1
|
Ghura S, Beratan NR, Shi X, Alvarez-Periel E, Bond Newton SE, Akay-Espinoza C, Jordan-Sciutto KL. Genetic knock-in of EIF2AK3 variants reveals differences in PERK activity in mouse liver and pancreas under endoplasmic reticulum stress. Sci Rep 2024; 14:23812. [PMID: 39394239 PMCID: PMC11470120 DOI: 10.1038/s41598-024-74362-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024] Open
Abstract
Common single-nucleotide variants (SNVs) of eukaryotic translation initiation factor 2 alpha kinase 3 (EIF2AK3) slightly increase the risk of disorders in the periphery and the central nervous system. EIF2AK3 encodes protein kinase RNA-like endoplasmic reticulum kinase (PERK), a key regulator of ER stress. Three exonic EIF2AK3 SNVs form the PERK-B haplotype, which is present in 28% of the global population. Importantly, the precise impact of these SNVs on PERK activity remains elusive. In this study, we demonstrate that PERK-B SNVs do not alter PERK expression or basal activity in vitro and in the novel triple knock-in mice expressing the exonic PERK-B SNVs in vivo. However, the kinase activity of PERK-B protein is higher than that of PERK-A in a cell-free assay and in mouse liver homogenates. Pancreatic tissue in PERK-B/B mice also exhibit increased susceptibility to apoptosis under acute ER stress. Monocyte-derived macrophages from PERK-B/B mice exhibit higher PERK activity than those from PERK-A/A mice, albeit with minimal functional consequences at acute timepoints. The subtle PERK-B-driven effects observed in liver and pancreas during acute stress implicate PERK as a contributor to disease susceptibility. The novel PERK-B mouse model provides valuable insights into ER stress-induced PERK activity, aiding the understanding of the genetic basis of disorders associated with ER stress.
Collapse
Affiliation(s)
- Shivesh Ghura
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Rm 312 Levy, Philadelphia, PA, 19104, USA
| | - Noah R Beratan
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Rm 312 Levy, Philadelphia, PA, 19104, USA
| | - Xinglong Shi
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Rm 312 Levy, Philadelphia, PA, 19104, USA
| | - Elena Alvarez-Periel
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Rm 312 Levy, Philadelphia, PA, 19104, USA
| | - Sarah E Bond Newton
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Rm 312 Levy, Philadelphia, PA, 19104, USA
- Department of Neuroscience, Weinberg ALS Center, Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Cagla Akay-Espinoza
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Rm 312 Levy, Philadelphia, PA, 19104, USA
| | - Kelly L Jordan-Sciutto
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Rm 312 Levy, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Zhao Q, Feng W, Gao P, Han Y, Zhang S, Zhou A, Shi L, Zhang J. Deoxynivalenol-Induced Spleen Toxicity in Mice: Inflammation, Endoplasmic Reticulum Stress, Macrophage Polarization, and the Dysregulation of LncRNA Expression. Toxins (Basel) 2024; 16:432. [PMID: 39453208 PMCID: PMC11511314 DOI: 10.3390/toxins16100432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
The spleen is a primary target of deoxynivalenol (DON) toxicity, but its underlying molecular mechanisms remain unclear. This study investigates the effects of DON on inflammation, splenic macrophage polarization, endoplasmic reticulum (ER) stress, and transcriptome changes (mRNA and lncRNAs) in mouse spleen. We found that DON exposure at doses of 2.5 or 5 mg/kg BW significantly induced inflammation and polarized splenic macrophages towards the M1 phenotype. Additionally, DON activated PERK-eIF2α-ATF4-mediated ER stress and upregulated apoptosis-related proteins (caspase-12, caspase-3). The ER stress inhibitor, 4-Phenylbutyric acid, significantly alleviated DON-induced ER stress, apoptosis, and the M1 polarization of splenic macrophages. Transcriptome analysis identified 1968 differentially expressed (DE) lncRNAs and 2664 DE mRNAs in mouse spleen following DON exposure. Functional enrichment analysis indicated that the upregulated genes were involved in pathways associated with immunity, including Th17 cell differentiation, TNF signaling, and IL-17 signaling, while downregulated mRNAs were linked to cell survival and growth pathways. Furthermore, 370 DE lncRNAs were predicted to target 255 DE target genes associated with immune processes, including the innate immune response, interferon-beta response, cytokine production regulation, leukocyte apoptosis, and NF-κB signaling genes. This study provides new insights into the mechanisms underlying DON toxicity and its effects on the immune system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jing Zhang
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Q.Z.); (W.F.); (P.G.); (Y.H.); (S.Z.); (A.Z.); (L.S.)
| |
Collapse
|
3
|
Ge Z, Chen Y, Ma L, Hu F, Xie L. Macrophage polarization and its impact on idiopathic pulmonary fibrosis. Front Immunol 2024; 15:1444964. [PMID: 39131154 PMCID: PMC11310026 DOI: 10.3389/fimmu.2024.1444964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lung disease that worsens over time, causing fibrosis in the lungs and ultimately resulting in respiratory failure and a high risk of death. Macrophages play a crucial role in the immune system, showing flexibility by transforming into either pro-inflammatory (M1) or anti-inflammatory (M2) macrophages when exposed to different stimuli, ultimately impacting the development of IPF. Recent research has indicated that the polarization of macrophages is crucial in the onset and progression of IPF. M1 macrophages secrete inflammatory cytokines and agents causing early lung damage and fibrosis, while M2 macrophages support tissue healing and fibrosis by releasing anti-inflammatory cytokines. Developing novel treatments for IPF relies on a thorough comprehension of the processes involved in macrophage polarization in IPF. The review outlines the regulation of macrophage polarization and its impact on the development of IPF, with the goal of investigating the possible therapeutic benefits of macrophage polarization in the advancement of IPF.
Collapse
Affiliation(s)
- Zhouling Ge
- Department of Respiratory Medicine, The Third Affiliated Hospital of Shanghai University (Wenzhou People’s Hospital), Wenzhou, China
| | - Yong Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Leikai Ma
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangjun Hu
- Department of Respiratory Medicine, The Third Affiliated Hospital of Shanghai University (Wenzhou People’s Hospital), Wenzhou, China
| | - Lubin Xie
- Department of Respiratory Medicine, The Third Affiliated Hospital of Shanghai University (Wenzhou People’s Hospital), Wenzhou, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Yu X, Xu R, Huang X, Chen H, Zhang Z, Wong I, Chen Z, Deng F. Size-Dependent Effect of Titania Nanotubes on Endoplasmic Reticulum Stress to Re-establish Diabetic Macrophages Homeostasis. ACS Biomater Sci Eng 2024; 10:4323-4335. [PMID: 38860558 DOI: 10.1021/acsbiomaterials.4c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
In patients with diabetes, endoplasmic reticulum stress (ERS) is a crucial disrupting factor of macrophage homeostasis surrounding implants, which remains an obstacle to oral implantation success. Notably, the ERS might be modulated by the implant surface morphology. Titania nanotubes (TNTs) may enhance diabetic osseointegration. However, a consensus has not been achieved regarding the tube-size-dependent effect and the underlying mechanism of TNTs on diabetic macrophage ERS. We manufactured TNTs with small (30 nm) and large diameters (100 nm). Next, we assessed how the different titanium surfaces affected diabetic macrophages and regulated ERS and Ca2+ homeostasis. TNTs alleviated the inflammatory response, oxidative stress, and ERS in diabetic macrophages. Furthermore, TNT30 was superior to TNT100. Inhibiting ERS abolished the positive effect of TNT30. Mechanistically, topography-induced extracellular Ca2+ influx might mitigate excessive ERS in macrophages by alleviating ER Ca2+ depletion and IP3R activation. Furthermore, TNT30 attenuated the peri-implant inflammatory response and promoted osseointegration in diabetic rats. TNTs with small nanodiameters attenuated ERS and re-established diabetic macrophage hemostasis by inhibiting IP3R-induced ER Ca2+ depletion.
Collapse
Affiliation(s)
- Xiaoran Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| | - Ruogu Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| | - Xiaoqiong Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| | - Hongcheng Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| | - Zhengchuan Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| | - Iohong Wong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| |
Collapse
|
5
|
Fliri A, Kajiji S. Effects of vitamin D signaling in cardiovascular disease: centrality of macrophage polarization. Front Cardiovasc Med 2024; 11:1388025. [PMID: 38984353 PMCID: PMC11232491 DOI: 10.3389/fcvm.2024.1388025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/24/2024] [Indexed: 07/11/2024] Open
Abstract
Among the leading causes of natural death are cardiovascular diseases, cancer, and respiratory diseases. Factors causing illness include genetic predisposition, aging, stress, chronic inflammation, environmental factors, declining autophagy, and endocrine abnormalities including insufficient vitamin D levels. Inconclusive clinical outcomes of vitamin D supplements in cardiovascular diseases demonstrate the need to identify cause-effect relationships without bias. We employed a spectral clustering methodology capable of analyzing large diverse datasets for examining the role of vitamin D's genomic and non-genomic signaling in disease in this study. The results of this investigation showed the following: (1) vitamin D regulates multiple reciprocal feedback loops including p53, macrophage autophagy, nitric oxide, and redox-signaling; (2) these regulatory schemes are involved in over 2,000 diseases. Furthermore, the balance between genomic and non-genomic signaling by vitamin D affects autophagy regulation of macrophage polarization in tissue homeostasis. These findings provide a deeper understanding of how interactions between genomic and non-genomic signaling affect vitamin D pharmacology and offer opportunities for increasing the efficacy of vitamin D-centered treatment of cardiovascular disease and healthy lifespans.
