1
|
Xue K, Chen S, Chai J, Yan W, Zhu X, Ji D, Wu Y, Liu H, Wang W. Nitration of cAMP-Response Element Binding Protein Participates in Myocardial Infarction-Induced Myocardial Fibrosis via Accelerating Transcription of Col1a2 and Cxcl12. Antioxid Redox Signal 2023; 38:709-730. [PMID: 36324232 DOI: 10.1089/ars.2021.0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aims: Myocardial fibrosis after myocardial infarction (MI) leads to heart failure. Nitration of protein can alter its function. cAMP-response element binding protein (CREB) is a key transcription factor involved in fibrosis. However, little is known about the role of nitrated CREB in MI-induced myocardial fibrosis. Meanwhile, downstream genes of transcription factor CREB in myocardial fibrosis have not been identified. This study aims to verify the hypothesis that nitrated CREB promotes MI-induced myocardial fibrosis via regulating the transcription of Col1a2 and Cxcl12. Results: Our study showed that (1) the level of nitrative stress was elevated and nitrated CREB was higher in the myocardium after MI. Tyr182, 307, and 336 were the nitration sites of CREB; (2) with the administration of peroxynitrite (ONOO-) scavengers, CREB phosphorylation, nuclear translocation, and binding activity to TORC2 (transducers of regulated CREB-2) were attenuated; (3) the expressions of extracellular matrix (ECM) proteins were upregulated and downregulated in accordance with the expression alteration of CREB both in vitro and in vivo; (4) CREB accelerated transcription of Col1a2 and Cxcl12 after MI directly. With the administration of ONOO- scavengers, ECM protein expressions were attenuated; meanwhile, the messenger RNA (mRNA) levels of Col1a2 and Cxcl12 were alleviated as well. Innovation and Conclusion: Nitration of transcription factor CREB participates in MI-induced myocardial fibrosis through enhancing its phosphorylation, nuclear translocation, and binding activity to TORCs, among which CREB transcripts Col1a2 and Cxcl12 directly. These data indicated that nitrated CREB might be a potential therapeutic target against MI-induced myocardial fibrosis.
Collapse
Affiliation(s)
- Ke Xue
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China.,Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Shuai Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Jiayin Chai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Wenjing Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Xinyu Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Dengyu Ji
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Ye Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Wen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| |
Collapse
|
2
|
Stati G, Passaretta F, Gindraux F, Centurione L, Di Pietro R. The Role of the CREB Protein Family Members and the Related Transcription Factors in Radioresistance Mechanisms. Life (Basel) 2021; 11:life11121437. [PMID: 34947968 PMCID: PMC8706059 DOI: 10.3390/life11121437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 02/05/2023] Open
Abstract
In the framework of space flight, the risk of radiation carcinogenesis is considered a "red" risk due to the high likelihood of occurrence as well as the high potential impact on the quality of life in terms of disease-free survival after space missions. The cyclic AMP response element-binding protein (CREB) is overexpressed both in haematological malignancies and solid tumours and its expression and function are modulated following irradiation. The CREB protein is a transcription factor and member of the CREB/activating transcription factor (ATF) family. As such, it has an essential role in a wide range of cell processes, including cell survival, proliferation, and differentiation. Among the CREB-related nuclear transcription factors, NF-κB and p53 have a relevant role in cell response to ionising radiation. Their expression and function can decide the fate of the cell by choosing between death or survival. The aim of this review was to define the role of the CREB/ATF family members and the related transcription factors in the response to ionising radiation of human haematological malignancies and solid tumours.
Collapse
Affiliation(s)
- Gianmarco Stati
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
- Correspondence: ; Tel.: +39-08713554567
| | - Francesca Passaretta
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Florelle Gindraux
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, 25030 Besançon, France;
- Service de Chirurgie Orthopédique, Traumatologique et Plastique, CHU, 25030 Besançon, France
| | - Lucia Centurione
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| |
Collapse
|
3
|
Wang Y, Liu Q, Zhang H. Phosphorylation of CREB-Specific Coactivator CRTC2 at Ser238 Promotes Proliferation, Migration, and Invasion of Colorectal Cancer Cells. Technol Cancer Res Treat 2020; 19:1533033820962111. [PMID: 33000695 PMCID: PMC7533939 DOI: 10.1177/1533033820962111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
cAMP response element binding protein (CREB)-regulated transcription coactivator 2 (CRTC2), a member of the novel CRTC family of transcriptional coactivators that activates basic leucine zipper transcription factors, including CREB, is overexpressed in many carcinomas, including colon cancer. Phosphorylation of CRTC2 protein at different residues is important for its subcellular localization and activity. However, the functions of some of the serine phosphorylation sites have not been elucidated. This study aimed to investigate the effects of phosphorylation of Ser127, Ser238, and Ser245 sites of CRTC2 in colorectal cancer (CRC) cells. Recombinant lentiviral particles with a CRTC2-targeting small hairpin RNA (shRNA) sequence were transfected into CRC cells to obtained shCRTC2 cell lines. Site-directed mutagenesis of Ser127, Ser238, and Ser245 cells were constructed by transfecting CRTC2 cDNA containing S127A, S238A, and S245A mutations into shCRTC2. Cell proliferation was measured by cell counting kit-8. Cell migration and invasion were examined by transwell assay. mRNA expression was assayed by qRT-PCR, and protein expression was determined by Western blot. Our results indicate that CRTC2 is overexpressed in CRC cells. Knockdown of CRTC2 inhibits the proliferation, migration, and invasion of CRC cells. When the phosphorylation of CRTC2 Ser238 decreases due to the lack of ERK2, the phosphorylation of Ser171 site increases. The proliferation, migration and invasion of CRC cells were inhibited, the nuclear aggregation of CRTC2 in the nucleus was reduced, and the interaction between CRTC2 and CREB was weaken. It is shown that the phosphorylation of CRTC2 Ser238 is important for CREB transcriptional activity. These findings may help in the identification of potentially new targets for CRC therapy.
