1
|
Liu YT, Cao LY, Sun ZJ. The emerging roles of liquid-liquid phase separation in tumor immunity. Int Immunopharmacol 2024; 143:113212. [PMID: 39353387 DOI: 10.1016/j.intimp.2024.113212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Recent advancements in tumor immunotherapy, particularly PD-1 targeted therapy, have shown significant promise, marking major progress in tumor treatment approaches. Despite this, the development of resistance to therapy and mechanisms of immune evasion by tumors pose considerable obstacles to the broad application of immunotherapy. This necessitates a deeper exploration of complex immune signaling pathways integral to tumor immunity. This review aims to critically analyze the role of liquid-liquid phase separation (LLPS) within tumor immunity, specifically its impact on immune signaling pathways and its potential to foster the development of novel cancer therapies. LLPS, a biophysical process newly recognized for its ability to spontaneously segregate and organize biomacromolecules into liquid-like condensates through weak multivalent interactions, offers a novel perspective on the formation of signaling clusters and the functionality of immune molecules. The review delves into the micromolecular mechanisms behind the creation of signaling condensates via LLPS and reviews recent progress in adjusting signaling pathways pertinent to tumor immunity, including the T cell receptor (TCR), B cell receptor (BCR), immune checkpoints, and innate immune pathways such as the cGAS-STING pathway, stress granules, and the ADP-heptose-ALPK1 signaling axis. Furthermore, it considers the prospects of utilizing LLPS to generate groundbreaking cancer therapies capable of navigating past current treatment barriers. Through an extensive examination of LLPS's impact on tumor immunity, the review seeks to highlight novel therapeutic strategies and address the challenges and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Yuan-Tong Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China; Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lin-Yu Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Huang X, Yang Y, Xu C. Biomolecular condensation programs floral transition to orchestrate flowering time and inflorescence architecture. THE NEW PHYTOLOGIST 2024. [PMID: 39425452 DOI: 10.1111/nph.20204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/11/2024] [Indexed: 10/21/2024]
Abstract
Biomolecular condensation involves the concentration of biomolecules (DNA, RNA, proteins) into compartments to form membraneless organelles or condensates with unique properties and functions. This ubiquitous phenomenon has garnered considerable attention in recent years owing to its multifaceted roles in developmental processes and responses to environmental cues in living systems. Recent studies have revealed that biomolecular condensation plays essential roles in regulating the transition of plants from vegetative to reproductive growth, a programmed process known as floral transition that determines flowering time and inflorescence architecture in flowering plants. In this Tansley insight, we review advances in how biomolecular condensation integrates developmental and environmental signals to program and reprogram the floral transition thus diversifies flowering time and inflorescence architecture.
Collapse
Affiliation(s)
- Xiaozhen Huang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongfang Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cao Xu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
3
|
Zhao T, Yang X, Duan G, Chen J, He K, Chen Y, Luo S. Phosphorylation-regulated phase separation of syndecan-4 and syntenin promotes the biogenesis of exosomes. Cell Prolif 2024; 57:e13645. [PMID: 38601993 PMCID: PMC11471451 DOI: 10.1111/cpr.13645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/08/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
The biogenesis of exosomes that mediate cell-to-cell communication by transporting numerous biomolecules to neighbouring cells is an essential cellular process. The interaction between the transmembrane protein syndecan-4 (SDC4) and cytosolic protein syntenin plays a key role in the biogenesis of exosomes. However, how the relatively weak binding of syntenin to SDC4 efficiently enables syntenin sorting for packaging into exosomes remains unclear. Here, we demonstrate for the first time that SDC4 can undergo liquid-liquid phase separation (LLPS) to form condensates both in vitro and in the cell membrane and that, the SDC4 cytoplasmic domain (SDC4-CD) is a key contributor to this process. The phase separation of SDC4 greatly enhances the recruitment of syntenin to the plasma membrane (PM) despite the weak SDC4-syntenin interaction, facilitating syntenin sorting for inclusion in exosomes. Interestingly, phosphorylation at the only serine (179) in the SDC4-CD (Ser179) disrupts SDC4 LLPS, and inhibited phosphorylation or dephosphorylation restores the SDC4 LLPS to promote its recruitment of syntenin to the PM and syntenin inclusion into exosomes. This research reveals a novel phosphorylation-regulated phase separation property of SDC4 in the PM through which SDC4 efficiently recruits cytosolic syntenin and facilitates the biogenesis of exosomes, providing potential intervention targets for exosome-mediated biomedical events.
Collapse
Affiliation(s)
- Tian Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Xiaolan Yang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Guangfei Duan
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Jialin Chen
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Kefeng He
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Yong‐Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of ChemistryTsinghua UniversityBeijingChina
| | - Shi‐Zhong Luo
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| |
Collapse
|
4
|
Pei X, Chen Y, Liu L, Meng L, Zhang J, Liu Y, Chen L. E242-E261 region of MYC regulates liquid-liquid phase separation and tumor growth by providing negative charges. J Biol Chem 2024; 300:107836. [PMID: 39343006 PMCID: PMC11530832 DOI: 10.1016/j.jbc.2024.107836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
MYC is one of the most extensively studied oncogenic proteins and is closely associated with the occurrence and progression of many tumors. Previous studies have shown that MYC regulates cell fate through its liquid-liquid phase separation mechanism, which is dependent on two disordered domains within its N-terminal transcriptional activation regions. In this study, we revealed that the negatively charged conserved region (E242-E261) of the MYC protein controls its condensation formation and irreversible aggregation through multivalent electrostatic interactions. Furthermore, deletion or mutation of the E242-E261 amino acids in the MYC protein enhances the transcriptional function of MYC by altering its aggregation capacity and subsequently promoting cancer cell proliferation. The discovery of the negatively charged region and its regulatory action on the phase separation of MYC provides a new understanding of the aggregation and function of MYC.
Collapse
Affiliation(s)
- Xiaoying Pei
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yatao Chen
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Linjing Liu
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Li Meng
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jun Zhang
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China.
| | - Yan Liu
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China.
| | - Liming Chen
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China; Jiangsu Institute of Cancer Research, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Li Y, Feng Y, Geng S, Xu F, Guo H. The role of liquid-liquid phase separation in defining cancer EMT. Life Sci 2024; 353:122931. [PMID: 39038510 DOI: 10.1016/j.lfs.2024.122931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Cancer EMT is a pivotal process that drives carcinogenesis, metastasis, and cancer recurrence, with its initiation and regulation intricately governed by biochemical pathways in a precise spatiotemporal manner. Recently, the membrane-less biomolecular condensates formed via liquid-liquid phase separation (LLPS) have emerged as a universal mechanism underlying the spatiotemporal collaboration of biological activities in cancer EMT. In this review, we first elucidate the current understanding of LLPS formation and its cellular functions, followed by an overview of valuable tools for investigating LLPS. Secondly, we examine in detail the LLPS-mediated biological processes crucial for the initiation and regulation of cancer EMT. Lastly, we address current challenges in advancing LLPS research and explore the potential modulation of LLPS using therapeutic agents.
Collapse
Affiliation(s)
- Yuan Li
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuqing Feng
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Hui Guo
- Department of Medical Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China.
| |
Collapse
|
6
|
Heredia-Torrejón M, Montañez R, González-Meneses A, Carcavilla A, Medina MA, Lechuga-Sancho AM. VUS next in rare diseases? Deciphering genetic determinants of biomolecular condensation. Orphanet J Rare Dis 2024; 19:327. [PMID: 39243101 PMCID: PMC11380411 DOI: 10.1186/s13023-024-03307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/06/2024] [Indexed: 09/09/2024] Open
Abstract
The diagnostic odysseys for rare disease patients are getting shorter as next-generation sequencing becomes more widespread. However, the complex genetic diversity and factors influencing expressivity continue to challenge accurate diagnosis, leaving more than 50% of genetic variants categorized as variants of uncertain significance.Genomic expression intricately hinges on localized interactions among its products. Conventional variant prioritization, biased towards known disease genes and the structure-function paradigm, overlooks the potential impact of variants shaping the composition, location, size, and properties of biomolecular condensates, genuine membraneless organelles swiftly sensing and responding to environmental changes, and modulating expressivity.To address this complexity, we propose to focus on the nexus of genetic variants within biomolecular condensates determinants. Scrutinizing variant effects in these membraneless organelles could refine prioritization, enhance diagnostics, and unveil the molecular underpinnings of rare diseases. Integrating comprehensive genome sequencing, transcriptomics, and computational models can unravel variant pathogenicity and disease mechanisms, enabling precision medicine. This paper presents the rationale driving our proposal and describes a protocol to implement this approach. By fusing state-of-the-art knowledge and methodologies into the clinical practice, we aim to redefine rare diseases diagnosis, leveraging the power of scientific advancement for more informed medical decisions.
Collapse
Affiliation(s)
- María Heredia-Torrejón
- Inflammation, Nutrition, Metabolism and Oxidative Stress Research Laboratory, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, Spain
- Mother and Child Health and Radiology Department. Area of Clinical Genetics, University of Cadiz. Faculty of Medicine, Cadiz, Spain
| | - Raúl Montañez
- Inflammation, Nutrition, Metabolism and Oxidative Stress Research Laboratory, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, Spain.
- Department of Molecular Biology and Biochemistry, University of Malaga, Andalucía Tech, E-29071, Málaga, Spain.
| | - Antonio González-Meneses
- Division of Dysmorphology, Department of Paediatrics, Virgen del Rocio University Hospital, Sevilla, Spain
- Department of Paediatrics, Medical School, University of Sevilla, Sevilla, Spain
| | - Atilano Carcavilla
- Pediatric Endocrinology Department, Hospital Universitario La Paz, 28046, Madrid, Spain
- Multidisciplinary Unit for RASopathies, Hospital Universitario La Paz, 28046, Madrid, Spain
| | - Miguel A Medina
- Department of Molecular Biology and Biochemistry, University of Malaga, Andalucía Tech, E-29071, Málaga, Spain.
- Biomedical Research Institute and nanomedicine platform of Málaga IBIMA-BIONAND, E-29071, Málaga, Spain.
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, E-28029, Madrid, Spain.