Collapse
Affiliation(s)
- Anton Fliri
- Emergent System Analytics LLC, Clinton, CT, United States
| | - Shama Kajiji
- Emergent System Analytics LLC, Clinton, CT, United States
| |
Collapse
|
6
|
Wang F, Baverel V, Chaumonnot K, Bourragat A, Bellenger J, Bellenger S, Zhou W, Narce M, Garrido C, Kohli E. The endoplasmic reticulum stress protein GRP94 modulates cathepsin L activity in M2 macrophages in conditions of obesity-associated inflammation and contributes to their pro-inflammatory profile. Int J Obes (Lond) 2024; 48:830-840. [PMID: 38351251 DOI: 10.1038/s41366-024-01478-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND/OBJECTIVES Adipose tissue macrophages (ATM) are key actors in the pathophysiology of obesity-related diseases. They have a unique intermediate M2-M1 phenotype which has been linked to endoplasmic reticulum (ER) stress. We previously reported that human M2 macrophages treated with the ER stress inducer thapsigargin switched to a pro-inflammatory phenotype that depended on the stress protein GRP94. In these conditions, GRP94 promoted cathepsin L secretion and was co-secreted with complement C3. As cathepsin L and complement C3 have been reported to play a role in the pathophysiology of obesity, in this work we studied the involvement of GRP94 in the pro-inflammatory phenotype of ATM. METHODS GRP94, cathepsin L and C3 expression were analyzed in CD206 + ATM from mice, WT or obesity-resistant transgenic fat-1, fed a high-fat diet (HFD) or a standard diet. GRP94 colocalization with cathepsin L and C3 and its effects were analyzed in human primary macrophages using thapsigargin as a control to induce ER stress and palmitic acid (PA) as a driver of metabolic activation. RESULTS In WT, but not in fat-1 mice, fed a HFD, we observed an increase in crown-like structures consisting of CD206 + pSTAT1+ macrophages showing high expression of GRP94 that colocalized with cathepsin L and C3. In vitro experiments showed that PA favored a M2-M1 switch depending on GRP94. This switch was prevented by omega-3 fatty acids. PA-induced GRP94-cathepsin L colocalization and a decrease in cathepsin L enzymatic activity within the cells (while the enzymatic activity in the extracellular medium was increased). These effects were prevented by the GRP94 inhibitor PU-WS13. CONCLUSIONS GRP94 is overexpressed in macrophages both in in vivo and in vitro conditions of obesity-associated inflammation and is involved in changing their profile towards a more pro-inflammatory profile. It colocalizes with complement C3 and cathepsin L and modulates cathepsin L activity.
Collapse
Affiliation(s)
- Fangmin Wang
- UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- UMR INSERM/uB/AGROSUP 1231, Team HSP-Pathies, labellisée Ligue Nationale contre le Cancer and Laboratoire d'Excellence LipSTIC, UBFC, Dijon, France
- Zhejiang Provincial Key Lab of Addiction, The Affiliated Kangning Hospital of Ningbo University, Ningbo Kangning Hospital, Ningbo University, Ningbo, China
| | - Valentin Baverel
- UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- UMR INSERM/uB/AGROSUP 1231, Team HSP-Pathies, labellisée Ligue Nationale contre le Cancer and Laboratoire d'Excellence LipSTIC, UBFC, Dijon, France
| | - Killian Chaumonnot
- UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- UMR INSERM/uB/AGROSUP 1231, Team HSP-Pathies, labellisée Ligue Nationale contre le Cancer and Laboratoire d'Excellence LipSTIC, UBFC, Dijon, France
| | - Amina Bourragat
- UMR INSERM/uB/AGROSUP 1231, Team Lipness, Labellisée Laboratoire d'Excellence LipSTIC, Dijon, France
- UFR Sciences Vie Terre Environnement, Université de Bourgogne, Dijon, France
| | - Jerome Bellenger
- UMR INSERM/uB/AGROSUP 1231, Team Lipness, Labellisée Laboratoire d'Excellence LipSTIC, Dijon, France
- UFR Sciences Vie Terre Environnement, Université de Bourgogne, Dijon, France
| | - Sandrine Bellenger
- UMR INSERM/uB/AGROSUP 1231, Team Lipness, Labellisée Laboratoire d'Excellence LipSTIC, Dijon, France
- UFR Sciences Vie Terre Environnement, Université de Bourgogne, Dijon, France
| | - Wenhua Zhou
- Zhejiang Provincial Key Lab of Addiction, The Affiliated Kangning Hospital of Ningbo University, Ningbo Kangning Hospital, Ningbo University, Ningbo, China
| | - Michel Narce
- UMR INSERM/uB/AGROSUP 1231, Team Lipness, Labellisée Laboratoire d'Excellence LipSTIC, Dijon, France
- UFR Sciences Vie Terre Environnement, Université de Bourgogne, Dijon, France
| | - Carmen Garrido
- UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- UMR INSERM/uB/AGROSUP 1231, Team HSP-Pathies, labellisée Ligue Nationale contre le Cancer and Laboratoire d'Excellence LipSTIC, UBFC, Dijon, France
- Centre Anti-Cancéreux Georges François Leclerc, Dijon, France
| | - Evelyne Kohli
- UFR des Sciences de Santé, Université de Bourgogne, Dijon, France.
- UMR INSERM/uB/AGROSUP 1231, Team HSP-Pathies, labellisée Ligue Nationale contre le Cancer and Laboratoire d'Excellence LipSTIC, UBFC, Dijon, France.
- CHU, Dijon, France.
| |
Collapse
|
7
|
Balhara M, Neikirk K, Marshall A, Hinton A, Kirabo A. Endoplasmic Reticulum Stress in Hypertension and Salt Sensitivity of Blood Pressure. Curr Hypertens Rep 2024; 26:273-290. [PMID: 38602583 PMCID: PMC11166838 DOI: 10.1007/s11906-024-01300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW Hypertension is a principal risk factor for cardiovascular morbidity and mortality, with its severity exacerbated by high sodium intake, particularly in individuals with salt-sensitive blood pressure. However, the mechanisms underlying hypertension and salt sensitivity are only partly understood. Herein, we review potential interactions in hypertension pathophysiology involving the immune system, endoplasmic reticulum (ER) stress, the unfolded protein response (UPR), and proteostasis pathways; identify knowledge gaps; and discuss future directions. RECENT FINDINGS Recent advancements by our research group and others reveal interactions within and between adaptive and innate immune responses in hypertension pathophysiology. The salt-immune-hypertension axis is further supported by the discovery of the role of dendritic cells in hypertension, marked by isolevuglandin (IsoLG) formation. Alongside these broadened understandings of immune-mediated salt sensitivity, the contributions of T cells to hypertension have been recently challenged by groups whose findings did not support increased resistance of Rag-1-deficient mice to Ang II infusion. Hypertension has also been linked to ER stress and the UPR. Notably, a holistic approach is needed because the UPR engages in crosstalk with autophagy, the ubiquitin proteasome, and other proteostasis pathways, that may all involve hypertension. There is a critical need for studies to establish cause and effect relationships between ER stress and the UPR in hypertension pathophysiology in humans and to determine whether the immune system and ER stress function mainly to exacerbate or initiate hypertension and target organ injury. This review of recent studies proposes new avenues for future research for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Maria Balhara
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37212-8802, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Andrea Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37212-8802, USA.
- Vanderbilt Center for Immunobiology, Nashville, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, USA.
