1
|
Li H, Liu Z, Liu Q, Zhang X, Li S, Tang F, Zhang L, Yang Q, Wang Q, Yang S, Huang L, Ba Y, Du X, Yang F, Feng H. Extraction of Polysaccharides from Root of Pseudostellaria heterophylla (Miq.) Pax. and the Effects of Ultrasound Treatment on Its Properties and Antioxidant and Immune Activities. Molecules 2023; 29:142. [PMID: 38202725 PMCID: PMC10779800 DOI: 10.3390/molecules29010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The hydrophilic polysaccharides (PS) were isolated and purified from the tuberous roots of Pseudostellaria heterophylla. The extraction process of PS from Pesudostellariae radix was optimized by single-factor experiments and orthogonal design. The extract was purified by DEAE cellulose column to obtain the pure polysaccharide PHP. Then PHP was treated with different intensities of sonication to study the effect of sonication on PHP's characteristics and its biological activity in vitro and in vivo. The results of this study revealed that ultrasound treatment did not significantly change the properties of PHP. Further, with the increase of ultrasound intensity, PHP enhanced the proliferation and phagocytosis of macrophage RAW264.7. Meanwhile, it could also significantly improve the body's antioxidant activity and immune function. The results of this study demonstrated that PHP has the potential as a food additive with enhanced antioxidant and immune functions, and its biological activities could be enhanced by sonication.
Collapse
Affiliation(s)
- Hangyu Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Ziwei Liu
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Qianqian Liu
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Xinnan Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Sheng Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Feng Tang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Linzi Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Qian Yang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Qiran Wang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Shuyao Yang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Ling Huang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Yuwei Ba
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Xihui Du
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Falong Yang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Haibo Feng
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| |
Collapse
|
2
|
Wei X, Sun W, Zhu P, Ou G, Zhang S, Li Y, Hu J, Qu X, Zhong Y, Yu W, You Z, Wang Y, Wu Y. Refined polysaccharide from Dendrobium devonianum resists H1N1 influenza viral infection in mice by activating immunity through the TLR4/MyD88/NF-κB pathway. Front Immunol 2022; 13:999945. [PMID: 36177044 PMCID: PMC9513056 DOI: 10.3389/fimmu.2022.999945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/22/2022] [Indexed: 01/09/2023] Open
Abstract
Dendrobium polysaccharide exhibits multiple biological activities, such as immune regulation, antioxidation, and antitumor. However, its resistance to viral infection by stimulating immunity is rarely reported. In this study, we explored the effect and mechanism of DVP-1, a novel polysaccharide from Dendrobium devonianum, in the activation of immunity. After being activated by DVP-1, the ability of mice to prevent H1N1 influenza virus infection was investigated. Results of immune regulation showed that DVP-1 significantly improved the immune organ index, lymphocyte proliferation, and mRNA expression level of cytokines, such as IL-1β, IL-4, IL-6, and TNF-α in the spleen. Immunohistochemical results showed that DVP-1 obviously promoted the mucosal immunity in the jejunum tissue. In addition, the expression levels of TLR4, MyD88, and TRAF6 and the phosphorylation levels of TAK1, Erk, JNK, and NF-κB in the spleen were upregulated by DVP-1. The virus infection results showed that the weight loss of mice slowed down, the survival rate increased, the organ index of the lung reduced, and the virus content in the lung decreased after DVP-1 activated immunity. By activating immunity with DVP-1, the production of inflammatory cells and inflammatory factors in BALF, and alveolar as well as peribronchiolar inflammation could be prevented. The results manifested that DVP-1 could resist H1N1 influenza virus infection by activating immunity through the TLR4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Xueping Wei
- Institute of Food Science and Engineering, Hangzhou Medical College, Hangzhou, China
| | - Wei Sun
- Institute of Food Science and Engineering, Hangzhou Medical College, Hangzhou, China
| | - Pengpeng Zhu
- Institute of Food Science and Engineering, Hangzhou Medical College, Hangzhou, China
| | - Guoteng Ou
- Institute of Food Science and Engineering, Hangzhou Medical College, Hangzhou, China
| | - Sheng Zhang
- Institute of Food Science and Engineering, Hangzhou Medical College, Hangzhou, China
| | - Yuanyuan Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Jingjin Hu
- Institute of Food Science and Engineering, Hangzhou Medical College, Hangzhou, China
| | - Xuefeng Qu
- Institute of Food Science and Engineering, Hangzhou Medical College, Hangzhou, China
| | - Yan Zhong
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Wenying Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Zhenqiang You
- Institute of Food Science and Engineering, Hangzhou Medical College, Hangzhou, China,*Correspondence: Zhenqiang You, ; Yin Wang, ; Yueguo Wu,
| | - Yin Wang
- Institute of Food Science and Engineering, Hangzhou Medical College, Hangzhou, China,School of Pharmacy, Hangzhou Medical College, Hangzhou, China,*Correspondence: Zhenqiang You, ; Yin Wang, ; Yueguo Wu,
| | - Yueguo Wu
- Institute of Food Science and Engineering, Hangzhou Medical College, Hangzhou, China,School of Pharmacy, Hangzhou Medical College, Hangzhou, China,*Correspondence: Zhenqiang You, ; Yin Wang, ; Yueguo Wu,
| |
Collapse
|
3
|
Guo H, Wang L, Xu W, Huo Z, Yang P, Zhang Q, Wang H, Li P, Lu X. The complete chloroplast genome sequence of Cyathula officinalis and comparative analysis with four related species. Gene 2022; 839:146728. [PMID: 35850203 DOI: 10.1016/j.gene.2022.146728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/14/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022]
Abstract
Cyathula officinalis is a medicinal and edible herb, which can remove blood stasis, stimulate menstrual flow, and ease joint movement. In this study, the complete chloroplast genome of Cyathula officinalis was sequenced, assembled, and analyzed. Compared with the chloroplast genomes of Cyathula capitata, Achyranthes bidentata, Achyranthes longifolianine and Achyranthes aspera, the basic characteristics, codon usage bias, repeat sequences, simple sequence repeats, and phylogenetic tree were analyzed. In addition, according to nucleotide diversity analysis and sequence alignment, DNA barcoding and allele-specific PCR primers were designed to identify and distinguish Cyathula officinalis from its fake drugs, which has effectively practical significance for the authentication of "Chuan Niuxi" crude drug in the market.
