1
|
Udduttula A, Jakubovics N, Khan I, Pontiroli L, Rankin KS, Gentile P, Ferreira AM. Layer-by-Layer Coatings of Collagen-Hyaluronic acid Loaded with an Antibacterial Manuka Honey Bioactive Compound to Fight Metallic Implant Infections. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58119-58135. [PMID: 38055248 PMCID: PMC10739588 DOI: 10.1021/acsami.3c11910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023]
Abstract
Implant-associated severe infections can result in catastrophic implant failures; thus, advanced antibacterial coatings are needed to combat infections. This study focuses on harnessing nature-inspired self-assembly of extracellular matrix (ECM)-like coatings on Ti alloy with a combination of jellyfish-derived collagen (J-COLL) and hyaluronic acid (HA) using our customized automated hybrid layer-by-layer apparatus. To improve the anti-infection efficacy of coatings, we have incorporated a natural antibacterial agent methylglyoxal (MGO, a Manuka honey compound) in optimized multilayer coatings. The obtainment of MGO-loaded multilayer coatings was successfully assessed by profilometry, contact angle, attenuated total reflectance (ATR)-Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. In vitro degradation confirmed the controlled release activity of MGO with a range of concentrations from 0.90 to 2.38 mM up to 21 days. A bacterial cell culture study using Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epidermidis) confirmed that the MGO incorporated within layers 7 and 9 had a favorable effect on preventing bacterial growth and colonization on their surfaces. An in vitro cytocompatibility study confirmed that MGO agents included in the layers did not affect or reduce the cellular functionalities of L929 fibroblasts. In addition, MGO-loaded layers with Immortalized Mesenchymal Stem Cells (Y201 TERT-hMSCs) were found to favor the growth and differentiation of Y201 cells and promote calcium nodule formation. Overall, these surface coatings are promising candidates for delivering antimicrobial activity with bone-inducing functions for future bone tissue engineering applications.
Collapse
Affiliation(s)
- Anjaneyulu Udduttula
- School
of Engineering, Newcastle University, Newcastle Upon Tyne NE1
7RU, U.K.
- Centre
of Biomaterials, Cellular & Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, TN 632014, India
| | - Nicholas Jakubovics
- School
of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle
Upon Tyne NE1 7RU, U.K.
| | - Imran Khan
- Biomet
UK Healthcare Ltd, Stella Building, Windmill Hill Business Park, Swindon SN5 6NX, U.K.
| | - Lucia Pontiroli
- Biomet
UK Healthcare Ltd, Stella Building, Windmill Hill Business Park, Swindon SN5 6NX, U.K.
| | - Kenneth S. Rankin
- Translational
and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K.
| | - Piergiorgio Gentile
- School
of Engineering, Newcastle University, Newcastle Upon Tyne NE1
7RU, U.K.
| | - Ana M. Ferreira
- School
of Engineering, Newcastle University, Newcastle Upon Tyne NE1
7RU, U.K.
| |
Collapse
|
2
|
Mukherjee S, Das S, Bedi M, Vadupu L, Ball WB, Ghosh A. Methylglyoxal-mediated Gpd1 activation restores the mitochondrial defects in a yeast model of mitochondrial DNA depletion syndrome. Biochim Biophys Acta Gen Subj 2023; 1867:130328. [PMID: 36791826 DOI: 10.1016/j.bbagen.2023.130328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Human MPV17, an evolutionarily conserved mitochondrial inner-membrane channel protein, accounts for the tissue-specific mitochondrial DNA depletion syndrome. However, the precise molecular function of the MPV17 protein is still elusive. Previous studies showed that the mitochondrial morphology and cristae organization are severely disrupted in the MPV17 knockout cells from yeast, zebrafish, and mammalian tissues. As mitochondrial cristae morphology is strictly regulated by the membrane phospholipids composition, we measured mitochondrial membrane phospholipids (PLs) levels in yeast Saccharomyces cerevisiae MPV17 ortholog, SYM1 (Stress-inducible Yeast MPV17) deleted cells. We found that Sym1 knockout decreases the mitochondrial membrane PL, phosphatidyl ethanolamine (PE), and inhibits respiratory growth at 37 ̊C on rich media. Both the oxygen consumption rate and the steady state expressions of mitochondrial complex II and super-complexes are compromised. Apart from mitochondrial PE defect a significant depletion of mitochondrial phosphatidyl-choline (PC) was noticed in the sym1∆ cells grown on synthetic media at both 30 ̊C and 37 ̊C temperatures. Surprisingly, exogenous supplementation of methylglyoxal (MG), an intrinsic side product of glycolysis, rescues the respiratory growth of Sym1 deficient yeast cells. Using a combination of molecular biology and lipid biochemistry, we uncovered that MG simultaneously restores both the mitochondrial PE/PC levels and the respiration by enhancing cytosolic NAD-dependent glycerol-3-phosphate dehydrogenase 1 (Gpd1) enzymatic activity. Further, MG is incapable to restore respiratory growth of the sym1∆gpd1∆ double knockout cells. Thus, our work provides Gpd1 activation as a novel strategy for combating Sym1 deficiency and PC/PE defects.
Collapse
Affiliation(s)
- Soumyajit Mukherjee
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata Pin-700019, India
| | - Shubhojit Das
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata Pin-700019, India
| | - Minakshi Bedi
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata Pin-700019, India
| | - Lavanya Vadupu
- Department of the Biological Sciences, SRM University- AP, Andhra Pradesh Pin- 522240, India
| | - Writoban Basu Ball
- Department of the Biological Sciences, SRM University- AP, Andhra Pradesh Pin- 522240, India
| | - Alok Ghosh
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata Pin-700019, India.
| |
Collapse
|
3
|
Seong G, D’Angelo SP. New therapeutics for soft tissue sarcomas: Overview of current immunotherapy and future directions of soft tissue sarcomas. Front Oncol 2023; 13:1150765. [PMID: 37007160 PMCID: PMC10052453 DOI: 10.3389/fonc.2023.1150765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Soft tissue sarcoma is a rare and aggressive disease with a 40 to 50% metastasis rate. The limited efficacy of traditional approaches with surgery, radiation, and chemotherapy has prompted research in novel immunotherapy for soft tissue sarcoma. Immune checkpoint inhibitors such as anti-CTLA-4 and PD-1 therapies in STS have demonstrated histologic-specific responses. Some combinations of immunotherapy with chemotherapy, TKI, and radiation were effective. STS is considered a ‘cold’, non-inflamed tumor. Adoptive cell therapies are actively investigated in STS to enhance immune response. Genetically modified T-cell receptor therapy targeting cancer testis antigens such as NY-ESO-1 and MAGE-A4 demonstrated durable responses, especially in synovial sarcoma. Two early HER2-CAR T-cell trials have achieved stable disease in some patients. In the future, CAR-T cell therapies will find more specific targets in STS with a reliable response. Early recognition of T-cell induced cytokine release syndrome is crucial, which can be alleviated by immunosuppression such as steroids. Further understanding of the immune subtypes and biomarkers will promote the advancement of soft tissue sarcoma treatment.