| | - Alfonso M Lechuga-Sancho
- Inflammation, Nutrition, Metabolism and Oxidative Stress Research Laboratory, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, Spain
- Division of Endocrinology, Department of Paediatrics, Puerta del Mar University Hospital, Cádiz, Spain
- Area of Paediatrics, Department of Child and Mother Health and Radiology, Medical School, University of Cadiz, Cadiz, Spain
| |
Collapse
|
7
|
Yu Z, Teng Y, Yang H, Wang Y, Li X, Feng L, Xu W, Hao Y, Li Y. Inhibiting H2AX Can Ameliorate Myocardial Ischemia/Reperfusion Injury by Regulating P53/JNK Signaling Pathway. Cardiol Res Pract 2024; 2024:1905996. [PMID: 39257436 PMCID: PMC11387088 DOI: 10.1155/2024/1905996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/13/2024] [Indexed: 09/12/2024] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury is a significant area of focus in cardiovascular disease research. I/R injury can increase intracellular oxidative stress, leading to DNA damage. H2AX plays a crucial role in DNA repair. This study utilized mouse and cell models of myocardial I/R to investigate the impact of H2AX on cardiomyocytes during I/R. This study initially assessed the expression of H2AX in MI/R mice compared to a sham surgery group. Subsequently, cardiac function, infarct area, and mitochondrial damage were evaluated after inhibiting H2AX in MI/R mice and a negative control group. Furthermore, the study delved into the molecular mechanisms by analyzing the expression of H2AX, P53, p-JNK, SHP2, p-SHP2, p-RAS, parkin, Drp1, Cyt-C, Caspase-3, and Caspase-8 in cardiomyocytes following the addition of JNK or P53 agonists. The results from western blotting in vivo indicated significantly higher H2AX expression in the MI/R group compared to the sham group. Inhibiting H2AX improved cardiac function, reduced myocardial infarct area, and mitigated mitochondrial damage in the MI/R group. In vitro experiments demonstrated that inhibiting H2AX could attenuate mitochondrial damage and apoptosis in myocardial cells by modulating the P53 and JNK signaling pathways. These findings suggested that inhibiting H2AX may alleviate myocardial I/R injury through the regulation of the P53/JNK pathway, highlighting H2AX as a potential target for the treatment of myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Ziyang Yu
- Department of Cardiology The 6th Affiliated Hospital of Kunming Medical University The People's Hospital of Yuxi City, Yuxi, Yunnan, China
| | - Yirong Teng
- Department of General Practice The 6th Affiliated Hospital of Kunming Medical University The People's Hospital of Yuxi City, Yuxi, Yunnan, China
| | - Hongbo Yang
- Department of Cardiology Fuwai Yunnan Hospital Chinese Academy of Medical Sciences, Kunming, Yunnan, China
| | - Yudi Wang
- Department of Cardiology The 6th Affiliated Hospital of Kunming Medical University The People's Hospital of Yuxi City, Yuxi, Yunnan, China
| | - Xichen Li
- Department of Cardiology The 6th Affiliated Hospital of Kunming Medical University The People's Hospital of Yuxi City, Yuxi, Yunnan, China
| | - Lei Feng
- Department of Laboratory Yan'an Hospital of Kunming City, Kunming, Yunnan, China
| | - Wenbo Xu
- Department of Laboratory The 6th Affiliated Hospital of Kunming Medical University The People's Hospital of Yuxi City, Yuxi, Yunnan, China
| | - Yinglu Hao
- Department of Cardiology The 6th Affiliated Hospital of Kunming Medical University The People's Hospital of Yuxi City, Yuxi, Yunnan, China
| | - Yanping Li
- Department of Cardiology The 6th Affiliated Hospital of Kunming Medical University The People's Hospital of Yuxi City, Yuxi, Yunnan, China
| |
Collapse
|
8
|
Chen Y, Xiang H, Li X, Chen Y, Zhang J. Near-Infrared Laser-Switching DNA Phase Separation Nanoinducer for Glioma Therapy. ACS NANO 2024; 18:24426-24440. [PMID: 39171897 DOI: 10.1021/acsnano.4c07514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
DNA phase separation participates in chromatin packing for the modulation of gene transcription, but the induction of DNA phase separation in living cells for disease treatment faces huge challenges. Herein, we construct a Ru(II)-polypyridyl-loaded upconversion nanoplatform (denoted as UCSNs-R) to achieve the manipulation of DNA phase separation and production of abundant singlet oxygen (1O2) for efficient treatment of gliomas. The utilization of the UCSN not only facilitates high loading of Ru(II)-polypyridyl complexes (RuC) but also promotes the conversion of near-infrared (NIR) laser to ultraviolet light for efficient 1O2 generation. The released RuC exhibit DNA "light-switch" behavior and high DNA binding affinity that induce phase separation of DNA in living cells, thus resulting in DNA damage and suppressing tumor-cell growth. In vivo investigation demonstrates the high capability of UCSNs-R in inhibiting tumor proliferation under NIR laser illumination. This work represents a paradigm for designing a DNA phase separation nanoinducer through integration of the UCSN with Ru(II)-polypyridyl-based complexes for efficient therapy of gliomas.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, P. R. China
| | - Huijing Xiang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Xiaodan Li
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
- Shanghai Institute of Materdicine, Shanghai 200051, P. R. China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, P. R. China
- National Center for Neurological Disorders, Shanghai 200040, P. R. China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai 200040, P. R. China
| |
Collapse
|
9
|
Qu Y, Gao N, Zhang S, Gao L, He B, Wang C, Gong C, Shi Q, Li Z, Yang S, Xiao Y. Role of N6-methyladenosine RNA modification in cancer. MedComm (Beijing) 2024; 5:e715. [PMID: 39252821 PMCID: PMC11381670 DOI: 10.1002/mco2.715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant modification of RNA in eukaryotic cells. Previous studies have shown that m6A is pivotal in diverse diseases especially cancer. m6A corelates with the initiation, progression, resistance, invasion, and metastasis of cancer. However, despite these insights, a comprehensive understanding of its specific roles and mechanisms within the complex landscape of cancer is still elusive. This review begins by outlining the key regulatory proteins of m6A modification and their posttranslational modifications (PTMs), as well as the role in chromatin accessibility and transcriptional activity within cancer cells. Additionally, it highlights that m6A modifications impact cancer progression by modulating programmed cell death mechanisms and affecting the tumor microenvironment through various cancer-associated immune cells. Furthermore, the review discusses how microorganisms can induce enduring epigenetic changes and oncogenic effect in microorganism-associated cancers by altering m6A modifications. Last, it delves into the role of m6A modification in cancer immunotherapy, encompassing RNA therapy, immune checkpoint blockade, cytokine therapy, adoptive cell transfer therapy, and direct targeting of m6A regulators. Overall, this review clarifies the multifaceted role of m6A modification in cancer and explores targeted therapies aimed at manipulating m6A modification, aiming to advance cancer research and improve patient outcomes.
Collapse
Affiliation(s)
- Yi Qu
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Nannan Gao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Shengwei Zhang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Limin Gao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Bing He
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Chao Wang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Chunli Gong
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Qiuyue Shi
- Department of Gastroenterology the First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Zhibin Li
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Shiming Yang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Yufeng Xiao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| |
Collapse
|
10
|
Ruan K, Bai G, Fang Y, Li D, Li T, Liu X, Lu B, Lu Q, Songyang Z, Sun S, Wang Z, Zhang X, Zhou W, Zhang H. Biomolecular condensates and disease pathogenesis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1792-1832. [PMID: 39037698 DOI: 10.1007/s11427-024-2661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Biomolecular condensates or membraneless organelles (MLOs) formed by liquid-liquid phase separation (LLPS) divide intracellular spaces into discrete compartments for specific functions. Dysregulation of LLPS or aberrant phase transition that disturbs the formation or material states of MLOs is closely correlated with neurodegeneration, tumorigenesis, and many other pathological processes. Herein, we summarize the recent progress in development of methods to monitor phase separation and we discuss the biogenesis and function of MLOs formed through phase separation. We then present emerging proof-of-concept examples regarding the disruption of phase separation homeostasis in a diverse array of clinical conditions including neurodegenerative disorders, hearing loss, cancers, and immunological diseases. Finally, we describe the emerging discovery of chemical modulators of phase separation.
Collapse
Affiliation(s)
- Ke Ruan
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Ge Bai
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 510000, China.
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| | - Qing Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Zhou Songyang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Shuguo Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zheng Wang
- The Second Affiliated Hospital, School of Basic Medical Sciences, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Xin Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
| | - Wen Zhou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Hong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Kuo O, Molloy K, Sabir A, Fleming A, Edwards M, Morris-Rosendahl D, Fassihi H, Preston P. A novel variant in PTPN11, c.1277A>G p.(His426Arg), in a patient with Noonan syndrome with multiple lentigines. Clin Exp Dermatol 2024; 49:1101-1103. [PMID: 38634779 DOI: 10.1093/ced/llae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Noonan syndrome with multiple lentigines (NSML) is a rare autosomal dominant condition arising from gene variants involved in the RAS-MAPK pathway. The presence of multiple skin cancers is not widely reported in NSML. We report on a novel missense variant causing NSML in a patient with an unusual distribution of lentigines and multiple skin cancers. An increased awareness of the potential for malignant change of lentigines in NSML may encourage regular skin surveillance as a mainstay of multidisciplinary management, enabling early diagnosis and management of skin cancers in this group of patients.
Collapse
Affiliation(s)
- Olivia Kuo
- Department of Dermatology, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| | - Kevin Molloy
- Department of Dermatology, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| | - Ataf Sabir
- Department of Clinical Genetics, Birmingham Women's Hospital, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Andrew Fleming
- Department of Clinical Genetics and Genomics, Royal Brompton Hospital, London, UK
| | - Matthew Edwards
- Department of Clinical Genetics and Genomics, Royal Brompton Hospital, London, UK
| | | | - Hiva Fassihi
- Photodermatology Unit, St John's Institute of Dermatology, Guy's and St Thomas' NHS Trust, London, UK
| | - Philip Preston
- Department of Dermatology, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| |
Collapse
|
12
|
Sun J, Chen Y, Bi R, Yuan Y, Yu H. Bioinformatic approaches of liquid-liquid phase separation in human disease. Chin Med J (Engl) 2024; 137:1912-1925. [PMID: 39033393 PMCID: PMC11332758 DOI: 10.1097/cm9.0000000000003249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Indexed: 07/23/2024] Open
Abstract
ABSTRACT Biomolecular aggregation within cellular environments via liquid-liquid phase separation (LLPS) spontaneously forms droplet-like structures, which play pivotal roles in diverse biological processes. These structures are closely associated with a range of diseases, including neurodegenerative disorders, cancer and infectious diseases, highlighting the significance of understanding LLPS mechanisms for elucidating disease pathogenesis, and exploring potential therapeutic interventions. In this review, we delineate recent advancements in LLPS research, emphasizing its pathological relevance, therapeutic considerations, and the pivotal role of bioinformatic tools and databases in facilitating LLPS investigations. Additionally, we undertook a comprehensive analysis of bioinformatic resources dedicated to LLPS research in order to elucidate their functionality and applicability. By providing comprehensive insights into current LLPS-related bioinformatics resources, this review highlights its implications for human health and disease.
Collapse
Affiliation(s)
- Jun Sun
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yilong Chen
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruiye Bi
- Department of Orthognathic and TMJ Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yong Yuan
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haopeng Yu
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
13
|
Kim YR, Joo J, Lee HJ, Kim C, Park JC, Yu YS, Kim CR, Lee DH, Cha J, Kwon H, Hanssen KM, Grünewald TGP, Choi M, Han I, Bae S, Jung I, Shin Y, Baek SH. Prion-like domain mediated phase separation of ARID1A promotes oncogenic potential of Ewing's sarcoma. Nat Commun 2024; 15:6569. [PMID: 39095374 PMCID: PMC11297139 DOI: 10.1038/s41467-024-51050-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) facilitates the formation of membraneless organelles within cells, with implications in various biological processes and disease states. AT-rich interactive domain-containing protein 1A (ARID1A) is a chromatin remodeling factor frequently associated with cancer mutations, yet its functional mechanism remains largely unknown. Here, we find that ARID1A harbors a prion-like domain (PrLD), which facilitates the formation of liquid condensates through PrLD-mediated LLPS. The nuclear condensates formed by ARID1A LLPS are significantly elevated in Ewing's sarcoma patient specimen. Disruption of ARID1A LLPS results in diminished proliferative and invasive abilities in Ewing's sarcoma cells. Through genome-wide chromatin structure and transcription profiling, we identify that the ARID1A condensate localizes to EWS/FLI1 target enhancers and induces long-range chromatin architectural changes by forming functional chromatin remodeling hubs at oncogenic target genes. Collectively, our findings demonstrate that ARID1A promotes oncogenic potential through PrLD-mediated LLPS, offering a potential therapeutic approach for treating Ewing's sarcoma.
Collapse
Affiliation(s)
- Yong Ryoul Kim
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jaegeon Joo
- Department of Biological Sciences, Korea Advanced Institute of Science & Technology, Daejeon, South Korea
| | - Hee Jung Lee
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| | - Chaelim Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| | - Ju-Chan Park
- Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - Young Suk Yu
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Chang Rok Kim
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Do Hui Lee
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Joowon Cha
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Hyemin Kwon
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kimberley M Hanssen
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, (A Partnership) Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas G P Grünewald
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, (A Partnership) Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Ilkyu Han
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Sangsu Bae
- Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - Inkyung Jung
- Department of Biological Sciences, Korea Advanced Institute of Science & Technology, Daejeon, South Korea.
| | - Yongdae Shin
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea.
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea.
