1
|
Li Y, Li S, Scheerstra JF, Patiño T, van Hest JCM, Abdelmohsen LKEA. Engineering Functional Particles to Modulate T Cell Responses. ACCOUNTS OF MATERIALS RESEARCH 2024; 5:1048-1058. [PMID: 39359649 PMCID: PMC11443481 DOI: 10.1021/accountsmr.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 10/04/2024]
Abstract
T cells play a critical role in adaptive immune responses. They work with other immune cells such as B cells to protect our bodies when the first line of defense, the innate immune system, is overcome by certain infectious diseases or cancers. Studying and regulating the responses of T cells, such as activation, proliferation, and differentiation, helps us understand not only their behavior in vivo but also their translation and application in the field of immunotherapy, such as adoptive T cell therapy and immune checkpoint therapy, the situations in which T cells cannot fight cancer alone and require external engineering regulation to help them. Nano- to micrometer-sized particulate biomaterials have achieved great progress in the assistance of T cell-based immunomodulation. For example, various types of microparticles decorated with T cell recognition and activation signals to mimic native antigen-presenting cells have shown successful ex vivo expansion of primary T cells and have been approved for clinical use in adoptive T cell therapy. Functional particles can also serve as vehicles for transporting cargos including small molecule drugs, cytokines, and antibodies. Especially for cargos with limited bioavailability and high repeat-dose toxicity, systemic administration in their free form is difficult. By using particle-assisted systems, the delivery can be tailored on demand, of which targeting and controlled release are two typical examples, ultimately aiding in the regulation of T cell responses. Furthermore, when T cells become overactive and behave in ways that contradict our expectations, such as attacking our own cells or innocuous foreign molecules, this can lead to a breakdown of immune tolerance. In such cases, particles to help reprogram those overactive T cells or suppress their activity are appreciated in vivo. The urgent need to introduce immune stimulation into the treatment of cancers, infectious diseases, and autoimmune diseases has driven recent advances in the engineering of functional particulate biomaterials that regulate T cell responses. In this Account, we will first cover a brief overview of the process of T cell-based immunomodulation from principle to development. It then outlines critical points in the design of functional particle platforms, including materials, size, morphology, surface engineering, and delivery of cargos, to modulate the features of T cells, and introduces selected work from our and other research groups with a focus on three major therapeutic applications: adoptive T cell therapy, immune checkpoint therapy, and immune tolerance restoration. Current challenges and future opportunities are also discussed.
Collapse
Affiliation(s)
- Yudong Li
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Shukun Li
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing 100190, China
| | - Jari F Scheerstra
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Tania Patiño
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Jan C M van Hest
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Loai K E A Abdelmohsen
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
2
|
Yang YL, Yang F, Huang ZQ, Li YY, Shi HY, Sun Q, Ma Y, Wang Y, Zhang Y, Yang S, Zhao GR, Xu FH. T cells, NK cells, and tumor-associated macrophages in cancer immunotherapy and the current state of the art of drug delivery systems. Front Immunol 2023; 14:1199173. [PMID: 37457707 PMCID: PMC10348220 DOI: 10.3389/fimmu.2023.1199173] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
The immune system provides full protection for the body by specifically identifying 'self' and removing 'others'; thus protecting the body from diseases. The immune system includes innate immunity and adaptive immunity, which jointly coordinate the antitumor immune response. T cells, natural killer (NK) cells and tumor-associated macrophages (TAMs) are the main tumor-killing immune cells active in three antitumor immune cycle. Cancer immunotherapy focusses on activating and strengthening immune response or eliminating suppression from tumor cells in each step of the cancer-immunity cycle; thus, it strengthens the body's immunity against tumors. In this review, the antitumor immune cycles of T cells, natural killer (NK) cells and tumor-associated macrophages (TAMs) are discussed. Co-stimulatory and co-inhibitory molecules in the three activity cycles and the development of drugs and delivery systems targeting these molecules are emphasized, and the current state of the art of drug delivery systems for cancer immunotherapy are summarized.
Collapse
Affiliation(s)
- Ya-long Yang
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Fei Yang
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Zhuan-qing Huang
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Yuan-yuan Li
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Hao-yuan Shi
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Qi Sun
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Yue Ma
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Yao Wang
- Department of Biotherapeutic, The First Medical Centre, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Ying Zhang
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Sen Yang
- Chinese People’s Armed Police Force Hospital of Beijing, Beijing, China
| | - Guan-ren Zhao
- Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Feng-hua Xu
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| |
Collapse
|
3
|
Baniahmad SF, Oliverio R, Obregon-Gomez I, Robert A, Lenferink AEG, Pazos E, Virgilio N, Banquy X, De Crescenzo G, Durocher Y. Affinity-controlled capture and release of engineered monoclonal antibodies by macroporous dextran hydrogels using coiled-coil interactions. MAbs 2023; 15:2218951. [PMID: 37300397 DOI: 10.1080/19420862.2023.2218951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Long-term delivery is a successful strategy used to reduce the adverse effects of monoclonal antibody (mAb)-based treatments. Macroporous hydrogels and affinity-based strategies have shown promising results in sustained and localized delivery of the mAbs. Among the potential tools for affinity-based delivery systems, the de novo designed Ecoil and Kcoil peptides are engineered to form a high-affinity, heterodimeric coiled-coil complex under physiological conditions. In this study, we created a set of trastuzumab molecules tagged with various Ecoil peptides and evaluated their manufacturability and characteristics. Our data show that addition of an Ecoil tag at the C-termini of the antibody chains (light chains, heavy chains, or both) does not hinder the production of chimeric trastuzumab in CHO cells or affect antibody binding to its antigen. We also evaluated the influence of the number, length, and position of the Ecoil tags on the capture and release of Ecoil-tagged trastuzumab from macroporous dextran hydrogels functionalized with Kcoil peptide (the Ecoil peptide-binding partner). Notably, our data show that antibodies are released from the macroporous hydrogels in a biphasic manner; the first phase corresponding to the rapid release of residual, unbound trastuzumab from the macropores, followed by the affinity-controlled, slow-rate release of antibodies from the Kcoil-functionalized macropore surface.
Collapse
Affiliation(s)
- Seyed Farzad Baniahmad
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- Human Health Therapeutics Research Centre, Building Montreal-Royalmount, National Research Council Canada, Montréal, Québec, Canada
| | - Romane Oliverio
- Department of Chemical Engineering Polytechnique Montréal, Montréal, Québec Canada
- Faculty of Pharmacy, Axe Formulation Et Analyse du Médicament, Université de Montréal, Québec, Canada
| | - Ines Obregon-Gomez
- CICA - Centro Interdisciplinar de Química E Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruna, Coruna, Spain
| | - Alma Robert
- Human Health Therapeutics Research Centre, Building Montreal-Royalmount, National Research Council Canada, Montréal, Québec, Canada
| | - Anne E G Lenferink
- Human Health Therapeutics Research Centre, Building Montreal-Royalmount, National Research Council Canada, Montréal, Québec, Canada
| | - Elena Pazos
- CICA - Centro Interdisciplinar de Química E Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruna, Coruna, Spain
| | - Nick Virgilio
- Department of Chemical Engineering, Centre de Recherche Sur Les Systèmes Polymères Et Composites à Haute Performance (CREPEC), Montréal, Canada
| | - Xavier Banquy
- Faculty of Pharmacy, Axe Formulation Et Analyse du Médicament, Université de Montréal, Québec, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering Polytechnique Montréal, Montréal, Québec Canada
| | - Yves Durocher
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- Human Health Therapeutics Research Centre, Building Montreal-Royalmount, National Research Council Canada, Montréal, Québec, Canada
| |
Collapse
|
4
|
Pinto IS, Cordeiro RA, Faneca H. Polymer- and lipid-based gene delivery technology for CAR T cell therapy. J Control Release 2023; 353:196-215. [PMID: 36423871 DOI: 10.1016/j.jconrel.2022.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Chimeric antigen receptor T cell (CAR T cell) therapy is a revolutionary approach approved by the FDA and EMA to treat B cell malignancies and multiple myeloma. The production of these T cells has been done through viral vectors, which come with safety concerns, high cost and production challenges, and more recently also through electroporation, which can be extremely cytotoxic. In this context, nanosystems can constitute an alternative to overcome the challenges associated with current methods, resulting in a safe and cost-effective platform. However, the barriers associated with T cells transfection show that the design and engineering of novel approaches in this field are highly imperative. Here, we present an overview from CAR constitution to transfection technologies used in T cells, highlighting the lipid- and polymer-based nanoparticles as a potential delivery platform. Specifically, we provide examples, strengths and weaknesses of nanosystem formulations, and advances in nanoparticle design to improve transfection of T cells. This review will guide the researchers in the design and development of novel nanosystems for next-generation CAR T therapeutics.
