94158 USA
| | - Li Cao
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco 555 Mission Bay Blvd. South San Francisco California 94158 USA
| | - Shanshan Li
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco 555 Mission Bay Blvd. South San Francisco California 94158 USA
| | - Paul C Klauser
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco 555 Mission Bay Blvd. South San Francisco California 94158 USA
| | - Lei Wang
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco 555 Mission Bay Blvd. South San Francisco California 94158 USA
| |
Collapse
|
48
|
Lucero B, Francisco KR, Liu LJ, Caffrey CR, Ballatore C. Protein-protein interactions: developing small-molecule inhibitors/stabilizers through covalent strategies. Trends Pharmacol Sci 2023; 44:474-488. [PMID: 37263826 PMCID: PMC11003449 DOI: 10.1016/j.tips.2023.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023]
Abstract
The development of small-molecule inhibitors or stabilizers of selected protein-protein interactions (PPIs) of interest holds considerable promise for the development of research tools as well as candidate therapeutics. In this context, the covalent modification of selected residues within the target protein has emerged as a promising mechanism of action to obtain small-molecule modulators of PPIs with appropriate selectivity and duration of action. Different covalent labeling strategies are now available that can potentially allow for a rational, ground-up discovery and optimization of ligands as PPI inhibitors or stabilizers. This review article provides a synopsis of recent developments and applications of such tactics, with a particular focus on site-directed fragment tethering and proximity-enabled approaches.
Collapse
Affiliation(s)
- Bobby Lucero
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Karol R Francisco
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Lawrence J Liu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Carlo Ballatore
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
49
|
Klauser PC, Chopra S, Cao L, Bobba KN, Yu B, Seo Y, Chan E, Flavell RR, Evans MJ, Wang L. Covalent Proteins as Targeted Radionuclide Therapies Enhance Antitumor Effects. ACS CENTRAL SCIENCE 2023; 9:1241-1251. [PMID: 37396859 PMCID: PMC10311652 DOI: 10.1021/acscentsci.3c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Indexed: 07/04/2023]
Abstract
Molecularly targeted radionuclide therapies (TRTs) struggle with balancing efficacy and safety, as current strategies to increase tumor absorption often alter drug pharmacokinetics to prolong circulation and normal tissue irradiation. Here we report the first covalent protein TRT, which, through reacting with the target irreversibly, increases radioactive dose to the tumor without altering the drug's pharmacokinetic profile or normal tissue biodistribution. Through genetic code expansion, we engineered a latent bioreactive amino acid into a nanobody, which binds to its target protein and forms a covalent linkage via the proximity-enabled reactivity, cross-linking the target irreversibly in vitro, on cancer cells, and on tumors in vivo. The radiolabeled covalent nanobody markedly increases radioisotope levels in tumors and extends tumor residence time while maintaining rapid systemic clearance. Furthermore, the covalent nanobody conjugated to the α-emitter actinium-225 inhibits tumor growth more effectively than the noncovalent nanobody without causing tissue toxicity. Shifting the protein-based TRT from noncovalent to covalent mode, this chemical strategy improves tumor responses to TRTs and can be readily scaled to diverse protein radiopharmaceuticals engaging broad tumor targets.
Collapse
Affiliation(s)
- Paul C. Klauser
- Department
of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Shalini Chopra
- Department
of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
- Department
of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California 94158, United States
| | - Li Cao
- Department
of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Kondapa Naidu Bobba
- Department
of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California 94158, United States
| | - Bingchen Yu
- Department
of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Youngho Seo
- Department
of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California 94158, United States
| | - Emily Chan
- Department
of Pathology, University of California San
Francisco, San Francisco, California 94158, United States
| | - Robert R. Flavell
- Department
of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
- Department
of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California 94158, United States
| | - Michael J. Evans
- Department
of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
- Department
of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California 94158, United States
| | - Lei Wang
- Department
of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
50
|
Zhu C, Xu L, Chen L, Zhang Z, Zhang Y, Wu W, Li C, Liu S, Xiang S, Dai S, Zhang J, Guo H, Zhou Y, Wang F. Epitope-Directed Antibody Elicitation by Genetically Encoded Chemical Cross-Linking Reactivity in the Antigen. ACS CENTRAL SCIENCE 2023; 9:1229-1240. [PMID: 37396855 PMCID: PMC10311653 DOI: 10.1021/acscentsci.3c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 07/04/2023]
Abstract
No current methods can selectively elicit an antibody response to a specific conformational epitope in a whole antigen in vivo. Here, we incorporated Nε-acryloyl-l-lysine (AcrK) or Nε-crotonyl-l-lysine (Kcr) with cross-linking activities into the specific epitopes of antigens and immunized mice to generate antibodies that can covalently cross-link with the antigens. By taking advantage of antibody clonal selection and evolution in vivo, an orthogonal antibody-antigen cross-linking reaction can be generated. With this mechanism, we developed a new approach for facile elicitation of antibodies binding to specific epitopes of the antigen in vivo. Antibody responses were directed and enriched to the target epitopes on protein antigens or peptide-KLH conjugates after mouse immunization with the AcrK or Kcr-incorporated immunogens. The effect is so prominent that the majority of selected hits bind to the target epitope. Furthermore, the epitope-specific antibodies effectively block IL-1β from activating its receptor, indicating its potential for the development of protein subunit vaccines.
Collapse
Affiliation(s)
- Chaoyang Zhu
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College
of Life Sciences, University of Chinese
Academy of Sciences, Beijing 100101, China
| | - Liang Xu
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College
of Life Sciences, University of Chinese
Academy of Sciences, Beijing 100101, China
| | - Longxin Chen
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Molecular
Biology Laboratory, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Zihan Zhang
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhan Zhang
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiping Wu
- Suzhou
Institute for Biomedical Research, Suzhou, Jiangsu 215028, China
| | - Chengxiang Li
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College
of Life Sciences, University of Chinese
Academy of Sciences, Beijing 100101, China
| | - Shuang Liu
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College
of Life Sciences, University of Chinese
Academy of Sciences, Beijing 100101, China
| | - Shuqin Xiang
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College
of Life Sciences, University of Chinese
Academy of Sciences, Beijing 100101, China
| | - Shengwang Dai
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College
of Life Sciences, University of Chinese
Academy of Sciences, Beijing 100101, China
| | - Jay Zhang
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Suzhou
Institute for Biomedical Research, Suzhou, Jiangsu 215028, China
| | - Hui Guo
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Suzhou
Institute for Biomedical Research, Suzhou, Jiangsu 215028, China
- Beijing
Translational Center for Biopharmaceuticals, Beijing 100101, China
| | - Yinjian Zhou
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Beijing
Translational Center for Biopharmaceuticals, Beijing 100101, China
| | - Feng Wang
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Suzhou
Institute for Biomedical Research, Suzhou, Jiangsu 215028, China
- Beijing
Translational Center for Biopharmaceuticals, Beijing 100101, China
| |
Collapse
|