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
14
|
Qu M, He Q, Bao H, Ji X, Shen T, Barkat MQ, Wu X, Zeng LH. Multiple roles of arsenic compounds in phase separation and membraneless organelles formation determine their therapeutic efficacy in tumors. J Pharm Anal 2024; 14:100957. [PMID: 39253293 PMCID: PMC11381784 DOI: 10.1016/j.jpha.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 09/11/2024] Open
Abstract
Arsenic compounds are widely used for the therapeutic intervention of multiple diseases. Ancient pharmacologists discovered the medicinal utility of these highly toxic substances, and modern pharmacologists have further recognized the specific active ingredients in human diseases. In particular, Arsenic trioxide (ATO), as a main component, has therapeutic effects on various tumors (including leukemia, hepatocellular carcinoma, lung cancer, etc.). However, its toxicity limits its efficacy, and controlling the toxicity has been an important issue. Interestingly, recent evidence has pointed out the pivotal roles of arsenic compounds in phase separation and membraneless organelles formation, which may determine their toxicity and therapeutic efficacy. Here, we summarize the arsenic compounds-regulating phase separation and membraneless organelles formation. We further hypothesize their potential involvement in the therapy and toxicity of arsenic compounds, highlighting potential mechanisms underlying the clinical application of arsenic compounds.
Collapse
Affiliation(s)
- Meiyu Qu
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hangyang Bao
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xing Ji
- Department of Pharmacology, Hangzhou City University School of Medicine, Hangzhou, 310015, China
| | - Tingyu Shen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Muhammad Qasim Barkat
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ling-Hui Zeng
- Department of Pharmacology, Hangzhou City University School of Medicine, Hangzhou, 310015, China
| |
Collapse
|
15
|
Fuxreiter M. Context-dependent, fuzzy protein interactions: Towards sequence-based insights. Curr Opin Struct Biol 2024; 87:102834. [PMID: 38759297 DOI: 10.1016/j.sbi.2024.102834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/19/2024]
Abstract
Predicting protein interactions in the cellular environment still remains a challenge in the AlphaFold era. Protein interactions, similarly to their structures, sample a continuum from ordered to disordered states, with specific partners in many bound configurations. A multiplicity of binding modes (MBM) enables transition between these states under different cellular conditions. This review focuses on how the cellular environment affects protein interactions, highlighting the molecular mechanisms, biophysical origin, and sequence-based principles of context-dependent, fuzzy interactions. It summarises experimental and computational approaches to address the challenge of interaction heterogeneity and its contribution to a wide range of biological functions. These insights will help in understanding complex cellular processes, involving conversions between protein assembly states, such as from liquid-like droplet state to the amyloid state.
Collapse
Affiliation(s)
- Monika Fuxreiter
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Department of Physics and Astronomy, University of Padova, Padova, Italy.
| |
Collapse
|
16
|
Baumann NS, Sears JC, Broadie K. Experience-dependent MAPK/ERK signaling in glia regulates critical period remodeling of synaptic glomeruli. Cell Signal 2024; 120:111224. [PMID: 38740233 PMCID: PMC11459659 DOI: 10.1016/j.cellsig.2024.111224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Early-life critical periods allow initial sensory experience to remodel brain circuitry so that synaptic connectivity can be optimized to environmental input. In the Drosophila juvenile brain, olfactory sensory neuron (OSN) synaptic glomeruli are pruned by glial phagocytosis in dose-dependent response to early odor experience during a well-defined critical period. Extracellular signal-regulated kinase (ERK) separation of phases-based activity reporter of kinase (SPARK) biosensors reveal experience-dependent signaling in glia during this critical period. Glial ERK-SPARK signaling is depressed by removal of Draper receptors orchestrating glial phagocytosis. Cell-targeted genetic knockdown of glial ERK signaling reduces olfactory experience-dependent glial pruning of the OSN synaptic glomeruli in a dose-dependent mechanism. Noonan Syndrome is caused by gain-of-function mutations in protein tyrosine phosphatase non-receptor type 11 (PTPN11) inhibiting ERK signaling, and a glial-targeted patient-derived mutation increases experience-dependent glial ERK signaling and impairs experience-dependent glial pruning of the OSN synaptic glomeruli. We conclude that critical period experience drives glial ERK signaling that is required for dose-dependent pruning of brain synaptic glomeruli, and that altered glial ERK signaling impairs this critical period mechanism in a Noonan Syndrome disease model.
Collapse
Affiliation(s)
- Nicholas S Baumann
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - James C Sears
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA; Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, TN 37235, USA; Department of Pharmacology, Vanderbilt University and Medical Center, Nashville, TN 37235, USA; Vanderbilt Kennedy Center, Vanderbilt University and Medical Center, Nashville, TN 37235, USA; Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235, USA.
| |
Collapse
|
17
|
Chakraborty S, Mishra J, Roy A, Niharika, Manna S, Baral T, Nandi P, Patra S, Patra SK. Liquid-liquid phase separation in subcellular assemblages and signaling pathways: Chromatin modifications induced gene regulation for cellular physiology and functions including carcinogenesis. Biochimie 2024; 223:74-97. [PMID: 38723938 DOI: 10.1016/j.biochi.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/08/2024] [Accepted: 05/04/2024] [Indexed: 05/24/2024]
Abstract
Liquid-liquid phase separation (LLPS) describes many biochemical processes, including hydrogel formation, in the integrity of macromolecular assemblages and existence of membraneless organelles, including ribosome, nucleolus, nuclear speckles, paraspeckles, promyelocytic leukemia (PML) bodies, Cajal bodies (all exert crucial roles in cellular physiology), and evidence are emerging day by day. Also, phase separation is well documented in generation of plasma membrane subdomains and interplay between membranous and membraneless organelles. Intrinsically disordered regions (IDRs) of biopolymers/proteins are the most critical sticking regions that aggravate the formation of such condensates. Remarkably, phase separated condensates are also involved in epigenetic regulation of gene expression, chromatin remodeling, and heterochromatinization. Epigenetic marks on DNA and histones cooperate with RNA-binding proteins through their IDRs to trigger LLPS for facilitating transcription. How phase separation coalesces mutant oncoproteins, orchestrate tumor suppressor genes expression, and facilitated cancer-associated signaling pathways are unravelling. That autophagosome formation and DYRK3-mediated cancer stem cell modification also depend on phase separation is deciphered in part. In view of this, and to linchpin insight into the subcellular membraneless organelle assembly, gene activation and biological reactions catalyzed by enzymes, and the downstream physiological functions, and how all these events are precisely facilitated by LLPS inducing organelle function, epigenetic modulation of gene expression in this scenario, and how it goes awry in cancer progression are summarized and presented in this article.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Subhajit Patra
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India.
| |
Collapse
|
18
|
Wang A, Zhang Y, Lv X, Liang G. Therapeutic potential of targeting protein tyrosine phosphatases in liver diseases. Acta Pharm Sin B 2024; 14:3295-3311. [PMID: 39220870 PMCID: PMC11365412 DOI: 10.1016/j.apsb.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Protein tyrosine phosphorylation is a post-translational modification that regulates protein structure to modulate demic organisms' homeostasis and function. This physiological process is regulated by two enzyme families, protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). As an important regulator of protein function, PTPs are indispensable for maintaining cell intrinsic physiology in different systems, as well as liver physiological and pathological processes. Dysregulation of PTPs has been implicated in multiple liver-related diseases, including chronic liver diseases (CLDs), hepatocellular carcinoma (HCC), and liver injury, and several PTPs are being studied as drug therapeutic targets. Therefore, given the regulatory role of PTPs in diverse liver diseases, a collated review of their function and mechanism is necessary. Moreover, based on the current research status of targeted therapy, we emphasize the inclusion of several PTP members that are clinically significant in the development and progression of liver diseases. As an emerging breakthrough direction in the treatment of liver diseases, this review summarizes the research status of PTP-targeting compounds in liver diseases to illustrate their potential in clinical treatment. Overall, this review aims to support the development of novel PTP-based treatment pathways for liver diseases.
Collapse
Affiliation(s)
- Ao Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Yi Zhang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Xinting Lv
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
19
|
Chouhan S, Sridaran D, Weimholt C, Luo J, Li T, Hodgson MC, Santos LN, Le Sommer S, Fang B, Koomen JM, Seeliger M, Qu CK, Yart A, Kontaridis MI, Mahajan K, Mahajan NP. SHP2 as a primordial epigenetic enzyme expunges histone H3 pTyr-54 to amend androgen receptor homeostasis. Nat Commun 2024; 15:5629. [PMID: 38965223 PMCID: PMC11224269 DOI: 10.1038/s41467-024-49978-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
Mutations that decrease or increase the activity of the tyrosine phosphatase, SHP2 (encoded by PTPN11), promotes developmental disorders and several malignancies by varying phosphatase activity. We uncovered that SHP2 is a distinct class of an epigenetic enzyme; upon phosphorylation by the kinase ACK1/TNK2, pSHP2 was escorted by androgen receptor (AR) to chromatin, erasing hitherto unidentified pY54-H3 (phosphorylation of histones H3 at Tyr54) epigenetic marks to trigger a transcriptional program of AR. Noonan Syndrome with Multiple Lentigines (NSML) patients, SHP2 knock-in mice, and ACK1 knockout mice presented dramatic increase in pY54-H3, leading to loss of AR transcriptome. In contrast, prostate tumors with high pSHP2 and pACK1 activity exhibited progressive downregulation of pY54-H3 levels and higher AR expression that correlated with disease severity. Overall, pSHP2/pY54-H3 signaling acts as a sentinel of AR homeostasis, explaining not only growth retardation, genital abnormalities and infertility among NSML patients, but also significant AR upregulation in prostate cancer patients.
Collapse
Affiliation(s)
- Surbhi Chouhan
- Department of Surgery, Washington University in St Louis, St Louis, MO, 63110, USA
- 6601, Cancer Research Building, Washington University in St Louis, St Louis, MO, 63110, USA
| | - Dhivya Sridaran
- Department of Surgery, Washington University in St Louis, St Louis, MO, 63110, USA
- 6601, Cancer Research Building, Washington University in St Louis, St Louis, MO, 63110, USA
| | - Cody Weimholt
- Department of Pathology and Immunology, Washington University in St Louis, St Louis, MO, 63110, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Washington University in St Louis, St Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, 63110, USA
| | - Tiandao Li
- Bioinformatics Research Core, Center of Regenerative Medicine, Washington University in St Louis, St Louis, MO, 63110, USA
| | - Myles C Hodgson
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY, 13501, USA
| | - Luana N Santos
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY, 13501, USA
| | - Samantha Le Sommer
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY, 13501, USA
| | - Bin Fang
- Moffitt Cancer Center, SRB3, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - John M Koomen
- Moffitt Cancer Center, SRB3, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Markus Seeliger
- Department of Pharmacological Sciences, Stony Brook University Medical School, BST 7-120, Stony Brook, NY, 11794-8651, USA
| | - Cheng-Kui Qu
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Armelle Yart
- UMR 1301-Inserm 5070-CNRS EFS Univ. P. Sabatier, 4bis Ave Hubert Curien, 31100, Toulouse, France
| | - Maria I Kontaridis
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY, 13501, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kiran Mahajan
- Department of Surgery, Washington University in St Louis, St Louis, MO, 63110, USA
- 6601, Cancer Research Building, Washington University in St Louis, St Louis, MO, 63110, USA
| | - Nupam P Mahajan
- Department of Surgery, Washington University in St Louis, St Louis, MO, 63110, USA.
- 6601, Cancer Research Building, Washington University in St Louis, St Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, 63110, USA.
| |
Collapse
|
20
|
Ding M, Xu W, Pei G, Li P. Long way up: rethink diseases in light of phase separation and phase transition. Protein Cell 2024; 15:475-492. [PMID: 38069453 PMCID: PMC11214837 DOI: 10.1093/procel/pwad057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/24/2023] [Indexed: 07/02/2024] Open
Abstract
Biomolecular condensation, driven by multivalency, serves as a fundamental mechanism within cells, facilitating the formation of distinct compartments, including membraneless organelles that play essential roles in various cellular processes. Perturbations in the delicate equilibrium of condensation, whether resulting in gain or loss of phase separation, have robustly been associated with cellular dysfunction and physiological disorders. As ongoing research endeavors wholeheartedly embrace this newly acknowledged principle, a transformative shift is occurring in our comprehension of disease. Consequently, significant strides have been made in unraveling the profound relevance and potential causal connections between abnormal phase separation and various diseases. This comprehensive review presents compelling recent evidence that highlight the intricate associations between aberrant phase separation and neurodegenerative diseases, cancers, and infectious diseases. Additionally, we provide a succinct summary of current efforts and propose innovative solutions for the development of potential therapeutics to combat the pathological consequences attributed to aberrant phase separation.