Collapse
Affiliation(s)
- Inês S Pinto
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Medical Sciences, University of Aveiro, Campus Universitário de Santiago, Agra do Castro, 3810-193 Aveiro, Portugal
| | - Rosemeyre A Cordeiro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute of Interdisciplinary Research (III), University of Coimbra, Casa Costa Alemão - Pólo II, 3030-789 Coimbra, Portugal
| | - Henrique Faneca
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute of Interdisciplinary Research (III), University of Coimbra, Casa Costa Alemão - Pólo II, 3030-789 Coimbra, Portugal.
| |
Collapse
|
5
|
Xia J, Miao Y, Wang X, Huang X, Dai J. Recent progress of dendritic cell-derived exosomes (Dex) as an anti-cancer nanovaccine. Biomed Pharmacother 2022; 152:113250. [PMID: 35700679 DOI: 10.1016/j.biopha.2022.113250] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
Although cancer vaccines such as dendritic cell (DC) vaccines and peptide vaccines have become appealing and attractive anticancer immunotherapy options in recent decades, some obstacles have hindered their successful application in the clinical setting. The difficulties associated with the high cost of DC preparation, storage of DC vaccines, tumor-mediated immunosuppressive environment, identification of specific tumor antigens, and high degradation of antigen peptides in vivo limit the clinical application and affect the outcomes of these cancer vaccines. Recently, nanocarriers have been considered as a new approach for vaccine delivery. As biogenic nanocarriers, exosomes are small membrane vesicles secreted by cells that carry various proteins, RNAs, and lipids. More importantly, DC-derived exosomes (Dex) express tumor antigens, MHC molecules, and co-stimulatory molecules on their surface, which trigger the release of antigen-specific CD4+ and CD8+ T cells. With their membrane structure, Dex can avoid high degradation while ensuring favorable biocompatibility and biosafety in vivo. In addition, Dex can be stored in vitro for a longer period, which facilitates a significant reduction in production costs. Furthermore, they have shown better antitumor efficacy in preclinical studies compared with DC vaccines owing to their higher immunogenicity and stronger resistance to immunosuppressive effects. However, the clinical efficacy of Dex vaccines remains limited. In this review, we aimed to evaluate the efficacy of Dex as an anticancer nanovaccine.
Collapse
Affiliation(s)
- Jingyi Xia
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu 610000, China.
| | - Yangbao Miao
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu 610000, China.
| | - Xi Wang
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu 610000, China.
| | - Xiaobing Huang
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu 610000, China.
| | - Jingying Dai
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu 610000, China.
| |
Collapse
|
6
|
Li X, Zhang J, Wu Y, Ma C, Wei D, Pan L, Cai L. IGFBP7 remodels the tumor microenvironment of esophageal squamous cell carcinoma by activating the TGFβ1/SMAD signaling pathway. Oncol Lett 2022; 24:251. [PMID: 35761941 PMCID: PMC9214703 DOI: 10.3892/ol.2022.13371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/25/2022] [Indexed: 01/03/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common type of esophageal cancer, and its development, growth, and invasiveness are regulated by the tumor microenvironment (TME). Insulin-like growth factor-binding protein-7 (IGFBP7), which is closely related to various tumors, transforming growth factor-β1 (TGFβ1), which is a key signal mediator in oncogenesis, α-smooth muscle actin (α-SMA), and collagen I are important components of the TME. IGFBP7 can upregulate the expression of TGFβ1 and activate the TGFβ1/SMAD signaling pathway, which leads to an increase in collagen I in hepatic stellate cells (HSCs). However, the contribution of IGFBP7 to TGFβ1 and the TME in the progression of ESCC remains unknown. In the present study, we investigated IGFBP7 expression and its effects on TGFβ1 and the TME in ESCC. A total of 45 patients were divided into three groups: early-tumor group (n=15), advanced-tumor group (n=15), and paracancer control group (n=15). The EC109 cell line was cultured and treated with AdIGFBP7 and LvshTGFβ1, and the expression levels of IGFBP7, TGFβ1, α-SMA, collagen I, and p-SMAD2/3 were determined by immunohistochemical staining and western blotting analysis. IGFBP7, TGFβ1, α-SMA, and collagen I were upregulated in the ESCC samples compared with the control samples (P<0.05), and the values peaked in the advanced-tumor group (P<0.05). Compared with the control group, the TGFβ1, α-SMA, p-SMAD2/3, and collagen I proteins were gradually increased from 24 to 72 h in the EC109 cells treated with AdIGFBP7 (P<0.05). Inhibition of TGFβ1 expression in the EC109 cells treated with AdIGFBP7 gradually reduced the expression of α-SMA, collagen I, and p-SMAD2/3 from 24 to 72 h (P<0.05). These findings suggest that increased IGFBP7 may accelerate the progression of ESCC by upregulating TGFβ1, α-SMA, and collagen I via activating the TGFβ1/SMAD signaling pathway, which could remodel the TME.
Collapse
Affiliation(s)
- Xiuqing Li
- Department of Gastroenterology and Hepatology, Suzhou Xiangcheng People's Hospital, Suzhou, Jiangsu 215100, P.R. China
| | - Ji Zhang
- Department of Gastroenterology and Hepatology, Yangzhou University Medical College, Yangzhou, Jiangsu 225001, P.R. China
| | - Youshan Wu
- Department of Gastroenterology and Hepatology, Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222042, P.R. China
| | - Chuntao Ma
- Department of Gastroenterology and Hepatology, Suzhou Xiangcheng People's Hospital, Suzhou, Jiangsu 215100, P.R. China
| | - Dongying Wei
- Department of Gastroenterology and Hepatology, Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222042, P.R. China
| | - Lijuan Pan
- Department of Gastroenterology and Hepatology, Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222042, P.R. China
| | - Liangliang Cai
- Department of Gastrointestinal and Anus Surgery, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi 530012, P.R. China,Correspondence to: Dr Liangliang Cai, Department of Gastrointestinal and Anus Surgery, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, 89-9 Dongge Road, Nanning, Guangxi 530012, P.R. China, E-mail:
| |
Collapse
|
7
|
Nadukkandy AS, Ganjoo E, Singh A, Dinesh Kumar L. Tracing New Landscapes in the Arena of Nanoparticle-Based Cancer Immunotherapy. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.911063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Over the past two decades, unique and comprehensive cancer treatment has ushered new hope in the holistic management of the disease. Cancer immunotherapy, which harnesses the immune system of the patient to attack the cancer cells in a targeted manner, scores over others by being less debilitating compared to the existing treatment strategies. Significant advancements in the knowledge of immune surveillance in the last few decades have led to the development of several types of immune therapy like monoclonal antibodies, cancer vaccines, immune checkpoint inhibitors, T-cell transfer therapy or adoptive cell therapy (ACT) and immune system modulators. Intensive research has established cancer immunotherapy to be a safe and effective method for improving survival and the quality of a patient’s life. However, numerous issues with respect to site-specific delivery, resistance to immunotherapy, and escape of cancer cells from immune responses, need to be addressed for expanding and utilizing this therapy as a regular mode in the clinical treatment. Development in the field of nanotechnology has augmented the therapeutic efficiency of treatment modalities of immunotherapy. Nanocarriers could be used as vehicles because of their advantages such as increased surface areas, targeted delivery, controlled surface and release chemistry, enhanced permeation and retention effect, etc. They could enhance the function of immune cells by incorporating immunomodulatory agents that influence the tumor microenvironment, thus enabling antitumor immunity. Robust validation of the combined effect of nanotechnology and immunotherapy techniques in the clinics has paved the way for a better treatment option for cancer than the already existing procedures such as chemotherapy and radiotherapy. In this review, we discuss the current applications of nanoparticles in the development of ‘smart’ cancer immunotherapeutic agents like ACT, cancer vaccines, monoclonal antibodies, their site-specific delivery, and modulation of other endogenous immune cells. We also highlight the immense possibilities of using nanotechnology to accomplish leveraging the coordinated and adaptive immune system of a patient to tackle the complexity of treating unique disease conditions and provide future prospects in the field of cancer immunotherapy.
Collapse
|
8
|
Sukocheva OA, Liu J, Neganova ME, Beeraka NM, Aleksandrova YR, Manogaran P, Grigorevskikh EM, Chubarev VN, Fan R. Perspectives of using microRNA-loaded nanocarriers for epigenetic reprogramming of drug resistant colorectal cancers. Semin Cancer Biol 2022; 86:358-375. [PMID: 35623562 DOI: 10.1016/j.semcancer.2022.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023]
Abstract
Epigenetic regulation by microRNAs (miRs) demonstrated a promising therapeutic potential of these molecules to regulate genetic activity in different cancers, including colorectal cancers (CRCs). The RNA-based therapy does not change genetic codes in tumor cells but can silence oncogenes and/or reactivate inhibited tumor suppressor genes. In many cancers, specific miRs were shown to promote or stop tumor progression. Among confirmed and powerful epigenetic regulators of colon carcinogenesis and development of resistance are onco-miRs, which include let-7, miR-21, miR-22, miR-23a, miR-27a, miR-34, miR-92, miR-96, miR-125b, miR-135b, miR-182, miR-200c, miR-203, miR-221, miR-421, miR-451, and others. Moreover, various tumor-suppressor miRs (miR-15b-5b, miR-18a, miR-20b, miR-22, miR-96, miR-139-5p, miR-145, miR-149, miR-197, miR-199b, miR-203, miR-214, miR-218, miR-320, miR-375-3p, miR-409-3p, miR-450b-5p, miR-494, miR-577, miR-874, and others) were found silenced in drug-resistant CRCs. Re-expression of tumor suppressor miR is complicated by the chemical nature of miRs that are not long-lasting compounds and require protection from the enzymatic degradation. Several recent studies explored application of miRs using nanocarrier complexes. This study critically describes the most successfully tested nanoparticle complexes used for intracellular delivery of nuclear acids and miRs, including micelles, liposomes, inorganic and polymeric NPs, dendrimers, and aptamers. Nanocarriers shield incorporated miRs and improve the agent stability in circulation. Attachment of antibodies and/or specific peptide or ligands facilitates cell-targeted miR delivery. Addressing in vivo challenges, a broad spectrum of non-toxic materials has been tested and indicated reliable advantages of lipid-based (lipoplexes) and polymer-based liposomes. Recent cutting-edge developments indicated that lipid-based complexes with multiple cargo, including several miRs, are the most effective approach to eradicate drug-resistant tumors. Focusing on CRC-specific miRs, this review provides a guidance and insights towards the most promising direction to achieve dramatic reduction in tumor growth and metastasis using miR-nanocarrier complexes.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Cancer Center and Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou, 450052, China; The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Queensland, Australia; Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Junqi Liu
- Cancer Center and Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou, 450052, China
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| | - Narasimha M Beeraka
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia; Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia; Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), JSS Medical College, Mysuru, Karnataka, India
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| | - Prasath Manogaran
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Ekaterina M Grigorevskikh
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Vladimir N Chubarev
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Ruitai Fan
- Cancer Center and Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou, 450052, China.