Collapse
Affiliation(s)
- Huijun Guo
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China
| | - Long Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China
| | - Wenbo Xu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China
| | - Ziting Huo
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China
| | - Qianwen Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China
| | - Huiying Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Xu Lu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
4
|
Wan X, Yin Y, Zhou C, Hou L, Cui Q, Zhang X, Cai X, Wang Y, Wang L, Tian J. Polysaccharides derived from Chinese medicinal herbs: A promising choice of vaccine adjuvants. Carbohydr Polym 2022; 276:118739. [PMID: 34823775 DOI: 10.1016/j.carbpol.2021.118739] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 01/24/2023]
Abstract
Adjuvants have been used in vaccines for a long time to promote the body's immune response, reducing vaccine dosage and production costs. Although many vaccine adjuvants are developed, the use in human vaccines is limited because of either limited action or side effects. Therefore, the development of new vaccine adjuvants is required. Many studies have found that natural polysaccharides derived from Traditional Chinese medicine (TCM) possess good immune promoting effects and simultaneously improve humoral, cellular and mucosal immunity. Recently polysaccharide adjuvants have attracted much attention in vaccine preparation because of their intrinsic characteristics: immunomodulation, biocompatibility, biodegradability, low toxicity and safety. This review article systematically analysed the literature on polysaccharides possessing vaccine adjuvant activity from TCM plants, such as Astragalus polysaccharide (APS), Rehmannia glutinosa polysaccharide (RGP), Isatis indigotica root polysaccharides (IRPS), etc. and their derivatives. We believe that polysaccharide adjuvants can be used to prepare the vaccines for clinical use provided their mechanisms of action are studied in detail.
Collapse
Affiliation(s)
- Xinhuan Wan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiming Yin
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changzheng Zhou
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Hou
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266041, China
| | - Qinghua Cui
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266041, China
| | - Xiaoping Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266041, China
| | - Xiaoqing Cai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuliang Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lizhu Wang
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Jingzhen Tian
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266041, China.
| |
Collapse
|
5
|
Feng H, Zhi H, Hu X, Yang Y, Zhang L, Liu Q, Feng Y, Wu D, Yang X. Immunological studies of Morinda officinalis: How polysaccharides act as adjuvants. J Carbohydr Chem 2021. [DOI: 10.1080/07328303.2021.1954657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Haibo Feng
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, PR China
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, PR China
| | - Hui Zhi
- Department of Veterinary Medicine, Southwest University, Chongqing, PR China
| | - Xin Hu
- Department of Veterinary Medicine, Southwest University, Chongqing, PR China
| | - Yan Yang
- Department of Veterinary Medicine, Southwest University, Chongqing, PR China
| | - Linzi Zhang
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, PR China
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, PR China
| | - Qianqian Liu
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, PR China
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, PR China
| | - Yangyang Feng
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, PR China
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, PR China
| | - Daiyan Wu
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, PR China
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, PR China
| | - Xiaonong Yang
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, PR China
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, PR China
| |
Collapse
|
6
|
Jia G, Shao X, Zhao R, Zhang T, Zhou X, Yang Y, Li T, Chen Z, Liu Y. Portulaca oleracea L. polysaccharides enhance the immune efficacy of dendritic cell vaccine for breast cancer. Food Funct 2021; 12:4046-4059. [PMID: 33977945 DOI: 10.1039/d0fo02522d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Previous studies have reported that Portulaca oleracea L. polysaccharides (POL-P3b) is an immunoregulatory agent. However, few studies exist on POL-P3b as a novel immune adjuvant in combination with the DC vaccine for breast cancer treatment. In this work, a DC vaccine loaded with mouse 4T1 tumor cell antigen was prepared to evaluate the properties of POL-P3b in inducing the maturation and function of DC derived from mouse bone marrow, and then to investigate the effect of the DC vaccine combined with POL-P3b on breast cancer in vivo and in vitro. Morphological changes of DC were observed using scanning electron microscopy. Phenotypic and functional analyses of DC were detected by flow cytometry and allogeneic lymphocyte reaction. Cytokine levels in the DC culture supernatant were detected by ELISA. Western blotting analysis was used for the protein expression of TLR4, MyD88 and NF-κB. Apoptosis detection and protein expression of the tumor tissue were analyzed by TUNEL staining and immunohistochemistry, respectively. The security of POL-P3b was evaluated by the detection of hematological and blood biochemical indicators and pathological analysis for tissues. POL-P3b can induce DC activation and maturation, which is attributed to increasing the specific anti-tumor immune response, and the mechanism of action involved in the TLR4/MyD88/NF-κB signaling pathway. Experimental results in vivo further suggested that the administration of POL-P3b-treated antigen-primed DC achieved remarkable tumor growth inhibition through inducing apoptosis and enhancing immune responses. Moreover, the POL-P3b-treated DC vaccine was able to inhibit lung metastases. The results proved the feasibility of POL-P3b as an edible adjuvant of the DC vaccine for anti-breast cancer therapy.
Collapse
Affiliation(s)
- Guiyan Jia
- Department of Pharmaceutical Engineering, College of Life Science & Biotechnology, Heilongjiang August First Land Reclamation University, Daqing High-Tech Industrial Development Zone, 163319, P. R. China.
| | - Xingyue Shao
- Department of gynaecology and obstetrics, Daqing Oilfield Hospital, Daqing 163311, P. R China
| | - Rui Zhao
- Department of Pharmaceutical Engineering, College of Life Science & Biotechnology, Heilongjiang August First Land Reclamation University, Daqing High-Tech Industrial Development Zone, 163319, P. R. China.
| | - Tao Zhang
- School of Basic Medical Sciences, Jiamusi University, No. 188 Xuefu Street, Jiamusi City, Heilongjiang Province 154007, P. R. China
| | - Xiechen Zhou
- Institute of Animal Science and Technology, Heilongjiang August First Land Reclamation University, Daqing High-Tech Industrial Development Zone, 163319, P. R. China
| | - Yang Yang
- Department of Pharmaceutical Engineering, College of Life Science & Biotechnology, Heilongjiang August First Land Reclamation University, Daqing High-Tech Industrial Development Zone, 163319, P. R. China.
| | - Tao Li
- Department of Pharmaceutical Engineering, College of Life Science & Biotechnology, Heilongjiang August First Land Reclamation University, Daqing High-Tech Industrial Development Zone, 163319, P. R. China.
| | - Zhao Chen
- Department of Pharmaceutical Engineering, College of Life Science & Biotechnology, Heilongjiang August First Land Reclamation University, Daqing High-Tech Industrial Development Zone, 163319, P. R. China.
| | - Yupeng Liu
- Department of Pharmaceutical Engineering, College of Life Science & Biotechnology, Heilongjiang August First Land Reclamation University, Daqing High-Tech Industrial Development Zone, 163319, P. R. China.