Collapse
Affiliation(s)
- Mingrui Ding
- State Key Laboratory of Membrane Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- NuPhase Therapeutics, Beijing 100083, China
| | - Weifan Xu
- State Key Laboratory of Membrane Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- NuPhase Therapeutics, Beijing 100083, China
| | - Gaofeng Pei
- State Key Laboratory of Membrane Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Pilong Li
- State Key Laboratory of Membrane Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
21
|
Zhang X, Yuan L, Zhang W, Zhang Y, Wu Q, Li C, Wu M, Huang Y. Liquid-liquid phase separation in diseases. MedComm (Beijing) 2024; 5:e640. [PMID: 39006762 PMCID: PMC11245632 DOI: 10.1002/mco2.640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS), an emerging biophysical phenomenon, can sequester molecules to implement physiological and pathological functions. LLPS implements the assembly of numerous membraneless chambers, including stress granules and P-bodies, containing RNA and protein. RNA-RNA and RNA-protein interactions play a critical role in LLPS. Scaffolding proteins, through multivalent interactions and external factors, support protein-RNA interaction networks to form condensates involved in a variety of diseases, particularly neurodegenerative diseases and cancer. Modulating LLPS phenomenon in multiple pathogenic proteins for the treatment of neurodegenerative diseases and cancer could present a promising direction, though recent advances in this area are limited. Here, we summarize in detail the complexity of LLPS in constructing signaling pathways and highlight the role of LLPS in neurodegenerative diseases and cancers. We also explore RNA modifications on LLPS to alter diseases progression because these modifications can influence LLPS of certain proteins or the formation of stress granules, and discuss the possibility of proper manipulation of LLPS process to restore cellular homeostasis or develop therapeutic drugs for the eradication of diseases. This review attempts to discuss potential therapeutic opportunities by elaborating on the connection between LLPS, RNA modification, and their roles in diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Lin Yuan
- Laboratory of Research in Parkinson's Disease and Related Disorders Health Sciences Institute China Medical University Shenyang China
| | - Wanlu Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Yi Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Qun Wu
- Department of Pediatrics Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Chunting Li
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Min Wu
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang China
- The Joint Research Center Affiliated Xiangshan Hospital of Wenzhou Medical University Ningbo China
| | - Yongye Huang
- College of Life and Health Sciences Northeastern University Shenyang China
- Key Laboratory of Bioresource Research and Development of Liaoning Province College of Life and Health Sciences Northeastern University Shenyang China
| |
Collapse
|
22
|
Kiang KM, Ahad L, Zhong X, Lu QR. Biomolecular condensates: hubs of Hippo-YAP/TAZ signaling in cancer. Trends Cell Biol 2024; 34:566-577. [PMID: 38806345 DOI: 10.1016/j.tcb.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
Biomolecular condensates, the membraneless cellular compartments formed by liquid-liquid phase separation (LLPS), represent an important mechanism for physiological and tumorigenic processes. Recent studies have advanced our understanding of how these condensates formed in the cytoplasm or nucleus regulate Hippo signaling, a central player in organogenesis and tumorigenesis. Here, we review recent findings on the dynamic formation and function of biomolecular condensates in regulating the Hippo-yes-associated protein (YAP)/transcription coactivator with PDZ-binding motif (TAZ) signaling pathway under physiological and pathological processes. We further discuss how the nuclear condensates of YAP- or TAZ-fusion oncoproteins compartmentalize crucial transcriptional co-activators and alter chromatin architecture to promote oncogenic programs. Finally, we highlight key questions regarding how these findings may pave the way for novel therapeutics to target cancer.
Collapse
Affiliation(s)
- Karrie M Kiang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Leena Ahad
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xiaowen Zhong
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
23
|
Liu S, Zhao Y, Mo H, Hua X, Chen X, Wang W, Li Y, Yan J, Song J. Genetic variations in PTPN11 lead to a recurrent left ventricular outflow tract obstruction phenotype in childhood hypertrophic cardiomyopathy. J Thorac Cardiovasc Surg 2024:S0022-5223(24)00534-8. [PMID: 38936599 DOI: 10.1016/j.jtcvs.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/25/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVE Left ventricular septal myotomy provides a favorable prognosis for children with hypertrophic obstructive cardiomyopathy (HOCM). However, some children still suffer from recurrent left ventricular outflow tract obstruction (LVOTO) after surgery. Poor prognosis exists for HOCM caused by PTPN11 mutation. Therefore, the aim of this study was to determine the clinical features of recurrent obstruction in children with HOCM caused by pathogenic mutations in the PTPN11 gene. METHODS Fifty-six children who were diagnosed with HOCM underwent septal myectomies. Whole-exome sequencing of 49 pediatric cardiomyopathy-associated genes (including PTPN11) was performed. We performed hematoxylin-eosin, Masson, and wheat germ agglutinin staining of those tissues positive and negative for PTPN11. RESULTS Whole-exome sequencing results showed 11 children with the PTPN11 mutation (19.6%). In long-term follow-up (median 37 months, maximum 9 years), children with the PTPN11 mutation had 6 (54.5%) recurrent LVOTOs compared with other groups (P = .015) but similar survival rates (P = .514). The mean postoperative time to recurrent obstruction was 22 ± 7 months. Children with PTPN11 mutation were 9-fold more likely to experience the risk associated with recurrent obstruction (95% confidence interval, 1.77-45.81, P < .001). Hematoxylin-eosin, Masson, and wheat germ agglutinin staining also revealed more cardiomyocyte hypertrophy in tissues with the PTPN11 mutation. CONCLUSIONS Children with PTPN11 mutation-associated hypertrophic cardiomyopathy have a greater risk of recurrent LVOTO.
Collapse
Affiliation(s)
- Shun Liu
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiqi Zhao
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Han Mo
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Xiumeng Hua
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Chen
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weiteng Wang
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yijing Li
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Yan
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jiangping Song
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China; Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
24
|
Waterbury AL, Kwok HS, Lee C, Narducci DN, Freedy AM, Su C, Raval S, Reiter AH, Hawkins W, Lee K, Li J, Hoenig SM, Vinyard ME, Cole PA, Hansen AS, Carr SA, Papanastasiou M, Liau BB. An autoinhibitory switch of the LSD1 disordered region controls enhancer silencing. Mol Cell 2024; 84:2238-2254.e11. [PMID: 38870936 PMCID: PMC11193646 DOI: 10.1016/j.molcel.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/21/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024]
Abstract
Transcriptional coregulators and transcription factors (TFs) contain intrinsically disordered regions (IDRs) that are critical for their association and function in gene regulation. More recently, IDRs have been shown to promote multivalent protein-protein interactions between coregulators and TFs to drive their association into condensates. By contrast, here we demonstrate how the IDR of the corepressor LSD1 excludes TF association, acting as a dynamic conformational switch that tunes repression of active cis-regulatory elements. Hydrogen-deuterium exchange shows that the LSD1 IDR interconverts between transient open and closed conformational states, the latter of which inhibits partitioning of the protein's structured domains with TF condensates. This autoinhibitory switch controls leukemic differentiation by modulating repression of active cis-regulatory elements bound by LSD1 and master hematopoietic TFs. Together, these studies unveil alternative mechanisms by which disordered regions and their dynamic crosstalk with structured regions can shape coregulator-TF interactions to control cis-regulatory landscapes and cell fate.
Collapse
Affiliation(s)
- Amanda L Waterbury
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Hui Si Kwok
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ceejay Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Domenic N Narducci
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Allyson M Freedy
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Cindy Su
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Shaunak Raval
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Andrew H Reiter
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - William Hawkins
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Kwangwoon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jiaming Li
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Samuel M Hoenig
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Anders S Hansen
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Steven A Carr
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Brian B Liau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
25
|
Schreiber SL. Molecular glues and bifunctional compounds: Therapeutic modalities based on induced proximity. Cell Chem Biol 2024; 31:1050-1063. [PMID: 38861986 DOI: 10.1016/j.chembiol.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024]
Abstract
This Perspective explores molecular glues and bifunctional compounds-proximity-inducing compounds-and offers a framework to understand and exploit their similarity to hotspots, missense mutations, and posttranslational modifications (PTMs). This view is also shown to be relevant to intramolecular glues, where compounds induce contacts between distinct domains of the same protein. A historical perspective of these compounds is presented that shows the field has come full circle from molecular glues targeting native proteins, to bifunctionals targeting fusion proteins, and back to molecular glues and bifunctionals targeting native proteins. Modern screening methods and data analyses with pre-selected target proteins are shown to yield either cooperative molecular glues or bifunctional compounds that induce proximity, thereby enabling novel functional outcomes.
Collapse
Affiliation(s)
- Stuart L Schreiber
- Arena BioWorks, Broad Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
26
|
Miao Y, Bai Y, Miao J, Murray AA, Lin J, Dong J, Qu Z, Zhang RY, Nguyen QD, Wang S, Yu J, Nguele Meke F, Zhang ZY. Off-target autophagy inhibition by SHP2 allosteric inhibitors contributes to their antitumor activity in RAS-driven cancers. J Clin Invest 2024; 134:e177142. [PMID: 38842946 PMCID: PMC11291269 DOI: 10.1172/jci177142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/04/2024] [Indexed: 08/02/2024] Open
Abstract
Aberrant activation of RAS/MAPK signaling is common in cancer, and efforts to inhibit pathway components have yielded drugs with promising clinical activities. Unfortunately, treatment-provoked adaptive resistance mechanisms inevitably develop, limiting their therapeutic potential. As a central node essential for receptor tyrosine kinase-mediated RAS activation, SHP2 has emerged as an attractive cancer target. Consequently, many SHP2 allosteric inhibitors are now in clinical testing. Here we discovered a previously unrecognized off-target effect associated with SHP2 allosteric inhibitors. We found that these inhibitors accumulate in the lysosome and block autophagic flux in an SHP2-independent manner. We showed that off-target autophagy inhibition by SHP2 allosteric inhibitors contributes to their antitumor activity. We also demonstrated that SHP2 allosteric inhibitors harboring this off-target activity not only suppress oncogenic RAS signaling but also overcome drug resistance such as MAPK rebound and protective autophagy in response to RAS/MAPK pathway blockage. Finally, we exemplified a therapeutic framework that harnesses both the on- and off-target activities of SHP2 allosteric inhibitors for improved treatment of mutant RAS-driven and drug-resistant malignancies such as pancreatic and colorectal cancers.
Collapse
Affiliation(s)
- Yiming Miao
- Department of Medicinal Chemistry and Molecular Pharmacology and
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology and
| | - Jinmin Miao
- Department of Medicinal Chemistry and Molecular Pharmacology and
| | | | - Jianping Lin
- Department of Medicinal Chemistry and Molecular Pharmacology and
| | - Jiajun Dong
- Department of Medicinal Chemistry and Molecular Pharmacology and
| | - Zihan Qu
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Ruo-Yu Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology and
| | - Quyen D. Nguyen
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Shaomeng Wang
- Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Jingmei Yu
- Department of Medicinal Chemistry and Molecular Pharmacology and
| | | | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology and
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
- Institute for Cancer Research and
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
27
|
Chai G, Nan Y, Zhao H, Hu Q. SHP2 mediates STAT3/STAT6 signaling pathway in TAM to inhibit proliferation and metastasis of lung adenocarcinoma. Aging (Albany NY) 2024; 16:12498-12509. [PMID: 38747738 PMCID: PMC11466479 DOI: 10.18632/aging.205799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 03/25/2024] [Indexed: 10/08/2024]
Abstract
OBJECTIVE This study examines SHP2's influence on the STAT3/STAT6 pathway in tumor-associated macrophages (TAMs) and its impact on lung adenocarcinoma proliferation and metastasis. METHODS Lung cancer A549 and NCI-H1688 cell lines were subcutaneously injected into nude mice. Macrophages were isolated using flow cytometry and analyzed for CD163, CD206, and Arginase-1 levels via western blot. Similarly, the effect on THP1 cell-associated proteins was assessed. The impact on A549 and NCI-H1688 cell migration, invasion, and proliferation was evaluated through wound healing, Transwell assays, and CCK8. RESULTS Compared to controls, the sh-RNA SHP2 group showed increased tumor volume and higher expression levels of CD163, CD206, Arginase-1, p-STAT3, p-STAT6, IL-4, IL-10, and various cathepsins in macrophages and THP1 cells. However, p-STAT1 and p-STAT5 levels remained unchanged. The sh-RNA SHP2 group also demonstrated enhanced migration, invasion, and proliferation in both cell lines. CONCLUSIONS SHP2 negatively affects the STAT3/STAT6 pathway in TAMs, promoting M2 polarization and cathepsin secretion, which enhances lung adenocarcinoma cell proliferation and metastasis.