Collapse
Affiliation(s)
- Gyuhee Seong
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
| | - Sandra P. D’Angelo
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, United States
- *Correspondence: Sandra P. D’Angelo,
| |
Collapse
|
4
|
Zhuikova Y, Zhuikov V, Varlamov V. Biocomposite Materials Based on Poly(3-hydroxybutyrate) and Chitosan: A Review. Polymers (Basel) 2022; 14:5549. [PMID: 36559916 PMCID: PMC9782520 DOI: 10.3390/polym14245549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
One of the important directions in the development of modern medical devices is the search and creation of new materials, both synthetic and natural, which can be more effective in their properties than previously used materials. Traditional materials such as metals, ceramics, and synthetic polymers used in medicine have certain drawbacks, such as insufficient biocompatibility and the emergence of an immune response from the body. Natural biopolymers have found applications in various fields of biology and medicine because they demonstrate a wide range of biological activity, biodegradability, and accessibility. This review first described the properties of the two most promising biopolymers belonging to the classes of polyhydroxyalkanoates and polysaccharides-polyhydroxybutyrate and chitosan. However, homopolymers also have some disadvantages, overcome which becomes possible by creating polymer composites. The article presents the existing methods of creating a composite of two polymers: copolymerization, electrospinning, and different ways of mixing, with a description of the properties of the resulting compositions. The development of polymer composites is a promising field of material sciences, which allows, based on the combination of existing substances, to develop of materials with significantly improved properties or to modify of the properties of each of their constituent components.
Collapse
Affiliation(s)
| | - Vsevolod Zhuikov
- Research Center of Biotechnology of the Russian Academy of Sciences 33, Bld. 2 Leninsky Ave, Moscow 119071, Russia
| | | |
Collapse
|
5
|
Mercatali L, Vanni S, Miserocchi G, Liverani C, Spadazzi C, Cocchi C, Calabrese C, Gurrieri L, Fausti V, Riva N, Genovese D, Lucarelli E, Focarete ML, Ibrahim T, Calabrò L, De Vita A. The emerging role of cancer nanotechnology in the panorama of sarcoma. Front Bioeng Biotechnol 2022; 10:953555. [PMID: 36324885 PMCID: PMC9618700 DOI: 10.3389/fbioe.2022.953555] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022] Open
Abstract
In the field of nanomedicine a multitude of nanovectors have been developed for cancer application. In this regard, a less exploited target is represented by connective tissue. Sarcoma lesions encompass a wide range of rare entities of mesenchymal origin affecting connective tissues. The extraordinary diversity and rarity of these mesenchymal tumors is reflected in their classification, grading and management which are still challenging. Although they include more than 70 histologic subtypes, the first line-treatment for advanced and metastatic sarcoma has remained unchanged in the last fifty years, excluding specific histotypes in which targeted therapy has emerged. The role of chemotherapy has not been completely elucidated and the outcomes are still very limited. At the beginning of the century, nano-sized particles clinically approved for other solid lesions were tested in these neoplasms but the results were anecdotal and the clinical benefit was not substantial. Recently, a new nanosystem formulation NBTXR3 for the treatment of sarcoma has landed in a phase 2-3 trial. The preliminary results are encouraging and could open new avenues for research in nanotechnology. This review provides an update on the recent advancements in the field of nanomedicine for sarcoma. In this regard, preclinical evidence especially focusing on the development of smart materials and drug delivery systems will be summarized. Moreover, the sarcoma patient management exploiting nanotechnology products will be summed up. Finally, an overlook on future perspectives will be provided.
Collapse
Affiliation(s)
- Laura Mercatali
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Silvia Vanni
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giacomo Miserocchi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Liverani
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Spadazzi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Claudia Cocchi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Calabrese
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Lorena Gurrieri
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Valentina Fausti
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Nada Riva
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Damiano Genovese
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Enrico Lucarelli
- Osteoncologia, Sarcomi dell’osso e dei tessuti molli, e Terapie Innovative, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Toni Ibrahim
- Osteoncologia, Sarcomi dell’osso e dei tessuti molli, e Terapie Innovative, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luana Calabrò
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Alessandro De Vita
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- *Correspondence: Alessandro De Vita,
| |
Collapse
|
6
|
Xia Y, Wang D, Liu D, Su J, Jin Y, Wang D, Han B, Jiang Z, Liu B. Applications of Chitosan and its Derivatives in Skin and Soft Tissue Diseases. Front Bioeng Biotechnol 2022; 10:894667. [PMID: 35586556 PMCID: PMC9108203 DOI: 10.3389/fbioe.2022.894667] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022] Open
Abstract
Chitosan and its derivatives are bioactive molecules that have recently been used in various fields, especially in the medical field. The antibacterial, antitumor, and immunomodulatory properties of chitosan have been extensively studied. Chitosan can be used as a drug-delivery carrier in the form of hydrogels, sponges, microspheres, nanoparticles, and thin films to treat diseases, especially those of the skin and soft tissue such as injuries and lesions of the skin, muscles, blood vessels, and nerves. Chitosan can prevent and also treat soft tissue diseases by exerting diverse biological effects such as antibacterial, antitumor, antioxidant, and tissue regeneration effects. Owing to its antitumor properties, chitosan can be used as a targeted therapy to treat soft tissue tumors. Moreover, owing to its antibacterial and antioxidant properties, chitosan can be used in the prevention and treatment of soft tissue infections. Chitosan can stop the bleeding of open wounds by promoting platelet agglutination. It can also promote the regeneration of soft tissues such as the skin, muscles, and nerves. Drug-delivery carriers containing chitosan can be used as wound dressings to promote wound healing. This review summarizes the structure and biological characteristics of chitosan and its derivatives. The recent breakthroughs and future trends of chitosan and its derivatives in therapeutic effects and drug delivery functions including anti-infection, promotion of wound healing, tissue regeneration and anticancer on soft tissue diseases are elaborated.
Collapse
Affiliation(s)
- Yidan Xia
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Da Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jiayang Su
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ye Jin
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Duo Wang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Beibei Han
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China,*Correspondence: Ziping Jiang, ; Bin Liu,
| | - Bin Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China,*Correspondence: Ziping Jiang, ; Bin Liu,
| |
Collapse
|
7
|
Ding J, Guo Y. Recent Advances in Chitosan and its Derivatives in Cancer Treatment. Front Pharmacol 2022; 13:888740. [PMID: 35694245 PMCID: PMC9178414 DOI: 10.3389/fphar.2022.888740] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer has become a main public health issue globally. The conventional treatment measures for cancer include surgery, radiotherapy and chemotherapy. Among the various available treatment measures, chemotherapy is still one of the most important treatments for most cancer patients. However, chemotherapy for most cancers still faces many problems associated with a lot of adverse effects, which limit its therapeutic potency, low survival quality and discount cancer prognosis. In order to decrease these side effects and improve treatment effectiveness and patient’s compliance, more targeted treatments are needed. Sustainable and controlled deliveries of drugs with controllable toxicities are expected to address these hurdles. Chitosan is the second most abundant natural polysaccharide, which has excellent biocompatibility and notable antitumor activity. Its biodegradability, biocompatibility, biodistribution, nontoxicity and immunogenicity free have made chitosan become a widely used polymer in the pharmacology, especially in oncotherapy. Here, we make a brief review of the main achievements in chitosan and its derivatives in pharmacology with a special focus on their agents delivery applications, immunomodulation, signal pathway modulation and antitumor activity to highlight their role in cancer treatment. Despite a large number of successful studies, the commercialization of chitosan copolymers is still a big challenge. The further development of polymerization technology may satisfy the unmet medical needs.