Collapse
Affiliation(s)
- Yi Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qian Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Hanshuo Zhang
- GeneX health Life Co., Ltd, Beijing, People's Republic of China
| |
Collapse
|
4
|
Steven A, Friedrich M, Jank P, Heimer N, Budczies J, Denkert C, Seliger B. What turns CREB on? And off? And why does it matter? Cell Mol Life Sci 2020; 77:4049-4067. [PMID: 32347317 PMCID: PMC7532970 DOI: 10.1007/s00018-020-03525-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/21/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
Abstract
Altered expression and function of the transcription factor cyclic AMP response-binding protein (CREB) has been identified to play an important role in cancer and is associated with the overall survival and therapy response of tumor patients. This review focuses on the expression and activation of CREB under physiologic conditions and in tumors of distinct origin as well as the underlying mechanisms of CREB regulation by diverse stimuli and inhibitors. In addition, the clinical relevance of CREB is summarized, including its use as a prognostic and/or predictive marker as well as a therapeutic target.
Collapse
Affiliation(s)
- André Steven
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Michael Friedrich
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Paul Jank
- Institute of Pathology, Philipps University Marburg, 35043, Marburg, Germany
| | - Nadine Heimer
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Jan Budczies
- Institute of Pathology, University Clinic Heidelberg, 69120, Heidelberg, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps University Marburg, 35043, Marburg, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany.
| |
Collapse
|
5
|
Maruoka H, Yamazoe R, Takahashi R, Yatsuo K, Ido D, Fuchigami Y, Hoshikawa F, Shimoke K. Molecular mechanism of nur77 gene expression and downstream target genes in the early stage of forskolin-induced differentiation in PC12 cells. Sci Rep 2020; 10:6325. [PMID: 32286359 PMCID: PMC7156746 DOI: 10.1038/s41598-020-62968-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 03/23/2020] [Indexed: 11/20/2022] Open
Abstract
Forskolin promotes neuronal differentiation of PC12 cells via the PKA-CREB-dependent signaling pathway. Activation of PKA by forskolin phosphorylates CREB, which then binds to CRE sites in numerous gene promoters. However, it is unclear which gene contains the CRE sites responsible for forskolin-induced neuronal differentiation. In this study, we investigated how an immediate early gene, nur77, which has CRE sites in the promoter region, contributes to the early stage of differentiation of forskolin-treated PC12 cells. After treatment with forskolin, expression of Nur77 was upregulated within 1 hr. In addition, knockdown of nur77 inhibited neurite outgrowth induced by forskolin. We also revealed that the specific four CRE sites near the transcriptional start site (TSS) of nur77 were strongly associated with phosphorylated CREB within 1 hr after treatment with forskolin. To analyze the roles of these four sites, reporter assays using the nur77 promoter region were performed. The results showed that nur77 expression was mediated through three of the CRE sites, -242, -222, and -78, and that -78, the nearest of the three to the TSS of nur77, was particularly important. An analysis of neuronal markers controlled by Nur77 after A-CREB-Nur77-Synapsin1 signaling pathway plays a pivotal role in differentiation of forskolin-induced PC12 cells.
Collapse
Affiliation(s)
- Hiroki Maruoka
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Ryosuke Yamazoe
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Ryota Takahashi
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Keisuke Yatsuo
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Daiki Ido
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Yuki Fuchigami
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Fumiya Hoshikawa
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Koji Shimoke
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan.
| |
Collapse
|
6
|
Sustained GRK2-dependent CREB activation is essential for α 2-adrenergic receptor-induced PC12 neuronal differentiation. Cell Signal 2019; 66:109446. [PMID: 31678682 DOI: 10.1016/j.cellsig.2019.109446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022]
Abstract
Many aspects of neuronal development, such as neuronal survival and differentiation, are regulated by the transcription factor cAMP-response element-binding protein (CREB). We have previously reported that α2-adrenergic receptors (ARs), members of the G protein-coupled receptor (GPCR) superfamily, induce neuronal differentiation of rat pheochromocytoma (PC)-12 cells in a subtype-specific manner, i.e. α2A<α2B<α2C. Herein, we sought to investigate CREB`s involvement in this α2AR-dependent neurogenic process. We used a combination of gene reporter assays and immunoblotting analysis, coupled with co-immunoprecipitation and morphological analysis, in transfected PC12 cell lines. Chronic α2B- or α2C-AR activation results in sustained CREB activation, which is both necessary and sufficient for neuronal differentiation of PC12 cells expressing these two α2ARs. In contrast, chronic α2A activation only leads to transient CREB activation, insufficient for PC12 neuronal differentiation. However, upon CREB overexpression, α2A-AR triggers neuronal differentiation similarly to α2B- or α2C-ARs. Importantly, NGF (Nerve Growth Factor)`s TrkA receptor transactivation is essential for the sustained activation of CREB by all three α2 subtypes in PC12 cells, whereas protein kinase A (PKA), the prototypic kinase that phosphorylates CREB, is not. Instead, TrkA-activated GPCR-kinase (GRK)-2 mediates the sustained CREB activation during α2AR-induced neuronal differentiation of PC12 cells. In conclusion, catecholaminergic-induced neuronal differentiation of PC12 cells through α2ARs uses a non-canonical pathway involving TrkA transactivation and subsequent GRK2-dependent, sustained phosphorylation/activation of CREB. These findings provide novel insights into catecholaminergic neurogenesis and suggest that α2AR agonists, combined with NGF analogs or GRK2 stimulators, may exert neurogenic/neuroprotective effects.