Collapse
Affiliation(s)
- Guojing Chai
- Clinical Laboratory, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
- Hebei Clinical Research Center for Laboratory Medicine, Shijiazhuang 050051, Hebei, China
- Hebei Key Laboratory of Molecular Medicine, Shijiazhuang 050051, Hebei, China
| | - Yingbo Nan
- Clinical Laboratory, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
- Hebei Clinical Research Center for Laboratory Medicine, Shijiazhuang 050051, Hebei, China
- Hebei Key Laboratory of Molecular Medicine, Shijiazhuang 050051, Hebei, China
| | - Haili Zhao
- Clinical Laboratory, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
- Hebei Clinical Research Center for Laboratory Medicine, Shijiazhuang 050051, Hebei, China
- Hebei Key Laboratory of Molecular Medicine, Shijiazhuang 050051, Hebei, China
| | - Qingchuan Hu
- Clinical Laboratory, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
- Hebei Clinical Research Center for Laboratory Medicine, Shijiazhuang 050051, Hebei, China
- Hebei Key Laboratory of Molecular Medicine, Shijiazhuang 050051, Hebei, China
| |
Collapse
|
28
|
Han X, Wei J, Zheng R, Tu Y, Wang M, Chen L, Xu Z, Zheng L, Zheng C, Shi Q, Ying H, Liang G. Macrophage SHP2 Deficiency Alleviates Diabetic Nephropathy via Suppression of MAPK/NF-κB- Dependent Inflammation. Diabetes 2024; 73:780-796. [PMID: 38394639 DOI: 10.2337/db23-0700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Increasing evidence implicates chronic inflammation as the main pathological cause of diabetic nephropathy (DN). Exploration of key targets in the inflammatory pathway may provide new treatment options for DN. We aimed to investigate the role of Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) in macrophages and its association with DN. The upregulated phosphorylation of SHP2 was detected in macrophages in both patients with diabetes and in a mouse model. Using macrophage-specific SHP2-knockout (SHP2-MKO) mice and SHP2fl/fl mice injected with streptozotocin (STZ), we showed that SHP2-MKO significantly attenuated renal dysfunction, collagen deposition, fibrosis, and inflammatory response in mice with STZ-induced diabetes. RNA-sequencing analysis using primary mouse peritoneal macrophages (MPMs) showed that SHP2 deletion mainly affected mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways as well as MAPK/NF-κB-dependent inflammatory cytokine release in MPMs. Further study indicated that SHP2-deficient macrophages failed to release cytokines that induce phenotypic transition and fibrosis in renal cells. Administration with a pharmacological SHP2 inhibitor, SHP099, remarkably protected kidneys in both type 1 and type 2 diabetic mice. In conclusion, these results identify macrophage SHP2 as a new accelerator of DN and suggest that SHP2 inhibition may be a therapeutic option for patients with DN. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Xue Han
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, China
- Zhejiang Traditional Chinese Medicine Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiajia Wei
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, China
| | - Ruyi Zheng
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, China
| | - Yu Tu
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, China
| | - Mengyang Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Lingfeng Chen
- Zhejiang Traditional Chinese Medicine Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Zheng Xu
- Zhejiang Traditional Chinese Medicine Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Lei Zheng
- Zhejiang Traditional Chinese Medicine Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Chao Zheng
- Department of Endocrinology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiaojuan Shi
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, China
| | - Huazhong Ying
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, China
| | - Guang Liang
- Zhejiang Traditional Chinese Medicine Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
29
|
Lin CC, Suen KM, Lidster J, Ladbury JE. The emerging role of receptor tyrosine kinase phase separation in cancer. Trends Cell Biol 2024; 34:371-379. [PMID: 37777392 DOI: 10.1016/j.tcb.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/17/2023] [Accepted: 09/06/2023] [Indexed: 10/02/2023]
Abstract
Receptor tyrosine kinase (RTK)-mediated signal transduction is fundamental to cell function and drives important cellular outcomes which, when dysregulated, can lead to malignant tumour growth and metastasis. The initiation of signals from plasma membrane-bound RTKs is subjected to multiple regulatory mechanisms that control downstream effector protein recruitment and function. The high propensity of RTKs to condense via liquid-liquid phase separation (LLPS) into membraneless organelles with downstream effector proteins provides a further fundamental mechanism for signal regulation. Herein we highlight how this phenomenon contributes to cancer signalling and consider the potential impact of LLPS on outcomes for cancer patients.
Collapse
Affiliation(s)
- Chi-Chuan Lin
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Kin Man Suen
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Jessica Lidster
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - John E Ladbury
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
30
|
Lee S, Kim J, Ryu HH, Jang H, Lee D, Lee S, Song JM, Lee YS, Ho Suh Y. SHP2 regulates GluA2 tyrosine phosphorylation required for AMPA receptor endocytosis and mGluR-LTD. Proc Natl Acad Sci U S A 2024; 121:e2316819121. [PMID: 38657042 PMCID: PMC11066993 DOI: 10.1073/pnas.2316819121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/29/2024] [Indexed: 04/26/2024] Open
Abstract
Posttranslational modifications regulate the properties and abundance of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors that mediate fast excitatory synaptic transmission and synaptic plasticity in the central nervous system. During long-term depression (LTD), protein tyrosine phosphatases (PTPs) dephosphorylate tyrosine residues in the C-terminal tail of AMPA receptor GluA2 subunit, which is essential for GluA2 endocytosis and group I metabotropic glutamate receptor (mGluR)-dependent LTD. However, as a selective downstream effector of mGluRs, the mGluR-dependent PTP responsible for GluA2 tyrosine dephosphorylation remains elusive at Schaffer collateral (SC)-CA1 synapses. In the present study, we find that mGluR5 stimulation activates Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2) by increasing phospho-Y542 levels in SHP2. Under steady-state conditions, SHP2 plays a protective role in stabilizing phospho-Y869 of GluA2 by directly interacting with GluA2 phosphorylated at Y869, without affecting GluA2 phospho-Y876 levels. Upon mGluR5 stimulation, SHP2 dephosphorylates GluA2 at Y869 and Y876, resulting in GluA2 endocytosis and mGluR-LTD. Our results establish SHP2 as a downstream effector of mGluR5 and indicate a dual action of SHP2 in regulating GluA2 tyrosine phosphorylation and function. Given the implications of mGluR5 and SHP2 in synaptic pathophysiology, we propose SHP2 as a promising therapeutic target for neurodevelopmental and autism spectrum disorders.
Collapse
Affiliation(s)
- Sanghyeon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul03080, South Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
| | - Jungho Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul03080, South Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
| | - Hyun-Hee Ryu
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul03080, South Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul03080, South Korea
| | - Hanbyul Jang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul03080, South Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul03080, South Korea
| | - DoEun Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul03080, South Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
| | - Seungha Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul03080, South Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
| | - Jae-man Song
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul03080, South Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
| | - Yong-Seok Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul03080, South Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul03080, South Korea
| | - Young Ho Suh
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul03080, South Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
| |
Collapse
|
31
|
Leahy SN, Vita DJ, Broadie K. PTPN11/Corkscrew Activates Local Presynaptic Mapk Signaling to Regulate Synapsin, Synaptic Vesicle Pools, and Neurotransmission Strength, with a Dual Requirement in Neurons and Glia. J Neurosci 2024; 44:e1077232024. [PMID: 38471782 PMCID: PMC11044113 DOI: 10.1523/jneurosci.1077-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
Cytoplasmic protein tyrosine phosphatase nonreceptor type 11 (PTPN11) and Drosophila homolog Corkscrew (Csw) regulate the mitogen-activated protein kinase (MAPK) pathway via a conserved autoinhibitory mechanism. Disease-causing loss-of-function (LoF) and gain-of-function (GoF) mutations both disrupt this autoinhibition to potentiate MAPK signaling. At the Drosophila neuromuscular junction glutamatergic synapse, LoF/GoF mutations elevate transmission strength and reduce activity-dependent synaptic depression. In both sexes of LoF/GoF mutations, the synaptic vesicles (SV)-colocalized synapsin phosphoprotein tether is highly elevated at rest, but quickly reduced with stimulation, suggesting a larger SV reserve pool with greatly heightened activity-dependent recruitment. Transmission electron microscopy of mutants reveals an elevated number of SVs clustered at the presynaptic active zones, suggesting that the increased vesicle availability is causative for the elevated neurotransmission. Direct neuron-targeted extracellular signal-regulated kinase (ERK) GoF phenocopies both increased local presynaptic MAPK/ERK signaling and synaptic transmission strength in mutants, confirming the presynaptic regulatory mechanism. Synapsin loss blocks this elevation in both presynaptic PTPN11 and ERK mutants. However, csw null mutants cannot be rescued by wild-type Csw in neurons: neurotransmission is only rescued by expressing Csw in both neurons and glia simultaneously. Nevertheless, targeted LoF/GoF mutations in either neurons or glia alone recapitulate the elevated neurotransmission. Thus, PTPN11/Csw mutations in either cell type are sufficient to upregulate presynaptic function, but a dual requirement in neurons and glia is necessary for neurotransmission. Taken together, we conclude that PTPN11/Csw acts in both neurons and glia, with LoF and GoF similarly upregulating MAPK/ERK signaling to enhance presynaptic Synapsin-mediated SV trafficking.
Collapse
Affiliation(s)
- Shannon N Leahy
- Departments of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| | - Dominic J Vita
- Departments of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| | - Kendal Broadie
- Departments of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Pharmacology, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| |
Collapse
|
32
|
Fasano G, Petrini S, Bonavolontà V, Paradisi G, Pedalino C, Tartaglia M, Lauri A. Assessment of the FRET-based Teen sensor to monitor ERK activation changes preceding morphological defects in a RASopathy zebrafish model and phenotypic rescue by MEK inhibitor. Mol Med 2024; 30:47. [PMID: 38594640 PMCID: PMC11005195 DOI: 10.1186/s10020-024-00807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND RASopathies are genetic syndromes affecting development and having variable cancer predisposition. These disorders are clinically related and are caused by germline mutations affecting key players and regulators of the RAS-MAPK signaling pathway generally leading to an upregulated ERK activity. Gain-of-function (GOF) mutations in PTPN11, encoding SHP2, a cytosolic protein tyrosine phosphatase positively controlling RAS function, underlie approximately 50% of Noonan syndromes (NS), the most common RASopathy. A different class of these activating mutations occurs as somatic events in childhood leukemias. METHOD Here, we evaluated the application of a FRET-based zebrafish ERK reporter, Teen, and used quantitative FRET protocols to monitor non-physiological RASopathy-associated changes in ERK activation. In a multi-level experimental workflow, we tested the suitability of the Teen reporter to detect pan-embryo ERK activity correlates of morphometric alterations driven by the NS-causing Shp2D61G allele. RESULTS Spectral unmixing- and acceptor photobleaching (AB)-FRET analyses captured pathological ERK activity preceding the manifestation of quantifiable body axes defects, a morphological pillar used to test the strength of SHP2 GoF mutations. Last, the work shows that by multi-modal FRET analysis, we can quantitatively trace back the modulation of ERK phosphorylation obtained by low-dose MEK inhibitor treatment to early development, before the onset of morphological defects. CONCLUSION This work proves the usefulness of FRET imaging protocols on both live and fixed Teen ERK reporter fish to readily monitor and quantify pharmacologically- and genetically-induced ERK activity modulations in early embryos, representing a useful tool in pre-clinical applications targeting RAS-MAPK signaling.