Collapse
Affiliation(s)
- Jingxian Ding
- Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, China
| | - Yonghong Guo
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Yonghong Guo,
| |
Collapse
|
8
|
Zhang X, Schalkwijk CG, Wouters K. Immunometabolism and the modulation of immune responses and host defense: A role for methylglyoxal? Biochim Biophys Acta Mol Basis Dis 2022; 1868:166425. [DOI: 10.1016/j.bbadis.2022.166425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022]
|
9
|
Lima BV, Oliveira MJ, Barbosa MA, Gonçalves RM, Castro F. Immunomodulatory potential of chitosan-based materials for cancer therapy: a systematic review of in vitro, in vivo and clinical studies. Biomater Sci 2021; 9:3209-3227. [PMID: 33949372 DOI: 10.1039/d0bm01984d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chitosan (Ch) has recently been used in different studies as a vaccine adjuvant with an ability to modulate the tumor microenvironment (TME). This systematic review aims to elucidate the added value of using Ch-based therapies for immunotherapeutic strategies in cancer treatment, through the exploration of different Ch-based formulations, their capacity to modulate immune cells in vitro and in vivo, and their translational potential for clinical settings. A systematic review was conducted on PubMed, following both inclusion and exclusion steps. Original articles which focused on the immunomodulatory role of Ch-based formulations in the TME were included, as well as its usage as a delivery vehicle for other immunomodulatory molecules. This review illustrates the added value of Ch-based systems to reshape the TME, through the modulation of immune cells using different Ch formulations, namely solutions, films, gels, microneedles and nanoparticles. Generally, Ch-based formulations increase the recruitment and proliferation of cells associated with pro-inflammatory abilities and decrease cells which exert anti-inflammatory activities. These effects correlated with a decreased tumor weight, reduced metastases, reversion of the immunosuppressive TME and increased survival in vivo. Overall, Ch-based formulations present the potential for immunotherapy in cancer. Nevertheless, clinical translation remains challenging, since the majority of the studies use Ch in formulations with other components, implicating that some of the observed effects could result from the combination of the individual effects. More studies on the use of different Ch-based formulations, complementary to standardization and disclosure of the Ch properties used are required to improve the immunomodulatory effects of Ch-based formulations in cancer.
Collapse
Affiliation(s)
- Beatriz V Lima
- i3S - Institute of Research and Innovation in Health, University of Porto, Porto, Portugal. and INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal and ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Maria J Oliveira
- i3S - Institute of Research and Innovation in Health, University of Porto, Porto, Portugal. and INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal and ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Mário A Barbosa
- i3S - Institute of Research and Innovation in Health, University of Porto, Porto, Portugal. and INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal and ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Raquel M Gonçalves
- i3S - Institute of Research and Innovation in Health, University of Porto, Porto, Portugal. and INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal and ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Flávia Castro
- i3S - Institute of Research and Innovation in Health, University of Porto, Porto, Portugal. and INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
10
|
Li Z, Bratlie KM. The Influence of Polysaccharides-Based Material on Macrophage Phenotypes. Macromol Biosci 2021; 21:e2100031. [PMID: 33969643 DOI: 10.1002/mabi.202100031] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 02/03/2023]
Abstract
Macrophage polarization is a key factor in determining the success of implanted tissue engineering scaffolds. Polysaccharides (derived from plants, animals, and microorganisms) are known to modulate macrophage phenotypes by recognizing cell membrane receptors. Numerous studies have developed polysaccharide-based materials into functional biomaterial substrates for tissue regeneration and pharmaceutical application due to their immunostimulatory activities and anti-inflammatory response. They are used as hydrogel substrates, surface coatings, and drug delivery carriers. In addition to their innate immunological functions, the newly endowed physical and chemical properties, including substrate modulus, pore size/porosity, surface binding chemistry, and the mole ratio of polysaccharides in hybrid materials may regulate macrophage phenotypes more precisely. Growing evidence indicates that the sulfation pattern of glycosaminoglycans and proteoglycans expressed on polarized macrophages leads to the changes in protein binding, which may alter macrophage phenotype and influence the immune response. A comprehensive understanding of how different types of polysaccharide-based materials alter macrophage phenotypic changes can be beneficial to predict transplantation/implantation outcomes. This review focuses on recent advances in promoting wound healing and balancing macrophage phenotypes using polysaccharide-based substrates/coatings and new directions to address the limitations in the current understanding of macrophage responses to polysaccharides.
Collapse
Affiliation(s)
- Zhuqing Li
- Department of Materials Science & Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Kaitlin M Bratlie
- Department of Materials Science & Engineering, Iowa State University, Ames, IA, 50011, USA.,Department of Chemical & Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
11
|
Mushtaq A, Li L, A A, Grøndahl L. Chitosan Nanomedicine in Cancer Therapy: Targeted Delivery and Cellular Uptake. Macromol Biosci 2021; 21:e2100005. [PMID: 33738977 DOI: 10.1002/mabi.202100005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/22/2021] [Indexed: 12/11/2022]
Abstract
Nanomedicine has gained much attention for the management and treatment of cancers due to the distinctive physicochemical properties of the drug-loaded particles. Chitosan's cationic nature is attractive for the development of such particles for drug delivery, transfection, and controlled release. The particle properties can be improved by modification of the polymer or the particle themselves. The physicochemical properties of chitosan particles are analyzed in 126 recent studies, which allows to highlight their impact on passive and active targeted drug delivery, cellular uptake, and tumor growth inhibition (TGI). From 2012 to 2019, out of 40 in vivo studies, only 4 studies are found reporting a reduction in tumor size by using chitosan particles while all other studies reported tumor growth inhibition relative to controls. A total of 23 studies are analyzed for cellular uptake including 12 studies reporting cellular uptake mechanisms. Understanding and exploiting the processes involved in targeted delivery, endocytosis, and exocytosis by controlling the physicochemical properties of chitosan particles are important for the development of safe and efficient nanomedicine. It is concluded based on the recent literature available on chitosan particles that combination therapies can play a pivotal role in transformation of chitosan nanomedicine from bench to bedside.
Collapse
Affiliation(s)
- Asim Mushtaq
- School of Chemistry and Molecular Biosciences, The University of Queensland, Building 68, Cooper Road, Brisbane, Queensland, 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Building 75, Corner of College and Cooper Road, Brisbane, Queensland, 4072, Australia
| | - Anitha A
- School of Chemistry and Molecular Biosciences, The University of Queensland, Building 68, Cooper Road, Brisbane, Queensland, 4072, Australia
| | - Lisbeth Grøndahl
- School of Chemistry and Molecular Biosciences, The University of Queensland, Building 68, Cooper Road, Brisbane, Queensland, 4072, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Building 75, Corner of College and Cooper Road, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
12
|
Eslahi M, Dana PM, Asemi Z, Hallajzadeh J, Mansournia MA, Yousefi B. The effects of chitosan-based materials on glioma: Recent advances in its applications for diagnosis and treatment. Int J Biol Macromol 2020; 168:124-129. [PMID: 33275978 DOI: 10.1016/j.ijbiomac.2020.11.180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/05/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022]
Abstract
Glioma is known as the most common primary brain tumor occurring in adolescents and is considered as a lethal disease worldwide. Despite the advancements in presently available therapeutic approaches (i.e. radiation therapy and chemotherapy), the rate of amelioration in glioma patients is still low. In this regard, it seems that there is a need for reconsidering and enhancing current therapies and/or discovering novel therapeutic platforms. Chitosan is a natural polysaccharide with several beneficial characteristics, including biocompatibility, biodegradability, and low toxicity. Without causing toxic effects on healthy cells, chitosan nanoparticles are attractive targets in cancer therapy which lead to the sustained release and enhanced internalization of chemotherapeutic drugs as well as higher cytotoxicity for cancer cells. Hence, these properties turn it into a suitable candidate for the treatment of various cancers, including glioma. In the viewpoint of glioma, cancer inhibition is possible through targeting glioma-associated signaling pathways and molecules such as MMP-9, VEGF, TRAIL and nuclear factor-κB by chitosan and its derivatives. Moreover, it has been acknowledged that chitosan and its derivatives can be applied as a delivery system for carrying a diverse range of therapeutic agents to the tumor site. Besides the anti-glioma effects of chitosan and its derivatives, these molecules can be utilized for culturing glioma cancer cells; providing a better understanding of glioma pathogenesis. Furthermore, it is documented that 3D chitosan scaffolds are potential targets that offer advantageous drug screening platforms. Herein, we summarized the anti-glioma effects of chitosan and also its utilization as drug delivery systems in the treatment of glioma.