| |
Collapse
|
9
|
Badiee P, Maritz MF, Dmochowska N, Cheah E, Thierry B. Intratumoral Anti-PD-1 Nanoformulation Improves Its Biodistribution. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15881-15893. [PMID: 35357803 DOI: 10.1021/acsami.1c22479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Intratumoral administration of immune checkpoint inhibitors, such as programmed cell death-1 antibodies (aPD-1), is a promising approach toward addressing both the low patients' responses and high off-target toxicity, but good preclinical results have not translated in phase I clinical studies as significant off-target toxicities were observed. We hypothesized that the nanoformulation of aPD-1 could alter both their loco-regional and systemic distribution following intratumoral administration. To test this hypothesis, we developed an aPD-1 nanoformulation (aPD-1 NPs) and investigated its biodistribution following intratumoral injection in an orthotopic mice model of head and neck cancer. Biodistribution analysis demonstrated a significantly lower distribution in off-target organs of the nanoformulated aPD-1 compared to free antibodies. On the other hand, both aPD-1 NPs and free aPD-1 yielded a significantly higher tumor and tumor draining lymph node accumulation than the systemically administrated free aPD-1 used as the current clinical benchmark. In a set of comprehensive in vitro biological studies, aPD-1 NPs effectively inhibited PD-1 expression on T-cells to a similar extent to free aPD-1 and efficiently potentiated the cytotoxicity of T-cells against head and neck cancer cells in vitro. Further studies are warranted to assess the potential of this intratumoral administration of aPD-1 nanoformulation in alleviating the toxicity and enhancing the tumor efficacy of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Parisa Badiee
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
- UniSA Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| | - Michelle F Maritz
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Nicole Dmochowska
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Edward Cheah
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
- UniSA Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| | - Benjamin Thierry
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
- UniSA Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| |
Collapse
|
10
|
Rehman MU, Khan A, Imtiyaz Z, Ali S, Makeen HA, Rashid S, Arafah A. Current Nano-therapeutic Approaches Ameliorating Inflammation in Cancer Progression. Semin Cancer Biol 2022; 86:886-908. [DOI: 10.1016/j.semcancer.2022.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
|
11
|
Zhao Y, Bilal M, Qindeel M, Khan MI, Dhama K, Iqbal HMN. Nanotechnology-based immunotherapies to combat cancer metastasis. Mol Biol Rep 2021; 48:6563-6580. [PMID: 34424444 DOI: 10.1007/s11033-021-06660-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/16/2021] [Indexed: 02/05/2023]
Abstract
Emerging concepts in nanotechnology have gained particular attention for their clinical translation of immunotherapies of cancer, autoimmune and infectious diseases. Several nanoconstructs have been engineered with unique structural, physicochemical, and functional features as robust alternatives for conventional chemotherapies. Traditional cancer therapies like chemotherapy, radiotherapy, and ultimately surgery are the most widely practiced in biomedical settings. Biomaterials and nanotechnology have introduced vehicles for drug delivery and have revolutionized the concept of the modern immunotherapeutic paradigm. Various types of nanomaterials, such as nanoparticles and, more specifically, drug-loaded nanoparticles are becoming famous for drug delivery applications because of safety, patient compliance, and smart action. Such therapeutic modalities have acknowledged regulatory endorsement and are being used in twenty-first-century clinical settings. Considering the emerging concepts and landscaping potentialities, herein, we spotlight and discuss nanoparticle-based immunotherapies as a smart and sophisticated drug delivery approach to combat cancer metastasis. The introductory part of this manuscript discusses a broad overview of cancer immunotherapy to understand better the tumor microenvironment and nanotechnology-oriented immunomodulatory strategies to cope with advanced-stage cancers. Following that, most addressable problems allied with conventional immunotherapies are given in comparison to nanoparticle-based immunotherapies. The later half of this work comprehensively highlights the requisite delivery of various bioactive entities with particular cases and examples. Finally, this review also encompasses a comprehensive concluding overview and future standpoints to strengthen a successful clinical translation of nanoparticle-based immunotherapies as a smart and sophisticated drug delivery approach.
Collapse
Affiliation(s)
- Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Maimoona Qindeel
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Hamdard Institute of Pharmaceutical Sciences, Hamdard University Islamabad Campus, Islamabad, Pakistan
| | - Muhammad Imran Khan
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
| |
Collapse
|
12
|
Hu X, Lou T, Yuan C, Wang Y, Tu X, Wang Y, Zhang T. Effects of lncRNA ANRIL-knockdown on the proliferation, apoptosis and cell cycle of gastric cancer cells. Oncol Lett 2021; 22:621. [PMID: 34267814 PMCID: PMC8258619 DOI: 10.3892/ol.2021.12882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/02/2021] [Indexed: 01/24/2023] Open
Abstract
Gastric cancer is one of the most common types of malignant tumor of the gastrointestinal tract worldwide. Cisplatin (DDP) is a commonly used chemotherapeutic drug in the clinic; however, the resistance of gastric cancer cells to DDP limits its efficacy. In the present study, drug-resistant gastric cancer cell lines were constructed using the stepwise continuous selection method, and the relative expression levels of long non-coding RNA (lncRNA) CDKN2B antisense RNA 1 (ANRIL) and microRNA (miR)-181a-5p were detected using reverse transcription-quantitative PCR. The knockdown of lncRNA ANRIL and miR-181a-5p expression was performed by transfection with shRNA-ANRIL and an miR-181a-5p inhibitor, respectively. Cellular proliferation and sensitivity to DDP were assessed using Cell Counting Kit-8 analysis. Cell apoptosis and cell cycle distribution were assessed using flow cytometry and western blotting. The binding relationships between ANRIL, miR-181a-5p and cyclin G1 (CCNG1) were verified using a dual luciferase reporter assay. The results revealed that the expression levels of miR-181a-5p were downregulated in all drug-resistant cell lines. ANRIL-knockdown inhibited cellular proliferation, and promoted apoptosis and cell cycle arrest; however, following the knockdown of miR-181a-5p, the inhibition of cell cycle arrest was alleviated. Notably, miR-181a-5p, ANRIL and CCNG1 were found to have targeting relationships. In conclusion, the findings of the present study suggested that knocking down the expression of ANRIL inhibited cellular proliferation, and promoted apoptosis and cell cycle arrest. Furthermore, its downstream target, miR-181a-5p, inhibited the proliferation of drug-resistant cells and enhanced their sensitivity to DDP.
Collapse
Affiliation(s)
- Xueqian Hu
- Department of Oncology, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang 315000, P.R. China
| | - Ting Lou
- Department of Oncology, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang 315000, P.R. China
| | - Chunying Yuan
- Department of Oncology, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang 315000, P.R. China
| | - Yongsheng Wang
- Department of Oncology, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang 315000, P.R. China
| | - Xiaolong Tu
- Department of Oncology, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang 315000, P.R. China
| | - Yi Wang
- Department of Oncology, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang 315000, P.R. China
| | - Tingsu Zhang
- Department of Oncology, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
13
|
Abdelbaky SB, Ibrahim MT, Samy H, Mohamed M, Mohamed H, Mustafa M, Abdelaziz MM, Forrest ML, Khalil IA. Cancer immunotherapy from biology to nanomedicine. J Control Release 2021; 336:410-432. [PMID: 34171445 DOI: 10.1016/j.jconrel.2021.06.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 02/06/2023]
Abstract
With the significant drawbacks of conventional cancer chemotherapeutics, cancer immunotherapy has demonstrated the ability to eradicate cancer cells and circumvent multidrug resistance (MDR) with fewer side effects than traditional cytotoxic therapies. Various immunotherapeutic agents have been investigated for that purpose including checkpoint inhibitors, cytokines, monoclonal antibodies and cancer vaccines. All these agents aid immune cells to recognize and engage tumor cells by acting on tumor-specific pathways, antigens or cellular targets. However, immunotherapeutics are still associated with some concerns such as off-target side effects and poor pharmacokinetics. Nanomedicine may resolve some limitations of current immunotherapeutics such as localizing delivery, controlling release and enhancing the pharmacokinetic profile. Herein, we discuss recent advances of immunotherapeutic agents with respect to their development and biological mechanisms of action, along with the advantages that nanomedicine strategies lend to immunotherapeutics by possibly improving therapeutic outcomes and minimizing side effects.