Collapse
Affiliation(s)
- Giulia Fasano
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146, Italy
| | - Stefania Petrini
- Microscopy facility, Research laboratories, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146, Italy
| | - Valeria Bonavolontà
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146, Italy
| | - Graziamaria Paradisi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146, Italy
- Department for Innovation in Biological Agro-food and Forest systems (DIBAF), University of Tuscia, Viterbo, 01100, Italy
| | - Catia Pedalino
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146, Italy.
| | - Antonella Lauri
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146, Italy.
| |
Collapse
|
33
|
Sun X, Zhou Y, Wang Z, Peng M, Wei X, Xie Y, Wen C, Liu J, Ye M. Biomolecular Condensates Decipher Molecular Codes of Cell Fate: From Biophysical Fundamentals to Therapeutic Practices. Int J Mol Sci 2024; 25:4127. [PMID: 38612940 PMCID: PMC11012904 DOI: 10.3390/ijms25074127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Cell fate is precisely modulated by complex but well-tuned molecular signaling networks, whose spatial and temporal dysregulation commonly leads to hazardous diseases. Biomolecular condensates (BCs), as a newly emerging type of biophysical assemblies, decipher the molecular codes bridging molecular behaviors, signaling axes, and clinical prognosis. Particularly, physical traits of BCs play an important role; however, a panoramic view from this perspective toward clinical practices remains lacking. In this review, we describe the most typical five physical traits of BCs, and comprehensively summarize their roles in molecular signaling axes and corresponding major determinants. Moreover, establishing the recent observed contribution of condensate physics on clinical therapeutics, we illustrate next-generation medical strategies by targeting condensate physics. Finally, the challenges and opportunities for future medical development along with the rapid scientific and technological advances are highlighted.
Collapse
Affiliation(s)
- Xing Sun
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (X.S.); (Y.Z.); (Z.W.); (M.P.); (X.W.)
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China; (Y.X.); (C.W.)
| | - Yangyang Zhou
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (X.S.); (Y.Z.); (Z.W.); (M.P.); (X.W.)
| | - Zhiyan Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (X.S.); (Y.Z.); (Z.W.); (M.P.); (X.W.)
| | - Menglan Peng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (X.S.); (Y.Z.); (Z.W.); (M.P.); (X.W.)
| | - Xianhua Wei
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (X.S.); (Y.Z.); (Z.W.); (M.P.); (X.W.)
| | - Yifang Xie
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China; (Y.X.); (C.W.)
| | - Chengcai Wen
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China; (Y.X.); (C.W.)
| | - Jing Liu
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China; (Y.X.); (C.W.)
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (X.S.); (Y.Z.); (Z.W.); (M.P.); (X.W.)
| |
Collapse
|
34
|
Bivona TG. Phase-Separated Biomolecular Condensation in Cancer: New Horizons and Next Frontiers. Cancer Discov 2024; 14:630-634. [PMID: 38571428 DOI: 10.1158/2159-8290.cd-23-1551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
SUMMARY Beyond lipid membrane compartments, cells including cancer cells utilize various membraneless compartments, often termed biomolecular condensates, to regulate or organize key cellular processes underlying physiologic or pathologic phenotypes. In this commentary, the emergence of biomolecular condensation in cancer biology is highlighted, with a focus on key unanswered questions and with implications for improving the understanding of cancer pathogenesis and developing innovative cancer management strategies.
Collapse
Affiliation(s)
- Trever G Bivona
- Department of Medicine, Division of Hematology/Oncology, University of California, San Francisco, California
- Cellular and Molecular Pharmacology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
- Chan-Zuckerberg Biohub, San Francisco, California
| |
Collapse
|
35
|
Lu J, Yu D, Li H, Qin P, Chen H, Chen L. Promising natural products targeting protein tyrosine phosphatase SHP2 for cancer therapy. Phytother Res 2024. [PMID: 38558278 DOI: 10.1002/ptr.8185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
The development of Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) inhibitors is a hot spot in the research and development of antitumor drugs, which may induce immunomodulatory effects in the tumor microenvironment and participate in anti-tumor immune responses. To date, several SHP2 inhibitors have made remarkable progress and entered clinical trials for the treatment of patients with advanced solid tumors. Multiple compounds derived from natural products have been proved to influence tumor cell proliferation, apoptosis, migration and other cellular functions, modulate cell cycle and immune cell activation by regulating the function of SHP2 and its mutants. However, there is a paucity of information about their diversity, biochemistry, and therapeutic potential of targeting SHP2 in tumors. This review will provide the structure, classification, inhibitory activities, experimental models, and antitumor effects of the natural products. Notably, this review summarizes recent advance in the efficacy and pharmacological mechanism of natural products targeting SHP2 in inhibiting the various signaling pathways that regulate different cancers and thus pave the way for further development of anticancer drugs targeting SHP2.
Collapse
Affiliation(s)
- Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Danmei Yu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongtao Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pengcheng Qin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Pharmacy, Henan University, Kaifeng, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
36
|
Du M, Zhang S, Wang X, Liu C, Pan L, Chen X, Qi Y. Specific knockout of macrophage SHP2 promotes macrophage M2 polarization and alleviates renal ischemia-reperfusion injury. iScience 2024; 27:109048. [PMID: 38464592 PMCID: PMC10924133 DOI: 10.1016/j.isci.2024.109048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/28/2023] [Accepted: 01/23/2024] [Indexed: 03/12/2024] Open
Abstract
To investigate the effect of specific knockout of SHP2 in mononuclear macrophages on renal ischemia-reperfusion injury and its molecular mechanism. The structural, functional, and pathological changes in the mouse kidney were detected by ultrasound testing. The relative fluorescence intensity of α-SMA, Col1, Col3, and Vim was measured by immunofluorescence staining, and ELISA was performed to detect the concentrations of blood urea nitrogen (BUN), creatinine (Crea), and uric acid (UA). The relative protein expressions of relevant proteins in the mouse kidney tissue were detected by western blotting. Specific knockout of SHP2 could improve both renal function and structure, reduce the relative fluorescence intensity of α-SMA, Col1, Col3 and Vim, lower the concentrations of BUN, Crea, and UA and the expressions of TNF-α, IFNγ, p-NFκB, and p-MyD88, and increase the expressions of p-MerTK, p-FAK, p-PI3K, and p-IκB. The above results illustrate that specific knockdown of macrophage SHP2 promotes macrophage M2 polarization and alleviates renal ischemia-reperfusion injury. The above results illustrate that specific knockdown of macrophage SHP2 promotes macrophage M2 polarization and attenuatesll renal ischemia-reperfusion injury. Specific knockout of macrophage SHP2 promotes macrophage M2 polarization and alleviates renal ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Meilian Du
- Department of Nephrology, Pudong New District Punan Hospital, Shanghai 200125, China
| | - Shanbao Zhang
- Department of Nephrology, Pudong New District Punan Hospital, Shanghai 200125, China
| | - Xiaoyu Wang
- Department of Nephrology, Pudong New District Punan Hospital, Shanghai 200125, China
| | - Chen Liu
- Department of Nephrology, Pudong New District Punan Hospital, Shanghai 200125, China
| | - Linrong Pan
- Department of Nephrology, Pudong New District Punan Hospital, Shanghai 200125, China
| | - Xiao Chen
- Department of Nephrology, Pudong New District Punan Hospital, Shanghai 200125, China
| | - Yinghui Qi
- Department of Nephrology, Pudong New District Punan Hospital, Shanghai 200125, China
| |
Collapse
|
37
|
Kan C, Tan Z, Liu L, Liu B, Zhan L, Zhu J, Li X, Lin K, Liu J, Liu Y, Yang F, Wong M, Wang S, Zheng H. Phase separation of SHP2E76K promotes malignant transformation of mesenchymal stem cells by activating mitochondrial complexes. JCI Insight 2024; 9:e170340. [PMID: 38451719 PMCID: PMC11141883 DOI: 10.1172/jci.insight.170340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
Mesenchymal stem cells (MSCs), suffering from diverse gene hits, undergo malignant transformation and aberrant osteochondral differentiation. Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2), a nonreceptor protein tyrosine phosphatase, regulates multicellular differentiation, proliferation, and transformation. However, the role of SHP2 in MSC fate determination remains unclear. Here, we showed that MSCs bearing the activating SHP2E76K mutation underwent malignant transformation into sarcoma stem-like cells. We revealed that the SHP2E76K mutation in mouse MSCs led to hyperactive mitochondrial metabolism by activating mitochondrial complexes I and III. Inhibition of complexes I and III prevented hyperactive mitochondrial metabolism and malignant transformation of SHP2E76K MSCs. Mechanistically, we verified that SHP2 underwent liquid-liquid phase separation (LLPS) in SHP2E76K MSCs. SHP2 LLPS led to its dissociation from complexes I and III, causing their hyperactivation. Blockade of SHP2 LLPS by LLPS-defective mutations or allosteric inhibitors suppressed complex I and III hyperactivation as well as malignant transformation of SHP2E76K MSCs. These findings reveal that complex I and III hyperactivation driven by SHP2 LLPS promotes malignant transformation of SHP2E76K MSCs and suggest that inhibition of SHP2 LLPS could be a potential therapeutic target for the treatment of activated SHP2-associated cancers.
Collapse
Affiliation(s)
- Chen Kan
- Department of Pathophysiology, School of Basic Medical Sciences, Stem Cell Regeneration Research Center, Anhui Medical University, Hefei, China
| | - Zhenya Tan
- Department of Pathophysiology, School of Basic Medical Sciences, Stem Cell Regeneration Research Center, Anhui Medical University, Hefei, China
| | - Liwei Liu
- Department of Pathogen Biology and Immunology, School of Medical Technology, Anhui Medical College, Hefei, China
| | - Bo Liu
- Department of Cell Center, 901st Hospital of PLA Joint Logistic Support Force, Anhui, Hefei, China
| | - Li Zhan
- Department of Pathophysiology, School of Basic Medical Sciences, Stem Cell Regeneration Research Center, Anhui Medical University, Hefei, China
| | - Jicheng Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Stem Cell Regeneration Research Center, Anhui Medical University, Hefei, China
| | - Xiaofei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Stem Cell Regeneration Research Center, Anhui Medical University, Hefei, China
| | - Keqiong Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Stem Cell Regeneration Research Center, Anhui Medical University, Hefei, China
| | - Jia Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Stem Cell Regeneration Research Center, Anhui Medical University, Hefei, China
| | - Yakun Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Stem Cell Regeneration Research Center, Anhui Medical University, Hefei, China
| | - Fan Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Stem Cell Regeneration Research Center, Anhui Medical University, Hefei, China
| | - Mandy Wong
- Department of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Siying Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Stem Cell Regeneration Research Center, Anhui Medical University, Hefei, China
| | - Hong Zheng
- Department of Pathophysiology, School of Basic Medical Sciences, Stem Cell Regeneration Research Center, Anhui Medical University, Hefei, China
| |
Collapse
|
38
|
Chen X, Keller SJ, Hafner P, Alrawashdeh AY, Avery TY, Norona J, Zhou J, Ruess DA. Tyrosine phosphatase PTPN11/SHP2 in solid tumors - bull's eye for targeted therapy? Front Immunol 2024; 15:1340726. [PMID: 38504984 PMCID: PMC10948527 DOI: 10.3389/fimmu.2024.1340726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Encoded by PTPN11, the Src-homology 2 domain-containing phosphatase 2 (SHP2) integrates signals from various membrane-bound receptors such as receptor tyrosine kinases (RTKs), cytokine and integrin receptors and thereby promotes cell survival and proliferation. Activating mutations in the PTPN11 gene may trigger signaling pathways leading to the development of hematological malignancies, but are rarely found in solid tumors. Yet, aberrant SHP2 expression or activation has implications in the development, progression and metastasis of many solid tumor entities. SHP2 is involved in multiple signaling cascades, including the RAS-RAF-MEK-ERK-, PI3K-AKT-, JAK-STAT- and PD-L1/PD-1- pathways. Although not mutated, activation or functional requirement of SHP2 appears to play a relevant and context-dependent dichotomous role. This mostly tumor-promoting and infrequently tumor-suppressive role exists in many cancers such as gastrointestinal tumors, pancreatic, liver and lung cancer, gynecological entities, head and neck cancers, prostate cancer, glioblastoma and melanoma. Recent studies have identified SHP2 as a potential biomarker for the prognosis of some solid tumors. Based on promising preclinical work and the advent of orally available allosteric SHP2-inhibitors early clinical trials are currently investigating SHP2-directed approaches in various solid tumors, either as a single agent or in combination regimes. We here provide a brief overview of the molecular functions of SHP2 and collate current knowledge with regard to the significance of SHP2 expression and function in different solid tumor entities, including cells in their microenvironment, immune escape and therapy resistance. In the context of the present landscape of clinical trials with allosteric SHP2-inhibitors we discuss the multitude of opportunities but also limitations of a strategy targeting this non-receptor protein tyrosine phosphatase for treatment of solid tumors.