Collapse
Affiliation(s)
- Masoumeh Eslahi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran and Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
13
|
Mohabati Mobarez A, Soleimani N, Esmaeili SA, Farhangi B. Nanoparticle-based immunotherapy of breast cancer using recombinant Helicobacter pylori proteins. Eur J Pharm Biopharm 2020; 155:69-76. [PMID: 32798667 DOI: 10.1016/j.ejpb.2020.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/24/2020] [Accepted: 08/10/2020] [Indexed: 11/16/2022]
Abstract
Breast cancer is the most common cancer in women worldwide and is associated with substantial medical and economic burden. We report the development of a hybrid immunotherapeutic system based on recombinant Nap protein from Helicobacter pylori (HP-Nap) for the treatment of breast tumors. Chitosan nanoparticles with pseudo-spherical morphology and positive zeta potential were synthesized as carriers for HP-Nap. In vitro study was performed on mouse breast cancer cell line (4T1) and human breast cancer cell lines (MCF7). In vivo study was done on 4T1 tomural mice. TUNEL assay and real time PCR test were performed on tumor mice receiving the nanoparticle treatment. The nanoparticle-protein complex induced apoptosis in vitro in cultured breast cancer cells. In-vivo studies on inbred, female BALB/c mice confirmed the shrinkage of tumor mass after administration of the nanoparticle complex containing HP-Nap. The TUNEL assay further confirmed apoptosis in extracted mouse breast cancer cells. A decrease in the expression of VEGF and MMP9 genes was observed in 4T1 cells as shown by real time PCR. Our data suggesting that the therapeutic nanocomplex may have led to decreased tumor growth in mice through changing the production rate of cytokines and increasing tumoricidal activities of the immune system.
Collapse
Affiliation(s)
- Ashraf Mohabati Mobarez
- Department of Bacteriology, Faculty of Medical Science, Tarbiat-Modares University, Tehran, Iran.
| | - Neda Soleimani
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Baharak Farhangi
- Department of Molecular Genetics, Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Khan MA, Khan A, Khan SH, Azam M, Khan MMU, Khalilullah H, Younus H. Coadministration of liposomal methylglyoxal increases the activity of amphotericin B against Candida albicans in leukopoenic mice. J Drug Target 2020; 29:78-87. [PMID: 32723117 DOI: 10.1080/1061186x.2020.1803333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, we investigated the therapeutic efficacy of a combination of liposomal amphotericin B (Lip-Amp B) and Methylglyoxal (Lip-MG) against Candida albicans in the leukopoenic mice. The antifungal efficacy of Lip-Amp B or Lip-MG or a combination of Lip-Amp B and Lip-MG was evaluated by the analysis of the survival rate and the fungal load in the treated mice. The immune-stimulatory effect of Lip-MG on macrophages was evaluated by analysing the secretion of proinflammatory cytokines. C. albicans infected mice treated at the doses of 1 and 2 mg/kg of Lip-Amp B showed 20% and 50% survival rates, respectively. Whereas the mice treated with free Amp B at the same doses died within 40 days of treatment. Interestingly, C. albicans infected mice treated with a combination of Lip-Amp B and Lip-MG had 70% survival rate on day 40 postinfection. Moreover, treatment of macrophages with Lip-MG increased their fungicidal activity and the secretion of proinflammatory cytokines, including TNF-α and IL-1β. These findings suggested that co-treatment with Lip-Amp B and Lip-MG had a synergistic effect and could be effective against C. albicans in immunocompromised subjects.
Collapse
Affiliation(s)
- Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Shaheer Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mohd Azam
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Mohd Masih Uzzaman Khan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Saudi Arabia
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Saudi Arabia
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
15
|
Bezold V, Rosenstock P, Scheffler J, Geyer H, Horstkorte R, Bork K. Glycation of macrophages induces expression of pro-inflammatory cytokines and reduces phagocytic efficiency. Aging (Albany NY) 2020; 11:5258-5275. [PMID: 31386629 PMCID: PMC6682540 DOI: 10.18632/aging.102123] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/21/2019] [Indexed: 02/06/2023]
Abstract
Glycation and the accumulation of advanced glycation end products (AGEs) are known to occur during normal aging but also in the progression of several diseases, such as diabetes. Diabetes type II and aging both lead to impaired wound healing. It has been demonstrated that macrophages play an important role in impaired wound healing, however, the underlying causes remain unknown. Elevated blood glucose levels as well as elevated methylglyoxal (MGO) levels in diabetic patients result in glycation and increase of AGEs. We used MGO to investigate the influence of glycation and AGEs on macrophages. We could show that glycation, but not treatment with AGE-modified serum proteins, increased expression of pro-inflammatory cytokines interleukin 1β (IL-1β) and IL-8 but also affected IL-10 and TNF-α expression, resulting in increased inflammation. At the same time, glycation reduced phagocytic efficiency and led to impaired clearance rates of invading microbes and cellular debris. Our data suggest that glycation contributes to changes of macrophage activity and cytokine expression and therefore could support the understanding of disturbed wound healing during aging and diabetes.
Collapse
Affiliation(s)
- Veronika Bezold
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Philip Rosenstock
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Jonas Scheffler
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Henriette Geyer
- Octapharma Biopharmaceuticals GmbH, Molecular Biochemistry, Berlin, Germany
| | - Rüdiger Horstkorte
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Kaya Bork
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
16
|
Khan SH, Younus H, Allemailem KS, Almatroudi A, Alrumaihi F, Alruwetei AM, Alsahli MA, Khan A, Khan MA. Potential of Methylglyoxal-Conjugated Chitosan Nanoparticles in Treatment of Fluconazole-Resistant Candida albicans Infection in a Murine Model. Int J Nanomedicine 2020; 15:3681-3693. [PMID: 32547022 PMCID: PMC7261666 DOI: 10.2147/ijn.s249625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Background Fungal infections are becoming more prevalent and threatening because of the continuous emergence of azole-resistant fungal infections. The present study was aimed to assess the activity of free Methylglyoxal (MG) or MG-conjugated chitosan nanoparticles (MGCN) against fluconazole-resistant Candida albicans. Materials and Methods A novel formulation of MGCN was prepared and characterized to determine their size, shape and polydispersity index. Moreover, the efficacy of fluconazole or MG or MGCN was determined against intracellular C. albicans in macrophages and the systematic candidiasis in a murine model. The safety of MG or MGCN was tested in mice by analyzing the levels of hepatic and renal toxicity parameters. Results Candida albicans did not respond to fluconazole, even at the highest dose of 20 mg/kg, whereas MG and MGCN effectively eliminated C. albicans from the macrophages and infected mice. Mice in the group treated with MGCN at a dose of 10 mg/kg exhibited a 90% survival rate and showed the lowest fungal load in the kidney, whereas the mice treated with free MG at the same dose exhibited 50% survival rate. Moreover, the administration of MG or MGCN did not induce any liver and kidney toxicity in the treated mice. Conclusion The findings of the present work suggest that MGCN may be proved a promising therapeutic formulation to treat azole-resistant C. albicans infections.