| |
Collapse
|
7
|
Lee PT, Chen HY, Liao ZH, Huang HT, Chang TC, Huang CT, Lee MC, Nan FH. Effects of three medicinal herbs Bidens pilosa, Lonicera japonica, and Cyathula officinalis on growth and non-specific immune responses of cobia (Rachycentron canadum). FISH & SHELLFISH IMMUNOLOGY 2020; 106:526-535. [PMID: 32781209 DOI: 10.1016/j.fsi.2020.07.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
This study investigates the effects of three medicinal herbal extracts, namely Bidens pilosa (BPE), Lonicera japonica (LJE), and Cyathula officinalis (COE), on nonspecific immune parameters of cobia (Rachycentron canadum) in vitro and in vivo. During in vitro tests, BPE treatment increased reactive oxygen species (ROS) production in a dose-dependent manner in primary head kidney leukocytes. Similarly, ROS production rates were enhanced by LJE (50 and 100 mg/ml) and COE (100 mg/ml). This suggests that these three herbal extracts possess immunostimulating properties. We then conducted two feeding trials to examine the effects of these three herbal extracts on growth and innate immune parameters of cobia, and sought an optimal dietary supplementation proportion required for activating the non-specific immune responses. In the first trial, we supplemented the diet with 1, 5, or 10% of the individual extracts. After a ten-week feeding trial, no negative impacts on weight gain, feed conversion rate, and survival rate were observed in fish offered experimental diets. Further, ROS production, phagocytic capacity of the head kidney leukocytes, and serum lysozyme activity were enhanced by differing degrees in fish fed the herbal extracts compared to fish in the control group. A similar albumin/globulin ratio was seen between each experimental group and the control group regardless of the type and dose of herbal extract used, indicating these medicinal herbal extracts are safe for cobia. We then performed a 30-day feeding trial with lower extract concentrations (1, 3, and 5% of the diet) to identify dose responses in cobia at various time points so that we could establish a cost-effective manner of administering the three extracts for cobia. All BPE fed fish had higher ROS production compared to the control group, while phagocytosis rate and index were simultaneously raised in only the BPE30 group (3% BPE). Immune parameters such as ROS production, phagocytic rate, and serum lysozyme activity were triggered when fish received 30 g LJE per kg of feed. However, ROS production only increased in the LJE10 group (1% LJE) on day 30 and was not enhanced in the LJE50 group (5% LJE). Additionally, although the phagocytic rate and phagocytic index were induced in the LJE50 group, serum lysozyme activity was not elevated in this group (LJE50) at any time point examined. ROS production was greatly improved in all COE fed groups, but only the COE30 group (3% COE) showed prolonged enhanced phagocytic rate over the 30-day feeding trial.
Collapse
Affiliation(s)
- Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan, ROC
| | - Hsiang-Yin Chen
- Department of Aquaculture, National Penghu University of Science and Technology, Penghu County, Taiwan, ROC
| | - Zhen-Hao Liao
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan, ROC
| | - Huai-Ting Huang
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan, ROC
| | - Ting-Chieh Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan, ROC
| | - Cheng-Ting Huang
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan, ROC
| | - Meng-Chou Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan, ROC; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung City, Taiwan, ROC; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City, Taiwan, ROC
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan, ROC.
| |
Collapse
|
8
|
TANG J, WEI X, LI Y, JIANG L, FENG T, ZHU H, LI M, CHEN G, YU X, ZHANG J, ZHANG X. Poplar bark lipids enhance mouse immunity by inducing T cell proliferation and differentiation. J Vet Med Sci 2020; 82:1187-1196. [PMID: 32669484 PMCID: PMC7468065 DOI: 10.1292/jvms.19-0571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/13/2020] [Indexed: 11/22/2022] Open
Abstract
Research on the composition and application of immune enhancers in livestock and poultry breeding has been gaining interest in recent years. Poplar bark lipids (PBLs), which are extracted from poplar tree bark, are natural substances known to efficiently enhance the immune response. To understand the chemical makeup of PBLs and their underlying mechanism for enhancing the immune system, we extracted PBLs from poplar bark using petroleum ether and subjected these extracts to chemical analysis. To evaluate PBLs effect on the immune system mice were treated with different doses of PBL via gavage and sacrificed 4 weeks later. PBLs were shown to be rich in vitamin E, unsaturated fatty acids, and other immune-potentiating compounds. Treatment with PBLs increased the spleen index and stimulated spleen and thymus development. In addition, PBLs increased the number of CD3+CD4+ cells in the peripheral blood and the ratio of CD4+/CD8+ cells while decreasing the number of CD3+CD8+ cells. Moreover, PBLs significantly increased IL-4 and IFN-γ levels in mouse serum and TLR4 mRNA and protein expression in the spleen. Taken together these results demonstrate that PBLs exert their immune-potentiating effects by promoting spleen and thymus development, T lymphocyte proliferation and differentiation, and immune factor expression. These immune-potentiating effects may be related to the activation of TLR4. This study provides a theoretical basis for the development of PBLs as an immune adjuvant or feed additive in the future.
Collapse
Affiliation(s)
- Jinxiu TANG
- College of Life Science, Ludong University, Yantai 264000,
Shandong, China
- Shandong Provincial Key Laboratory of Quality Safety
Monitoring and Risk Assessment for Animal Products, Ji’nan 250022, Shandong, China
| | - Xiuli WEI
- Shandong Provincial Key Laboratory of Quality Safety
Monitoring and Risk Assessment for Animal Products, Ji’nan 250022, Shandong, China
| | - Youzhi LI
- Shandong Provincial Key Laboratory of Quality Safety
Monitoring and Risk Assessment for Animal Products, Ji’nan 250022, Shandong, China
| | - Linlin JIANG
- College of Life Science, Ludong University, Yantai 264000,
Shandong, China
| | - Tao FENG
- Shandong Provincial Key Laboratory of Quality Safety
Monitoring and Risk Assessment for Animal Products, Ji’nan 250022, Shandong, China
| | - Hongwei ZHU
- College of Life Science, Ludong University, Yantai 264000,
Shandong, China
| | - Meng LI
- College of Life Science, Ludong University, Yantai 264000,
Shandong, China
| | - Guozhong CHEN
- College of Life Science, Ludong University, Yantai 264000,
Shandong, China
| | - Xin YU
- College of Life Science, Ludong University, Yantai 264000,
Shandong, China
| | - Jianlong ZHANG
- College of Life Science, Ludong University, Yantai 264000,
Shandong, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology
and Immunology, Yantai 264000, Shandong, China
| | - Xingxiao ZHANG
- College of Life Science, Ludong University, Yantai 264000,
Shandong, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology
and Immunology, Yantai 264000, Shandong, China
| |
Collapse
|
9
|
Pierce S, Geanes ES, Bradley T. Targeting Natural Killer Cells for Improved Immunity and Control of the Adaptive Immune Response. Front Cell Infect Microbiol 2020; 10:231. [PMID: 32509600 PMCID: PMC7248265 DOI: 10.3389/fcimb.2020.00231] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are critical for targeting and killing tumor, virus-infected and stressed cells as a member of the innate immune system. Recently, NK cells have also emerged as key regulators of adaptive immunity and have become a prominent therapeutic target for cancer immunotherapy and infection control. NK cells display a diverse array of phenotypes and function. Determining how NK cells develop and are regulated is critical for understanding their role in both innate and adaptive immunity. In this review we discuss current research approaches into NK cell adaptive immunity and how these cells are being harnessed for improving cancer and vaccination outcomes.