Collapse
Affiliation(s)
- Xun Chen
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Steffen Johannes Keller
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Philipp Hafner
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Asma Y. Alrawashdeh
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Thomas Yul Avery
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Johana Norona
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jinxue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Dietrich Alexander Ruess
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
39
|
Rosell R, Pedraz-Valdunciel C, Jain A, Shivamallu C, Aguilar A. Deterministic reprogramming and signaling activation following targeted therapy in non-small cell lung cancer driven by mutations or oncogenic fusions. Expert Opin Investig Drugs 2024; 33:171-182. [PMID: 38372666 DOI: 10.1080/13543784.2024.2320710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Targeted therapy is used to treat lung adenocarcinoma caused by epidermal growth factor receptor (EGFR) mutations in the tyrosine kinase domain and rare subtypes (<5%) of non-small cell lung cancer. These subtypes include fusion oncoproteins like anaplastic lymphoma kinase (ALK), ROS1, rearranged during transfection (RET), and other receptor tyrosine kinases (RTKs). The use of diverse selective oral inhibitors, including those targeting rat sarcoma viral oncogene homolog (KRAS) mutations, has significantly improved clinical responses, extending progression-free and overall survival. AREAS COVERED Resistance remains a critical issue in lung adenocarcinoma, notably in EGFR mutant, echinoderm microtubule associated protein-like 4 (EML4)-ALK fusion, and KRAS mutant tumors, often associated with epithelial-to-mesenchymal transition (EMT). EXPERT OPINION Despite advancements in next generation EGFR inhibitors and EML4-ALK therapies with enhanced brain penetrance and identifying resistance mutations, overcoming resistance has not been abated. Various strategies are being explored to overcome this issue to achieve prolonged cancer remission and delay resistance. Targeting yes-associated protein (YAP) and the mechanisms associated with YAP activation through Hippo-dependent or independent pathways, is desirable. Additionally, the exploration of liquid-liquid phase separation in fusion oncoproteins forming condensates in the cytoplasm for oncogenic signaling is a promising field for the development of new treatments.
Collapse
Affiliation(s)
- Rafael Rosell
- Cancer Biology & Precision Medicine Program, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Medical Oncology Service, IOR, Dexeus University Hospital Barcelona, Barcelona, Spain
| | | | - Anisha Jain
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Chandan Shivamallu
- Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, Dandikere, Karnataka, India
| | - Andrés Aguilar
- Medical Oncology Service, IOR, Dexeus University Hospital Barcelona, Barcelona, Spain
| |
Collapse
|
40
|
Kim J, Qin S, Zhou HX, Rosen MK. Surface Charge Can Modulate Phase Separation of Multidomain Proteins. J Am Chem Soc 2024; 146:3383-3395. [PMID: 38262618 PMCID: PMC10859935 DOI: 10.1021/jacs.3c12789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024]
Abstract
Phase separation has emerged as an important mechanism explaining the formation of certain biomolecular condensates. Biological phase separation is often driven by the multivalent interactions of modular protein domains. Beyond valency, the physical features of folded domains that promote phase separation are poorly understood. We used a model system─the small ubiquitin modifier (SUMO) and its peptide ligand, the SUMO interaction motif (SIM)─to examine how domain surface charge influences multivalency-driven phase separation. Phase separation of polySUMO and polySIM was altered by pH via a change in the protonation state of SUMO surface histidines. These effects were recapitulated by histidine mutations, which modulated SUMO solubility and polySUMO-polySIM phase separation in parallel and were quantitatively explained by atomistic modeling of weak interactions among proteins in the system. Thus, surface charge can tune the phase separation of multivalent proteins, suggesting a means of controlling phase separation biologically, evolutionarily, and therapeutically.
Collapse
Affiliation(s)
- Jonggul Kim
- Department
of Biophysics, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
- Howard
Hughes Medical Institute, Dallas, Texas 75390, United States
| | - Sanbo Qin
- Department
of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Huan-Xiang Zhou
- Department
of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
- Department
of Physics, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Michael K. Rosen
- Department
of Biophysics, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
- Howard
Hughes Medical Institute, Dallas, Texas 75390, United States
| |
Collapse
|
41
|
Wang F, Zhang Y. Physiology and pharmacological targeting of phase separation. J Biomed Sci 2024; 31:11. [PMID: 38245749 PMCID: PMC10800077 DOI: 10.1186/s12929-024-00993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) in biology describes a process by which proteins form membraneless condensates within a cellular compartment when conditions are met, including the concentration and posttranslational modifications of the protein components, the condition of the aqueous solution (pH, ionic strength, pressure, and temperature), and the existence of assisting factors (such as RNAs or other proteins). In these supramolecular liquid droplet-like inclusion bodies, molecules are held together through weak intermolecular and/or intramolecular interactions. With the aid of LLPS, cells can assemble functional sub-units within a given cellular compartment by enriching or excluding specific factors, modulating cellular function, and rapidly responding to environmental or physiological cues. Hence, LLPS is emerging as an important means to regulate biology and physiology. Yet, excessive inclusion body formation by, for instance, higher-than-normal concentrations or mutant forms of the protein components could result in the conversion from dynamic liquid condensates into more rigid gel- or solid-like aggregates, leading to the disruption of the organelle's function followed by the development of human disorders like neurodegenerative diseases. In summary, well-controlled formation and de-formation of LLPS is critical for normal biology and physiology from single cells to individual organisms, whereas abnormal LLPS is involved in the pathophysiology of human diseases. In turn, targeting these aggregates or their formation represents a promising approach in treating diseases driven by abnormal LLPS including those neurodegenerative diseases that lack effective therapies.
Collapse
Affiliation(s)
- Fangfang Wang
- Department of Pharmacology, School of Medicine, Case Comprehensive Cancer Center, Case Western Reserve University, 2109 Adelbert Road, W309A, Cleveland, OH, 44106, USA
| | - Youwei Zhang
- Department of Pharmacology, School of Medicine, Case Comprehensive Cancer Center, Case Western Reserve University, 2109 Adelbert Road, W309A, Cleveland, OH, 44106, USA.
| |
Collapse
|
42
|
Yang L, Lyu J, Li X, Guo G, Zhou X, Chen T, Lin Y, Li T. Phase separation as a possible mechanism for dosage sensitivity. Genome Biol 2024; 25:17. [PMID: 38225666 PMCID: PMC10789095 DOI: 10.1186/s13059-023-03128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/27/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Deletion of haploinsufficient genes or duplication of triplosensitive ones results in phenotypic effects in a concentration-dependent manner, and the mechanisms underlying these dosage-sensitive effects remain elusive. Phase separation drives functional compartmentalization of biomolecules in a concentration-dependent manner as well, which suggests a potential link between these two processes, and warrants further systematic investigation. RESULTS Here we provide bioinformatic and experimental evidence to show a close link between phase separation and dosage sensitivity. We first demonstrate that haploinsufficient or triplosensitive gene products exhibit a higher tendency to undergo phase separation. Assessing the well-established dosage-sensitive genes HNRNPK, PAX6, and PQBP1 with experiments, we show that these proteins undergo phase separation. Critically, pathogenic variations in dosage-sensitive genes disturb the phase separation process either through reduced protein levels, or loss of phase-separation-prone regions. Analysis of multi-omics data further demonstrates that loss-of-function genetic perturbations on phase-separating genes cause similar dysfunction phenotypes as dosage-sensitive gene perturbations. In addition, dosage-sensitive scores derived from population genetics data predict phase-separating proteins with much better performance than available sequence-based predictors, further illustrating close ties between these two parameters. CONCLUSIONS Together, our study shows that phase separation is functionally linked to dosage sensitivity and provides novel insights for phase-separating protein prediction from the perspective of population genetics data.
Collapse
Affiliation(s)
- Liang Yang
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jiali Lyu
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xi Li
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Gaigai Guo
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xueya Zhou
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| | - Taoyu Chen
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yi Lin
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Tingting Li
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, 100191, China.
| |
Collapse
|
43
|
Liu Q, Liu W, Niu Y, Wang T, Dong J. Liquid-liquid phase separation in plants: Advances and perspectives from model species to crops. PLANT COMMUNICATIONS 2024; 5:100663. [PMID: 37496271 PMCID: PMC10811348 DOI: 10.1016/j.xplc.2023.100663] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Membraneless biomolecular condensates play important roles in both normal biological activities and responses to environmental stimuli in living organisms. Liquid‒liquid phase separation (LLPS) is an organizational mechanism that has emerged in recent years to explain the formation of biomolecular condensates. In the past decade, advances in LLPS research have contributed to breakthroughs in disease fields. By contrast, although LLPS research in plants has progressed over the past 5 years, it has been concentrated on the model plant Arabidopsis, which has limited relevance to agricultural production. In this review, we provide an overview of recently reported advances in LLPS in plants, with a particular focus on photomorphogenesis, flowering, and abiotic and biotic stress responses. We propose that many potential LLPS proteins also exist in crops and may affect crop growth, development, and stress resistance. This possibility presents a great challenge as well as an opportunity for rigorous scientific research on the biological functions and applications of LLPS in crops.
Collapse
Affiliation(s)
- Qianwen Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenxuan Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Yiding Niu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangli Dong
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
44
|
Yan Q, Fang X, Liu X, Guo S, Chen S, Luo M, Lan P, Guan X. Loss of ESRP2 Activates TAK1-MAPK Signaling through the Fetal RNA-Splicing Program to Promote Hepatocellular Carcinoma Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305653. [PMID: 37985644 PMCID: PMC10767434 DOI: 10.1002/advs.202305653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Indexed: 11/22/2023]
Abstract
Tumors usually display fetal-like characteristics, and many oncofetal proteins have been identified. However, fetal-like reprogramming of RNA splicing in hepatocellular carcinoma (HCC) is poorly understood. Here, it is demonstrated that the expression of epithelial splicing regulatory protein 2 (ESRP2), an RNA splicing factor, is suppressed in fetal hepatocytes and HCC, in parallel with tumor progression. By combining RNA-Seq with splicing analysis, it is identified that ESRP2 controls the fetal-to-adult switch of multiple splice isoforms in HCC. Functionally, ESRP2 suppressed cell proliferation and migration by specifically switching the alternative splicing (AS) of the TAK1 gene and restraining the expression of the fetal and oncogenic isoform, TAK1_ΔE12. Notably, aberrant TAK1 splicing led to the activation of p38MAPK signaling and predicted poor prognosis in HCC patients. Further investigation revealed that TAK1_ΔE12 protein interacted closely with TAB3 and formed liquid condensation in HCC cells, resulting in p38MAPK activation, enhanced cell migration, and accelerated tumorigenesis. Loss of ESRP2 sensitized HCC cells to TAK1 kinase inhibitor (TAK1i), promoting pyroptotic cell death and CD8+ T cell infiltration. Combining TAK1i with immune checkpoint therapy achieved potent tumor regression in mice. Overall, the findings reveal a previously unexplored onco-fetal reprogramming of RNA splicing and provide novel therapeutic avenues for HCC.