Collapse
Affiliation(s)
- Shaheer Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia
| | - Abdulmohsen M Alruwetei
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraidah, 51452, Saudi Arabia
| |
Collapse
|
17
|
Chen T, Hu Y, Zhou J, Hu S, Xiao X, Liu X, Su J, Yuan G. Chitosan reduces the protective effects of IFN-γ2 on grass carp (Ctenopharyngodon idella) against Flavobacterium columnare infection due to excessive inflammation. FISH & SHELLFISH IMMUNOLOGY 2019; 95:305-313. [PMID: 31654768 DOI: 10.1016/j.fsi.2019.10.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/27/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
IFN-γ is an immunomodulatory factor that has been extensively studied in phenotypes of mammalian macrophages and multifarious inflammatory responses. Usually these studies relied on the classical synergistic activation of IFN-γ with LPS (LipoPolySaccharides). However, non-mammalian vertebrates, and in particular fish, are not very susceptible to LPS, and easily acquire tolerance upon repeated exposure. Therefore, for studies in fish, it is necessary to replace the classical IFN-γ+LPS immune system activation method, and find other pathogen-associated molecular patterns (PAMPs) capable of stimulating the fish immune system. Here we used an important farmed fish species, Ctenopharyngodon idella, to study the effects of CiIFN-γ2 (C. idella IFN-γ2) and chitosan (CS) on its immune responses in vivo and vitro. Our results showed that the combination of CS and CiIFN-γ2 significantly enhanced the activation of macrophages, with an activation intensity even stronger than in CiIFN-γ2 and CiIFN-γ2+LPS groups. In vivo, injection of CiIFN-γ2 could improve the survival rate of C. idella infected with Flavobacterium columnare, while a combined injection of CiIFN-γ2+CS only improved protection in the early stages after the challenge. Notably, both injections reduced the bacterial load of viscera and improved the levels of several plasma parameters (TP, T-SOD, LA, and NO). However, a dramatic up-regulation of inflammatory factors, severe inflammatory damage in the intestines and hepatopancreas, and increased mortality in late stages of infection were observed in the CiIFN-γ2+CS group. Our findings provide new insights into the macrophage activation phenotypes and inflammatory responses in fish. They also demonstrate that CiIFN-γ2 could be used as a potential immunopotentiator, but not in combination with CS. This suggests that selection of immunological adjuvants should be carefully tested experimentally.
Collapse
Affiliation(s)
- Tong Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yazhen Hu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China
| | - Jiancheng Zhou
- Wuhan DBN Aquaculture Technology Co. LTD, Wuhan, Hubei, 430090, China
| | - Shengbiao Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xun Xiao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
18
|
Torres FG, Troncoso OP, Pisani A, Gatto F, Bardi G. Natural Polysaccharide Nanomaterials: An Overview of Their Immunological Properties. Int J Mol Sci 2019; 20:E5092. [PMID: 31615111 PMCID: PMC6834193 DOI: 10.3390/ijms20205092] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/08/2019] [Accepted: 10/12/2019] [Indexed: 12/20/2022] Open
Abstract
Natural occurring polymers, or biopolymers, represent a huge part of our planet biomass. They are formed by long chains of monomers of the same type or a combination of different ones. Polysaccharides are biopolymers characterized by complex secondary structures performing several roles in plants, animals, and microorganisms. Because of their versatility and biodegradability, some of them are extensively used for packaging, food, pharmaceutical, and biomedical industries as sustainable and renewable materials. In the recent years, their manipulation at the nanometric scale enormously increased the range of potential applications, boosting an interdisciplinary research attempt to exploit all the potential advantages of nanostructured polysaccharides. Biomedical investigation mainly focused on nano-objects aimed at drug delivery, tissue repair, and vaccine adjuvants. The achievement of all these applications requires the deep knowledge of polysaccharide nanomaterials' interactions with the immune system, which orchestrates the biological response to any foreign substance entering the body. In the present manuscript we focused on natural polysaccharides of high commercial importance, namely, starch, cellulose, chitin, and its deacetylated form chitosan, as well as the seaweed-derived carrageenan and alginate. We reviewed the available information on their biocompatibility, highlighting the importance of their physicochemical feature at the nanoscale for the modulation of the immune system.
Collapse
Affiliation(s)
- Fernando G Torres
- Department of Mechanical Engineering, Pontificia Universidad Catolica del Peru, Av. Universitaria 1801, Lima 32, Peru.
| | - Omar P Troncoso
- Department of Mechanical Engineering, Pontificia Universidad Catolica del Peru, Av. Universitaria 1801, Lima 32, Peru.
| | - Anissa Pisani
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31,16146 Genova, Italy.
| | - Francesca Gatto
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy.