- Vanderbilt Institute for Global Health, Nashville, USA.
| |
Collapse
|
8
|
Kwon A, Kim YS, Kim J, Koo JH. Endoplasmic Reticulum Stress Activates Hepatic Macrophages through PERK-hnRNPA1 Signaling. Biomol Ther (Seoul) 2024; 32:341-348. [PMID: 38589295 PMCID: PMC11063487 DOI: 10.4062/biomolther.2023.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 04/10/2024] Open
Abstract
Endoplasmic reticulum (ER) stress plays a crucial role in liver diseases, affecting various types of hepatic cells. While studies have focused on the link between ER stress and hepatocytes as well as hepatic stellate cells (HSCs), the precise involvement of hepatic macrophages in ER stress-induced liver injury remains poorly understood. Here, we examined the effects of ER stress on hepatic macrophages and their role in liver injury. Acute ER stress led to the accumulation and activation of hepatic macrophages, which preceded hepatocyte apoptosis. Notably, macrophage depletion mitigated liver injury induced by ER stress, underscoring their detrimental role. Mechanistic studies revealed that ER stress stimulates macrophages predominantly via the PERK signaling pathway, regardless of its canonical substrate ATF4. hnRNPA1 has been identified as a crucial mediator of PERK-driven macrophage activation, as the overexpression of hnRNPA1 effectively reduced ER stress and suppressed pro-inflammatory activation. We observed that hnRNPA1 interacts with mRNAs that encode UPR-related proteins, indicating its role in the regulation of ER stress response in macrophages. These findings illuminate the cell type-specific responses to ER stress and the significance of hepatic macrophages in ER stress-induced liver injury. Collectively, the PERK-hnRNPA1 axis has been discovered as a molecular mechanism for macrophage activation, presenting prospective therapeutic targets for inflammatory hepatic diseases such as acute liver injury.
Collapse
Affiliation(s)
- Ari Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Department of Pharmacology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yun Seok Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jiyoon Kim
- Department of Pharmacology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ja Hyun Koo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
Lin FJ, Huang YH, Tsao CH, Hsieh WC, Lo YH, Zouboulis CC, Chen HL, Liu FT. Galectin-12 Regulates Immune Responses in the Skin through Sebaceous Glands. J Invest Dermatol 2023; 143:2120-2131.e7. [PMID: 37207806 DOI: 10.1016/j.jid.2023.03.1684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 05/21/2023]
Abstract
Sebaceous glands (SGs) are holocrine glands that produce sebum, which primarily contains lipids that help to maintain the barrier function of the skin. Dysregulated lipid production contributes to the progression of some diseases characterized by dry skin, including atopic dermatitis. Although the lipid production of SGs has been well-studied, few studies have assessed their role in skin immune responses. We found that SGs and sebocytes expressed IL-4 receptor and produced high levels of T helper 2-associated inflammatory mediators after IL-4 treatment, suggesting immunomodulatory effects. Galectin-12 is a lipogenic factor expressed in sebocytes that affects their differentiation and proliferation. Using galectin-12-knockdown sebocytes, we showed that galectin-12 regulated the immune response in cells exposed to IL-4 and promoted CCL26 expression by upregulating peroxisome proliferator-activated receptor-γ. Moreover, galectin-12 suppressed the expression of endoplasmic reticulum stress-response molecules, and CCL26 upregulation by IL-4 was reversed after sebocyte treatment with inducers of endoplasmic reticulum stress, suggesting that galectin-12 controls IL-4 signaling by suppressing endoplasmic reticulum stress. Using galectin-12-knockout mice, we showed that galectin-12 positively regulated the IL-4-induced enlargement of SGs and the development of an atopic dermatitis-like phenotype. Thus, galectin-12 regulates the skin immune response by promoting peroxisome proliferator-activated receptor-γ expression and suppressing endoplasmic reticulum stress in SGs.
Collapse
Affiliation(s)
- Feng-Jen Lin
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yun-Hsi Huang
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Han Tsao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Ph.D. Program in Translational Medicine, Jointly Offered by Kaohsiung Medical University and Academia Sinica, Taipei, Taiwan
| | - Wei-Chen Hsieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuan-Hsin Lo
- Department of Dermatology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Christos C Zouboulis
- Department of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Hung-Lin Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-Tong Liu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Department of Dermatology, University of California Davis, Davis, California, USA.
| |
Collapse
|
10
|
Shang LC, Wang M, Liu Y, Zhu X, Wang S. MSCs Ameliorate Hepatic IR Injury by Modulating Phenotypic Transformation of Kupffer Cells Through Drp-1 Dependent Mitochondrial Dynamics. Stem Cell Rev Rep 2023:10.1007/s12015-023-10566-6. [PMID: 37243829 DOI: 10.1007/s12015-023-10566-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Hepatic ischemia and reperfusion (IR) injury, characterized by reactive oxygen species (ROS) production and immune disorders, leads to exogenous antigen-independent local inflammation and hepatocellular death. Mesenchymal stem cells (MSCs) have been shown to be immunomodulatory, antioxidative and contribute to liver regeneration in fulminant hepatic failure. We aimed to investigate the underlying mechanisms by which MSCs protect against liver IR injury in a mouse model. METHODS MSCs suspension was injected 30 min prior to hepatic warm IR. Primary kupffer cells (KCs) were isolated. Hepatic injury, inflammatory responses, innate immunity, KCs phenotypic polarization and mitochondrial dynamics were evaluated with or without KCs Drp-1 overexpression RESULTS: MSCs markedly ameliorated liver injury and attenuated inflammatory responses and innate immunity after liver IR injury. MSCs significantly restrained M1 phenotypic polarization but boosted M2 polarization of KCs extracted from ischemic liver, as demonstrated by lowered transcript levels of iNOS and IL-1β but raised transcript levels of Mrc-1 and Arg-1 combined with p-STAT6 up-regulation and p-STAT1 down-regulation. Moreover, MSCs inhibited KCs mitochondrial fission, as evidenced by decreased Drp1 and Dnm2 levels. We overexpressed Drp-1 in KCs which promote mitochondrial fission during IR injury. the regulation of MSCs towards KCs M1/M2 polarization was abrogated by Drp-1 overexpression after IR injury. Ultimately, in vivo Drp-1 overexpression in KCs hampered the therapeutic effects of MSCs against hepatic IR injury CONCLUSIONS: We revealed that MSCs facilitated M1-M2 phenotypic polarization through inhibiting Drp-1 dependent mitochondrial fission and further attenuated liver IR injury. These results add a new insight into regulating mechanisms of mitochondrial dynamics during hepatic IR injury and may offer novel opportunities for developing therapeutic targets to combat hepatic IR injury.
Collapse
Affiliation(s)
- Long-Cheng Shang
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, China
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Man Wang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yang Liu
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, China
| | - Xinhua Zhu
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, China.
| | - Shuai Wang
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, China.
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
11
|
Luo Y, Jiao Q, Chen Y. Targeting endoplasmic reticulum stress-the responder to lipotoxicity and modulator of non-alcoholic fatty liver diseases. Expert Opin Ther Targets 2022; 26:1073-1085. [PMID: 36657744 DOI: 10.1080/14728222.2022.2170780] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Endoplasmic reticulum (ER) stress occurs with aberrant lipid accumulation and resultant adverse effects and widely exists in nonalcoholic fatty liver disease (NAFLD). It triggers the unfolded protein response (UPR) to restore ER homeostasis and actively participates in NAFLD pathological processes, including hepatic steatosis, inflammation, hepatocyte death, and fibrosis. Such acknowledges drive the discovery of novel NAFLD biomarker and therapeutic targets and the development of ER-stress targeted NAFLD drugs. AREAS COVERED This article discusses and updates the role of ER stress and UPR in NAFLD, the underlying action mechanism, and especially their full participation in NAFLD pathophysiology. It characterizes key molecular targets useful for the prevention and treatment of NAFLD and highlights the recent ER stress-targeted therapeutic strategies for NAFLD. EXPERT OPINION Targeting ER Stress is a valuable and promising strategy for NAFLD treatment, but its smooth translation into clinical application still requires better clarification of the different UPR patterns in diverse NAFLD physiological states. Further understanding of the distinct effects of these various patterns on NAFLD, the thresholds deciding their final impacts, and their actions via non-liver tissues and cells would be of great help to develop a precise and effective therapy for NAFLD. [Figure: see text].
Collapse
Affiliation(s)
- Yu Luo
- School of Pharmaceutical Science, University of South China, Hengyang, Hunan, China
| | - Qiangqiang Jiao
- School of Pharmaceutical Science, University of South China, Hengyang, Hunan, China
| | - Yuping Chen
- School of Pharmaceutical Science, University of South China, Hengyang, Hunan, China.,Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, China
| |
Collapse
|
12
|
Pavlović N, Heindryckx F. Targeting ER stress in the hepatic tumor microenvironment. FEBS J 2022; 289:7163-7176. [PMID: 34331743 DOI: 10.1111/febs.16145] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/30/2021] [Indexed: 01/13/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. It currently ranks as one of the most aggressive and deadly cancers worldwide, with an increasing mortality rate and limited treatment options. An important hallmark of liver pathologies, such as liver fibrosis and HCC, is the accumulation of misfolded and unfolded proteins in the lumen of the endoplasmic reticulum (ER), which induces ER stress and leads to the activation of the unfolded protein response (UPR). Upon accumulation of misfolded proteins, ER stress is sensed through three transmembrane proteins, IRE1α, PERK, and ATF6, which trigger the UPR to either alleviate ER stress or induce apoptosis. Increased expression of ER stress markers has been widely shown to correlate with fibrosis, inflammation, drug resistance, and overall HCC aggressiveness, as well as poor patient prognosis. While preclinical in vivo cancer models and in vitro approaches have shown promising results by pharmacologically targeting ER stress mediators, the major challenge of this therapeutic strategy lies in specifically and effectively targeting ER stress in HCC. Furthermore, both ER stress inducers and inhibitors have been shown to ameliorate HCC progression, adding to the complexity of targeting ER stress players as an anticancer strategy. More studies are needed to better understand the dual role and molecular background of ER stress in HCC, as well as its therapeutic potential for patients with liver cancer.