Collapse
Affiliation(s)
- Salma B Abdelbaky
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Molecular, Cellular, and Developmental Biology, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, United States of America
| | - Mayar Tarek Ibrahim
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States of America
| | - Hebatallah Samy
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Menatalla Mohamed
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Hebatallah Mohamed
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Mahmoud Mustafa
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt
| | - Moustafa M Abdelaziz
- Department of Bioengineering, School of Engineering, The University of Kansas, Lawrence, KS 66045, USA
| | - M Laird Forrest
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA.
| | - Islam A Khalil
- Department of Pharmaceutics, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza 12582, Egypt.
| |
Collapse
|
14
|
Nanomaterials for Protein Delivery in Anticancer Applications. Pharmaceutics 2021; 13:pharmaceutics13020155. [PMID: 33503889 PMCID: PMC7910976 DOI: 10.3390/pharmaceutics13020155] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/16/2022] Open
Abstract
Nanotechnology platforms, such as nanoparticles, liposomes, dendrimers, and micelles have been studied extensively for various drug deliveries, to treat or prevent diseases by modulating physiological or pathological processes. The delivery drug molecules range from traditional small molecules to recently developed biologics, such as proteins, peptides, and nucleic acids. Among them, proteins have shown a series of advantages and potential in various therapeutic applications, such as introducing therapeutic proteins due to genetic defects, or used as nanocarriers for anticancer agents to decelerate tumor growth or control metastasis. This review discusses the existing nanoparticle delivery systems, introducing design strategies, advantages of using each system, and possible limitations. Moreover, we will examine the intracellular delivery of different protein therapeutics, such as antibodies, antigens, and gene editing proteins into the host cells to achieve anticancer effects and cancer vaccines. Finally, we explore the current applications of protein delivery in anticancer treatments.
Collapse
|
15
|
Gong N, Sheppard NC, Billingsley MM, June CH, Mitchell MJ. Nanomaterials for T-cell cancer immunotherapy. NATURE NANOTECHNOLOGY 2021; 16:25-36. [PMID: 33437036 DOI: 10.1038/s41565-020-00822-y] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
T-cell-based immunotherapies hold promise for the treatment of many types of cancer, with three approved products for B-cell malignancies and a large pipeline of treatments in clinical trials. However, there are several challenges to their broad implementation. These include insufficient expansion of adoptively transferred T cells, inefficient trafficking of T cells into solid tumours, decreased T-cell activity due to a hostile tumour microenvironment and the loss of target antigen expression. Together, these factors restrict the number of therapeutically active T cells engaging with tumours. Nanomaterials are uniquely suited to overcome these challenges, as they can be rationally designed to enhance T-cell expansion, navigate complex physical barriers and modulate tumour microenvironments. Here, we present an overview of nanomaterials that have been used to overcome clinical barriers to T-cell-based immunotherapies and provide our outlook of this emerging field at the interface of cancer immunotherapy and nanomaterial design.
Collapse
Affiliation(s)
- Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Neil C Sheppard
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Nasirmoghadas P, Mousakhani A, Behzad F, Beheshtkhoo N, Hassanzadeh A, Nikoo M, Mehrabi M, Kouhbanani MAJ. Nanoparticles in cancer immunotherapies: An innovative strategy. Biotechnol Prog 2020; 37:e3070. [PMID: 32829506 DOI: 10.1002/btpr.3070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022]
Abstract
Cancer has been one of the most significant causes of mortality, worldwide. Cancer immunotherapy has recently emerged as a competent, cancer-fighting clinical strategy. Nevertheless, due to the difficulty of such treatments, costs, and off-target adverse effects, the implementation of cancer immunotherapy described by the antigen-presenting cell (APC) vaccine and chimeric antigen receptor T cell therapy ex vivo in large clinical trials have been limited. Nowadays, the nanoparticles theranostic system as a promising target-based modality provides new opportunities to improve cancer immunotherapy difficulties and reduce their adverse effects. Meanwhile, the appropriate engineering of nanoparticles taking into consideration nanoparticle characteristics, such as, size, shape, and surface features, as well as the use of these physicochemical properties for suitable biological interactions, provides new possibilities for the application of nanoparticles in cancer immunotherapy. In this review article, we focus on the latest state-of-the-art nanoparticle-based antigen/adjuvant delivery vehicle strategies to professional APCs and engineering specific T lymphocyte required for improving the efficiency of tumor-specific immunotherapy.
Collapse
Affiliation(s)
- Pourya Nasirmoghadas
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Akbar Mousakhani
- Department of Plant Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Farahnaz Behzad
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran
| | - Nasrin Beheshtkhoo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hassanzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Nikoo
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Helal Iran Pharmaceutical and Clinical Complex, Tehran, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Amin Jadidi Kouhbanani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Florindo HF, Kleiner R, Vaskovich-Koubi D, Acúrcio RC, Carreira B, Yeini E, Tiram G, Liubomirski Y, Satchi-Fainaro R. Immune-mediated approaches against COVID-19. NATURE NANOTECHNOLOGY 2020; 15:630-645. [PMID: 32661375 PMCID: PMC7355525 DOI: 10.1038/s41565-020-0732-3] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/08/2020] [Indexed: 05/05/2023]
Abstract
The coronavirus disease-19 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The long incubation period of this new virus, which is mostly asymptomatic yet contagious, is a key reason for its rapid spread across the world. Currently, there is no worldwide-approved treatment for COVID-19. Therefore, the clinical and scientific communities have joint efforts to reduce the severe impact of the outbreak. Research on previous emerging infectious diseases have created valuable knowledge that is being exploited for drug repurposing and accelerated vaccine development. Nevertheless, it is important to generate knowledge on SARS-CoV-2 mechanisms of infection and its impact on host immunity, to guide the design of COVID-19 specific therapeutics and vaccines suitable for mass immunization. Nanoscale delivery systems are expected to play a paramount role in the success of these prophylactic and therapeutic approaches. This Review provides an overview of SARS-CoV-2 pathogenesis and examines immune-mediated approaches currently explored for COVID-19 treatments, with an emphasis on nanotechnological tools.
Collapse
Affiliation(s)
- Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| | - Ron Kleiner
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniella Vaskovich-Koubi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rita C Acúrcio
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Barbara Carreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Tiram
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Liubomirski
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
18
|
Yuan C, Liu Y, Wang T, Sun M, Chen X. Nanomaterials as Smart Immunomodulator Delivery System for Enhanced Cancer Therapy. ACS Biomater Sci Eng 2020; 6:4774-4798. [DOI: 10.1021/acsbiomaterials.0c00804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Congshan Yuan
- College of Marine Life Science, Ocean University of China, Qingdao 266003, P.R. China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, P.R. China
| | - Ting Wang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, P.R. China
| | - Mengjie Sun
- College of Marine Life Science, Ocean University of China, Qingdao 266003, P.R. China
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, Qingdao 266003, P.R. China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, P.R. China
| |
Collapse
|
19
|
Zhang L, Chen W, Tu G, Chen X, Lu Y, Wu L, Zheng D. Enhanced Chemotherapeutic Efficacy of PLGA-Encapsulated Epigallocatechin Gallate (EGCG) Against Human Lung Cancer. Int J Nanomedicine 2020; 15:4417-4429. [PMID: 32606686 PMCID: PMC7310995 DOI: 10.2147/ijn.s243657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Currently, the clinical benefits of tea polyphenols have contributed to the development of efficient systemic delivery systems with adequate bioavailability and stability. In this study, we aimed to establish a nanoparticle model to overcome the shortcomings of epigallocatechin gallate (EGCG) in the treatment of lung cancer. Materials and Methods Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with EGCG were prepared by the oil-in-water emulsion solvent evaporation technique. The characteristics of NPs, entrapment efficiency, and in vitro release were systematically evaluated. The cellular uptake, cytotoxic activity, and the effect of the formulation on cellular apoptosis of free-from EGCG and the NPs were compared. The interaction between protein-NF-κB and EGCG was detected by bio-layer interferometry (BLI). NF-κB signaling was evaluated by Western blotting and q-RT-PCR. The efficacy of the optimized nanoformulation was evaluated using a patient-derived tumor xenograft (PDX) model. Results EGCG-loaded NPs (175.8±3.8 nm in size) demonstrated its optimal efficacy, with approximately 86.0% of encapsulation efficiency and 14.2% of loading efficiency. Additionally, EGCG-encapsulated PLGA-NPs offered a 3-4-fold dose advantage compared to free EGCG in terms of exerting antiproliferative effects and inducing apoptosis at lower doses (12.5, 25 μM). Molecular interaction assays demonstrated that EGCG binds to NF-κB with high affnity (KD=4.8×10−5 M). EGCG-NPs were more effective at inhibiting NF-κB activation and suppressing the expression of NF-κB-regulated genes than free EGCG. Furthermore, EGCG-NPs showed superior anticancer activity in the PDX model than free EGCG. Conclusion These findings indicated that the prepared EGCG-NPs were more effective than free EGCG in inhibiting lung cancer tumors in the PDX model.
Collapse
Affiliation(s)
- Lingyu Zhang
- School of Pharmacy, Fujian Medical University, University Town, Fuzhou 350122, People's Republic of China
| | - Wenshu Chen
- Shengli Clinical College, Fujian Medical University, Fuzhou 350001, People's Republic of China
| | - Guihui Tu
- School of Pharmacy, Fujian Medical University, University Town, Fuzhou 350122, People's Republic of China
| | - Xingyong Chen
- Shengli Clinical College, Fujian Medical University, Fuzhou 350001, People's Republic of China
| | - Youguang Lu
- Key Laboratory of Stomatology of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, People's Republic of China
| | - Lixian Wu
- School of Pharmacy, Fujian Medical University, University Town, Fuzhou 350122, People's Republic of China
| | - Dali Zheng
- Key Laboratory of Stomatology of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, People's Republic of China
| |
Collapse
|
20
|
Meng Q, Cong H, Hu H, Xu FJ. Rational design and latest advances of codelivery systems for cancer therapy. Mater Today Bio 2020; 7:100056. [PMID: 32510051 PMCID: PMC7264083 DOI: 10.1016/j.mtbio.2020.100056] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 01/06/2023] Open
Abstract
Current treatments have limited effectiveness in treating tumors. The combination of multiple drugs or treatment strategies is widely studied to improve therapeutic effect and reduce adverse effects of cancer therapy. The codelivery system is the key to realize combined therapies. It is necessary to design and construct different codelivery systems in accordance with the variable structures and properties of cargoes and vectors. This review presented the typical design considerations about codelivery vectors for cancer therapy and described the current state of codelivery systems from two aspects: different types of vectors and collaborative treatment strategies. The commonly used loading methods of cargoes into the vectors, including physical and chemical processes, are discussed in detail. Finally, we outline the challenges and perspectives about the improvement of codelivery systems.