| | - Giuseppe Bardi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
19
|
Farhadihosseinabadi B, Zarebkohan A, Eftekhary M, Heiat M, Moosazadeh Moghaddam M, Gholipourmalekabadi M. Crosstalk between chitosan and cell signaling pathways. Cell Mol Life Sci 2019; 76:2697-2718. [PMID: 31030227 PMCID: PMC11105701 DOI: 10.1007/s00018-019-03107-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/30/2019] [Accepted: 04/15/2019] [Indexed: 12/25/2022]
Abstract
The field of tissue engineering (TE) experiences its most exciting time in the current decade. Recent progresses in TE have made it able to translate into clinical applications. To regenerate damaged tissues, TE uses biomaterial scaffolds to prepare a suitable backbone for tissue regeneration. It is well proven that the cell-biomaterial crosstalk impacts tremendously on cell biological activities such as differentiation, proliferation, migration, and others. Clarification of exact biological effects and mechanisms of a certain material on various cell types promises to have a profound impact on clinical applications of TE. Chitosan (CS) is one of the most commonly used biomaterials with many promising characteristics such as biocompatibility, antibacterial activity, biodegradability, and others. In this review, we discuss crosstalk between CS and various cell types to provide a roadmap for more effective applications of this polymer for future uses in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Behrouz Farhadihosseinabadi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Eftekhary
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Chang SH, Lin YY, Wu GJ, Huang CH, Tsai GJ. Effect of chitosan molecular weight on anti-inflammatory activity in the RAW 264.7 macrophage model. Int J Biol Macromol 2019; 131:167-175. [DOI: 10.1016/j.ijbiomac.2019.02.066] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/02/2019] [Accepted: 02/11/2019] [Indexed: 02/08/2023]
|
21
|
Chang SH, Wu GJ, Wu CH, Huang CH, Tsai GJ. Oral administration with chitosan hydrolytic products modulates mitogen-induced and antigen-specific immune responses in BALB/c mice. Int J Biol Macromol 2019; 131:158-166. [DOI: 10.1016/j.ijbiomac.2019.02.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/22/2019] [Accepted: 02/11/2019] [Indexed: 01/15/2023]
|
22
|
Saravanan S, Vimalraj S, Thanikaivelan P, Banudevi S, Manivasagam G. A review on injectable chitosan/beta glycerophosphate hydrogels for bone tissue regeneration. Int J Biol Macromol 2019; 121:38-54. [DOI: 10.1016/j.ijbiomac.2018.10.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/20/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023]
|
23
|
Ramachandra Bhat L, Vedantham S, Krishnan UM, Rayappan JBB. A non-enzymatic two step catalytic reduction of methylglyoxal by nanostructured V 2 O 5 modified electrode. Biosens Bioelectron 2018; 103:143-150. [DOI: 10.1016/j.bios.2017.12.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 01/25/2023]
|
24
|
Bellahcène A, Nokin MJ, Castronovo V, Schalkwijk C. Methylglyoxal-derived stress: An emerging biological factor involved in the onset and progression of cancer. Semin Cancer Biol 2018; 49:64-74. [DOI: 10.1016/j.semcancer.2017.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023]
|
25
|
Ahmad S, Akhter F, Shahab U, Rafi Z, Khan MS, Nabi R, Khan MS, Ahmad K, Ashraf JM. Do all roads lead to the Rome? The glycation perspective! Semin Cancer Biol 2017; 49:9-19. [PMID: 29113952 DOI: 10.1016/j.semcancer.2017.10.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022]
Abstract
Oxidative, carbonyl, and glycative stress have gained substantial attention recently for their alleged influence on cancer progression. Oxidative stress can trigger variable transcription factors, such as nuclear factor erythroid-2-related factor (Nrf2), nuclear factor kappa B (NF-κB), protein-53 (p-53), activating protein-1 (AP-1), hypoxia-inducible factor-1α (HIF-1α), β-catenin/Wnt and peroxisome proliferator-activated receptor-γ (PPAR-γ). Activated transcription factors can lead to approximately 500 different alterations in gene expression, and can alter expression patterns of inflammatory cytokines, growth factors, regulatory cell cycle molecules, and anti-inflammatory molecules. These alterations of gene expression can induce a normal cell to become a tumor cell. Glycative stress resulting from advanced glycation end products (AGEs) and reactive dicarbonyls can significantly affect cancer progression. AGEs are fashioned from the multifaceted chemical reaction of reducing sugars with a compound containing an amino group. AGEs bind to and trigger the receptor for AGEs (RAGE) through AGE-RAGE interaction, which is a major modulator of inflammation allied tumors. Dicarbonyls like, GO (glyoxal), MG (methylglyoxal) and 3-DG (3-deoxyglucosone) fashioned throughout lipid peroxidation, glycolysis, and protein degradation are viewed as key precursors of AGEs. These dicarbonyls lead to the carbonyl stress in living organisms, possibly resulting in carbonyl impairment of proteins, carbohydrates, DNA, and lipoproteins. The damage caused by carbonyls results in numerous lesions, some of which are involved in cancer pathogenesis. In this review, the effects of oxidative, carbonyl and glycative stress on cancer initiation and progression are thoroughly discussed, including probable signaling pathways and the effects on tumorigenesis.
Collapse
Affiliation(s)
- Saheem Ahmad
- IIRC-1 Laboratory of Glycation Biology and Metabolic Disorders, Integral University, Lucknow, India; Department of Biosciences, Integral University, Lucknow, India.
| | - Firoz Akhter
- IIRC-1 Laboratory of Glycation Biology and Metabolic Disorders, Integral University, Lucknow, India; Department of Pharmacology and Toxicology, Higuchi Biosciences Center, University of Kansas, KS, USA.
| | - Uzma Shahab
- Department of Biochemistry, King George Medical University, Lucknow, India
| | - Zeeshan Rafi
- Department of Bioengineering, Integral University, Lucknow, India
| | - Mohd Sajid Khan
- Department of Biosciences, Integral University, Lucknow, India
| | - Rabia Nabi
- Department of Biosciences, Integral University, Lucknow, India
| | | | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of South Korea
| | | |
Collapse
|
26
|
Chen Y, Fang L, Li G, Zhang J, Li C, Ma M, Guan C, Bai F, Lyu J, Meng QH. Synergistic inhibition of colon cancer growth by the combination of methylglyoxal and silencing of glyoxalase I mediated by the STAT1 pathway. Oncotarget 2017; 8:54838-54857. [PMID: 28903386 PMCID: PMC5589625 DOI: 10.18632/oncotarget.18601] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/31/2017] [Indexed: 12/31/2022] Open
Abstract
Methylglyoxal (MG), an extremely reactive glucose metabolite, exhibits antitumor activity. Glyoxalase I (GLOI), which catalyzes MG metabolism, is associated with the progression of human malignancies. While the roles of MG or GLOI have been demonstrated in some types of cancer, their effects in colon cancer and the mechanisms underlying these effects remain largely unknown. For this study, MG and GLOI levels were manipulated in colon cancer cells and the effects on their viability, proliferation, apoptosis, migration, and invasion in vitro were quantified by Cell Counting Kit-8, colony formation assay, flow cytometry, and transwell assays. The expression levels of STAT1 pathway–associated proteins and mRNAs in these cells were quantified by western blot and qRT-PCR, respectively. The antitumor effects of MG and silencing of GLOI were investigated in vivo in a SW620 colon cancer xenograft model in BALB/c nude mice. Our findings demonstrate that MG in combination with silencing of GLOI synergistically inhibited the cancer cells’ proliferation, colony formation, migration, and invasion and induced apoptosis in vitro compared with the controls. Furthermore, these treatments up-regulated STAT1 and Bax while down-regulating Bcl-2 in vitro. MG treatment alone or in combination with silencing of GLOI also reduced the growth of the SW620 tumors in mice by up-regulation of STAT1 and Bax and down-regulation of Bcl-2. Taken together, our findings suggest that MG in combination with silencing of GLOI merits further evaluation as a targeted therapeutic strategy for colon cancer.
Collapse
Affiliation(s)
- Yuan Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lei Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Gefei Li
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiali Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Changxi Li
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mengni Ma
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chen Guan
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fumao Bai
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qing H Meng
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
27
|
Liu L, Xin Y, Liu J, Zhang E, Li W. INHIBITORY EFFECT OF CHITOSAN OLIGOSACCHARIDE ON HUMAN HEPATOMA CELLS IN VITRO. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017. [PMID: 28638890 PMCID: PMC5471475 DOI: 10.21010/ajtcam.v14i4.30] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: Chitosan oligosaccharide, the degradation products of chitin, was reported to have a wide range of physiological functions and biological activities. In this study, we explored the inhibitory effect of Chitosan oligosaccharide on human hepatoma cells Materials and Methods: MTT assay was applied to detect cell viability of the human hepatoma cells treated with Chitosan oligosaccharide. Flow cytometric analysis was used to investigate the apoptosis of the human hepatoma cells treated with Chitosan oligosaccharide. We employed western blot to investigate the underlying mechanisms involved in the apoptosis. Results: Our data indicated that chitosan oligosaccharide dose-dependently inhibited the growth of hepatoma cells and induced apoptosis. On the molecular level, chitosan oligosaccharide decreased Bcl-2 and increased Caspase-3 expression which may be related to the apoptosis of hepatoma cells. Conclusion: Our results provide an experimental basis for the clinical development of Chitosan oligosaccharide as a novel anti-hepatoma drug.