Collapse
|
7
|
Hudson C, Kimura TE, Duggirala A, Sala-Newby GB, Newby AC, Bond M. Dual Role of CREB in The Regulation of VSMC Proliferation: Mode of Activation Determines Pro- or Anti-Mitogenic Function. Sci Rep 2018; 8:4904. [PMID: 29559698 PMCID: PMC5861041 DOI: 10.1038/s41598-018-23199-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/06/2018] [Indexed: 11/15/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation has been implicated in the development of restenosis after angioplasty, vein graft intimal thickening and atherogenesis. We investigated the mechanisms underlying positive and negative regulation of VSMC proliferation by the transcription factor cyclic AMP response element binding protein (CREB). Incubation with the cAMP elevating stimuli, adenosine, prostacyclin mimetics or low levels of forksolin activated CREB without changing CREB phosphorylation on serine-133 but induced nuclear translocation of the CREB co-factors CRTC-2 and CRTC-3. Overexpression of CRTC-2 or -3 significantly increased CREB activity and inhibited VSMC proliferation, whereas CRTC-2/3 silencing inhibited CREB activity and reversed the anti-mitogenic effects of adenosine A2B receptor agonists. By contrast, stimulation with serum or PDGFBB significantly increased CREB activity, dependent on increased CREB phosphorylation at serine-133 but not on CRTC-2/3 activation. CREB silencing significantly inhibited basal and PDGF induced proliferation. These data demonstrate that cAMP activation of CREB, which is CRTC2/3 dependent and serine-133 independent, is anti-mitogenic. Growth factor activation of CREB, which is serine-133-dependent and CRTC2/3 independent, is pro-mitogenic. Hence, CREB plays a dual role in the regulation of VSMC proliferation with the mode of activation determining its pro- or anti-mitogenic function.
Collapse
Affiliation(s)
- Claire Hudson
- Translational Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Tomomi E Kimura
- Translational Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK.,School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Aparna Duggirala
- Translational Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Graciela B Sala-Newby
- Translational Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Andrew C Newby
- Translational Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Mark Bond
- Translational Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK.
| |
Collapse
|
8
|
Abstract
Memory is an adaptation to particular temporal properties of past events, such as the frequency of occurrence of a stimulus or the coincidence of multiple stimuli. In neurons, this adaptation can be understood in terms of a hierarchical system of molecular and cellular time windows, which collectively retain information from the past. We propose that this system makes various timescales of past experience simultaneously available for future adjustment of behavior. More generally, we propose that the ability to detect and respond to temporally structured information underlies the nervous system's capacity to encode and store a memory at molecular, cellular, synaptic, and circuit levels.
Collapse
Affiliation(s)
| | - Thomas James Carew
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA.
| |
Collapse
|
9
|
Hill RA, Xu W, Yoshimura M. Role of an adenylyl cyclase isoform in ethanol's effect on cAMP regulated gene expression in NIH 3T3 cells. Biochem Biophys Rep 2017; 8:162-167. [PMID: 28620651 PMCID: PMC5467537 DOI: 10.1016/j.bbrep.2016.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Previous research has indicated that the cyclic AMP (cAMP) signal transduction system plays an important role in the predisposition to and development of ethanol abuse in humans. Our laboratory has demonstrated that ethanol is capable of enhancing adenylyl cyclase (AC) activity. This effect is AC isoform-specific; type 7 AC (AC7) is most enhanced by ethanol. Therefore, we hypothesized that the expression of a specific AC isoform will play a role on the effect of ethanol on cAMP regulated gene expression. We employed NIH 3T3 cells transfected with AC7 or AC3 as a model system. To evaluate ethanol's effects on cAMP regulated gene expression, a luciferase reporter gene driven by a cAMP inducing artificial promoter was utilized. Stimulation of AC activity leads to an increase in the reporter gene activity. This increase was enhanced in the presence of ethanol in cells expressing AC7, while cells expressing AC3 did not respond to ethanol. cAMP reporter gene expression was increased in the presence of 8-bromo-cAMP; this expression was not enhanced by ethanol. These observations are consistent with our hypothesis. The basal level of CREB phosphorylation was high and did not change by cAMP stimulation or in the presence of ethanol. However, there were significant changes in the TORC3 amount in nuclei depending on stimulation conditions. The results suggest that nuclear translocation of TORC3 plays a more important role than CREB phosphorylation in the observed changes in the cAMP driven reporter gene activity. Effect of ethanol on cAMP regulated gene expression is AC isoform dependent. cAMP regulated gene expression is most enhanced by ethanol in cells expressing AC7. Gene expression increases with pharmacologically relevant ethanol concentrations. TORC3 nuclear translocation is important for cAMP reporter gene activity.
Collapse
Affiliation(s)
- Rebecca A Hill
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Wu Xu
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Masami Yoshimura
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
10
|
Turgut GÇ, Doyduk D, Yıldırır Y, Yavuz S, Akdemir A, Dişli A, Şen A. Computer design, synthesis, and bioactivity analyses of drugs like fingolimod used in the treatment of multiple sclerosis. Bioorg Med Chem 2017; 25:483-495. [PMID: 27913115 DOI: 10.1016/j.bmc.2016.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/02/2016] [Accepted: 11/09/2016] [Indexed: 12/08/2022]
Abstract
Multiple sclerosis (MS) is a very common disease of vital importance. In the MS treatment, some drugs such as fingolimod which help to protect nerves from damage are used. The main goal of the drug therapy in MS is to take control of the inflammation which leads to the destruction of myelin and axons in nerve cell and thus prevent and stop the progression of the disease. Fingolimod (FTY720) is an orally active immunomodulatory drug that has been used for the treatment of relapsing-remitting multiple sclerosis. It is a sphingosine-1-phosphate receptor modulator which prevents lymphocytes from contributing to an autoimmune reaction by inhibiting egress of lymphocytes them from lymph nodes. In this study, we have computer designed, synthesized and characterized two novel derivatives of FTY720, F1-12h and F2-9, and have determined their underlying mechanism of their beneficial effect in SH-SY5Y, SK-N-SH, and U-118 MG cell lines. For this purpose, we first determined the regulation of the cAMP response element (CRE) activity and cAMP concentration by F1-12h and F2-9 together with FTY720 using pGL4.29 luciferase reporter assay and cAMP immunoassay, respectively. Then, we have determined their effect on MS- and GPCR-related gene expression profiles using custom arrays along with FTY720 treatment at non-toxic doses (EC10). It was found that both derivatives significantly activate CRE and increase cAMP concentration in all three cell lines, indicating that they activate cAMP pathway through cell surface receptors as FTY720 does. Furthermore, F1-12h and F2-9 modulate the expression of the pathway related genes that are important in inflammatory signaling, cAMP signaling pathway, cell migration as well as diverse receptor and transcription factors. Expression of the genes involved in myelination was also increased by the treatment with F1-12h and F2-9. In summary, our data demonstrate that the two novel FTY720 derivatives act as anti-inflammatory ultimately by influencing the gene expression via the cAMP and downstream transcription factor CRE pathway. In conclusion, F1-12h and F2-9 might contribute future therapies for autoimmune diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Gurbet Çelik Turgut
- Department of Biology, Faculty of Arts & Sciences, Pamukkale University, 20070 Kınıklı, Denizli, Turkey
| | - Doğukan Doyduk
- Department of Chemistry, Faculty of Science, Gazi University, 06500 Ankara, Turkey
| | - Yılmaz Yıldırır
- Department of Chemistry, Faculty of Science, Gazi University, 06500 Ankara, Turkey.