Collapse
Affiliation(s)
- Q.Y. Meng
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - H.L. Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - H. Hu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - F.-J. Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
21
|
Jin C, Chen D, Sirkar KK, Pfeffer R. An extended duration operation for solid hollow fiber membrane-based cooling crystallization. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2019.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Sweeney EE, Balakrishnan PB, Powell AB, Bowen A, Sarabia I, Burga RA, Jones RB, Bosque A, Cruz CRY, Fernandes R. PLGA nanodepots co-encapsulating prostratin and anti-CD25 enhance primary natural killer cell antiviral and antitumor function. NANO RESEARCH 2020; 13:736-744. [PMID: 34079616 PMCID: PMC8168447 DOI: 10.1007/s12274-020-2684-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Natural killer (NK) cells are attractive effector cells of the innate immune system against human immunodeficiency virus (HIV) and cancer. However, NK cell therapies are limited by the fact that target cells evade NK cells, for example, in latent reservoirs (in HIV) or through upregulation of inhibitory signals (in cancer). To address this limitation, we describe a biodegradable nanoparticle-based "priming" approach to enhance the cytotoxic efficacy of peripheral blood mononuclear cell-derived NK cells. We present poly(lactic-co-glycolic acid) (PLGA) nanodepots (NDs) that co-encapsulate prostratin, a latency-reversing agent, and anti-CD25 (aCD25), a cell surface binding antibody, to enhance primary NK cell function against HIV and cancer. We utilize a nanoemulsion synthesis scheme to encapsulate both prostratin and aCD25 within the PLGA NDs (termed Pro-aCD25-NDs). Physicochemical characterization studies of the NDs demonstrated that our synthesis scheme resulted in stable and monodisperse Pro-aCD25-NDs. The NDs successfully released both active prostratin and anti-CD25, and with controllable release kinetics. When Pro-aCD25-NDs were administered in an in vitro model of latent HIV and acute T cell leukemia using J-Lat 10.6 cells, the NDs were observed to prime J-Lat cells resulting in significantly increased NK cell-mediated cytotoxicity compared to free prostratin plus anti-CD25, and other controls. These findings demonstrate the feasibility of using our Pro-aCD25-NDs to prime target cells for enhancing the cytotoxicity of NK cells as antiviral or antitumor agents.
Collapse
Affiliation(s)
- Elizabeth E Sweeney
- The George Washington Cancer Center, The George Washington University, Washington, DC 20052, USA
| | - Preethi B Balakrishnan
- The George Washington Cancer Center, The George Washington University, Washington, DC 20052, USA
| | - Allison B Powell
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - Allan Bowen
- The George Washington Cancer Center, The George Washington University, Washington, DC 20052, USA
| | - Indra Sarabia
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC 20052, USA
| | - Rachel A Burga
- The George Washington Cancer Center, The George Washington University, Washington, DC 20052, USA
| | - R Brad Jones
- Infectious Disease Division, Weill Cornell Medical College, New York, NY 10065, USA
| | - Alberto Bosque
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC 20052, USA
| | - C Russell Y Cruz
- The George Washington Cancer Center, The George Washington University, Washington, DC 20052, USA
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - Rohan Fernandes
- The George Washington Cancer Center, The George Washington University, Washington, DC 20052, USA
- Department of Medicine, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
23
|
Li J, Lin W, Chen H, Xu Z, Ye Y, Chen M. Dual-target IL-12-containing nanoparticles enhance T cell functions for cancer immunotherapy. Cell Immunol 2020; 349:104042. [PMID: 32061376 DOI: 10.1016/j.cellimm.2020.104042] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/10/2020] [Indexed: 01/26/2023]
Abstract
Cytotoxic T lymphocytes (CTLs) play a major role in cancer immunotherapy. A potent tumor immunotherapy may not only require activation of anti-tumor effector cells but also rely on the use of cytokines to create a controlled environment for the development of anti-tumor T cells. In this study, we fabricated a dual-target immunonanoparticle, e.g. poly(d,l-lactide-co-glycolide) nanoparticle, by loading Interleukin-12 (IL-12) and modifying with CD8 and Glypican-3 antibodies on the surface. Our results demonstrate that the fabricated targeting immunonanoparticles bind specifically to the two target cells of interest, i.e. CD8+ T cells and HepG-2 cells via the antibody-antigen interactions and form T cell-HepG-2 cell clusters, which enhances the cytotoxicity of T cells. IL-12-containing dual-target immunonanoparticles delivered IL-12 specifically to CD8+ T cells, and favored the expansion, activation and cytotoxic activity of CD8+ T lymphocytes. These results suggest that dual-target IL-12-encapsulated nanoparticles are a promising platform for cancer immunotherapy.
Collapse
Affiliation(s)
- Jieyu Li
- Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian 350014, China
| | - Wansong Lin
- Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian 350014, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Huijing Chen
- Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian 350014, China
| | - Zhiping Xu
- Australian Institute for Bioengineering and Nanotechnology (Building 75), The University of Queensland, Cooper Rd., St Lucia, Brisbane, QLD 4072, Australia
| | - Yunbin Ye
- Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian 350014, China.
| | - Mingshui Chen
- Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian 350014, China.
| |
Collapse
|
24
|
Nanotechnology in the arena of cancer immunotherapy. Arch Pharm Res 2020; 43:58-79. [DOI: 10.1007/s12272-020-01207-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
|
25
|
Zhong H, Zhao C, Chen J, Chen M, Luo T, Tang W, Liu J. Electrochemical immunosensor with surface-confined probe for sensitive and reagentless detection of breast cancer biomarker. RSC Adv 2020; 10:22291-22296. [PMID: 35514560 PMCID: PMC9054605 DOI: 10.1039/d0ra01192d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/30/2020] [Indexed: 12/02/2022] Open
Abstract
Sensitive and reliable detection of tumour markers is of great significance for early diagnosis and monitoring recurrence of cancers. Herein, a simple electrochemical immunosensor is developed with an integrated electrochemical probe on the sensing surface, which is able to sensitively and reagentlessly detect the breast cancer biomarker, human epidermal growth factor receptor 2 (ErbB2). Ferrocene (Fc) is chosen as the signal indicator and covalently grafted on cationic polyelectrolyte poly(ethylene imine) (Fc-PEI). The redox Fc-PEI could alternately assemble with carboxyl functionalized single-walled carbon nanotubes (SWNTs) on an indium tin oxide electrode through layer-by-layerelectrostatic assembly. After Anti-ErbB2 antibody is covalently immobilized onto the outermost SWNTs layer followed by blocking the electrode with bovine serum albumin, a sensing interface with recognitive probe and electrochemical probe is obtained. In the presence of ErbB2, the formed antigen–antibody complex makes a barrier to inhibit electro-transfer of inner Fc, leading to a decreased electrochemical response. Owing to the SWNTs-facilitated charge transfer and abundant surface-bound probes, the developed sensor demonstrates outstanding performance for reagentless detection of ErbB2 in terms of wide detection range (1.0–200.0 ng mL−1) and low detection limit (0.22 ng mL−1). The developed immunosensor also exhibits good selectivity, reproducibility and stability. Real analysis of ErbB2 in human serum samples is also demonstrated. An electrochemical immunosensor with surface-confined redox probes as signal indicators was developed via LBL self-assembly technique for sensitive and reagentless detection of ErbB2.![]()
Collapse
Affiliation(s)
- Huage Zhong
- Affiliated Tumor Hospital of Guangxi Medical University
- Nanning 530021
- PR China
| | - Chang Zhao
- Affiliated Tumor Hospital of Guangxi Medical University
- Nanning 530021
- PR China
| | - Jie Chen
- Affiliated Tumor Hospital of Guangxi Medical University
- Nanning 530021
- PR China
| | - Miao Chen
- Affiliated Tumor Hospital of Guangxi Medical University
- Nanning 530021
- PR China
| | - Tao Luo
- Affiliated Tumor Hospital of Guangxi Medical University
- Nanning 530021
- PR China
| | - Weizhong Tang
- Affiliated Tumor Hospital of Guangxi Medical University
- Nanning 530021
- PR China
| | - Junjie Liu
- Affiliated Tumor Hospital of Guangxi Medical University
- Nanning 530021
- PR China
| |
Collapse
|
26
|
Ionizing radiation attracts tumor targeting and apoptosis by radiotropic lysyl oxidase traceable nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102141. [PMID: 31830613 DOI: 10.1016/j.nano.2019.102141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 10/23/2019] [Accepted: 11/29/2019] [Indexed: 02/05/2023]
Abstract
Lysyl oxidase (LOX) is a cell-secreted amine oxidase that crosslinks collagen and elastin in extracellular microenvironment. LOX-traceable nanoparticles (LOXab-NPs) consisting of LOX antibodies (LOXab) and paclitaxel, can accumulate at high concentrations at radiation-treated target sites, as a tumor-targeting drug carrier for chemotherapy. Tumor-targeting and anticancer effects of PLGA based LOXab-NPs in vitro and in vivo were evaluated at radiation-targeted site. In the in vivo A549 lung carcinoma xenograft model, we showed highly specific tumor targeting (above 7.0 times higher) of LOXab-NPs on irradiated tumors. Notably, systemically administered NPs delayed tumor growth, reducing tumor volumes by more than 2 times compared with non-irradiated groups (222% vs. >500%) over 2 weeks. Radiotropic LOXab-NPs can serve as chemotherapeutic vehicles for combined targeted chemo-radiotherapy in clinical oncology.