Collapse
Affiliation(s)
- Likun Liu
- Department of Biotechnology, Dalian Medical University, Dalian, P.R.China 116044
| | - Yi Xin
- Department of Biotechnology, Dalian Medical University, Dalian, P.R.China 116044
| | - Jia Liu
- Department of Biotechnology, Dalian Medical University, Dalian, P.R.China 116044
| | - Ershao Zhang
- Department of Biotechnology, Dalian Medical University, Dalian, P.R.China 116044
| | - Weiling Li
- Department of Biotechnology, Dalian Medical University, Dalian, P.R.China 116044
| |
Collapse
|
28
|
Roy A, Ahir M, Bhattacharya S, Parida PK, Adhikary A, Jana K, Ray M. Induction of mitochondrial apoptotic pathway in triple negative breast carcinoma cells by methylglyoxal via generation of reactive oxygen species. Mol Carcinog 2017; 56:2086-2103. [PMID: 28418078 DOI: 10.1002/mc.22665] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/14/2017] [Accepted: 04/13/2017] [Indexed: 12/21/2022]
Abstract
Triple negative breast cancer (TNBC) tends to form aggressive tumors associated with high mortality and morbidity which urge the need for development of new therapeutic strategies. Recently, the normal metabolite Methylglyoxal (MG) has been documented for its anti-proliferative activity against human breast cancer. However, the mode of action of MG against TNBC remains open to question. In our study, we investigated the anticancer activity of MG in MDA MB 231 and 4T1 TNBC cell lines and elucidated the underlying mechanisms. MG dose-dependently caused cell death, induced apoptosis, and generated ROS in both the TNBC cell lines. Furthermore, such effects were attenuated in presence of ROS scavenger N-Acetyl cysteine. MG triggered mitochondrial cytochrome c release in the cytosol and up-regulated Bax while down-regulated anti-apoptotic protein Bcl-2. Additionally, MG treatment down-regulated phospho-akt and inhibited the nuclear translocation of the p65 subunit of NF-κB. MG exhibited a tumor suppressive effect in BALB/c mouse 4T1 breast tumor model as well. The cytotoxic effect was studied using MTT assay. Apoptosis, ROS generation, and mitochondrial dysfunction was evaluated by flow cytometry as well as fluorescence microscopy. Western blot assay was performed to analyze proteins responsible for apoptosis. This study demonstrated MG as a potent anticancer agent against TNBC both in vitro and in vivo. The findings will furnish fresh insights into the treatment of this subgroup of breast cancer.
Collapse
Affiliation(s)
- Anirban Roy
- Department of Biophysics, Bose Institute, Kolkata, West Bengal, India
| | - Manisha Ahir
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, West Bengal, India
| | - Saurav Bhattacharya
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, West Bengal, India
| | | | - Arghya Adhikary
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, West Bengal, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Manju Ray
- Department of Biophysics, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
29
|
Boddupalli A, Zhu L, Bratlie KM. Methods for Implant Acceptance and Wound Healing: Material Selection and Implant Location Modulate Macrophage and Fibroblast Phenotypes. Adv Healthc Mater 2016; 5:2575-2594. [PMID: 27593734 DOI: 10.1002/adhm.201600532] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/17/2016] [Indexed: 12/12/2022]
Abstract
This review focuses on materials and methods used to induce phenotypic changes in macrophages and fibroblasts. Herein, we give a brief overview on how changes in macrophages and fibroblasts phenotypes are critical biomarkers for identification of implant acceptance, wound healing effectiveness, and are also essential for evaluating the regenerative capabilities of some hybrid strategies that involve the combination of natural and synthetic materials. The different types of cells present during the host response have been extensively studied for evaluating the reaction to different materials and there are varied material approaches towards fabrication of biocompatible substrates. We discuss how natural and synthetic materials have been used to engineer desirable outcomes in lung, heart, liver, skin, and musculoskeletal implants, and how certain properties such as rigidity, surface shape, and porosity play key roles in the progression of the host response. Several fabrication strategies are discussed to control the phenotype of infiltrating macrophages and fibroblasts: decellularization of scaffolds, surface coatings, implant shape, and pore size apart from biochemical signaling pathways that can inhibit or accelerate unfavorable host responses. It is essential to factor all the different design principles and material fabrication criteria for evaluating the choice of implant materials or regenerative therapeutic strategies.
Collapse
Affiliation(s)
- Anuraag Boddupalli
- Department of Chemical & Biological Engineering; Iowa State University; 2114 Sweeney Hall Ames IA 50011 USA
| | - Lida Zhu
- Department of Chemical & Biological Engineering; Iowa State University; 2114 Sweeney Hall Ames IA 50011 USA
| | - Kaitlin M. Bratlie
- Department of Chemical & Biological Engineering; Iowa State University; 2114 Sweeney Hall Ames IA 50011 USA
- Department of Materials Science & Engineering; Iowa State University; 2220 Hoover Hall Ames IA 50011 USA
- Division of Materials Science & Engineering; Ames National Laboratory; 126 Metals Development Ames IA 50011 USA
| |
Collapse
|
30
|
Kong KW, Abdul Aziz A, Razali N, Aminuddin N, Mat Junit S. Antioxidant-rich leaf extract of Barringtonia racemosa significantly alters the in vitro expression of genes encoding enzymes that are involved in methylglyoxal degradation III. PeerJ 2016; 4:e2379. [PMID: 27635343 PMCID: PMC5012310 DOI: 10.7717/peerj.2379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/29/2016] [Indexed: 01/28/2023] Open
Abstract
Background Barringtonia racemosa is a medicinal plant belonging to the Lecythidaceae family. The water extract of B. racemosa leaf (BLE) has been shown to be rich in polyphenols. Despite the diverse medicinal properties of B. racemosa, information on its major biological effects and the underlying molecular mechanisms are still lacking. Methods In this study, the effect of the antioxidant-rich BLE on gene expression in HepG2 cells was investigated using microarray analysis in order to shed more light on the molecular mechanism associated with the medicinal properties of the plant. Results Microarray analysis showed that a total of 138 genes were significantly altered in response to BLE treatment (p < 0.05) with a fold change difference of at least 1.5. SERPINE1 was the most significantly up-regulated gene at 2.8-fold while HAMP was the most significantly down-regulated gene at 6.5-fold. Ingenuity Pathways Analysis (IPA) revealed that “Cancer, cell death and survival, cellular movement” was the top network affected by the BLE with a score of 44. The top five canonical pathways associated with BLE were Methylglyoxal Degradation III followed by VDR/RXR activation, TR/RXR activation, PXR/RXR activation and gluconeogenesis. The expression of genes that encode for enzymes involved in methylglyoxal degradation (ADH4, AKR1B10 and AKR1C2) and glycolytic process (ENO3, ALDOC and SLC2A1) was significantly regulated. Owing to the Warburg effect, aerobic glycolysis in cancer cells may increase the level of methylglyoxal, a cytotoxic compound. Conclusions BLE has the potential to be developed into a novel chemopreventive agent provided that the cytotoxic effects related to methylglyoxal accumulation are minimized in normal cells that rely on aerobic glycolysis for energy supply.