Collapse
Affiliation(s)
- Stephen Pierce
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, United States
| | - Eric S Geanes
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, United States
| | - Todd Bradley
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, United States.,Departments of Pediatrics and Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States.,Department of Pediatrics, University of Missouri Kansas City Medical School, Kansas City, MO, United States
| |
Collapse
|
10
|
Lin L, Yang J, Yang Y, Zhi H, Hu X, Chai D, Liu Y, Shen X, Wang J, Song Y, Zeng A, Li X, Feng H. Phosphorylation of Radix Cyathula officinalis polysaccharide improves its immune-enhancing activity. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1700996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Lang Lin
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Jie Yang
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Yan Yang
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Hui Zhi
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Xin Hu
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Dongkun Chai
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Yunjie Liu
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Xiaojun Shen
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Jie Wang
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Yunqi Song
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Aimei Zeng
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Xinyu Li
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Haibo Feng
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| |
Collapse
|
11
|
Feng H, Fan J, Lin L, Liu Y, Chai D, Yang J. Immunomodulatory Effects of Phosphorylated Radix Cyathulae officinalis Polysaccharides in Immunosuppressed Mice. Molecules 2019; 24:E4150. [PMID: 31731832 PMCID: PMC6891547 DOI: 10.3390/molecules24224150] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 12/31/2022] Open
Abstract
This research aimed to investigate the immunomodulatory effects of phosphorylated Radix Cyathulae officinalis Kuan polysaccharides (pRCPS) in immunosuppressed mice, improving their cellular and humoral immune function. Our results showed that pRCPS increased serum immunoglobulin (IgG, IgA, IgM) concentrations significantly, enhanced splenocyte proliferation, and the thymus and spleen indices. pRCPS also promoted phagocytosis in peritoneal macrophages and enhanced cytokine (IFN-γ, IL-2, -4, -5, -6, and -10) serum levels. Importantly, pRCPS increased the proportions of selected T cell subpopulations (CD3+, CD4+, and the CD4+ to CD8+ ratio). Our results revealed that phosphorylation of the polysaccharides promoted their immune-enhancing effects. Thus, pRCPS can enhance cellular and humoral immunity and could be used as an immune-enhancing agent to overcome cyclophosphamide (CY)-induced immunosuppression.
Collapse
Affiliation(s)
- Haibo Feng
- College of Life Science and Technology, Southwest Minzu University, Chengdu, Sichuan 6100041, China
| | - Jing Fan
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan 610051, China;
| | - Lang Lin
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, China; (L.L.); (Y.L.); (D.C.); (J.Y.)
| | - Yunjie Liu
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, China; (L.L.); (Y.L.); (D.C.); (J.Y.)
| | - Dongkun Chai
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, China; (L.L.); (Y.L.); (D.C.); (J.Y.)
| | - Jie Yang
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, China; (L.L.); (Y.L.); (D.C.); (J.Y.)
| |
Collapse
|
12
|
Chen L, Huang G. The antiviral activity of polysaccharides and their derivatives. Int J Biol Macromol 2018; 115:77-82. [PMID: 29654857 DOI: 10.1016/j.ijbiomac.2018.04.056] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/28/2018] [Accepted: 04/10/2018] [Indexed: 01/10/2023]
Abstract
Viral infectious diseases are seriously endangering human health. In the search for effective antiviral drugs, people have found that polysaccharides have good antiviral activity. As an effective and low-toxic antiviral component, polysaccharides have broad prospects for medicinal use and are deserved for further study. Herein, the antiviral activity and action mechanisms of polysaccharides and their various derivatives were summed up and analyzed.
Collapse
Affiliation(s)
- Ling Chen
- Active Carbohydrate Research Institute, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Active Carbohydrate Research Institute, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
13
|
Wagstaffe HR, Mooney JP, Riley EM, Goodier MR. Vaccinating for natural killer cell effector functions. Clin Transl Immunology 2018; 7:e1010. [PMID: 29484187 PMCID: PMC5822400 DOI: 10.1002/cti2.1010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/19/2017] [Accepted: 12/29/2017] [Indexed: 12/21/2022] Open
Abstract
Vaccination has proved to be highly effective in reducing global mortality and eliminating infectious diseases. Building on this success will depend on the development of new and improved vaccines, new methods to determine efficacy and optimum dosing and new or refined adjuvant systems. NK cells are innate lymphoid cells that respond rapidly during primary infection but also have adaptive characteristics enabling them to integrate innate and acquired immune responses. NK cells are activated after vaccination against pathogens including influenza, yellow fever and tuberculosis, and their subsequent maturation, proliferation and effector function is dependent on myeloid accessory cell-derived cytokines such as IL-12, IL-18 and type I interferons. Activation of antigen-presenting cells by live attenuated or whole inactivated vaccines, or by the use of adjuvants, leads to enhanced and sustained NK cell activity, which in turn contributes to T cell recruitment and memory cell formation. This review explores the role of cytokine-activated NK cells as vaccine-induced effector cells and in recall responses and their potential contribution to vaccine and adjuvant development.
Collapse
Affiliation(s)
- Helen R Wagstaffe
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
| | - Jason P Mooney
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Eleanor M Riley
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Martin R Goodier
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
14
|
Peptides from Colochirus robustus Enhance Immune Function via Activating CD3ζ- and ZAP-70-Mediated Signaling in C57BL/6 Mice. Int J Mol Sci 2017; 18:ijms18102110. [PMID: 28991187 PMCID: PMC5666792 DOI: 10.3390/ijms18102110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 11/17/2022] Open
Abstract
Colochirus robustus, a species of sea cucumber, has long been used in East and Southeast Asia as nutritious food as well as for certain medicinal purpose. Studies have shown a number of biological functions associated with consumption of sea cucumber, many of which are attributed to its major component, sea cucumber peptides (SCP). However, how SCP impacts immune system, which is critical for host defense, has not been defined. To address this issue, in the present study, we conducted comprehensive analysis of immune function after oral administration of SCP (0, 25, 50 and 75 mg/kg body weigh) for eight weeks in C57BL/6 mice. We found that SCP treatment significantly enhanced lymphocyte proliferation, serum albumin (ALB) levels, and the natural killer (NK) cell activity. Moreover, SCP promoted functions of helper T cells (Th) as indicated by increased production of Th1 type cytokines of Interleukin (IL)-1β, IL-2, Interferon (IFN)-γ and TNF-α and Th2 type cytokines (IL-4, IL-6 and IL-10). To determine the effective components, SCP was hydrolyzed into 16 types of constituent amino acids in simulated gastrointestinal digestion and these hydrolytic amino acids (HAA) were used for the mechanistic studies in the in vitro models. Results showed that HAA enhanced lymphocyte proliferation and production of IL-2, IL-10 and IFN-γ. Furthermore, CD3ζ (CD3ζ) and ζ-chain-associated protein kinase 70 (ZAP-70), the signaling molecules essential for activating T lymphocytes, were significantly up-regulated after HAA treatment. In summary, our results suggest that SCP is effective in enhancing immune function by activating T cells via impacting CD3ζ- and ZAP-70-mediated signaling pathway.