Collapse
Affiliation(s)
- Nataša Pavlović
- Department of Medical Cell Biology, Uppsala University, Sweden
| | | |
Collapse
|
13
|
Flessa C, Kyrou I, Nasiri‐Ansari N, Kaltsas G, Kassi E, Randeva HS. Endoplasmic reticulum stress in nonalcoholic (metabolic associated) fatty liver disease (NAFLD/MAFLD). J Cell Biochem 2022; 123:1585-1606. [DOI: 10.1002/jcb.30247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023]
Affiliation(s)
- Christina‐Maria Flessa
- Department of Biological Chemistry, Medical School National and Kapodistrian University of Athens Athens Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM) University Hospitals Coventry and Warwickshire NHS Trust Coventry UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM) University Hospitals Coventry and Warwickshire NHS Trust Coventry UK
- Division of Translational and Experimental Medicine, Metabolic and Vascular Health, Warwick Medical School University of Warwick Coventry UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing Coventry University Coventry UK
- Aston Medical School, College of Health and Life Sciences Aston University Birmingham UK
- Department of Food Science & Human Nutrition Agricultural University of Athens Athens Greece
| | - Narjes Nasiri‐Ansari
- Department of Biological Chemistry, Medical School National and Kapodistrian University of Athens Athens Greece
| | - Gregory Kaltsas
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital National and Kapodistrian University of Athens Athens Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School National and Kapodistrian University of Athens Athens Greece
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital National and Kapodistrian University of Athens Athens Greece
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM) University Hospitals Coventry and Warwickshire NHS Trust Coventry UK
- Division of Translational and Experimental Medicine, Metabolic and Vascular Health, Warwick Medical School University of Warwick Coventry UK
| |
Collapse
|
14
|
TM9SF4 Is a Crucial Regulator of Inflammation and ER Stress in Inflammatory Bowel Disease. Cell Mol Gastroenterol Hepatol 2022; 14:245-270. [PMID: 35398597 PMCID: PMC9218505 DOI: 10.1016/j.jcmgh.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Inflammatory bowel disease (IBD) is a major intestinal disease. Excessive inflammation and increased endoplasmic reticulum (ER) stress are the key events in the development of IBD. Search of a genome-wide association study database identified a remarkable correlation between a TM9SF4 single-nucleotide polymorphism and IBD. Here, we aimed to resolve its underlying mechanism. METHODS The role of TM9SF4 was determined with experimental mouse models of IBD. ER stress cascades, barrier functions, and macrophage polarization in colonic tissues and cells were assessed in vivo and in vitro. The expression of TM9SF4 was compared between inflamed regions of ulcerative colitis patients and normal colon samples. RESULTS In mouse models of IBD, genetic knockout of the TM9SF4 gene aggravated the disease symptoms. In colonic epithelial cells, short hairpin RNA-mediated knockdown of TM9SF4 expression promoted inflammation and increased ER stress. In macrophages, TM9SF4 knockdown promoted M1 macrophage polarization but suppressed M2 macrophage polarization. Genetic knockout/knockdown of TM9SF4 also disrupted epithelial barrier function. Mechanistically, TM9SF4 deficiency may act through Ca2+ store depletion and cytosolic acidification to induce an ER stress increase. Furthermore, the expression level of TM9SF4 was found to be much lower in the inflamed colon regions of human ulcerative colitis patients than in normal colon samples. CONCLUSIONS Our study identified a novel IBD-associated protein, TM9SF4, the reduced expression of which can aggravate intestinal inflammation. Deficiency of TM9SF4 increases ER stress, promotes inflammation, and impairs the intestinal epithelial barrier to aggravate IBD.
Collapse
|
15
|
Oxamate Attenuates Glycolysis and ER Stress in Silicotic Mice. Int J Mol Sci 2022; 23:ijms23063013. [PMID: 35328434 PMCID: PMC8953611 DOI: 10.3390/ijms23063013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Glycolysis and ER stress have been considered important drivers of pulmonary fibrosis. However, it is not clear whether glycolysis and ER stress are interconnected and if those interconnections regulate the development of pulmonary fibrosis. Our previous studies found that the expression of LDHA, a key enzyme involved in glycolysis, was increased in silica-induced macrophages and silicotic models, and it was closely related to silicosis fibrosis by participating in inflammatory response. However, whether pharmacological inhibition of LDHA is beneficial to the amelioration of silicosis fibrosis remains unclear. In this study, we investigated the effects of oxamate, a potent inhibitor of LDHA, on the regulation of glycolysis and ER stress in alveolar macrophages and silicotic mice. We found that silica induced the upregulation of glycolysis and the expression of key enzymes directly involved in ER stress in NR8383 macrophages. However, treatment of the macrophages and silicotic mice with oxamate attenuated glycolysis and ER stress by inhibiting LDHA, causing a decrease in the production of lactate. Therefore, oxamate demonstrated an anti-fibrotic role by reducing glycolysis and ER stress in silicotic mice.
Collapse
|
16
|
PERK is a critical metabolic hub for immunosuppressive function in macrophages. Nat Immunol 2022; 23:431-445. [PMID: 35228694 PMCID: PMC9112288 DOI: 10.1038/s41590-022-01145-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
Chronic inflammation triggers compensatory immunosuppression to stop inflammation and minimize tissue damage. Studies have demonstrated that endoplasmic reticulum (ER) stress augments the suppressive phenotypes of immune cells; however, the molecular mechanisms underpinning this process and how it links to the metabolic reprogramming of immunosuppressive macrophages remain elusive. In the present study, we report that the helper T cell 2 cytokine interleukin-4 and the tumor microenvironment increase the activity of a protein kinase RNA-like ER kinase (PERK)-signaling cascade in macrophages and promote immunosuppressive M2 activation and proliferation. Loss of PERK signaling impeded mitochondrial respiration and lipid oxidation critical for M2 macrophages. PERK activation mediated the upregulation of phosphoserine aminotransferase 1 (PSAT1) and serine biosynthesis via the downstream transcription factor ATF-4. Increased serine biosynthesis resulted in enhanced mitochondrial function and α-ketoglutarate production required for JMJD3-dependent epigenetic modification. Inhibition of PERK suppressed macrophage immunosuppressive activity and could enhance the efficacy of immune checkpoint programmed cell death protein 1 inhibition in melanoma. Our findings delineate a previously undescribed connection between PERK signaling and PSAT1-mediated serine metabolism critical for promoting immunosuppressive function in M2 macrophages.
Collapse
|
17
|
Drug Resistance and Endoplasmic Reticulum Stress in Hepatocellular Carcinoma. Cells 2022; 11:cells11040632. [PMID: 35203283 PMCID: PMC8870354 DOI: 10.3390/cells11040632] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and deadly cancers worldwide. It is usually diagnosed in an advanced stage and is characterized by a high intrinsic drug resistance, leading to limited chemotherapeutic efficacy and relapse after treatment. There is therefore a vast need for understanding underlying mechanisms that contribute to drug resistance and for developing therapeutic strategies that would overcome this. The rapid proliferation of tumor cells, in combination with a highly inflammatory microenvironment, causes a chronic increase of protein synthesis in different hepatic cell populations. This leads to an intensified demand of protein folding, which inevitably causes an accumulation of misfolded or unfolded proteins in the lumen of the endoplasmic reticulum (ER). This process is called ER stress and triggers the unfolded protein response (UPR) in order to restore protein synthesis or—in the case of severe or prolonged ER stress—to induce cell death. Interestingly, the three different arms of the ER stress signaling pathways have been shown to drive chemoresistance in several tumors and could therefore form a promising therapeutic target. This review provides an overview of how ER stress and activation of the UPR contributes to drug resistance in HCC.