Collapse
Affiliation(s)
- Kin Weng Kong
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Azlina Abdul Aziz
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Nurhanani Razali
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Norhaniza Aminuddin
- Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| | - Sarni Mat Junit
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
31
|
He T, Zhou H, Li C, Chen Y, Chen X, Li C, Mao J, Lyu J, Meng QH. Methylglyoxal suppresses human colon cancer cell lines and tumor growth in a mouse model by impairing glycolytic metabolism of cancer cells associated with down-regulation of c-Myc expression. Cancer Biol Ther 2016; 17:955-65. [PMID: 27455418 DOI: 10.1080/15384047.2016.1210736] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Methylglyoxal (MG) is a highly reactive dicarbonyl compound exhibiting anti-tumor activity. The anti-tumor effects of MG have been demonstrated in some types of cancer, but its role in colon cancer and the mechanisms underlying this activity remain largely unknown. We investigated its role in human colon cancer and the underlying mechanism using human colon cancer cells and animal model. Viability, proliferation, and apoptosis were quantified in DLD-1 and SW480 colon cancer cells by using the Cell Counting Kit-8, plate colony formation assay, and flow cytometry, respectively. Cell migration and invasion were assessed by wound healing and transwell assays. Glucose consumption, lactate production, and intracellular ATP production also were assayed. The levels of c-Myc protein and mRNA were quantitated by western blot and qRT-PCR. The anti-tumor role of MG in vivo was investigated in a DLD-1 xenograft tumor model in nude mice. We demonstrated that MG inhibited viability, proliferation, migration, and invasion and induced apoptosis of DLD-1 and SW480 colon cancer cells. Treatment with MG reduced glucose consumption, lactate production, and ATP production and decreased c-Myc protein levels in these cells. Moreover, MG significantly suppressed tumor growth and c-Myc expression in vivo. Our findings suggest that MG plays an anti-tumor role in colon cancer. It inhibits cancer cell growth by altering the glycolytic pathway associated with downregulation of c-Myc protein. MG has therapeutic potential in colon cancer by interrupting cancer metabolism.
Collapse
Affiliation(s)
- Tiantian He
- a Key Laboratory of Laboratory Medicine , Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - Huaibin Zhou
- a Key Laboratory of Laboratory Medicine , Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - Chunmei Li
- a Key Laboratory of Laboratory Medicine , Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - Yuan Chen
- a Key Laboratory of Laboratory Medicine , Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - Xiaowan Chen
- a Key Laboratory of Laboratory Medicine , Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - Chenli Li
- a Key Laboratory of Laboratory Medicine , Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - Jiating Mao
- a Key Laboratory of Laboratory Medicine , Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - Jianxin Lyu
- a Key Laboratory of Laboratory Medicine , Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - Qing H Meng
- b Department of Laboratory Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
32
|
Lin JA, Wu CH, Lu CC, Hsia SM, Yen GC. Glycative stress from advanced glycation end products (AGEs) and dicarbonyls: An emerging biological factor in cancer onset and progression. Mol Nutr Food Res 2016; 60:1850-64. [DOI: 10.1002/mnfr.201500759] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/11/2015] [Accepted: 01/07/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Jer-An Lin
- Department of Food Science and Biotechnology; National Chung Hsing University; Taichung Taiwan
| | - Chi-Hao Wu
- School of Nutrition and Health Sciences; Taipei Medical University; Taipei Taiwan
| | - Chi-Cheng Lu
- Department of Food Science and Biotechnology; National Chung Hsing University; Taichung Taiwan
- School of Nutrition and Health Sciences; Taipei Medical University; Taipei Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences; Taipei Medical University; Taipei Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology; National Chung Hsing University; Taichung Taiwan
- Agricultural Biotechnology Center; National Chung Hsing University; Taichung Taiwan
| |
Collapse
|
33
|
Pal A, Talukdar D, Roy A, Ray S, Mallick A, Mandal C, Ray M. Nanofabrication of methylglyoxal with chitosan biopolymer: a potential tool for enhancement of its anticancer effect. Int J Nanomedicine 2015; 10:3499-518. [PMID: 25999714 PMCID: PMC4435252 DOI: 10.2147/ijn.s78284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose The normal metabolite methylglyoxal (MG) specifically kills cancer cells by inhibiting glycolysis and mitochondrial respiration without much adverse effect upon normal cells. Though the anticancer property of MG is well documented, its gradual enzymatic degradation in vivo has prompted interest in developing a nanoparticulate drug delivery system to protect it and also to enhance its efficacy. Materials and methods MG-conjugated chitosan nanoparticles (Nano-MG) were prepared by conjugating the carbonyl group of MG with the amino group of chitosan polymer (Schiff’s base formation). Nano-MG were characterized in detail using the dynamic light scattering method, zeta potential measurement, Fourier transform infrared spectroscopy, and transmission electron microscopic analysis. Amount of MG anchored to Nano-MG, stability of Nano-MG, and in vitro release of MG from Nano-MG were estimated spectrophotometrically. Ehrlich ascites carcinoma (EAC) cells, human breast cancer cell line HBL-100, and lung epithelial adenocarcinoma cell line A549 were used as test systems to compare Nano-MG with bare MG in vitro. Cytotoxicity to EAC cells was evaluated by the trypan blue dye exclusion test, and cell viability of HBL-100 and A549 cells were studied using 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis of HBL-100 cells was assessed by flow cytometry and confocal microscopy. In vivo studies were performed on both EAC cells inoculated and also in sarcoma-180-induced solid tumor-bearing Swiss albino mice to assess the anticancer activity of Nano-MG in comparison to bare MG with varying doses, times, and administrative routes. Results Fourier transform infrared spectroscopy revealed the presence of imine groups in Nano-MG due to conjugation of the amino group of chitosan and carbonyl group of MG with diameters of nanoparticles ranging from 50–100 nm. The zeta potential of Nano-MG was +21 mV and they contained approximately 100 μg of MG in 1 mL of solution. In vitro studies with Nano-MG showed higher cytotoxicity and enhanced rate of apoptosis in the HBL-100 cell line in comparison with bare MG, but no detrimental effect on normal mouse myoblast cell line C2C12 at the concerned doses. Studies with EAC cells also showed increased cell death of nearly 1.5 times. Nano-MG had similar cytotoxic effects on A549 cells. In vivo studies further demonstrated the efficacy of Nano-MG over bare MG and found them to be about 400 times more potent in EAC-bearing mice and nearly 80 times more effective in sarcoma-180-bearing mice. Administration of ascorbic acid and creatine during in vivo treatments augmented the anticancer effect of Nano-MG. Conclusion The results clearly indicate that Nano-MG may constitute a promising tool in anticancer therapeutics in the near future.
Collapse
Affiliation(s)
- Aparajita Pal
- Department of Biophysics, Bose Institute, Kolkata, India
| | - Dipa Talukdar
- Department of Biophysics, Bose Institute, Kolkata, India
| | - Anirban Roy
- Department of Biophysics, Bose Institute, Kolkata, India
| | - Subhankar Ray
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Asish Mallick
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Chitra Mandal
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Manju Ray
- Department of Biophysics, Bose Institute, Kolkata, India
| |
Collapse
|
34
|
Wu GJ, Wu CH, Tsai GJ. Chitooligosaccharides from the shrimp chitosan hydrolysate induces differentiation of murine RAW264.7 macrophages into dendritic-like cells. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|