Collapse
|
15
|
Cao Y, Gu C, Zhao F, Tang Y, Cui X, Shi L, Xu L, Yin L. Therapeutic Effects of Cyathula officinalis Kuan and Its Active Fraction on Acute Blood Stasis Rat Model and Identification Constituents by HPLC-QTOF/MS/MS. Pharmacogn Mag 2017; 13:693-701. [PMID: 29200735 PMCID: PMC5701413 DOI: 10.4103/pm.pm_560_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/04/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cyathula officinalis Kuan is widely used in the clinics for the treatment of blood stasis in China. OBJECTIVE To evaluate the improving blood rheology and anti-inflammatory properties of C. officinalis Kuan extract (CO) and its active fraction (ACO) on acute blood stasis model Wistar rats and characterize the correlative constituents. MATERIALS AND METHODS CO at 0.26, 0.53, and 1.04 g/kg and ACO at 0.38, 0.75, and 1.5 g/kg were administered to acute blood stasis model Wistar rats for 3 days. Whole blood viscosity, plasma viscosity, and the levels of interleukin-6 (IL-6), nitric oxide (NO), tumor necrosis factor alpha (TNF-α), and cyclooxygenase-2 (COX-2) in the plasma were measured. HPLC-QTOF/MS/MS method was used to identify the major constituents of ACO; the properties of two representative components (cyasterone and chikusetsusaponin IV) from ACO on thrombin-induced human umbilical vein endothelial cells damage model were also assessed by the levels of thromboxane A2 (TXA2), endothelin (ET), malondialdehyde (MDA), COX-2, endothelial nitric oxide synthase (eNOS), and superoxide dismutase (SOD). RESULTS CO and ACO significantly reduced whole blood viscosity, plasma viscosity, and levels of IL-6, NO, TNF-α, and COX-2 in vivo. Forty compounds were identified from ACO, mainly as phytoecdysteroids and saponins. Cyasterone and chikusetsusaponin IV could significantly inhibit levels of TXA2, ET, MDA, and COX-2 and promote the activities of eNOS and SOD in vitro. CONCLUSION CO and ACO possessed significant improving blood rheology and anti-inflammatory effects on acute blood stasis model rats and the representative components Cyasterone and chikusetsusaponin IV showed significant anti-inflammatory, antioxidant, and anticoagulant effects in vitro. SUMMARY Cyathula officinalis Kuan is widely used in the clinic for the treatment of blood stasis in ChinaThe C. officinalis Kuan extract and the active fraction of C. officinalis Kuan (ACO) possessed significant improving blood rheology and anti-inflammatory effects on acute blood stasis model ratsForty compounds were identified from ACO, mainly as phytoecdysteroids and saponins Abbreviations used: TCM: Traditional Chinese Medicine, CO: Cyathula officinalis Kuan extract, ACO: Active fraction of Cyathula officinalis Kuan, ROS: Reactive oxygen species, IL-6: Interleukin-6, TNF-α: Tumor necrosis factor alpha, NO: Nitric oxide, COX-2: Cyclooxygenase-2, TXA2: Thromboxane A2, ET: Endothelin, MDA: Malondialdehyde, eNOS: Endothelial nitric oxide synthase, SOD: Superoxide dismutase, ESI: Electronic spray ionization, ELISA: Enzyme-linked immunosorbent assay, HUVECs: Human umbilical vein endothelial cells, DMEM: Dulbecco's modified Eagle medium, MMP: Matrix metalloproteinase.
Collapse
Affiliation(s)
- Yanmei Cao
- Department of Chinese Materia Medica, College of Pharmacy, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Cuicui Gu
- Department of Chinese Materia Medica, College of Pharmacy, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Fangli Zhao
- Department of Chinese Materia Medica, College of Pharmacy, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Yuanlin Tang
- Department of Chinese Materia Medica, College of Pharmacy, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Xiaobing Cui
- Department of Chinese Materia Medica, College of Pharmacy, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Le Shi
- Department of Chinese Materia Medica, College of Pharmacy, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Li Xu
- Department of Chinese Materia Medica, College of Pharmacy, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Lian Yin
- Department of Chinese Materia Medica, College of Pharmacy, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| |
Collapse
|
16
|
Feng H, Fan J, Yang S, Zhao X, Yi X. Antiviral activity of phosphorylated Radix Cyathulae officinalis polysaccharide against Canine Parvovirus in vitro. Int J Biol Macromol 2017; 99:511-518. [DOI: 10.1016/j.ijbiomac.2017.02.085] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/18/2017] [Accepted: 02/22/2017] [Indexed: 12/15/2022]
|
17
|
Tong K, Li ZL, Sun X, Yan S, Jiang MJ, Deng MS, Chen J, Li JW, Tian ML. Metabolomics approach reveals annual metabolic variation in roots of Cyathula officinalis Kuan based on gas chromatography-mass spectrum. Chin Med 2017; 12:12. [PMID: 28469699 PMCID: PMC5414129 DOI: 10.1186/s13020-017-0133-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 04/18/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Herbal quality is strongly influenced by harvest time. It is therefore one of crucial factors that should be well respected by herbal producers when optimizing cultivation techniques, so that to obtain herbal products of high quality. In this work, we paid attention on one of common used Chinese herbals, Cyathula officinalis Kuan. According to previous studies, its quality may be related with growth years because of the variation of several main bioactive components in different growth years. However, information about the whole chemical composition is still scarce, which may jointly determine the herbal quality. METHODS Cyathula officinalis samples were collected in 1-4 growth years after sowing. To obtain a global insight on chemical profile of herbs, we applied a metabolomics approach based on gas chromatography-mass spectrum. Analysis of variance, principal component analysis, partial least squares discriminant analysis and hierarchical cluster analysis were combined to explore the significant difference in different growth years. RESULTS 166 metabolites were identified by using gas chromatography-mass spectrum method. 63 metabolites showed significant change in different growth years in terms of analysis of variance. Those metabolites then were grouped into 4 classes by hierarchical cluster analysis, characterizing the samples of different growth ages. Samples harvested in the earliest years (1-2) were obviously differ with the latest years (3-4) as reported by principal component analysis. Further, partial least squares discriminant analysis revealed the detail difference in each growth year. Gluconic acid, xylitol, glutaric acid, pipecolinic acid, ribonic acid, mannose, oxalic acid, digalacturonic acid, lactic acid, 2-deoxyerythritol, acetol, 3-hydroxybutyric acid, citramalic acid, N-carbamylglutamate, and cellobiose are the main 15 discrimination metabolites between different growth years. CONCLUSION Harvest time should be well considered when producing C. officinalis. In order to boost the consistency of herbal quality, C. officinalis is recommended to harvest in 4th growth year. The method of GC-MS combined with multivariate analysis was a powerful tool to evaluate the herbal quality.