| | - Serkan Yavuz
- Department of Chemistry, Faculty of Science, Gazi University, 06500 Ankara, Turkey
| | - Atilla Akdemir
- Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakıf University, 34093 İstanbul, Turkey
| | - Ali Dişli
- Department of Chemistry, Faculty of Science, Gazi University, 06500 Ankara, Turkey
| | - Alaattin Şen
- Department of Biology, Faculty of Arts & Sciences, Pamukkale University, 20070 Kınıklı, Denizli, Turkey
| |
Collapse
|
11
|
Liu N, Wei K, Xun Y, Yang X, Gan S, Xiao H, Xiao Y, Yan F, Xie G, Wang T, Yang Y, Zhang J, Hu X, Xiang S. Transcription factor cyclic adenosine monophosphate responsive element binding protein negatively regulates tumor necrosis factor alpha-induced protein 1 expression. Mol Med Rep 2015; 12:7763-9. [PMID: 26398148 DOI: 10.3892/mmr.2015.4336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 08/17/2015] [Indexed: 11/05/2022] Open
Abstract
Tumor necrosis factor alpha (TNFα)-induced protein 1 (TNFAIP1) was originally identified as a protein involved in DNA replication, DNA damage repair, apoptosis and the progression of certain diseases, such as Alzheimer's disease. In the present study, forskolin, a stimulant of cyclic adenosine monophosphate (cAMP), was found to significantly reduce human TNFAIP1 mRNA levels and TNFAIP1 promoter activity in the SKNSH human neuroblastoma cell line as indicated by polymerase chain reaction analysis and a luciferase reporter assay. The association between transcription factor cAMP response element‑binding protein (CREB) and TNFAIP1 was further investigated using loss- and gain of function-studies with western blot analysis and luciferase reporter assays. The CREB-specific inhibitor KG‑501 significantly increased TNFAIP1 protein levels, while overexpression of wild‑type CREB, but not CREB mutated at ser133a or its DNA-binding site, significantly decreased human TNFAIP1 protein levels and TNFAIP1 promoter activity in SKNSH cells. Furthermore, two CRE sites located at ‑285 and ‑425 bp of the human TNFAIP1 promoter were identified to be responsible for CREB‑induced inhibition of human TNFAIP1 promoter activity. Chromatin immunoprecipitation assays confirmed that CREB bound to the TNFAIP1 promoter region harboring these two CRE sites. A further luciferase reporter assay demonstrated that CREB phosphorylation on ser133 was responsible for forskolin‑induced inhibition of TNFAIP1 expression. In conclusion, the present study suggested that CREB is a negative regulator of the TNFAIP1 gene.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of the Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Ke Wei
- Key Laboratory of Protein Chemistry and Developmental Biology of the Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Yu Xun
- Key Laboratory of Protein Chemistry and Developmental Biology of the Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Xiaoxu Yang
- Key Laboratory of Protein Chemistry and Developmental Biology of the Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Shiquan Gan
- Key Laboratory of Protein Chemistry and Developmental Biology of the Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Hui Xiao
- Key Laboratory of Protein Chemistry and Developmental Biology of the Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Ye Xiao
- Key Laboratory of Protein Chemistry and Developmental Biology of the Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Feng Yan
- Key Laboratory of Protein Chemistry and Developmental Biology of the Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Guie Xie
- Key Laboratory of Protein Chemistry and Developmental Biology of the Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Tingting Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of the Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Yinke Yang
- Department of Molecular Medicine, College of Biology, Hunan University, Changsha, Hunan 410081, P.R. China
| | - Jian Zhang
- Key Laboratory of Protein Chemistry and Developmental Biology of the Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Xiang Hu
- Key Laboratory of Protein Chemistry and Developmental Biology of the Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Shuanglin Xiang
- Key Laboratory of Protein Chemistry and Developmental Biology of the Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| |
Collapse
|
12
|
da Silva Lippo BR, Batista TM, de Rezende LF, Cappelli AP, Camargo RL, Branco RCS, Barbosa Sampaio HC, Protzek AOP, Wanderley MI, Arantes VC, Corat MAF, Carneiro EM, Udrisar DP, Wanderley AG, Ferreira F. Low-protein diet disrupts the crosstalk between the PKA and PKC signaling pathways in isolated pancreatic islets. J Nutr Biochem 2015; 26:556-62. [DOI: 10.1016/j.jnutbio.2014.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/26/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
|
13
|
Kriisa M, Sinijärv H, Vaasa A, Enkvist E, Kostenko S, Moens U, Uri A. Inhibition of CREB Phosphorylation by Conjugates of Adenosine Analogues and Arginine-Rich Peptides, Inhibitors of PKA Catalytic Subunit. Chembiochem 2014; 16:312-9. [DOI: 10.1002/cbic.201402526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Indexed: 01/05/2023]
|
14
|
Soares-Simi SL, Pastrello DM, Ferreira ZS, Yonamine M, Marcourakis T, Scavone C, Camarini R. Changes in CREB activation in the prefrontal cortex and hippocampus blunt ethanol-induced behavioral sensitization in adolescent mice. Front Integr Neurosci 2013; 7:94. [PMID: 24379765 PMCID: PMC3861743 DOI: 10.3389/fnint.2013.00094] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/25/2013] [Indexed: 12/20/2022] Open
Abstract
Drug dependence is a major health problem in adults and has been recognized as a significant problem in adolescents. We previously demonstrated that repeated treatment with a behaviorally sensitizing dose of ethanol in adult mice induced tolerance or no sensitization in adolescents and that repeated ethanol-treated adolescents expressed lower Fos and Egr-1 expression than adult mice in the prefrontal cortex (PFC). In the present work, we investigated the effects of acute and repeated ethanol administration on cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) DNA-binding activity using the electrophoretic mobility shift assay (EMSA) and the phosphorylated CREB (pCREB)/CREB ratio using immunoblotting in both the PFC and hippocampus in adolescent and adult mice. Adult mice exhibited typical locomotor sensitization after 15 days of daily treatment with 2.0 g/kg ethanol, whereas adolescent mice did not exhibit sensitization. Overall, adolescent mice displayed lower CREB binding activity in the PFC compared with adult mice, whereas opposite effects were observed in the hippocampus. The present results indicate that ethanol exposure induces significant and differential neuroadaptive changes in CREB DNA-binding activity in the PFC and hippocampus in adolescent mice compared with adult mice. These differential molecular changes may contribute to the blunted ethanol-induced behavioral sensitization observed in adolescent mice.