Collapse
|
27
|
Sun B, Liu C, Li H, Zhang L, Luo G, Liang S, Lü M. Research progress on the interactions between long non-coding RNAs and microRNAs in human cancer. Oncol Lett 2019; 19:595-605. [PMID: 31897175 PMCID: PMC6923957 DOI: 10.3892/ol.2019.11182] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022] Open
Abstract
Numerous types of molecular mechanisms mediate the development of cancer. Non-coding RNAs (ncRNAs) are being increasingly recognized to play important role in mediating the development of diseases, including cancer. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are the two most widely studied ncRNAs. Thus far, lncRNAs are known to have biological roles through a variety of mechanisms, including genetic imprinting, chromatin remodeling, cell cycle control, splicing regulation, mRNA decay and translational regulation, and miRNAs regulate gene expression through the degradation of mRNAs and lncRNAs. Although ncRNAs account for a major proportion of the total RNA, the mechanisms underlying the physiological or pathological processes mediated by various types of ncRNAs, and the specific interaction mechanisms between miRNAs and lncRNAs in various physiological and pathological processes, remain largely unknown. Thus, further research in this field is required. In general, the interaction mechanisms between miRNAs and lncRNAs in human cancer have become important research topics, and the study thereof has led to the recent development of related technologies. By providing examples and descriptions, and performing chart analysis, the present study aimed to review the interaction mechanisms and research approaches for these two types of ncRNAs, as well as their roles in the occurrence and development of cancer. These details have far-reaching significance for the utilization of these molecules in the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Binyu Sun
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chunxia Liu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Hao Li
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Lu Zhang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Gang Luo
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Sicheng Liang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Muhan Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
28
|
Azandaryani AH, Kashanian S, Jamshidnejad-Tosaramandani T. Recent Insights into Effective Nanomaterials and Biomacromolecules Conjugation in Advanced Drug Targeting. Curr Pharm Biotechnol 2019; 20:526-541. [DOI: 10.2174/1389201020666190417125101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/18/2019] [Accepted: 04/01/2019] [Indexed: 12/11/2022]
Abstract
Targeted drug delivery, also known as smart drug delivery or active drug delivery, is a subcategory of nanomedicine. Using this strategy, the medication is delivered into the infected organs in the patient’s body or to the targeted sites inside the cells. In order to improve therapeutic efficiency and pharmacokinetic characteristics of the active pharmaceutical agents, conjugation of biomacromolecules such as proteins, nucleic acids, monoclonal antibodies, aptamers, and nanoparticulate drug carriers, has been mostly recommended by scientists in the last decades. Several covalent conjugation pathways are used for biomacromolecules coupling with nanomaterials in nanomedicine including carbodiimides and “click” mediated reactions, thiol-mediated conjugation, and biotin-avidin interactions. However, choosing one or a combination of these methods with suitable coupling for application to advanced drug delivery is essential. This review focuses on new and high impacted published articles in the field of nanoparticles and biomacromolecules coupling studies, as well as their advantages and applications.
Collapse
Affiliation(s)
- Abbas H. Azandaryani
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soheila Kashanian
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | |
Collapse
|
29
|
Optimizing Advances in Nanoparticle Delivery for Cancer Immunotherapy. Adv Drug Deliv Rev 2019; 144:3-15. [PMID: 31330165 DOI: 10.1016/j.addr.2019.07.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/20/2022]
Abstract
Cancer immunotherapy is one of the fastest growing and most promising fields in clinical oncology. T-cell checkpoint inhibitors are revolutionizing the management of advanced cancers including non-small cell lung cancer and melanoma. Unfortunately, many common cancers are not responsive to these drugs and resistance remains problematic. A growing number of novel cancer immunotherapies have been discovered but their clinical translation has been limited by shortcomings of conventional drug delivery. Immune signaling is tightly-regulated and often requires simultaneous or near-simultaneous activation of multiple signals in specific subpopulations of immune cells. Nucleic acid therapies, which require intact intracellular delivery, are among the most promising approaches to modulate the tumor microenvironment to a pro-immunogenic phenotype. Advanced nanomedicines can be precisely engineered to overcome many of these limitations and appear well-poised to enable the clinical translation of promising cancer immunotherapies.
Collapse
|
30
|
Ben-Akiva E, Est Witte S, Meyer RA, Rhodes KR, Green JJ. Polymeric micro- and nanoparticles for immune modulation. Biomater Sci 2018; 7:14-30. [PMID: 30418444 PMCID: PMC6664797 DOI: 10.1039/c8bm01285g] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New advances in biomaterial-based approaches to modulate the immune system are being applied to treat cancer, infectious diseases, and autoimmunity. Particulate systems are especially well-suited to deliver immunomodulatory factors to immune cells since their small size allows them to engage cell surface receptors or deliver cargo intracellularly after internalization. Biodegradable polymeric particles are a particularly versatile platform for the delivery of signals to the immune system because they can be easily surface-modified to target specific receptors and engineered to release encapsulated cargo in a precise, sustained manner. Micro- and nanoscale systems have been used to deliver a variety of therapeutic agents including monoclonal antibodies, peptides, and small molecule drugs that function to activate the immune system against cancer or infectious disease, or suppress the immune system to combat autoimmune diseases and transplant rejection. This review provides an overview of recent advances in the development of polymeric micro- and nanoparticulate systems for the presentation and delivery of immunomodulatory agents targeted to a variety of immune cell types including APCs, T cells, B cells, and NK cells.
Collapse
Affiliation(s)
- Elana Ben-Akiva
- Department of Biomedical Engineering and Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | | | | | | | | |
Collapse
|
31
|
Theranostics Applications of Nanoparticles in Cancer Immunotherapy. Med Sci (Basel) 2018; 6:medsci6040100. [PMID: 30424010 PMCID: PMC6313674 DOI: 10.3390/medsci6040100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 01/01/2023] Open
Abstract
With the advancement in the mechanism of immune surveillance and immune evasion in cancer cells, cancer immunotherapy shows promising results for treating cancer with established efficacy and less toxicity. As a result of the off-target effect, the approach for delivering vaccines, adjuvants, or antibodies directly to tumor sites is gaining widespread attention. An effective alternative is to utilize nanoengineered particles, functioning as drug-delivery systems or as antigens themselves. This article reviews the practical implementation of nanotechnology in cancer immunotherapy.
Collapse
|
32
|
Murrell DE, Coleman JM, Brown SD, Harirforoosh S. Formulation and in vivo evaluation of aliskiren-loaded poly(lactic- co-glycolic) acid nanoparticles. TOXICOLOGY RESEARCH AND APPLICATION 2018. [DOI: 10.1177/2397847318801155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aliskiren (ALS) is a direct renin inhibitor with low bioavailability and high drug cost. The goal of this study was to increase the bioavailability of ALS through nanoformulation. The optimized formulation was then evaluated in spontaneously hypertensive rats (SHRs). We developed an ALS poly(lactic- co-glycolic) acid nanoparticle (ALS-NP) through the emulsion–diffusion–evaporation method with various solvents, stabilizer concentrations, and centrifugation speeds. SHRs were orally dosed with 30 mg/kg ALS or dose equivalent ALS-NP. Several parameters were assayed in plasma and/or urine at baseline and 24 h post-dose, while pharmacokinetic analysis included serial sampling. The optimum formulation was found with ethyl acetate, a 1.00% w/v didodecyldimethylammonium bromide concentration, and a 10,000 r/min (15,554 g) centrifugation speed. A 168% relative bioavailability was observed as a result of ALS-NP administration along with significant, as determined by Student’s t-test, increases in the maximum ALS plasma concentration ( p = 0.0189) and the area under the plasma concentration–time curve from 0 to infinity ( p = 0.0095). Conversely, a reduction was found in oral volume of distribution ( p = 0.0009) and oral clearance ( p = 0.0298). Blood urea nitrogen increased significantly after dosing in both groups ( p < 0.0001 and p < 0.0001); however, no statistical difference was found between endpoint levels ( p > 0.05) following one-way analysis of variance (ANOVA). Kidney injury molecule-1 increased following ALS dosing ( p = 0.0486), while ALS-NP showed a decrease ( p = 0.027) which was also significantly decreased compared to ALS-Final ( p = 0.0008) when examined using two-way ANOVA. Urinary potassium excretion decreased significantly, as shown by two-way ANOVA, only in the ALS group ( p = 0.0274) which was also significantly reduced compared to ALS-NP-Final ( p = 0.016). Using the current formulation and at the dosage tested, ALS-NP showed a more favorable pharmacokinetic profile and positive kidney changes compared to ALS in regard to select outcomes. Thus, NP formulation may further improve ALS renoprotection in addition to increasing bioavailabilty.