Collapse
|
18
|
Stachyra K, Wiśniewska A, Kiepura A, Kuś K, Rolski F, Czepiel K, Chmura Ł, Majka G, Surmiak M, Polaczek J, van Eldik R, Suski M, Olszanecki R. Inhaled silica nanoparticles exacerbate atherosclerosis through skewing macrophage polarization towards M1 phenotype. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113112. [PMID: 34953274 DOI: 10.1016/j.ecoenv.2021.113112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 05/15/2023]
Abstract
BACKGROUND AND AIMS Exposure to environmental nanoparticles is related to the adverse impact on health, including cardiovascular system. Various forms of nanoparticles have been reported to interact with endothelium and induce inflammation. However, the potential role of nanoparticles in the pathogenesis of atherosclerosis and their mechanisms of action are still unclear. The aim of this study was to investigate the effect of two broadly used nanomaterials, which also occur in natural environment - silicon oxide (SiO2) and ferric oxide (Fe2O3) in the form of nanoparticles (NPs) - on the development of atherosclerosis. METHODS We used apolipoprotein E-knockout mice exposed to silica and ferric oxide nanoparticles in a whole body inhalation chamber. RESULTS Inhaled silica nanoparticles augmented the atherosclerotic lesions and increased the percentage of pro-inflammatory M1 macrophages in both the plaque and the peritoneum in apoE-/- mice. Exposure to ferric oxide nanoparticles did not enhance atherogenesis process, however, it caused significant changes in the atherosclerotic plaque composition (elevated content of CD68-positive macrophages and enlarged necrotic core accompanied by the decreased level of M1 macrophages). Both silica and ferric oxide NPs altered the phenotype of T lymphocytes in the spleen by promoting polarization towards Th17 cells. CONCLUSIONS Exposure to silica and ferric oxide nanoparticles exerts impact on atherosclerosis development and plaque composition. Pro-atherogenic abilities of silica nanoparticles are associated with activation of pro-inflammatory macrophages.
Collapse
Affiliation(s)
- Kamila Stachyra
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Anna Wiśniewska
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Anna Kiepura
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Katarzyna Kuś
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Filip Rolski
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, 265 Wielicka Street, 30-663 Krakow, Poland
| | - Klaudia Czepiel
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Łukasz Chmura
- Chair of Pathomorphology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Grzegorz Majka
- Chair of Immunology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Street, 31-121 Krakow, Poland
| | - Marcin Surmiak
- Department of Internal Medicine, Jagiellonian University Medical College, 8 Skawinska Street, 31-066 Krakow, Poland
| | - Justyna Polaczek
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Street, 30-387 Krakow, Poland
| | - Rudi van Eldik
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Street, 30-387 Krakow, Poland; Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Maciej Suski
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Rafał Olszanecki
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland.
| |
Collapse
|
19
|
Lee CH, Chiang CF, Kuo FC, Su SC, Huang CL, Liu JS, Lu CH, Hsieh CH, Wang CC, Lee CH, Shen PH. High-Molecular-Weight Hyaluronic Acid Inhibits IL-1β-Induced Synovial Inflammation and Macrophage Polarization through the GRP78-NF-κB Signaling Pathway. Int J Mol Sci 2021; 22:ijms222111917. [PMID: 34769349 PMCID: PMC8584972 DOI: 10.3390/ijms222111917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Recent evidence has suggested that synovial inflammation and macrophage polarization were involved in the pathogenesis of osteoarthritis (OA). Additionally, high-molecular-weight hyaluronic acid (HMW-HA) was often used clinically to treat OA. GRP78, an endoplasmic reticulum (ER) stress chaperone, was suggested to contribute to the hyperplasia of synovial cells in OA. However, it was still unclear whether HMW-HA affected macrophage polarization through GRP78. Therefore, we aimed to identify the effect of HMW-HA in primary synovial cells and macrophage polarization and to investigate the role of GRP78 signaling. We used IL-1β to treat primary synoviocytes to mimic OA, and then treated them with HMW-HA. We also collected conditioned medium (CM) to culture THP-1 macrophages and examine the changes in the phenotype. IL-1β increased the expression of GRP78, NF-κB (p65 phosphorylation), IL-6, and PGE2 in primary synoviocytes, accompanied by an increased macrophage M1/M2 polarization. GRP78 knockdown significantly reversed the expression of IL-1β-induced GRP78-related downstream molecules and macrophage polarization. HMW-HA with GRP78 knockdown had additive effects in an IL-1β culture. Finally, the synovial fluid from OA patients revealed significantly decreased IL-6 and PGE2 levels after the HMW-HA treatment. Our study elucidated a new form of signal transduction for HMW-HA-mediated protection against synovial inflammation and macrophage polarization and highlighted the involvement of the GRP78-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chien-Hsing Lee
- National Defense Medical Center, Division of Endocrinology and Metabolism, Tri-Service General Hospital, Taipei 114, Taiwan; (C.-H.L.); (F.-C.K.); (S.-C.S.); (C.-L.H.); (J.-S.L.); (C.-H.L.); (C.-H.H.)
| | - Chi-Fu Chiang
- National Defense Medical Center, School of Dentistry, Taipei 114, Taiwan;
| | - Feng-Chih Kuo
- National Defense Medical Center, Division of Endocrinology and Metabolism, Tri-Service General Hospital, Taipei 114, Taiwan; (C.-H.L.); (F.-C.K.); (S.-C.S.); (C.-L.H.); (J.-S.L.); (C.-H.L.); (C.-H.H.)
| | - Sheng-Chiang Su
- National Defense Medical Center, Division of Endocrinology and Metabolism, Tri-Service General Hospital, Taipei 114, Taiwan; (C.-H.L.); (F.-C.K.); (S.-C.S.); (C.-L.H.); (J.-S.L.); (C.-H.L.); (C.-H.H.)
| | - Chia-Luen Huang
- National Defense Medical Center, Division of Endocrinology and Metabolism, Tri-Service General Hospital, Taipei 114, Taiwan; (C.-H.L.); (F.-C.K.); (S.-C.S.); (C.-L.H.); (J.-S.L.); (C.-H.L.); (C.-H.H.)
| | - Jhih-Syuan Liu
- National Defense Medical Center, Division of Endocrinology and Metabolism, Tri-Service General Hospital, Taipei 114, Taiwan; (C.-H.L.); (F.-C.K.); (S.-C.S.); (C.-L.H.); (J.-S.L.); (C.-H.L.); (C.-H.H.)
| | - Chieh-Hua Lu
- National Defense Medical Center, Division of Endocrinology and Metabolism, Tri-Service General Hospital, Taipei 114, Taiwan; (C.-H.L.); (F.-C.K.); (S.-C.S.); (C.-L.H.); (J.-S.L.); (C.-H.L.); (C.-H.H.)
| | - Chang-Hsun Hsieh
- National Defense Medical Center, Division of Endocrinology and Metabolism, Tri-Service General Hospital, Taipei 114, Taiwan; (C.-H.L.); (F.-C.K.); (S.-C.S.); (C.-L.H.); (J.-S.L.); (C.-H.L.); (C.-H.H.)
| | - Chih-Chien Wang
- National Defense Medical Center, Department of Orthopedics, Tri-Service General Hospital, Taipei 114, Taiwan;
| | - Chian-Her Lee
- Department of Orthopedics, Taipei Medical University, Taipei 110, Taiwan;
| | - Pei-Hung Shen
- National Defense Medical Center, Department of Orthopedics, Tri-Service General Hospital, Taipei 114, Taiwan;
- Correspondence:
| |
Collapse
|
20
|
Jiang Y, Tao Z, Chen H, Xia S. Endoplasmic Reticulum Quality Control in Immune Cells. Front Cell Dev Biol 2021; 9:740653. [PMID: 34660599 PMCID: PMC8511527 DOI: 10.3389/fcell.2021.740653] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
The endoplasmic reticulum quality control (ERQC) system, including endoplasmic reticulum-associated degradation (ERAD), the unfolded protein response (UPR), and autophagy, presides over cellular protein secretion and maintains proteostasis in mammalian cells. As part of the immune system, a variety of proteins are synthesized and assembled correctly for the development, activation, and differentiation of immune cells, such as dendritic cells (DCs), macrophages, myeloid-derived-suppressor cells (MDSCs), B lymphocytes, T lymphocytes, and natural killer (NK) cells. In this review, we emphasize the role of the ERQC in these immune cells, and also discuss how the imbalance of ER homeostasis affects the immune response, thereby suggesting new therapeutic targets for immunotherapy.
Collapse
Affiliation(s)
- Yalan Jiang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zehua Tao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hua Chen
- Department of Colorectal Surgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
21
|
Remodeling of Macrophages in White Adipose Tissue under the Conditions of Obesity as well as Lipolysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9980877. [PMID: 34504646 PMCID: PMC8423577 DOI: 10.1155/2021/9980877] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/23/2021] [Accepted: 08/06/2021] [Indexed: 11/20/2022]
Abstract
Adipose tissue macrophages (ATM) are a major source of low-grade inflammation in obesity, and yet reasons driving ATM accumulation in white adipose tissue (WAT) are not fully understood. Emerging evidence suggested that ATM underwent extensive remodeling in obesity. In addition to abundance, ATM in obesity were lipid-laden and metabolically reprogrammed, which in turn was tightly related to their functional alterations and persistence in obesity. Herein, we aimed to discuss that activation of lipid sensing signaling associated with metabolic reprogramming in ATM was indispensible for their migration, retention, or proliferation in obesity. Likewise, lipolysis also induced similar but transient ATM remodeling. Therefore, we assumed that obesity might share overlapping mechanisms with lipolysis in remodeling ATM. Formation of crown-like structures (CLS) in WAT was presumably a common event initiating ATM remodeling, with a spectrum of lipid metabolites released from adipocytes being potential signaling molecules. Moreover, adipose interlerkin-6 (IL-6) exhibited homologous alterations by obesity and lipolysis. Thus, we postulated a positive feedback loop between ATM and adipocytes via IL-6 signaling backing ATM persistence by comparison of ATM remodeling under obesity and lipolysis. An elucidation of ATM persistence could help to provide novel therapeutic targets for obesity-associated inflammation.