Collapse
Affiliation(s)
- Qian Yan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesGuangdong Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Department of General Surgery (Colorectal Surgery)The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Xiaona Fang
- Sun Yat‐sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer MedicineGuangzhou510060China
- Department of Pediatric Oncology, Sun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Xiaoxia Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesGuangdong Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Department of General Surgery (Colorectal Surgery)The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Sai Guo
- Shenzhen Traditional Chinese Medicine HospitalShenzhenChina
| | - Siqi Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesGuangdong Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Department of General Surgery (Colorectal Surgery)The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Min Luo
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Shenzhen Key Laboratory of recurrent metastatic cancer and personalized therapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Ping Lan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesGuangdong Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Department of General Surgery (Colorectal Surgery)The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
- State Key Laboratory of Oncology in South ChinaGuangzhouChina
| | - Xin‐Yuan Guan
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Shenzhen Key Laboratory of recurrent metastatic cancer and personalized therapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyState Key Laboratory for Liver ResearchThe University of Hong KongHong KongChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
- MOE Key Laboratory of Tumor Molecular BiologyJinan UniversityGuangzhouChina
| |
Collapse
|
45
|
Chen Q, Liu LY, Tian Z, Fang Z, Wang KN, Shao X, Zhang C, Zou W, Rowan F, Qiu K, Ji B, Guan JL, Li D, Mao ZW, Diao J. Mitochondrial nucleoid condensates drive peripheral fission through high membrane curvature. Cell Rep 2023; 42:113472. [PMID: 37999975 DOI: 10.1016/j.celrep.2023.113472] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/13/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Mitochondria are dynamic organelles that undergo fusion and fission events, in which the mitochondrial membrane and DNA (mtDNA) play critical roles. The spatiotemporal organization of mtDNA reflects and impacts mitochondrial dynamics. Herein, to study the detailed dynamics of mitochondrial membrane and mtDNA, we rationally develop a dual-color fluorescent probe, mtGLP, that could be used for simultaneously monitoring mitochondrial membrane and mtDNA dynamics via separate color outputs. By combining mtGLP with structured illumination microscopy to monitor mitochondrial dynamics, we discover the formation of nucleoid condensates in damaged mitochondria. We further reveal that nucleoid condensates promoted the peripheral fission of damaged mitochondria via asymmetric segregation. Through simulations, we find that the peripheral fission events occurred when the nucleoid condensates interacted with the highly curved membrane regions at the two ends of the mitochondria. Overall, we show that mitochondrial nucleoid condensates utilize peripheral fission to maintain mitochondrial homeostasis.
Collapse
Affiliation(s)
- Qixin Chen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, IGCME, GBRCE for Functional Molecular Engineering, Guangzhou 510275, China
| | - Zhiqi Tian
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Zhou Fang
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Kang-Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, IGCME, GBRCE for Functional Molecular Engineering, Guangzhou 510275, China
| | - Xintian Shao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Chengying Zhang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Fiona Rowan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kangqiang Qiu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Baohua Ji
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Dechang Li
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China.
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, IGCME, GBRCE for Functional Molecular Engineering, Guangzhou 510275, China.
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
46
|
Zheng LW, Liu CC, Yu KD. Phase separations in oncogenesis, tumor progressions and metastasis: a glance from hallmarks of cancer. J Hematol Oncol 2023; 16:123. [PMID: 38110976 PMCID: PMC10726551 DOI: 10.1186/s13045-023-01522-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is a novel principle for interpreting precise spatiotemporal coordination in living cells through biomolecular condensate (BMC) formation via dynamic aggregation. LLPS changes individual molecules into membrane-free, droplet-like BMCs with specific functions, which coordinate various cellular activities. The formation and regulation of LLPS are closely associated with oncogenesis, tumor progressions and metastasis, the specific roles and mechanisms of LLPS in tumors still need to be further investigated at present. In this review, we comprehensively summarize the conditions of LLPS and identify mechanisms involved in abnormal LLPS in cancer processes, including tumor growth, metastasis, and angiogenesis from the perspective of cancer hallmarks. We have also reviewed the clinical applications of LLPS in oncologic areas. This systematic summary of dysregulated LLPS from the different dimensions of cancer hallmarks will build a bridge for determining its specific functions to further guide basic research, finding strategies to intervene in LLPS, and developing relevant therapeutic approaches.
Collapse
Affiliation(s)
- Le-Wei Zheng
- Department of Breast Surgery, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Cui-Cui Liu
- Department of Breast Surgery, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ke-Da Yu
- Department of Breast Surgery, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
47
|
Liu Y, Zhang W, Jang H, Nussinov R. SHP2 clinical phenotype, cancer, or RASopathies, can be predicted by mutant conformational propensities. Cell Mol Life Sci 2023; 81:5. [PMID: 38085330 PMCID: PMC11072105 DOI: 10.1007/s00018-023-05052-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/20/2023] [Accepted: 11/11/2023] [Indexed: 12/18/2023]
Abstract
SHP2 phosphatase promotes full activation of the RTK-dependent Ras/MAPK pathway. Its mutations can drive cancer and RASopathies, a group of neurodevelopmental disorders (NDDs). Here we ask how same residue mutations in SHP2 can lead to both cancer and NDD phenotypes, and whether we can predict what the outcome will be. We collected and analyzed mutation data from the literature and cancer databases and performed molecular dynamics simulations of SHP2 mutants. We show that both cancer and Noonan syndrome (NS, a RASopathy) mutations favor catalysis-prone conformations. As to cancer versus RASopathies, we demonstrate that cancer mutations are more likely to accelerate SHP2 activation than the NS mutations at the same genomic loci, in line with NMR data for K-Ras4B more aggressive mutations. The compiled experimental data and dynamic features of SHP2 mutants lead us to propose that different from strong oncogenic mutations, SHP2 activation by NS mutations is less likely to induce a transition of the ensemble from the SHP2 inactive state to the active state. Strong signaling promotes cell proliferation, a hallmark of cancer. Weak, or moderate signals are associated with differentiation. In embryonic neural cells, dysregulated differentiation is connected to NDDs. Our innovative work offers structural guidelines for identifying and correlating mutations with clinical outcomes, and an explanation for why bearers of RASopathy mutations may have a higher probability of cancer. Finally, we propose a drug strategy against SHP2 variants-promoting cancer and RASopathies.
Collapse
Affiliation(s)
- Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
48
|
Parra AS, Johnston CA. Phase Separation as a Driver of Stem Cell Organization and Function during Development. J Dev Biol 2023; 11:45. [PMID: 38132713 PMCID: PMC10743522 DOI: 10.3390/jdb11040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
A properly organized subcellular composition is essential to cell function. The canonical organizing principle within eukaryotic cells involves membrane-bound organelles; yet, such structures do not fully explain cellular complexity. Furthermore, discrete non-membrane-bound structures have been known for over a century. Liquid-liquid phase separation (LLPS) has emerged as a ubiquitous mode of cellular organization without the need for formal lipid membranes, with an ever-expanding and diverse list of cellular functions that appear to be regulated by this process. In comparison to traditional organelles, LLPS can occur across wider spatial and temporal scales and involves more distinct protein and RNA complexes. In this review, we discuss the impacts of LLPS on the organization of stem cells and their function during development. Specifically, the roles of LLPS in developmental signaling pathways, chromatin organization, and gene expression will be detailed, as well as its impacts on essential processes of asymmetric cell division. We will also discuss how the dynamic and regulated nature of LLPS may afford stem cells an adaptable mode of organization throughout the developmental time to control cell fate. Finally, we will discuss how aberrant LLPS in these processes may contribute to developmental defects and disease.
Collapse
|
49
|
Shen B, Shi JP, Zhu ZX, He ZD, Liu SY, Shi W, Zhang YX, Ying HY, Wang J, Xu RF, Fang F, Chang HX, Chen Z, Zhang NN. EGFR Inhibition Overcomes Resistance to FGFR4 Inhibition and Potentiates FGFR4 Inhibitor Therapy in Hepatocellular Carcinoma. Mol Cancer Ther 2023; 22:1479-1492. [PMID: 37710057 DOI: 10.1158/1535-7163.mct-23-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/07/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
Aberrant activation of the FGF19-FGFR4 signaling pathway plays an essential role in the tumorigenesis of hepatocellular carcinoma (HCC). As such, FGFR4 inhibition has emerged as a novel therapeutic option for the treatment of HCC and has shown preliminary efficacy in recent clinical trials for patients exhibiting aberrant FGF19 expression. Resistance to kinase inhibitors is common in oncology, presenting a major challenge in the clinical treatment process. Hence, we investigated the potential mechanisms mediating and causing resistance to FGFR4 inhibition in HCC. Upon the successful establishment of a battery of cellular models developing resistance to FGFR4 inhibitors, we have identified the activation of EGFR, MAPK, and AKT signaling as the primary mechanisms mediating the acquired resistance. Combination of inhibitors against EGFR or its downstream components restored sensitivity to FGFR4 inhibitors. In parental HCC cell lines, EGF treatment also resulted in resistance to FGFR4 inhibitors. This resistance was effectively reverted by inhibitors of the EGFR signaling pathway, suggesting that EGFR activation is a potential cause of intrinsic resistance. We further confirmed the above findings in vivo in mouse xenograft tumor models. Genomic analysis of patient samples from The Cancer Genome Atlas confirmed that a segment of patients with HCC harboring FGF19 overexpression indeed exhibited increased activation of EGFR signaling. These findings conclusively indicate that both induced and innate activation of EGFR could mediate resistance to FGFR4 inhibition, suggesting that dual blockade of EGFR and FGFR4 may be a promising future therapeutic strategy for the treatment of FGF19-FGFR4 altered HCC.
Collapse
Affiliation(s)
- Bin Shen
- Abbisko Therapeutics Co., Ltd., Shanghai, China
| | | | | | - Zhi-Dong He
- Abbisko Therapeutics Co., Ltd., Shanghai, China
| | | | - Wan Shi
- Abbisko Therapeutics Co., Ltd., Shanghai, China
| | | | | | - Jie Wang
- Abbisko Therapeutics Co., Ltd., Shanghai, China
| | - Rui-Feng Xu
- Abbisko Therapeutics Co., Ltd., Shanghai, China
| | - Fei Fang
- Abbisko Therapeutics Co., Ltd., Shanghai, China
| | | | - Zhui Chen
- Abbisko Therapeutics Co., Ltd., Shanghai, China
| | | |
Collapse
|
50
|
Luo Y, Li J, Zong Y, Sun M, Zheng W, Zhu J, Liu L, Liu B. Discovery of the SHP2 allosteric inhibitor 2-((3R,4R)-4-amino-3-methyl-2-oxa-8-azaspiro[4.5]decan-8-yl)-5-(2,3-dichlorophenyl)-3-methylpyrrolo[2,1-f][1,2,4] triazin-4(3H)-one. J Enzyme Inhib Med Chem 2023; 38:398-404. [PMID: 36476046 PMCID: PMC9744210 DOI: 10.1080/14756366.2022.2151594] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The non-receptor protein tyrosine phosphatase (PTP) SHP2 encoded by the PTPN11 gene is a critical regulator in a number of cellular signalling processes and pathways, including the MAPK and the immune-inhibitory programmed cell death PD-L1/PD-1 pathway. Hyperactivation and inactivation of SHP2 is of great therapeutic interest for its association with multiple developmental disorders and cancer-related diseases. In this work, we characterised a potent SHP2 allosteric inhibitor 2-((3 R,4R)-4-amino-3-methyl-2-oxa-8-azaspiro[4.5]decan-8-yl)-5-(2,3-dichlorophenyl)-3-methylpyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (PB17-026-01) by using structure-based design. To study the structure-activity relationship, we compared co-crystal structures of SHP2 bound with PB17-026-01 and its analogue compound PB17-036-01, which is ∼20-fold less active than PB17-026-01, revealing that both of the compounds are bound to SHP2 in the allosteric binding pocket and PB17-026-01 forms more polar contacts with its terminal group. Overall, our results provide new insights into the modes of action of allosteric SHP2 inhibitor and a guide for the design of SHP2 allosteric inhibitor.
Collapse
Affiliation(s)
- Yanmei Luo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin Li
- Division of Medicinal Chemistry, PharmaBlock Sciences (Nanjing), Inc., Nanjing, China
| | - Yuliang Zong
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengxin Sun
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wan Zheng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiapeng Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liu Liu
- Division of Medicinal Chemistry, PharmaBlock Sciences (Nanjing), Inc., Nanjing, China,Liu Liu Division of Medicinal Chemistry, PharmaBlock Sciences (Nanjing), Inc., Nanjing, China
| | - Bing Liu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China,CONTACT Bing Liu School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|