Collapse
Affiliation(s)
- Derek E Murrell
- Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee, USA
| | - Jessica M Coleman
- College of Arts and Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Stacy D Brown
- Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee, USA
| | - Sam Harirforoosh
- Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
33
|
Xie YQ, Wei L, Tang L. Immunoengineering with biomaterials for enhanced cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1506. [PMID: 29333729 DOI: 10.1002/wnan.1506] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/07/2017] [Accepted: 11/22/2017] [Indexed: 12/17/2022]
Abstract
Cancer immunotherapy has recently shown dramatic clinical success inducing durable response in patients of a wide variety of malignancies. Further improvement of the clinical outcome with immune related cancer treatment requests more exquisite manipulation of a patient's immune system with increased immunity against diseases while mitigating the toxicities. To meet this challenge, biomaterials applied to immunoengineering are being developed to achieve tissue- and/or cell-specific immunomodulation and thus could potentially enhance both the efficacy and safety of current cancer immunotherapies. Here, we review the recent advancement in the field of immunoengineering using biomaterials and their applications in promoting different modalities of cancer immunotherapies, with focus on cell-, antibody-, immunomodulator-, and gene-based immune related treatments and their combinations with conventional therapies. Challenges and opportunities are discussed in applying biomaterials engineering strategies in the development of future cancer immunotherapies. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- Yu-Qing Xie
- Institute of Bioengineering, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lixia Wei
- Institute of Materials Science & Engineering, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Li Tang
- Institute of Bioengineering, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Institute of Materials Science & Engineering, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
34
|
Esmaili Z, Bayrami S, Dorkoosh FA, Akbari Javar H, Seyedjafari E, Zargarian SS, Haddadi-Asl V. Development and characterization of electrosprayed nanoparticles for encapsulation of Curcumin. J Biomed Mater Res A 2017; 106:285-292. [DOI: 10.1002/jbm.a.36233] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/12/2017] [Accepted: 09/08/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Zahra Esmaili
- Department of Pharmaceutics, Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Samaneh Bayrami
- Department of Pharmaceutics, Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science; University of Tehran; Tehran Iran
| | - Seyed Shahrooz Zargarian
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; Tehran Iran
| | - Vahid Haddadi-Asl
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; Tehran Iran
| |
Collapse
|
35
|
Rodrigues de Azevedo C, von Stosch M, Costa MS, Ramos A, Cardoso MM, Danhier F, Préat V, Oliveira R. Modeling of the burst release from PLGA micro- and nanoparticles as function of physicochemical parameters and formulation characteristics. Int J Pharm 2017; 532:229-240. [DOI: 10.1016/j.ijpharm.2017.08.118] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 10/18/2022]
|
36
|
Lee PW, Shukla S, Wallat JD, Danda C, Steinmetz NF, Maia J, Pokorski JK. Biodegradable Viral Nanoparticle/Polymer Implants Prepared via Melt-Processing. ACS NANO 2017; 11:8777-8789. [PMID: 28902491 PMCID: PMC5765982 DOI: 10.1021/acsnano.7b02786] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Viral nanoparticles have been utilized as a platform for vaccine development and are a versatile system for the display of antigenic epitopes for a variety of disease states. However, the induction of a clinically relevant immune response often requires multiple injections over an extended period of time, limiting patient compliance. Polymeric systems to deliver proteinaceous materials have been extensively researched to provide sustained release, which would limit administration to a single dose. Melt-processing is an emerging manufacturing method that has been utilized to create polymeric materials laden with proteins as an alternative to typical solvent-based production methods. Melt-processing is advantageous because it is continuous, solvent-free, and 100% of the therapeutic protein is encapsulated. In this study, we utilized melt-encapsulation to fabricate viral nanoparticle laden polymeric materials that effectively deliver intact particles and generate carrier specific antibodies in vivo. The effects of initial processing and postprocessing on particle integrity and aggregation were studied to develop processing windows for scale-up and the creation of more complex materials. The dispersion of particles within the PLGA matrix was studied, and the effect of additives and loading level on the release profile was determined. Overall, melt-encapsulation was found to be an effective method to produce composite materials that can deliver viral nanoparticles over an extended period and elicit an immune response comparable to typical administration schedules.
Collapse
Affiliation(s)
- Parker W. Lee
- Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Sourabh Shukla
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Jaqueline D. Wallat
- Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Chaitanya Danda
- Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Nicole F. Steinmetz
- School of Medicine, Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Joao Maia
- Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Jonathan K. Pokorski
- Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
37
|
Song W, Musetti SN, Huang L. Nanomaterials for cancer immunotherapy. Biomaterials 2017; 148:16-30. [PMID: 28961532 DOI: 10.1016/j.biomaterials.2017.09.017] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/07/2017] [Accepted: 09/17/2017] [Indexed: 02/08/2023]
Abstract
Cancer immunotherapy is quickly growing to be the fourth most important cancer therapy, after surgery, radiation therapy, and chemotherapy. Immunotherapy is the most promising cancer management strategy because it orchestrates the body's own immune system to target and eradicate cancer cells, which may result in durable antitumor responses and reduce metastasis and recurrence more than traditional treatments. Nanomaterials hold great promise in further improving the efficiency of cancer immunotherapy - in many cases, they are even necessary for effective delivery. In this review, we briefly summarize the basic principles of cancer immunotherapy and explain why and where to apply nanomaterials in cancer immunotherapy, with special emphasis on cancer vaccines and tumor microenvironment modulation.
Collapse
Affiliation(s)
- Wantong Song
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Sara N Musetti
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
38
|
Abstract
Cancer immunotherapy can successfully promote long-term anticancer immune responses, although there is still only a limited number of patients who benefit from such treatment, and it can sometimes have severe treatment-associated adverse events. Compared with systemic immunomodulation, local immunomodulation may enable more effective treatment at lower doses and, at the same time, prevent systemic toxicity. Local delivery of engineered three-dimensional scaffolds may fulfil this role by acting as synthetic immune niches that boost anticancer immunity. In this Opinion article, we highlight the potential of scaffold-based adoptive cell transfer and scaffold-based cancer vaccines that, although applied locally, can promote systemic antitumour immunity. Furthermore, we discuss how scaffold-based cancer immunotherapy may contribute to the development of the next generation of cancer treatments.
Collapse
|
39
|
Qiu H, Min Y, Rodgers Z, Zhang L, Wang AZ. Nanomedicine approaches to improve cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9. [PMID: 28296286 DOI: 10.1002/wnan.1456] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/28/2016] [Accepted: 12/17/2016] [Indexed: 01/10/2023]
Abstract
Significant advances have been made in the field of cancer immunotherapy by orchestrating the body's immune system to eradicate cancer cells. However, safety and efficacy concerns stemming from the systemic delivery of immunomodulatory compounds limits cancer immunotherapies expansion and application. In this context, nanotechnology presents a number of advantages, such as targeted delivery to immune cells, enhanced clinical outcomes, and reduced adverse events, which may aid in the delivery of cancer vaccines and immunomodulatory agents. With this in mind, a diverse range of nanomaterials with different physicochemical characteristics have been developed to stimulate the immune system and battle cancer. In this review, we will focus on some recent developments and the potential advantages of utilizing nanotechnology within the field of cancer immunotherapy. WIREs Nanomed Nanobiotechnol 2017, 9:e1456. doi: 10.1002/wnan.1456 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Hui Qiu
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine; Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, USA.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuanzeng Min
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine; Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Zach Rodgers
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine; Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Longzhen Zhang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Andrew Z Wang
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine; Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, USA.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
40
|
Cui Y, Cui P, Chen B, Li S, Guan H. Monoclonal antibodies: formulations of marketed products and recent advances in novel delivery system. Drug Dev Ind Pharm 2017; 43:519-530. [DOI: 10.1080/03639045.2017.1278768] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yanan Cui
- School of Pharmacy, Jining Medicinal College, Jining, China
| | - Ping Cui
- Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Centre of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Binlong Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Suxin Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hua Guan
- School of Pharmacy, Jining Medicinal College, Jining, China
| |
Collapse
|
41
|
|
42
|
Gilbreth RN, Novarra S, Wetzel L, Florinas S, Cabral H, Kataoka K, Rios-Doria J, Christie RJ, Baca M. Lipid- and polyion complex-based micelles as agonist platforms for TNFR superfamily receptors. J Control Release 2016; 234:104-14. [DOI: 10.1016/j.jconrel.2016.05.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/16/2016] [Indexed: 12/12/2022]
|
43
|
|
44
|
Abstract
Metastasis is the underlying cause of death for the majority of breast cancer patients. Despite significant advances in recent years in basic research and clinical development, therapies that specifically target metastatic breast cancer remain inadequate, and represents the single greatest obstacle to reducing mortality of late-stage breast cancer. Recent efforts have leveraged genomic analysis of breast cancer and molecular dissection of tumor-stromal cross-talk to uncover a number of promising candidates for targeted treatment of metastatic breast cancer. Rational combinations of therapeutic agents targeting tumor-intrinsic properties and microenvironmental components provide a promising strategy to develop precision treatments with higher specificity and less toxicity. In this review, we discuss the emerging therapeutic targets in breast cancer metastasis, from tumor-intrinsic pathways to those that involve the host tissue components, including the immune system.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, United States
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, United States.
| |
Collapse
|
45
|
Royds JA, Pilbrow AP, Ahn A, Morrin HR, Frampton C, Russell IA, Moravec CS, Sweet WE, Tang WHW, Currie MJ, Hung NA, Slatter TL. The rs11515 Polymorphism Is More Frequent and Associated With Aggressive Breast Tumors with Increased ANRIL and Decreased p16 (INK4a) Expression. Front Oncol 2016; 5:306. [PMID: 26835415 PMCID: PMC4720739 DOI: 10.3389/fonc.2015.00306] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/21/2015] [Indexed: 01/28/2023] Open
Abstract
Chromosome position 9p21 encodes three-tumor suppressors p16INK4a, p14ARF, and p15INK4b and the long non-coding RNA ANRIL (antisense non-coding RNA in the INK4 locus). The rs11515 single-nucleotide polymorphism in the p16INK4a/p14ARF 3′-untranslated region is associated with glioblastoma, melanoma, and other cancers. This study investigated the frequency and effect of rs11515 genotypes in breast cancer. Genomic DNA samples from 400 women (200 with and 200 without a diagnosis of breast cancer) were genotyped for the rs11515 major (C) and minor (G) alleles. The rs11515 polymorphism was also investigated in 108 heart tissues to test for tissue-specific effects. Four 9p21 transcripts, p16INK4a, p14ARF, p15INK4b, and ANRIL were measured in breast tumors and myocardium using quantitative PCR. Heterozygotes (CG genotype) were more frequent in women with breast cancer compared to the control population (P = 0.0039). In those with breast cancer, the CG genotype was associated with an older age (P = 0.016) and increased lymph node involvement (P = 0.007) compared to homozygotes for the major allele (CC genotype). In breast tumors, the CG genotype had higher ANRIL (P = 0.031) and lower p16INK4a (P = 0.006) expression compared to the CC genotype. The CG genotype was not associated with altered 9p21 transcripts in heart tissue. In breast cancer, the rs11515 CG genotype is more frequent and associated with a more aggressive tumor that could be due to increased ANRIL and reduced p16INK4a expression. The absence of association between rs11515 genotypes and 9p21 transcripts in heart tissue suggests this polymorphism has tissue- or disease-specific functions.