Collapse
|
22
|
Kuo CY, Yang TH, Tsai PF, Yu CH. Role of the Inflammatory Response of RAW 264.7 Cells in the Metastasis of Novel Cancer Stem-Like Cells. ACTA ACUST UNITED AC 2021; 57:medicina57080778. [PMID: 34440983 PMCID: PMC8398325 DOI: 10.3390/medicina57080778] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/21/2022]
Abstract
Background and objectives: Tumor progression and the immune response are intricately linked. Additionally, the presence of macrophages in the microenvironment is essential for carcinogenesis, but regulation of the polarization of M1- and M2-like macrophages and their role in metastasis remain unclear. Based on previous studies, both reactive oxygen species (ROS) and the endoplasmic reticulum (ER) are emerging as key players in macrophage polarization. While it is known that cancers alter macrophage inflammatory responses to promote tumor progression, there is limited knowledge regarding how they affect the macrophage-dependent innate host defense. Materials and methods: We detected the levels of ROS, the ability of chemotaxis, the expressions of markers of M1-/M2-like macrophages in RAW264.7 in presence of T2- and T2C-conditioned medium. Results: The results of this study indicated that ROS levels were decreased in RAW 264.7 cells when cultured with T2C-conditioned medium, while there was an improvement in chemotaxis abilities. We also found that the M2-like macrophages were characterized by an elongated shape in RAW 264.7 cells cultured in T2C-conditioned medium, which had increased CD206 expression but decreased expression of CD86 and inducible nitric oxide synthase. Suppression of ER stress shifted polarized M1-like macrophages toward an M2-like phenotype in RAW 264.7 cells cultured in T2C-conditioned medium. Conclusions: Taken together, we conclude that the polarization of macrophages is associated with the alteration of cell shape, ROS accumulation, and ER stress.
Collapse
Affiliation(s)
- Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (T.-H.Y.); (P.-F.T.)
- Correspondence: (C.-Y.K.); (C.-H.Y.)
| | - Tzu-Hsien Yang
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (T.-H.Y.); (P.-F.T.)
| | - Pei-Fang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (T.-H.Y.); (P.-F.T.)
| | - Chun-Hsien Yu
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 23142, Taiwan
- Department of Pediatrics, School of Medicine, Tzu Chi University, Hualien 97071, Taiwan
- Correspondence: (C.-Y.K.); (C.-H.Y.)
| |
Collapse
|
23
|
Zhang N, Cui Y, Li Y, Mi Y. A Novel Role of Nogo Proteins: Regulating Macrophages in Inflammatory Disease. Cell Mol Neurobiol 2021; 42:2439-2448. [PMID: 34224050 DOI: 10.1007/s10571-021-01124-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022]
Abstract
Nogo proteins, also known as Reticulon-4, have been identified as myelin-derived inhibitors of neurite outgrowth in the central nervous system (CNS). There are three Nogo variants, Nogo-A, Nogo-B and Nogo-C. Recent studies have shown that Nogo-A/B is abundant in macrophages and may have a wider effect on inflammation. In this review, we focus mainly on the possible roles of Nogo-A/B on polarization and recruitment of macrophages and their involvement in a variety of inflammatory diseases. We then discuss the Nogo receptor1 (NgR1), a common receptor for Nogo proteins that is also abundant in microglia/macrophage in the CNS. Interaction of Nogo and NgR1 in microglia/macrophage may affect the adhesion and polarization of macrophages that are involved in multiple neurodegenerative diseases, including Alzheimer's disease and multiple sclerosis. Overall, this review provides insights into the roles of Nogo proteins in regulating macrophage functions and suggests that, potentially, Nogo proteins maybe a new target in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Ni Zhang
- Department of Basic Medicine, Xi'an Medical University, Xin-Wang Street #1, Xi'an, 710021, Shaanxi, China
| | - Yuanyuan Cui
- Department of Basic Medicine, Xi'an Medical University, Xin-Wang Street #1, Xi'an, 710021, Shaanxi, China
| | - Yuan Li
- Department of Basic Medicine, Xi'an Medical University, Xin-Wang Street #1, Xi'an, 710021, Shaanxi, China
| | - Yajing Mi
- Department of Basic Medicine, Xi'an Medical University, Xin-Wang Street #1, Xi'an, 710021, Shaanxi, China.
| |
Collapse
|
24
|
Fernández D, Geisse A, Bernales JI, Lira A, Osorio F. The Unfolded Protein Response in Immune Cells as an Emerging Regulator of Neuroinflammation. Front Aging Neurosci 2021; 13:682633. [PMID: 34177557 PMCID: PMC8226365 DOI: 10.3389/fnagi.2021.682633] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/10/2021] [Indexed: 01/21/2023] Open
Abstract
Immune surveillance is an essential process that safeguards the homeostasis of a healthy brain. Among the increasing diversity of immune cells present in the central nervous system (CNS), microglia have emerged as a prominent leukocyte subset with key roles in the support of brain function and in the control of neuroinflammation. In fact, impaired microglial function is associated with the development of neurodegenerative diseases, including Alzheimer’s disease (AD) and Parkinson’s disease (PD). Interestingly, these pathologies are also typified by protein aggregation and proteostasis dysfunction at the level of the endoplasmic reticulum (ER). These processes trigger activation of the unfolded protein response (UPR), which is a conserved signaling network that maintains the fidelity of the cellular proteome. Remarkably, beyond its role in protein folding, the UPR has also emerged as a key regulator of the development and function of immune cells. However, despite this evidence, the contribution of the UPR to immune cell homeostasis, immune surveillance, and neuro-inflammatory processes remains largely unexplored. In this review, we discuss the potential contribution of the UPR in brain-associated immune cells in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Dominique Fernández
- Laboratory of Immunology and Cellular Stress, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Antonia Geisse
- Laboratory of Immunology and Cellular Stress, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jose Ignacio Bernales
- Laboratory of Immunology and Cellular Stress, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alonso Lira
- Laboratory of Immunology and Cellular Stress, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fabiola Osorio
- Laboratory of Immunology and Cellular Stress, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
25
|
Wang P, Han L, Yu M, Cao Z, Li X, Shao Y, Zhu G. The Prognostic Value of PERK in Cancer and Its Relationship With Immune Cell Infiltration. Front Mol Biosci 2021; 8:648752. [PMID: 33937330 PMCID: PMC8085429 DOI: 10.3389/fmolb.2021.648752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/22/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) is a type I transmembrane protein that functions as an endoplasmic reticulum (ER) stress sensor to regulate global protein synthesis. Recent research studies suggest that PERK, as an important receptor protein of unfolded protein response, is involved in the pathogenesis of many cancers. This study aimed to investigate PERK expression and its relationship with prognosis in pan-cancer and attempted to explore the relevant mechanism of PERK involved in the regulation of cancer pathogenesis. Methods: The Oncomine and TIMER databases were used to analyze the expression of PERK between pan-cancer samples and normal samples. Survival analysis was performed using the PrognoScan, Kaplan–Meier (K-M) plotter, and UALCAN databases. Gene set enrichment analysis (GSEA) was used to perform the functional enrichment analysis of the PERK gene in breast invasive carcinoma (BRCA), head and neck squamous cell carcinoma (HNSC), and thyroid carcinoma (THCA). The TIMER database was used to investigate the correlation between PERK expression and tumor-infiltrating immune cells and analyze the relationship of PERK with marker genes of immune cells which were downloaded from the CellMarker database in BRCA, HNSC, and THCA. Results: PERK was differentially expressed in various cancers, such as breast cancer, liver cancer, lung cancer, gastric carcinoma, lymphoma, thyroid cancer, leukemia, and head and neck squamous cell carcinomas. The high expression of PERK was associated with a poor prognosis in KIRP, LGG, BRCA, and THCA and with a favorable prognosis in HNSC. The results of GSEA indicated that PERK was mainly enriched in immune-related signaling pathways in BRCA, HNSC, and THCA. Moreover, PERK expression was significant positively correlated with infiltrating levels of macrophages and dendritic cells and was strongly associated with a variety of immune markers, especially macrophage mannose receptor 1 (MRC1, also called CD206) and T-helper cells (Th). Conclusion: The high expression of PERK could promote the infiltration of multiple immune cells in the tumor microenvironment and could deteriorate the outcomes of patients with breast and thyroid cancers, suggesting that PERK as well as tumor-infiltrating immune cells could be taken as potential biomarkers of prognosis.