Collapse
Affiliation(s)
- Sabrina L Soares-Simi
- Department of Pharmacology, Instituto de Ciências Biomédicas, Universidade de São Paulo São Paulo, Brazil
| | - Daniel M Pastrello
- Department of Pharmacology, Instituto de Ciências Biomédicas, Universidade de São Paulo São Paulo, Brazil
| | - Zulma S Ferreira
- Department of Physiology, Instituto de Biociências, Universidade de São Paulo São Paulo, Brazil
| | - Mauricio Yonamine
- Department of Clinical and Toxicological Analysis, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo São Paulo, Brazil
| | - Tania Marcourakis
- Department of Clinical and Toxicological Analysis, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo São Paulo, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Instituto de Ciências Biomédicas, Universidade de São Paulo São Paulo, Brazil
| | - Rosana Camarini
- Department of Pharmacology, Instituto de Ciências Biomédicas, Universidade de São Paulo São Paulo, Brazil
| |
Collapse
|
15
|
Li Q, Zhou XD, Kolosov VP, Perelman JM. Salidroside reduces cold-induced mucin production by inhibiting TRPM8 activation. Int J Mol Med 2013; 32:637-46. [PMID: 23835496 DOI: 10.3892/ijmm.2013.1434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/28/2013] [Indexed: 11/06/2022] Open
Abstract
Salidroside is an effective component of the traditional Chinese herb, Rhodiola rosea, that is known to have the ability to protect individuals from cold attacks. In the present study, we investigated the effects of salidroside on respiratory epithelial cells exposed to cold temperatures. We wished to determine whether salidroside exerts any effect on cold-induced mucin (MUC) production and the possible mechanisms involved in this process. We incubated HBE16 cells with salidroside, exposed them to a cold stimulus (18˚C), and assayed the following endpoints: MUC production (the expression of MUC5AC), concentration intracellular of free calcium ([Ca2+]i), the activation of the transient receptor potential melastatin 8 (TRPM8) channel and the cAMP response element-binding protein (CREB). Our results revealed a significant increase in the [Ca2+]i concentration, as well as in TRPM8 and CREB expression in the cold-stimulated cells. MUC5AC expression was also increased. Treatment of the cells with salidroside at concentrations of 50 and 100 µM decreased the [Ca2+]i concentration, with a maximal effect detected in the cells treated with 100 µM salidroside. The expression of TRPM8 and TRPM8 channel conductivity were also repressed by salidroside; salidroside decreased the high levels of CREB activity and phosphorylation observed in the cold-stimulated cells. Furthermore, we transfected the cold-stimulated cells with CREB small interfering RNA (siRNA) to analyze TRPM8 gene expression in the absence of CREB activity. The results revealed that the cells treated with either CREB siRNA or salidroside expressed low levels of TRPM8 mRNA and protein. These results indicate that salidroside reduces MUC overproduction induced by cold stimuli and that salidroside exerts its protective effects by inhibiting TRPM8 activation, mainly by decreasing CREB activity.
Collapse
Affiliation(s)
- Qi Li
- Department of Respiratory Medicine, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | | | | | | |
Collapse
|
16
|
Hoang T, Fenne IS, Madsen A, Bozickovic O, Johannessen M, Bergsvåg M, Lien EA, Stallcup MR, Sagen JV, Moens U, Mellgren G. cAMP response element-binding protein interacts with and stimulates the proteasomal degradation of the nuclear receptor coactivator GRIP1. Endocrinology 2013; 154:1513-27. [PMID: 23462962 PMCID: PMC5393311 DOI: 10.1210/en.2012-2049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The glucocorticoid receptor interacting protein (GRIP1) belongs to the p160 steroid receptor coactivator family that plays essential roles in nuclear receptor-dependent transcriptional regulation. Previously, we reported that the cAMP-dependent protein kinase (PKA) induces ubiquitination leading to degradation of GRIP1. Here we show that the cAMP response element-binding protein (CREB) downregulates GRIP1 and is necessary for the PKA-stimulated degradation of GRIP1, which leads to changes in the expression of a subset of genes regulated by estrogen receptor-α in MCF-7 breast cancer cells. Our data of domain-mapping and ubiquitination analyses suggest that CREB promotes the proteasomal breakdown of ubiquitinated GRIP1 through 2 functionally independent protein domains containing amino acids 347 to 758 and 1121 to 1462. We provide evidence that CREB interacts directly with GRIP1 and that CREB Ser-133 phosphorylation or transcriptional activity is not required for GRIP1 interaction and degradation. The basic leucine zipper domain (bZIP) of CREB is important for the interaction with GRIP1, and deletion of this domain led to an inability to downregulate GRIP1. We propose that CREB mediates the PKA-stimulated degradation of GRIP1 through protein-protein interaction and stimulation of proteasomal degradation of ubiquitinated GRIP1.