Collapse
Affiliation(s)
- Kai Tong
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Zhao-ling Li
- Maize Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Xu Sun
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Shen Yan
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Mei-jie Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Meng-sheng Deng
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Jing-wei Li
- Institute for New Rural Development, Sichuan Agricultural University, 608 Room, No. 1 building, 211 Huiming Road, Wenjiang District, Chengdu City, 611130 Sichuan Province People’s Republic of China
| | - Meng-liang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Institute for New Rural Development, Sichuan Agricultural University, 608 Room, No. 1 building, 211 Huiming Road, Wenjiang District, Chengdu City, 611130 Sichuan Province People’s Republic of China
| |
Collapse
|
18
|
Robinson L, Knight-Jones TJD, Charleston B, Rodriguez LL, Gay CG, Sumption KJ, Vosloo W. Global Foot-and-Mouth Disease Research Update and Gap Analysis: 3 - Vaccines. Transbound Emerg Dis 2017; 63 Suppl 1:30-41. [PMID: 27320164 DOI: 10.1111/tbed.12521] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Indexed: 11/28/2022]
Abstract
This study assessed research knowledge gaps in the field of FMDV (foot-and-mouth disease virus) vaccines. The study took the form of a literature review (2011-15) combined with research updates collected in 2014 from 33 institutes from across the world. Findings were used to identify priority areas for future FMD vaccine research. Vaccines play a vital role in FMD control, used both to limit the spread of the virus during epidemics in FMD-free countries and as the mainstay of disease management in endemic regions, particularly where sanitary controls are difficult to apply. Improvements in the performance or cost-effectiveness of FMD vaccines will allow more widespread and efficient disease control. FMD vaccines have changed little in recent decades, typically produced by inactivation of whole virus, the quantity and stability of the intact viral capsids in the final preparation being key for immunogenicity. However, these are exciting times and several promising novel FMD vaccine candidates have recently been developed. This includes the first FMD vaccine licensed for manufacture and use in the USA; this adenovirus-vectored FMD vaccine causes in vivo expression of viral capsids in vaccinated animals. Another promising vaccine candidate comprises stabilized empty FMDV capsids produced in vitro in a baculovirus expression system. Recombinant technologies are also being developed to improve otherwise conventionally produced inactivated vaccines, for example, by creating a chimeric vaccine virus to increase capsid stability and by inserting sequences into the vaccine virus for desired antigen expression. Other important areas of ongoing research include enhanced adjuvants, vaccine quality control procedures and predicting vaccine protection from immune correlates, thus reducing dependency on animal challenge studies. Globally, the degree of independent vaccine evaluation is highly variable, and this is essential for vaccine quality. Previously neglected, the importance of evaluating vaccination programme effectiveness and impact is increasingly being recognized.
Collapse
Affiliation(s)
| | | | | | - L L Rodriguez
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY, USA
| | - C G Gay
- Agricultural Research Service, USDA, National Program 103-Animal Health, Beltsville, MD, USA
| | - K J Sumption
- European Commission for the Control of FMD (EuFMD), FAO, Rome, Italy
| | - W Vosloo
- Australian Animal Health Laboratory, CSIRO-Biosecurity Flagship, Geelong, Vic., Australia
| |
Collapse
|
19
|
Feng H, McDonough SP, Fan J, Yang S, Zhao X, Lu Y, Gan Y, Yi X, Chang YF. Phosphorylated Radix Cyathulae officinalis Polysaccharides Act as Adjuvant via Promoting Dendritic Cell Maturation. Molecules 2017; 22:E106. [PMID: 28075416 PMCID: PMC6155757 DOI: 10.3390/molecules22010106] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/24/2016] [Accepted: 01/04/2017] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to investigate whether phosphorylated Radix Cyathulae officinalis Kuan polysaccharides (pRCPS) used as adjuvant with foot-and-mouth disease vaccine (FMDV) can stimulate specific humoral and cellular immune responses in ICR mice. The results demonstrated that pRCPS significantly up-regulated FMDV-specific IgG, IgG1, IgG2b and IgG2a antibody levels and splenocyte proliferation. pRCPS also promoted the killing activities of cytotoxic T lymphocytes (CTL) and natural killer cells (NK). In addition, pRCPS enhanced the expression levels of IL-2, IL-4, and IFN-γ in CD4⁺ T cells and the level of IFN-γ in CD8⁺ T cells. Importantly, pRCPS enhanced the expression of MHCII, CD40⁺, CD86⁺, and CD80⁺ in dendritic cells (DCs). This study indicated that phosphorylation modification could increase immune-enhancing activities of RCPS, and pRCPS could promote humoral and cellular immune responses through facilitating DC maturation.
Collapse
Affiliation(s)
- Haibo Feng
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, China.
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA.
| | - Sean P McDonough
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA.
| | - Jing Fan
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610051, China.
| | - Shiping Yang
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, China.
| | - Xuelian Zhao
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, China.
| | - Yong Lu
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, China.
| | - Yun Gan
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, China.
| | - Xiao Yi
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, China.
| | - Yung-Fu Chang
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
20
|
Zhang X, Qi C, Guo Y, Zhou W, Zhang Y. Toll-like receptor 4-related immunostimulatory polysaccharides: Primary structure, activity relationships, and possible interaction models. Carbohydr Polym 2016; 149:186-206. [PMID: 27261743 DOI: 10.1016/j.carbpol.2016.04.097] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/18/2016] [Accepted: 04/21/2016] [Indexed: 12/20/2022]
Abstract
Toll-like receptor (TLR) 4 is an important polysaccharide receptor; however, the relationships between the structures and biological activities of TLR4 and polysaccharides remain unknown. Many recent findings have revealed the primary structure of TLR4/MD-2-related polysaccharides, and several three-dimensional structure models of polysaccharide-binding proteins have been reported; and these models provide insights into the mechanisms through which polysaccharides interact with TLR4. In this review, we first discuss the origins of polysaccharides related to TLR4, including polysaccharides from higher plants, fungi, bacteria, algae, and animals. We then briefly describe the glucosidic bond types of TLR4-related heteroglycans and homoglycans and describe the typical molecular weights of TLR4-related polysaccharides. The primary structures and activity relationships of polysaccharides with TLR4/MD-2 are also discussed. Finally, based on the existing interaction models of LPS with TLR4/MD-2 and linear polysaccharides with proteins, we provide insights into the possible interaction models of polysaccharide ligands with TLR4/MD-2. To our knowledge, this review is the first to summarize the primary structures and activity relationships of TLR4-related polysaccharides and the possible mechanisms of interaction for TLR4 and TLR4-related polysaccharides.
Collapse
Affiliation(s)
- Xiaorui Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China
| | - Chunhui Qi
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China
| | - Yan Guo
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Yongxiang Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| |
Collapse
|
21
|
Lai CY, Yang LC, Lin WC. Type II arabinogalactan from Anoectochilus formosanus induced dendritic cell maturation through TLR2 and TLR4. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:1207-1214. [PMID: 26655402 DOI: 10.1016/j.phymed.2015.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/07/2015] [Accepted: 10/23/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Polysaccharides, considered as immunomodulators with the capacity to activate immunity against microbial pathogens and tumors, have been employed for their dietary and medical benefits. PURPOSE This study investigated the immunomodulatory effect of polysaccharide such as type II arabinogalactan from Anoectochilus formosanus (AGAF) on dendritic cell (DC) maturation and the underlying molecular mechanisms. METHODS AND RESULTS Exposing DCs to AGAF induces cell maturation, which is characterized by the upregulation of CD86, CD83, CD80, CD40, and MHC class I and class II expression through flow cytometry analysis and morphological change without cytotoxicity. In addition, AGAF-triggered DC2.4 cells were involved in priming T-cell activation in vitro and in vivo. Transfection of toll-like receptor (TLR) 2 proteins and TLR4 siRNA suppressed DC maturation, suggesting that AGAF induced DC maturation through TLR2 and TLR4. CONCLUSION These findings indicate that AGAF may be a potentially effective immunomodulator in stimulating DC maturation.