Collapse
Affiliation(s)
- Peng Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Liying Han
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Moxin Yu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Zhengyu Cao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Xiaoning Li
- Department of Clinical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Yunxia Shao
- Department of Nephrology, Wuhu Hospital Affiliated to East China Normal University, Wuhu, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| |
Collapse
|
26
|
Du N, Wu K, Zhang J, Wang L, Pan X, Zhu Y, Wu X, Liu J, Chen Y, Ye Y, Wang Y, Wu W, Cheng W, Huang Y. Inonotsuoxide B regulates M1 to M2 macrophage polarization through sirtuin-1/endoplasmic reticulum stress axis. Int Immunopharmacol 2021; 96:107603. [PMID: 33831807 DOI: 10.1016/j.intimp.2021.107603] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 02/08/2023]
Abstract
We explored the effect of tetracyclic triterpenoid inonotsuoxide B (IB) extracts of Inonotus obliquus on M1 to M2 macrophage polarization and its possible underlying mechanism. Lipopolysaccharide (LPS)-activated M1 macrophages exert pro-inflammatory effects and release inflammatory cytokines including interleukin (IL)-1β and tumor necrosis factor (TNF)-α. The model and various groups were treated with different IB concentrations (2.5, 5, and 10 μg/mL) to observe changes in the M1 and M2 phenotypes, gene expression of NAD-dependent deacetylase sirtuin-1 (Sirt1), and endoplasmic reticulum stress (ERS). SIRT1-siRNA and thapsigargin (TG), an ERS agonist, were used to examine the relationship between SIRT1/ERS and the effect of IB on M1 to M2 RAW264.7 macrophage phenotypic changes. We found that IB had no effect on RAW264.7 cell proliferation at 10 μg/mL. Increasing concentrations of IB (2.5, 5, and 10 μg/mL) decreased the number of phenotypic M1 macrophages and, consequently, decreased the release of the inflammatory cytokines, IL-1β and TNF-α. Furthermore, IB treatment increased the level of phenotypic M2 macrophages, which increased the release of anti-inflammatory cytokines such as arginase (Arg)-1 and found in inflammatory zone 1 (FIZZ1) in a dose-dependent manner. Further, we found that IB increased the expression of SIRT1 and inhibited that of ERS. Inhibition of Sirt1 expression by siRNA significantly increased that of ERS marker genes and IL1β. Excessive ERS levels inhibited the IB-induced transformation of phenotypic M1 macrophage to the M2 macrophage phenotype. Therefore, IB, an extract of I. obliquus, may regulate macrophage polarization through the SIRT1/ERS signaling pathway.
Collapse
Affiliation(s)
- Na Du
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Kun Wu
- Department of Natural Medicine and Chemistry, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jin Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Lili Wang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Xuesheng Pan
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Yueqin Zhu
- Department of Pharmacy, West Branch of The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Cancer Hospital), Hefei 230031, China
| | - Xian Wu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Jinghao Liu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Yun Chen
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Ying Ye
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Yuanyuan Wang
- Department of Pharmacology, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, China
| | - Wenyong Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, China
| | - Wenming Cheng
- Department of Natural Medicine and Chemistry, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Yan Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
27
|
Signaling Nodes Associated with Endoplasmic Reticulum Stress during NAFLD Progression. Biomolecules 2021; 11:biom11020242. [PMID: 33567666 PMCID: PMC7915814 DOI: 10.3390/biom11020242] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/19/2022] Open
Abstract
Excess and sustained endoplasmic reticulum (ER) stress, paired with a failure of initial adaptive responses, acts as a critical trigger of nonalcoholic fatty liver disease (NAFLD) progression. Unfortunately, there is no drug currently approved for treatment, and the molecular basis of pathogenesis by ER stress remains poorly understood. Classical ER stress pathway molecules have distinct but inter-connected functions and complicated effects at each phase of the disease. Identification of the specific molecular signal mediators of the ER stress-mediated pathogenesis is, therefore, a crucial step in the development of new treatments. These signaling nodes may be specific to the cell type and/or the phase of disease progression. In this review, we highlight the recent advancements in knowledge concerning signaling nodes associated with ER stress and NAFLD progression in various types of liver cells.
Collapse
|
28
|
Wang X, Chen S, He J, Chen W, Ding Y, Huang J, Huang J. Histone methyltransferases G9a mediated lipid-induced M1 macrophage polarization through negatively regulating CD36. Metabolism 2021; 114:154404. [PMID: 33069810 DOI: 10.1016/j.metabol.2020.154404] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/30/2020] [Accepted: 10/11/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Recent studies have considered the obesity-related lipid environment as the potential cause for M1 macrophage polarization in type 2 diabetes. However, the specific regulatory mechanism is still unclear. Here, we investigated the role and molecular mechanism of histone methyltransferases G9a in lipids-induced M1 macrophage polarization in type 2 diabetes. METHODS We used saturated fatty acid palmitate to induce macrophage polarization, and performed real-time PCR, western blot, flow cytometry and CHIP assay to study the function and molecular mechanism of G9a. Additionally, we isolated the peripheral blood mononuclear cells (PBMCs) from 187 patients with type 2 diabetes and 68 healthy individuals, and analyzed the expression level of G9a. RESULTS The palmitate treatment induced the macrophage M1 polarization, and decreased the expression of G9a. The deficiency of G9a could promote the palmitate-induced M1 macrophage polarization, whereas, over-expressing G9a notably suppressed this process. Meanwhile, we observed the regulatory role of G9a on the ER stress which could contribute to M1 macrophage. Furthermore, we identified the fatty acid transport protein CD36 as the potential target of G9a. Dependent on the methyltransferase activity, G9a could negatively regulate the expression of CD36 induced by palmitate. The CD36 inhibitor SSO could significantly attenuate the regulatory effect of G9a on M1 macrophage polarization and ER stress. Importantly, G9a was decreased, and suppressed CD36 and M1 macrophage genes in the PBMCs from individuals with type 2 diabetes. CONCLUSIONS Our studies demonstrate that G9a plays critical roles in lipid-induced M1 macrophage polarization via negatively regulating CD36.
Collapse
Affiliation(s)
- Xiuling Wang
- Department of Medical Laboratory, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinrong He
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiqun Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Ding
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Huang
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jin Huang
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
29
|
Pavlović N, Kopsida M, Gerwins P, Heindryckx F. Inhibiting P2Y12 in Macrophages Induces Endoplasmic Reticulum Stress and Promotes an Anti-Tumoral Phenotype. Int J Mol Sci 2020; 21:ijms21218177. [PMID: 33142937 PMCID: PMC7672568 DOI: 10.3390/ijms21218177] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
The P2Y12 receptor is an adenosine diphosphate responsive G protein-coupled receptor expressed on the surface of platelets and is the pharmacologic target of several anti-thrombotic agents. In this study, we use liver samples from mice with cirrhosis and hepatocellular carcinoma to show that P2Y12 is expressed by macrophages in the liver. Using in vitro methods, we show that inhibition of P2Y12 with ticagrelor enhances tumor cell phagocytosis by macrophages and induces an anti-tumoral phenotype. Treatment with ticagrelor also increases the expression of several actors of the endoplasmic reticulum (ER) stress pathways, suggesting activation of the unfolded protein response (UPR). Inhibiting the UPR with tauroursodeoxycholic acid (Tudca) diminishes the pro-phagocytotic effect of ticagrelor, thereby indicating that P2Y12 mediates macrophage function through activation of ER stress pathways. This could be relevant in the pathogenesis of chronic liver disease and cancer, as macrophages are considered key players in these inflammation-driven pathologies.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cholagogues and Choleretics/pharmacology
- Endoplasmic Reticulum Stress/drug effects
- Humans
- Liver Cirrhosis, Experimental/metabolism
- Liver Cirrhosis, Experimental/pathology
- Liver Cirrhosis, Experimental/prevention & control
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/prevention & control
- Macrophages/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Purinergic P2Y Receptor Antagonists/pharmacology
- Receptors, Purinergic P2Y12/chemistry
- Receptors, Purinergic P2Y12/metabolism
- Taurochenodeoxycholic Acid/pharmacology
- Ticagrelor/pharmacology
- Unfolded Protein Response/drug effects
Collapse
Affiliation(s)
- Nataša Pavlović
- Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden; (N.P.); (M.K.); (P.G.)
| | - Maria Kopsida
- Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden; (N.P.); (M.K.); (P.G.)
| | - Pär Gerwins
- Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden; (N.P.); (M.K.); (P.G.)
- Radiology, Uppsala University Hospital, 75237 Uppsala, Sweden
| | - Femke Heindryckx
- Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden; (N.P.); (M.K.); (P.G.)