Collapse
Affiliation(s)
- Janice A Royds
- Department of Pathology, Dunedin School of Medicine, University of Otago , Dunedin , New Zealand
| | - Anna P Pilbrow
- Department of Medicine, University of Otago , Christchurch , New Zealand
| | - Antonio Ahn
- Department of Pathology, Dunedin School of Medicine, University of Otago , Dunedin , New Zealand
| | - Helen R Morrin
- Department of Pathology, University of Otago , Christchurch , New Zealand
| | - Chris Frampton
- Department of Medicine, University of Otago , Christchurch , New Zealand
| | - I Alasdair Russell
- Cancer Research UK Cambridge Institute, University of Cambridge , Cambridge , UK
| | - Christine S Moravec
- Department of Cardiovascular Medicine, Kaufman Center for Heart Failure, Cleveland Clinic , Cleveland, OH , USA
| | - Wendy E Sweet
- Department of Cardiovascular Medicine, Kaufman Center for Heart Failure, Cleveland Clinic , Cleveland, OH , USA
| | - W H Wilson Tang
- Department of Cardiovascular Medicine, Kaufman Center for Heart Failure, Cleveland Clinic , Cleveland, OH , USA
| | - Margaret J Currie
- Department of Pathology, University of Otago , Christchurch , New Zealand
| | - Noelyn A Hung
- Department of Pathology, Dunedin School of Medicine, University of Otago , Dunedin , New Zealand
| | - Tania L Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago , Dunedin , New Zealand
| |
Collapse
|
46
|
WITHDRAWN: Polymer assembly: Promising carriers as co-delivery systems for cancer therapy. Prog Polym Sci 2015. [DOI: 10.1016/j.progpolymsci.2015.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Fan Y, Moon JJ. Nanoparticle Drug Delivery Systems Designed to Improve Cancer Vaccines and Immunotherapy. Vaccines (Basel) 2015; 3:662-85. [PMID: 26350600 PMCID: PMC4586472 DOI: 10.3390/vaccines3030662] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 12/20/2022] Open
Abstract
Recent studies have demonstrated great therapeutic potential of educating and unleashing our own immune system for cancer treatment. However, there are still major challenges in cancer immunotherapy, including poor immunogenicity of cancer vaccines, off-target side effects of immunotherapeutics, as well as suboptimal outcomes of adoptive T cell transfer-based therapies. Nanomaterials with defined physico-biochemical properties are versatile drug delivery platforms that may address these key technical challenges facing cancer vaccines and immunotherapy. Nanoparticle systems have been shown to improve targeted delivery of tumor antigens and therapeutics against immune checkpoint molecules, amplify immune activation via the use of new stimuli-responsive or immunostimulatory materials, and augment the efficacy of adoptive cell therapies. Here, we review the current state-of-the-art in nanoparticle-based strategies designed to potentiate cancer immunotherapies, including cancer vaccines with subunit antigens (e.g., oncoproteins, mutated neo-antigens, DNA and mRNA antigens) and whole-cell tumor antigens, dendritic cell-based vaccines, artificial antigen-presenting cells, and immunotherapeutics based on immunogenic cell death, immune checkpoint blockade, and adoptive T-cell therapy.
Collapse
Affiliation(s)
- Yuchen Fan
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
48
|
Silk fibroin nanoparticle as a novel drug delivery system. J Control Release 2015; 206:161-76. [DOI: 10.1016/j.jconrel.2015.03.020] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 01/12/2023]
|
49
|
Jiang W, Luo J, Nangia S. Multiscale approach to investigate self-assembly of telodendrimer based nanocarriers for anticancer drug delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:4270-4280. [PMID: 25532019 PMCID: PMC4760677 DOI: 10.1021/la503949b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 12/21/2014] [Indexed: 05/29/2023]
Abstract
Delivery of poorly soluble anticancer drugs can be achieved by employing polymeric drug delivery systems, capable of forming stable self-assembled nanocarriers with drug encapsulated within their hydrophobic cores. Computational investigations can aid the design of efficient drug-delivery platforms; however, simulations of nanocarrier self-assembly process are challenging due to high computational cost associated with the large system sizes (millions of atoms) and long time scales required for equilibration. In this work, we overcome this challenge by employing a multiscale computational approach in conjunction with experiments to analyze the role of the individual building blocks in the self-assembly of a highly tunable linear poly(ethylene glycol)-b-dendritic oligo(cholic acid) block copolymer called telodendrimer. The multiscale approach involved developing a coarse grained description of the telodendrimer, performing simulations over several microseconds to capture the self-assembly process, followed by reverse mapping of the coarse grained system to atomistic representation for structural analysis. Overcoming the computational bottleneck allowed us to run multiple self-assembly simulations and determine average size, drug-telodendrimer micellar stoichiometry, optimal drug loading capacity, and atomistic details such hydrogen-bonding and solvent accessible area of the nanocarrier. Computed results are in agreement with the experimental data, highlighting the success of the multiscale approach applied here.
Collapse
Affiliation(s)
| | - Juntao Luo
- †Department of Pharmacology, Upstate Cancer Research Institute, State University of New York Upstate Medical University, Syracuse, New York 13210, United States
| | | |
Collapse
|
50
|
Conniot J, Silva JM, Fernandes JG, Silva LC, Gaspar R, Brocchini S, Florindo HF, Barata TS. Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Front Chem 2014; 2:105. [PMID: 25505783 PMCID: PMC4244808 DOI: 10.3389/fchem.2014.00105] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/31/2014] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the most common diseases afflicting people globally. New therapeutic approaches are needed due to the complexity of cancer as a disease. Many current treatments are very toxic and have modest efficacy at best. Increased understanding of tumor biology and immunology has allowed the development of specific immunotherapies with minimal toxicity. It is important to highlight the performance of monoclonal antibodies, immune adjuvants, vaccines and cell-based treatments. Although these approaches have shown varying degrees of clinical efficacy, they illustrate the potential to develop new strategies. Targeted immunotherapy is being explored to overcome the heterogeneity of malignant cells and the immune suppression induced by both the tumor and its microenvironment. Nanodelivery strategies seek to minimize systemic exposure to target therapy to malignant tissue and cells. Intracellular penetration has been examined through the use of functionalized particulates. These nano-particulate associated medicines are being developed for use in imaging, diagnostics and cancer targeting. Although nano-particulates are inherently complex medicines, the ability to confer, at least in principle, different types of functionality allows for the plausible consideration these nanodelivery strategies can be exploited for use as combination medicines. The development of targeted nanodelivery systems in which therapeutic and imaging agents are merged into a single platform is an attractive strategy. Currently, several nanoplatform-based formulations, such as polymeric nanoparticles, micelles, liposomes and dendrimers are in preclinical and clinical stages of development. Herein, nanodelivery strategies presently investigated for cancer immunotherapy, cancer targeting mechanisms and nanocarrier functionalization methods will be described. We also intend to discuss the emerging nano-based approaches suitable to be used as imaging techniques and as cancer treatment options.
Collapse
Affiliation(s)
- João Conniot
- Faculdade de Farmácia, Instituto de Investigação do Medicamento (iMed.ULisboa), Universidade de Lisboa Lisboa, Portugal
| | - Joana M Silva
- Faculdade de Farmácia, Instituto de Investigação do Medicamento (iMed.ULisboa), Universidade de Lisboa Lisboa, Portugal
| | - Joana G Fernandes
- Faculdade de Farmácia, Instituto de Investigação do Medicamento (iMed.ULisboa), Universidade de Lisboa Lisboa, Portugal
| | - Liana C Silva
- Faculdade de Farmácia, Instituto de Investigação do Medicamento (iMed.ULisboa), Universidade de Lisboa Lisboa, Portugal
| | - Rogério Gaspar
- Faculdade de Farmácia, Instituto de Investigação do Medicamento (iMed.ULisboa), Universidade de Lisboa Lisboa, Portugal
| | - Steve Brocchini
- EPSRC Centre for Innovative Manufacturing in Emergent Macromolecular Therapies, UCL School of Pharmacy London, UK
| | - Helena F Florindo
- Faculdade de Farmácia, Instituto de Investigação do Medicamento (iMed.ULisboa), Universidade de Lisboa Lisboa, Portugal
| | - Teresa S Barata
- EPSRC Centre for Innovative Manufacturing in Emergent Macromolecular Therapies, UCL School of Pharmacy London, UK
| |
Collapse
|