Collapse
Affiliation(s)
- Ching-Yi Lai
- School of Medicine, Department of Pharmacology, China Medical University, no. 91 Hsueh Shih Road, Taichung, Taiwan, R.O.C
| | - Li-Chan Yang
- College of Biopharmaceutical and Food Sciences, Department of Cosmeceutics, China Medical University, Taichung, Taiwan, R.O.C
| | - Wen-Chuan Lin
- School of Pharmacy, China Medical University, Taichung, Taiwan, R.O.C..
| |
Collapse
|
22
|
Li F, Li G, Zhao J, Xiao J, Liu Z, Su G. A simple LC-MS method for determination of cyasterone in rat plasma: application to a pilot pharmacokinetic study. Biomed Chromatogr 2015; 30:867-71. [PMID: 26390114 DOI: 10.1002/bmc.3621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 09/09/2015] [Accepted: 09/17/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Fuqiang Li
- Eye Center, the Second Hospital of Jilin University; Changchun 130041 People's Republic China
| | - Guangyu Li
- Eye Center, the Second Hospital of Jilin University; Changchun 130041 People's Republic China
| | - Jinsong Zhao
- Eye Center, the Second Hospital of Jilin University; Changchun 130041 People's Republic China
| | - Jun Xiao
- Eye Center, the Second Hospital of Jilin University; Changchun 130041 People's Republic China
| | - Zaoxia Liu
- Eye Center, the Second Hospital of Jilin University; Changchun 130041 People's Republic China
| | - Guanfang Su
- Eye Center, the Second Hospital of Jilin University; Changchun 130041 People's Republic China
| |
Collapse
|
23
|
Feng H, Fan J, Song Z, Du X, Chen Y, Wang J, Song G. Characterization and immunoenhancement activities of Eucommia ulmoides polysaccharides. Carbohydr Polym 2015; 136:803-11. [PMID: 26572415 DOI: 10.1016/j.carbpol.2015.09.079] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/08/2015] [Accepted: 09/23/2015] [Indexed: 12/25/2022]
Abstract
The aim of this study is to investigate the physicochemical properties, monosaccharide composition and immunomodulatory effects of Eucommia ulmoides Oliv. polysaccharide. The average molecular weight (Mw) of EUPS was 11.4632 × 10(5)Da. The monosaccharide components of EUPS were glucose, fructose, mannose, fucose, galactose and arabinose with a relative mass of 36.6%, 16.6%, 14.2%, 15.7%, 9.5% and 7.4%, respectively. In in vitro experiments, EUPS (1.2-75 μg/mL) treatment of dendritic cells (DC) increased their surface expression of MHC I/II, CD80, CD40, and CD86 and indicated that EUPS induced DC maturation. Furthermore, EUPS also significantly enhanced lymphocyte proliferation and significantly enhanced cytokine (IL-4 and IFN-γ) production. In in vivo experiments, our data showed that EUPS could significantly enhance the FMDV-specific IgG, IgG1, IgG2a, and IgG2b antibody titers and T cell proliferation. Together, these results suggest that EUPS is a strong immunostimulant.
Collapse
Affiliation(s)
- Haibo Feng
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China.
| | - Jing Fan
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan 610051, PR China
| | - Zhenhui Song
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Xiaogang Du
- Applied Biophysics and Immune Engineering Laboratory, College of Life and Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Ying Chen
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Jishuang Wang
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Guodong Song
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| |
Collapse
|
24
|
Feng H, Fan J, Qiu H, Wang Z, Yan Z, Yuan L, Guan L, Du X, Song Z, Han X, Liu J. Chuanminshen violaceum polysaccharides improve the immune responses of foot-and-mouth disease vaccine in mice. Int J Biol Macromol 2015; 78:405-16. [PMID: 25934108 DOI: 10.1016/j.ijbiomac.2015.04.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/27/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Water-soluble polysaccharides from Chuanminshen violaceum (CVPS) were evaluated for their physicochemical properties, monosaccharide composition, and adjuvant potential to specific cellular and humoral immune responses in a mouse model of foot-and-mouth disease virus (FMDV) vaccination. The average molecular weight (Mw) of the CVPS was 968.31 kDa. The monosaccharide components of the CVPS was rhamnose, arabinose, fucose, mannose, glucose, and galactose with a relative mass of 6.29%, 21.87%, 16.59%, 12.54%, 13.07%, and 28.05%, respectively. Administering CVPS as an adjuvant significantly enhanced the phagocytic capacity of peritoneal macrophages, splenocyte proliferation, and the activity of NK cells and CTL as well as increased FMDV-specific IgG and IgG subclass antibody titers. Moreover, CVPS increased the expression of IL-2, IFN-γ, and IL-4 in CD4(+) T cells and IFN-γ expression in CD8(+) T cells. Additionally, CVPS enhanced CD40(+), CD80(+), and CD86(+) expression on DCs. Moreover, CVPS upregulated MHC-I/II, TLR-2/4 mRNA levels. In contrast, CVPS downregulated TGF-β mRNA expression and the frequency of CD4(+)CD25(+)Foxp3(+) Treg cells. Taken together, these results indicate that administering CVPS as an adjuvant enhances both cellular and humoral immune responses via the TLR-2 and TLR-4 signalling pathways, thereby promoting DC maturation and suppressing TGF-β expression and Treg frequency.
Collapse
Affiliation(s)
- Haibo Feng
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China.
| | - Jing Fan
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan 610051, PR China
| | - Hong Qiu
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Zhenhua Wang
- Department of Animal and Veterinary Science, Chengdu Vocational College of Agricultural Science and Technology, WenJiang, Sichuan 611130, PR China
| | - Zhiqiang Yan
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Lihua Yuan
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Lu Guan
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Xiaogang Du
- Applied Biophysics and Immune Engineering Laboratory, College of Life and Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Zhenhui Song
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Xingfa Han
- Department of Animal and Veterinary Science, Chengdu Vocational College of Agricultural Science and Technology, WenJiang, Sichuan 611130, PR China
| | - Juan Liu
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China.