- Correspondence:
| |
Collapse
|
30
|
Yang M, Zhang D, Zhao Z, Sit J, Saint-Sume M, Shabandri O, Zhang K, Yin L, Tong X. Hepatic E4BP4 induction promotes lipid accumulation by suppressing AMPK signaling in response to chemical or diet-induced ER stress. FASEB J 2020; 34:13533-13547. [PMID: 32780887 DOI: 10.1096/fj.201903292rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022]
Abstract
Prolonged ER stress has been known to be one of the major drivers of impaired lipid homeostasis during the pathogenesis of non-alcoholic liver disease (NAFLD). However, the downstream mediators of ER stress pathway in promoting lipid accumulation remain poorly understood. Here, we present data showing the b-ZIP transcription factor E4BP4 in both the hepatocytes and the mouse liver is potently induced by the chemical ER stress inducer tunicamycin or by high-fat, low-methionine, and choline-deficient (HFLMCD) diet. We showed that such an induction is partially dependent on CHOP, a known mediator of ER stress and requires the E-box element of the E4bp4 promoter. Tunicamycin promotes the lipid droplet formation and alters lipid metabolic gene expression in primary mouse hepatocytes from E4bp4flox/flox but not E4bp4 liver-specific KO (E4bp4-LKO) mice. Compared with E4bp4flox/flox mice, E4bp4-LKO female mice exhibit reduced liver lipid accumulation and partially improved liver function after 10-week HFLMCD diet feeding. Mechanistically, we observed elevated AMPK activity and the AMPKβ1 abundance in the liver of E4bp4-LKO mice. We have evidence supporting that E4BP4 may suppress the AMPK activity via promoting the AMPKβ1 ubiquitination and degradation. Furthermore, acute depletion of the Ampkβ1 subunit restores lipid droplet formation in E4bp4-LKO primary mouse hepatocytes. Our study highlighted hepatic E4BP4 as a key factor linking ER stress and lipid accumulation in the liver. Targeting E4BP4 in the liver may be a novel therapeutic avenue for treating NAFLD.
Collapse
Affiliation(s)
- Meichan Yang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Deqiang Zhang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Zifeng Zhao
- Department of Pharmacology of Chinese Materia, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Julian Sit
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Omar Shabandri
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Lei Yin
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Xin Tong
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
31
|
Li A, Song NJ, Riesenberg BP, Li Z. The Emerging Roles of Endoplasmic Reticulum Stress in Balancing Immunity and Tolerance in Health and Diseases: Mechanisms and Opportunities. Front Immunol 2020; 10:3154. [PMID: 32117210 PMCID: PMC7026265 DOI: 10.3389/fimmu.2019.03154] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
The endoplasmic reticulum (ER) is an organelle equipped with mechanisms for proper protein folding, trafficking, and degradation to maintain protein homeostasis in the secretory pathway. As a defense mechanism, perturbation of ER proteostasis by ER stress agents activates a cascade of signaling pathways from the ER to the nucleus known as unfolded protein response (UPR). The primary goal of UPR is to induce transcriptional and translational programs to restore ER homeostasis for cell survival. As such, defects in UPR signaling have been implicated as a key contributor to multiple diseases including metabolic diseases, degenerative diseases, inflammatory disorders, and cancer. Growing evidence support the critical role of ER stress in regulating the fate as well as the magnitude of the immune response. Moreover, the availability of multiple UPR pharmacological inhibitors raises the hope that targeting UPR can be a new strategy for immune modulation and immunotherapy of diseases. This paper reviews the principal mechanisms by which ER stress affects immune cell biology and function, with a focus of discussion on UPR-associated immunopathology and the development of potential ER stress-targeted therapeutics.
Collapse
Affiliation(s)
- Anqi Li
- College of Medicine, The Ohio State University, Columbus, OH, United States.,The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| | - No-Joon Song
- The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| | - Brian P Riesenberg
- The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| | - Zihai Li
- College of Medicine, The Ohio State University, Columbus, OH, United States.,The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States.,Division of Medical Oncology, Department of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
32
|
Díaz-Bulnes P, Saiz ML, López-Larrea C, Rodríguez RM. Crosstalk Between Hypoxia and ER Stress Response: A Key Regulator of Macrophage Polarization. Front Immunol 2020; 10:2951. [PMID: 31998288 PMCID: PMC6961549 DOI: 10.3389/fimmu.2019.02951] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/02/2019] [Indexed: 12/29/2022] Open
Abstract
Macrophage activation and polarization are closely linked with metabolic rewiring, which is required to sustain their biological functions. These metabolic alterations allow the macrophages to adapt to the microenvironment changes associated with inflammation or tissue damage (hypoxia, nutrient imbalance, oxidative stress, etc.) and to fulfill their highly energy-demanding proinflammatory and anti-microbial functions. This response is integrated via metabolic sensors that coordinate these metabolic fluxes with their functional requirements. Here we review how the metabolic and phenotypic plasticity of macrophages are intrinsically connected with the hypoxia stress sensors and the unfolded protein response in the endoplasmic reticulum, and how these molecular pathways participate in the maladaptive polarization of macrophages in human pathology and chronic inflammation.
Collapse
Affiliation(s)
- Paula Díaz-Bulnes
- Translational Immunology Laboratory, Health Research Institute of the Principality of Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - María Laura Saiz
- Translational Immunology Laboratory, Health Research Institute of the Principality of Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Carlos López-Larrea
- Translational Immunology Laboratory, Health Research Institute of the Principality of Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain.,Immunology Service, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Ramón M Rodríguez
- Translational Immunology Laboratory, Health Research Institute of the Principality of Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
33
|
Dolmatova LS, Dolmatov IY. Different Macrophage Type Triggering as Target of the Action of Biologically Active Substances from Marine Invertebrates. Mar Drugs 2020; 18:E37. [PMID: 31906518 PMCID: PMC7024355 DOI: 10.3390/md18010037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022] Open
Abstract
Macrophages play a fundamental role in the immune system. Depending on the microenvironment stimuli, macrophages can acquire distinct phenotypes characterized with different sets of the markers of their functional activities. Polarization of macrophages towards M1 type (classical activation) is involved in inflammation and the related progression of diseases, while, in contrast, alternatively activated M2 macrophages are associated with the anti-inflammatory mechanisms. Reprogramming macrophages to switch their phenotypes could provide a new therapeutic strategy, and targeting the M1/M2 macrophage balance is a promising current trend in pharmacology. Marine invertebrates are a vast source of the variety of structurally diverse compounds with potent pharmacological activities. For years, a large number of studies concerning the immunomodulatory properties of the marine substances have been run with using some intracellular markers of immune stimulation or suppression irrespective of the possible application of marine compounds in reprogramming of macrophage activation, and only few reports clearly demonstrated the macrophage-polarizing activities of some marine compounds during the last decade. In this review, the data on the immunomodulating effects of the extracts and pure compounds of a variety of chemical structure from species of different classes of marine invertebrates are described with focus on their potential in shifting M1/M2 macrophage balance towards M1 or M2 phenotype.
Collapse
Affiliation(s)
- Lyudmila S. Dolmatova
- V.I. Il‘ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, Baltiyskaya 43, 690041 Vladivostok, Russia
| | - Igor Yu. Dolmatov
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevsky 17, 690041 Vladivostok, Russia;
| |
Collapse
|
34
|
Rahtes A, Pradhan K, Sarma M, Xie D, Lu C, Li L. Phenylbutyrate facilitates homeostasis of non-resolving inflammatory macrophages. Innate Immun 2019; 26:62-72. [PMID: 31604378 PMCID: PMC6974874 DOI: 10.1177/1753425919879503] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Non-resolving inflammatory monocytes/macrophages are critically involved in the
pathogenesis of chronic inflammatory diseases. However, mechanisms of macrophage
polarization are not well understood, thus hindering the development of
effective strategies to promote inflammation resolution. In this study, we
report that macrophages polarized by subclinical super-low dose LPS
preferentially expressed pro-inflammatory mediators such as
ccl2 (which encodes the protein monocyte chemo attractant
protein-1) with reduced expression of anti-inflammatory/homeostatic mediators
such as slc40a1 (which encodes the protein ferroportin-1). We
observed significantly elevated levels of the autophagy-associated and
pro-inflammatory protein p62 in polarized macrophages, closely correlated with
the inflammatory activation of ccl2 gene expression. In
contrast, we noted a significant increase of ubiquitinated/inactive
nuclear-erythroid-related factor 2 (NRF2), consistent with reduced
slc40a1 gene expression in polarized macrophages. Addition
of the homeostatic restorative agent phenylbutyrate (4-PBA) effectively reduced
cellular levels of p62 as well as ccl2 gene induction by
super-low dose LPS. On the other hand, application of 4-PBA also blocked the
accumulation of ubiquitinated NRF2 and restored anti-inflammatory
slc40a1 gene expression in macrophages. Together, our study
provides novel insights with regard to macrophage polarization and reveals 4-PBA
as a promising molecule in restoring macrophage homeostasis.
Collapse
Affiliation(s)
| | - Kisha Pradhan
- Department of Biological Sciences, Virginia Tech, USA
| | - Mimosa Sarma
- Department of Chemical Engineering, Virginia Tech, USA
| | - David Xie
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, USA
| |
Collapse
|