Collapse
Affiliation(s)
- Tuyen Hoang
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lecureur V, Arzel M, Ameziane S, Houlbert N, Le Vee M, Jouneau S, Fardel O. MAPK- and PKC/CREB-dependent induction of interleukin-11 by the environmental contaminant formaldehyde in human bronchial epithelial cells. Toxicology 2012; 292:13-22. [DOI: 10.1016/j.tox.2011.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/10/2011] [Accepted: 11/17/2011] [Indexed: 01/05/2023]
|
18
|
Vav1 couples the T cell receptor to cAMP response element activation via a PKC-dependent pathway. Cell Signal 2010; 22:944-54. [PMID: 20138987 DOI: 10.1016/j.cellsig.2010.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/25/2010] [Accepted: 02/01/2010] [Indexed: 12/21/2022]
Abstract
The transcription factor cAMP-responsive element binding protein (CREB) is a regulator of the expression of several genes important for lymphocyte activation and proliferation. However, the proximal signaling events leading to activation of CREB in T cells upon antigen receptor stimulation remain unknown. Here we identify a role for Vav1 in the activation of the cAMP response element (CRE), the binding site for CREB. T cell receptor (TCR)/CD28 - induced costimulation of Jurkat T cells expressing Vav1 but not a GEF-deficient mutant showed increased CRE activation (7.2+/-2.4 fold over control), whereas Vav1 downregulation by siRNA reduced activation of CRE by 2.6+/-1.3 fold. Inhibition of PKC and MEK but not p38 could reduce Vav1-mediated CRE activation, suggesting that Vav1 transmits TCR and CD28 signals to activation of CRE via PKC and ERK signaling pathways. As a consequence, downregulation of Vav1 impaired the expression of several CRE-containing genes like cyclin D1, INFgamma and IL-2, whereas overexpression of Vav1 enhanced CRE-dependent gene expression. Furthermore, cAMP-induced CRE-dependent transcription and gene expression was also modulated by Vav1, but did not require activation of PKC and the GEF function of Vav1. Our data provide insights into the signal transduction events regulating CRE-mediated gene expression in T cells, which affects T cell development, proliferation and activation. We identify Vav1 as an essential component of TCR-induced CRE activation and gene expression, which underlines the central role for Vav1 as key player for TCR signal transduction and gene expression.
Collapse
|
19
|
The transcriptional regulation and cell-specific expression of the MAPK-activated protein kinase MK5. Cell Mol Biol Lett 2009; 14:548-74. [PMID: 19484198 PMCID: PMC6276003 DOI: 10.2478/s11658-009-0020-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 05/11/2009] [Indexed: 01/08/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascades regulate important cellular processes, including growth, differentiation, apoptosis, embryogenesis, motility and gene expression. Although MAPKs mostly appear to be constitutively expressed, the transcript levels of some MAPK-encoding genes increase upon treatment with specific stimuli. This applies to the MAPKactivated protein kinases MK2 and MK3. By contrast, the transcriptional regulation of the related MK5 has not yet been studied. The MK5 promoters of mouse, rat and human contain a plethora of putative transcription factor sites, and the spatio-temporal expression of MK5 suggests inducible transcription of the gene. We examined the transcription pattern of MK5 in different tissues, and studied the kinetics of MK5 expression at the transcriptional and/or translation level in PC12 cells exposed to arsenite, forskolin, KCl, lipopolysaccharide, spermine NONOate, retinoic acid, serum, phorbol ester, temperature shock, and vanadate. Cells exposed to forskolin display a transient increase in MK5 mRNA, despite their unaltered MK5 protein levels. The MK5 promoters of human, mouse and rat contain a cAMP-responsive element that binds the cAMPresponsive element-binding protein (CREB) in vitro. Luciferase reporter constructs containing an 850-base pair human MK5 promoter fragment encompassing the CRE showed a basal activity that was 10-fold higher than the corresponding construct in which the CRE motif was deleted. siRNA-mediated depletion of CREB had no effect on the endogenous MK5 protein levels. Several binding motifs for heat shock factor are dispersed in the mouse and rat promoter, and temperature shock transiently enhanced the MK5 transcript levels. None of the other tested stimuli had an effect on the MK5 mRNA or protein levels. Our results indicate an inducible regulation of MK5 transcription in response to specific stimuli. However, the MK5 protein levels remained unaffected by all the stimuli tested. There is still no explanation for the discrepancy between the increased mRNA and unchanged MK5 protein levels.
Collapse
|
20
|
Denver RJ. Structural and Functional Evolution of Vertebrate Neuroendocrine Stress Systems. Ann N Y Acad Sci 2009; 1163:1-16. [DOI: 10.1111/j.1749-6632.2009.04433.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Johannessen M, Myhre MR, Dragset M, Tümmler C, Moens U. Phosphorylation of human polyomavirus BK agnoprotein at Ser-11 is mediated by PKC and has an important regulative function. Virology 2008; 379:97-109. [PMID: 18635245 DOI: 10.1016/j.virol.2008.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 04/07/2008] [Accepted: 06/06/2008] [Indexed: 12/16/2022]
Abstract
The human polyomavirus BK (BKV) genome encodes the capsid proteins VP1 to VP3 and the three regulatory proteins, large and small tumor-antigen and the agnoprotein. Agnoprotein is a phospho-protein, but phosphorylation sites, protein kinases that mediate phosphorylation, and the biological importance of phosphorylation for the life-cycle of BK virus remain unknown. Here, we show that protein kinase C phosphorylates BKV agnoprotein at serine-11. Replacing serine-11 by either non-phosphorylable alanine or phospho-mimicking aspartic acid reduced the ability of these mutants to propagate compared to wildtype virus. Moreover, both these mutants displayed altered expression of viral proteins, which resulted from changed transrepressive property and stability of the mutated agnoprotein. Our results indicate that BKV propagation is controlled by phosphorylation of the agnoprotein and may suggest that specific inhibition of protein kinases may be used as a therapeutic strategy to hamper BK virus infection.