| |
Collapse
|
25
|
Feng H, Fan J, Du X, Song Z, Wang Z, Han X, Zhao B, Liu J. SulfatedRadix Cyathulae officinalisPolysaccharides Act as Adjuvant via Promoting the Dendritic Cell Maturation and Suppressing Treg Frequency. Immunol Invest 2015; 44:288-308. [DOI: 10.3109/08820139.2015.1009546] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Immunomodulatory activity of heparan sulfate mimetics from Escherichia coli K5 capsular polysaccharide in vitro. Carbohydr Polym 2015; 115:643-50. [DOI: 10.1016/j.carbpol.2014.08.119] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 08/23/2014] [Accepted: 08/28/2014] [Indexed: 12/17/2022]
|
27
|
Ni LJ, Xu XL, Zhang LG, Shi WZ. Quantitative evaluation of the in vitro effect and interactions of active fractions in Yaotongning-based formulae on prostaglandin E₂ production. JOURNAL OF ETHNOPHARMACOLOGY 2014; 154:807-817. [PMID: 24853621 DOI: 10.1016/j.jep.2014.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 04/11/2014] [Accepted: 05/06/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) formula of Yaotongning Capsules (YTNC) is a common remedy to treat rheumatism (RA) in China and possesses diverse biological activities including anti-inflammation. However the effects of component material medicines (CMMs) in YTNC and different combinations of the CMMs on the efficacy of YTNC and the interactions of these CMMs have been being unclear due to ten CMMs and too many compounds involved in YTNC. Moreover, many TCM formulae are available for treating RA according to TCM theory. It is unknown if the YTNC prescription is better than other TCM formulae for treating RA or better efficacy could be obtained when some CMMs in YTNC are replaced by other herbs. Quantitatively investigate the in vitro effect of active fractions from the CMMs of YTNC and other eight herbs commonly used in the TCM formulae for RA treatment on anti-inflammatory activity of different combinations of the active fractions, the interactions of the active fractions to evaluate the reasonability, advantage (or disadvantage) of the YTNC prescription and to see if the prescription could be improved from the point of anti-inflammation. MATERIALS AND METHODS Twenty-six active fractions, which were categorized as alkaloids, flavonoids, saponins, volatile oils/aqueous extracts and polysaccharides were prepared to design TCM samples by combining some of the active fractions, based on the YTNC formulating principle, combination chemistry concept and the importance of the active fractions in YTNC. The anti-inflammatory activities of the samples were evaluated by their half-maximal inhibitory concentration (IC50) values that inhibiting the production of prostaglandin E2 (PGE2) in ANA-1 murine macrophages (ANA-1 cells). The cells plated in 96-well plates were classified into blank group and test sample group. Each group was stimulated with lipopolysaccharides (LPS, 1 mg/mL) for 2h. ANA-1 cells were pretreated with different concentrations of test samples prior to the addition of arachidonic acid (10 μmol/L). The supernatants were collected and measured using PGE2 ELISA Kit, and the cytotoxicity was assayed by cell counting Kit-8 (CCK8)-based test. The interactions of the active fractions in YTNC were evaluated by comparing the experimental IC50 values of the samples derived from YTNC to their corresponding additive IC50 values. The effect of each active fraction on cellular anti-inflammation-PGE2 secretion inhibition activity, and the reasonability, advantages (or disadvantages) of YTNC were evaluated based on the comparison of IC50 values of the samples. RESULTS The disassembled formulae consisted of some active fractions of YTNC and the whole prescription of YTNC consisted of the all active fractions from YTNC all demonstrate cellular anti-inflammatory activity, and there were no significant differences between these formulae. The vehicle of YTNC Chinese rice wine exhibits the ability to enhance the cellular anti-inflammation of YTNC. Synergistic effect exerts in the combination of alkaloids, flavonoids and saponins of YTNC, antagonistic or additive effects occur in the other combinations of active fractions from YTNC. The anti-inflammatory activities of some TCM samples which include some active fractions from the eight selected herbs are significantly higher than the samples derived from YTNC. The flavonoids of Carthamus tinctorius, the volatile oils of Cinnamomum cassia and Angelica pubescens perform better in cellular anti-inflammation than the flavonoids and volatile oils in YTNC. CONCLUSIONS The prescription of YTNC is reasonable in the view of anti-inflammation. The saponins and polysaccharides from the CMMs of YTNC have better anti-inflammatory activities than the saponins and polysaccharides from the other eight herbs. Reducing the varieties of YTNC CMMs and replacing the flavonoids and volatile oils of YTNC with the flavonoids of Carthamus tinctorius and the volatile oils of Cinnamomum cassia (or Angelica pubescens) would improve the safety and anti-inflammatory activity of YTNC. Synthetically evaluating various pharmacological activities of TCM formulae designed in the present work may lead to develop more effective and safer TCM using YTNC as prototypes.
Collapse
Affiliation(s)
- Li-Jun Ni
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiao-Ling Xu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li-Guo Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Wan-Zhong Shi
- Shuguang Hospital Affiliated to Shanghai University of TCM, 185 Puan Road, Shanghai 200021, China.
| |
Collapse
|
28
|
Anti-idiotypic antibodies reduce efficacy of the attenuated vaccine against highly pathogenic PRRSV challenge. BMC Vet Res 2014; 10:39. [PMID: 24507659 PMCID: PMC3921987 DOI: 10.1186/1746-6148-10-39] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/29/2014] [Indexed: 11/10/2022] Open
Abstract
Background The inability of current vaccines to provide effective protection against porcine reproductive and respiratory syndrome virus (PRRSV) infection is not fully understood. One of the reasons might be the presence of anti-idiotypic antibodies (Ab2s) to the envelope glycoprotein GP5 induced by PRRSV infection since our previous studies demonstrated the presence of auto-Ab2s (aAb2s) in pigs infected with PRRSV. To test this hypothesis, PRRSV negative piglets were injected with a monoclonal Ab2 (Mab2-5G2) and aAb2s that are specific for anti-GP5 antibody, vaccinated with the attenuated PRRSV vaccine CH-1R and then challenged with the highly pathogenic PRRSV HuN4 strain. The animals were evaluated for clinical signs, pathological changes of the thymus and lungs, viremia, levels of serum antibodies and cytokines. Results The piglets injected with Mab2-5G2 or aAb2, and who received the attenuated PRRSV vaccine CH-1R before challenge, produced high levels of anti-N antibodies, IL-2 and IL-4, but low levels of neutralizing antibodies. After PRRSV HuN4 challenge, the animals showed obvious clinical signs, including lung lesions, severe thymus atrophy and decreased production of IL-4 and higher level of viremia. Conclusion When anti-GP5 Ab2s are present, the use of attenuated PRRSV vaccine CH-1R against HP-PRRSV infection is not recommended. It can result in poor health status with pneumonia and thymus atrophy.
Collapse
|
29
|
Novel polysaccharide from Radix Cyathulae officinalis Kuan can improve immune response to ovalbumin in mice. Int J Biol Macromol 2014; 65:121-8. [PMID: 24418339 DOI: 10.1016/j.ijbiomac.2014.01.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/23/2013] [Accepted: 01/04/2014] [Indexed: 12/22/2022]
Abstract
This study was designed to investigate the effects of oral administration of the polysaccharide from the Radix Cyathulae officinalis Kuan (RCPS) for its adjuvant potential on the specific cellular and humoral immune responses in mice. In this study, our data demonstrated that oral administration of RCPS significantly enhanced the phagocytic capacity of peritoneal macrophage, splenocyte proliferation, the activity of natural killer (NK) cells and cytotoxic T lymphocytes (CTL) and OVA-specific IgG, IgG1, IgG2a, and IgG2b antibody titers. Furthermore, RCPS promoted the level of interleukin-2(IL-2), IFN-γ and IL-4 in CD4(+)T cells and level of IFN-γ in CD8(+)T cells. In addition, RCPS enhanced the expression of CD40(+), CD80(+) and CD86(+) on the dendritic cells (DCs). Importantly, RCPS down-regulated the frequency of CD4(+)CD25(+)Foxp3(+)Treg cells. Taken together, these results suggested that RCPS could increase both cellular and humoral immune responses via up-regulating DCs maturation, and suppressing Treg frequency.
Collapse
|