Collapse
Affiliation(s)
- Mona Johannessen
- University of Tromsø, Faculty of Medicine, Department of Microbiology and Virology, 9037 Tromsø, Norway.
| | | | | | | | | |
Collapse
|
22
|
Pandur S, Pankiv S, Johannessen M, Moens U, Huseby NE. Gamma-glutamyltransferase is upregulated after oxidative stress through the Ras signal transduction pathway in rat colon carcinoma cells. Free Radic Res 2008; 41:1376-84. [PMID: 18075840 DOI: 10.1080/10715760701739488] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gamma-glutamyltransferase (GGT) plays a central role in the homeostasis of the antioxidant glutathione (GSH). The expression of GGT has been shown to be upregulated after oxidative stress, but the signalling pathways implicated remain poorly characterized. The results here show that acute exposure of CC531 cells to oxidative stress resulted in activation of Ras and augmented GGT enzyme activity, both at the transcriptional and at the translation level. Moreover, an involvement of the GGT promoter II was detected after RT-PCR and transient transfection studies. Ectopic expression of activated Ras, but not dominant negative Ras, also resulted in increased GGT promoter II transcriptional activity, an effect that was attenuated by over-expression of dominant negative mutants of Akt, p38 MAPK and MEK1. Addition of specific inhibitors of these kinases during oxidative stress diminished the activation of GGT. In conclusion, oxidative stress-induced activation of GGT involves Ras and several downstream signalling pathways.
Collapse
Affiliation(s)
- Seila Pandur
- Department of Medical Biochemistry, University of Tromsø, Norway
| | | | | | | | | |
Collapse
|
23
|
Karkoulias G, Mastrogianni O, Papathanasopoulos P, Paris H, Flordellis C. α2-Adrenergic receptors activate cyclic AMP-response element-binding protein through arachidonic acid metabolism and protein kinase A in a subtype-specific manner. J Neurochem 2007; 103:882-95. [PMID: 17680988 DOI: 10.1111/j.1471-4159.2007.04852.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
On incubation with epinephrine, PC12 cells stably expressing alpha2-adrenergic receptor (alpha2-AR) undergo morphological and biochemical changes characteristic of neuron-like differentiation. The present study shows that alpha2-AR stimulation increases the phosphorylation of the transcription factor cAMP-response element-binding protein (CREB), the activity of a CRE-reporter plasmid and the expression of cyclin D1 with subtype-dependent efficiency (alpha2A approximately alpha2C >> alpha2B). The effects of epinephrine were mimicked by cell exposure to forskolin or to exogenous arachidonic acid (AA) and they were abrogated by prior treatment with the inhibitor of phospholipase C (PLC) (U73122) or the inhibitor of cytochrome P450-dependent epoxygenase, ketoconazole. On the other hand, treatment of the cells with epinephrine caused activation of protein kinase A (PKA), which was fully abolished by ketoconazole. Inhibition of PKA activity with H89 or ketoconazole abolished the effects of epinephrine on CREB, suggesting that activation of the cAMP/PKA pathway by AA epoxy-derivatives is responsible for CREB activation by alpha2-ARs. The effects of epinephrine were unaffected by LY294002. Furthermore, treatment with staurosporine, tyrphostin AG1478, PP1 or PD98059 did not change the extent of CREB phosphorylation but enhanced its transcriptional activity. Altogether, our results demonstrate that, in PC12 cells, the alpha2-AR subtypes cause phosphorylation and activation of CREB through a pathway involving stimulation of PLC, AA release, generation of epoxygenase derivative and increase of PKA activity. They also suggest attenuation of CREB transcriptional activity by mitogen-activated protein kinase, protein kinase C and Src kinases.
Collapse
Affiliation(s)
- Georgios Karkoulias
- Department of Pharmacology, School of Medicine, University of Patras, Rio Patras, Greece
| | | | | | | | | |
Collapse
|
24
|
Gerits N, Mikalsen T, Kostenko S, Shiryaev A, Johannessen M, Moens U. Modulation of F-actin rearrangement by the cyclic AMP/cAMP-dependent protein kinase (PKA) pathway is mediated by MAPK-activated protein kinase 5 and requires PKA-induced nuclear export of MK5. J Biol Chem 2007; 282:37232-43. [PMID: 17947239 DOI: 10.1074/jbc.m704873200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MAPK-activated protein kinases belong to the Ca2+/calmodulin-dependent protein kinases. Within this group, MK2, MK3, and MK5 constitute three structurally related enzymes with distinct functions. Few genuine substrates for MK5 have been identified, and the only known biological role is in ras-induced senescence and in tumor suppression. Here we demonstrate that activation of cAMP-dependent protein kinase (PKA) or ectopic expression of the catalytic subunit Calpha in PC12 cells results in transient nuclear export of MK5, which requires the kinase activity of both Calpha and MK5 and the ability of Calpha to enter the nucleus. Calpha and MK5, but not MK2, interact in vivo, and Calpha increases the kinase activity of MK5. Moreover, Calpha augments MK5 phosphorylation, but not MK2, whereas MK5 does not seem to phosphorylate Calpha. Activation of PKA can induce actin filament accumulation at the plasma membrane and formation of actin-based filopodia. We demonstrate that small interfering RNA-triggered depletion of MK5 interferes with PKA-induced F-actin rearrangement. Moreover, cytoplasmic expression of an activated MK5 variant is sufficient to mimic PKA-provoked F-actin remodeling. Our results describe a novel interaction between the PKA pathway and MAPK signaling cascades and suggest that MK5, but not MK2, is implicated in PKA-induced microfilament rearrangement.
Collapse
Affiliation(s)
- Nancy Gerits
- Department of Microbiology and Virology, Faculty of Medicine, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
25
|
Ravnskjaer K, Kester H, Liu Y, Zhang X, Lee D, Yates JR, Montminy M. Cooperative interactions between CBP and TORC2 confer selectivity to CREB target gene expression. EMBO J 2007; 26:2880-9. [PMID: 17476304 PMCID: PMC1894761 DOI: 10.1038/sj.emboj.7601715] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 03/22/2007] [Indexed: 12/27/2022] Open
Abstract
A number of hormones and growth factors stimulate gene expression by promoting the phosphorylation of CREB (P-CREB), thereby enhancing its association with the histone acetylase paralogs p300 and CBP (CBP/p300). Relative to cAMP, stress signals trigger comparable amounts of CREB phosphorylation, but have minimal effects on CRE-dependent transcription. Here, we show that the latent cytoplasmic coactivator TORC2 mediates target gene activation in response to cAMP signaling by associating with CBP/p300 and increasing its recruitment to a subset of CREB target genes. TORC2 is not activated in response to stress signals, however; and in its absence, P-CREB is unable to stimulate CRE-dependent transcription, due to a block in CBP recruitment. The effect of TORC2 on CBP/p300 promoter occupancy appears pivotal because a gain of function mutant CREB polypeptide with increased affinity for CBP restored CRE-mediated transcription in cells exposed to stress signals. Taken together, these results indicate that TORC2 is one of the long sought after cofactors that mediates the differential effects of cAMP and stress pathways on CREB target gene expression.
Collapse
Affiliation(s)
- Kim Ravnskjaer
- Peptide Biology Laboratories, The Salk Institute For Biological Studies, La Jolla, CA, USA
| | - Henri Kester
- Peptide Biology Laboratories, The Salk Institute For Biological Studies, La Jolla, CA, USA
| | - Yi Liu
- Peptide Biology Laboratories, The Salk Institute For Biological Studies, La Jolla, CA, USA
| | - Xinmin Zhang
- Peptide Biology Laboratories, The Salk Institute For Biological Studies, La Jolla, CA, USA
| | - Dong Lee
- Peptide Biology Laboratories, The Salk Institute For Biological Studies, La Jolla, CA, USA
| | - John R Yates
- The Scripps Research Institute, La Jolla, CA, USA
| | - Marc Montminy
- Peptide Biology Laboratories, The Salk Institute For Biological Studies, La Jolla, CA, USA
- Peptide Biology Laboratories, The Salk Institute For Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA. Tel.: +1 858 453 4100 ext. 1394; Fax: +1 858 552 1546; E-mail:
| |
Collapse
|
26
|
Johannessen M, Delghandi MP, Rykx A, Dragset M, Vandenheede JR, Van Lint J, Moens U. Protein Kinase D Induces Transcription through Direct Phosphorylation of the cAMP-response Element-binding Protein. J Biol Chem 2007; 282:14777-87. [PMID: 17389598 DOI: 10.1074/jbc.m610669200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Protein kinase D (PKD), a family of serine/threonine kinases, can be activated by a multitude of stimuli in a protein kinase C-dependent or -independent manner. PKD is involved in signal transduction pathways controlling cell proliferation, apoptosis, motility, and protein trafficking. Despite its versatile functions, few genuine in vivo substrates for PKD have been identified. In this study we demonstrate that the transcription factor cAMP-response element-binding protein (CREB) is a direct substrate for PKD. PKD1 and CREB interact in cells, and activated PKD1 provokes CREB phosphorylation at Ser-133 both in vitro and in vivo. A constitutive active mutant of PKD1 stimulates GAL4-CREB-mediated transcription in a Ser-133-dependent manner, activates CRE-responsive promoters, and increases the expression of CREB target genes. PKD1 also enhances transcription mediated by two other members of the CREB family, ATF-1 and CREM. Our results describe a novel mechanism for PKD-induced signaling through activation of the transcription factor CREB and suggest that stimulus-induced phosphorylation of CREB, reported to be mediated by protein kinase C, may involve downstream activated PKD.
Collapse
Affiliation(s)
- Mona Johannessen
- Department of Microbiology and Virology, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | | | | | |
Collapse
|
27
|
Mikalsen T, Johannessen M, Moens U. Sequence- and position-dependent tagging protects extracellular-regulated kinase 3 protein from 26S proteasome-mediated degradation. Int J Biochem Cell Biol 2005; 37:2513-20. [PMID: 16084751 DOI: 10.1016/j.biocel.2005.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 05/21/2005] [Accepted: 06/03/2005] [Indexed: 11/24/2022]
Abstract
Extracellular-regulated kinase 3, an atypical member of the mitogen-activated protein kinase subfamily of extracellular-regulated kinases, was originally identified in 1991. Little is known about the biochemical properties, regulation, and biological functions of this protein kinase, partially due to the unstable nature of endogenous and low ectopical expression level of the protein. Here, we report that a single C-terminal c-myc tag increases the half-life of ectopic expressed tagged extracellular-regulated kinase 3 approximately four times compared to the reported 30 min half-life time for the endogenous protein and ectopic expressed extracellular-regulated kinase 3 deprived of its c-myc tag. These findings indicate that this C-terminal tag stabilizes the extracellular-regulated kinase 3. The stabilizing effect of the C-terminal c-myc tag is observed in all cell types tested, but is position- and tag sequence-dependent as neither N-terminal c-myc tag nor C-terminal HA tag stabilize the protein. The c-myc tag on extracellular-regulated kinase 3 did not interfere with its kinase activity, nor did it abrogate its ability to interacts with its bona fide substrate mitogen-activated protein kinase-activated protein kinase 5, indicating that tagging did not alter the known biological properties of the protein. Stabilization of the tagged extracellular-regulated kinase 3 protein probably results from reduced ubiquitination. In conclusion, position and sequence specific tagging should provide an easy and useful tool to generate a more stable protein that can functionally substitute the endogenous unstable protein. A stabilized variant may facilitate studies on the biological role of the protein.
Collapse
Affiliation(s)
- Theresa Mikalsen
- Department of Biochemistry, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | | | | |
Collapse
|
28
|
Delghandi MP, Johannessen M, Moens U. The cAMP signalling pathway activates CREB through PKA, p38 and MSK1 in NIH 3T3 cells. Cell Signal 2005; 17:1343-51. [PMID: 16125054 DOI: 10.1016/j.cellsig.2005.02.003] [Citation(s) in RCA: 254] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 02/09/2005] [Indexed: 12/22/2022]
Abstract
Cyclic adenosine 3',5'-monophosphate (cAMP) was originally shown to induce gene transcription through activation of cAMP-dependent protein kinase (PKA), and subsequent phosphorylation of the transcription factor cAMP response element-binding protein, CREB, at serine-133. However, elevated cAMP levels may activate multiple signalling pathways with protein kinases that can phosphorylate CREB at serine-133. We analysed the pathways involved in CREB phosphorylation and activation in NIH 3T3 cells exposed to the cAMP elevating agent forskolin. PKA represented the predominant pathway during the burst phase, while the mitogen-activated protein kinase p38 pathway became activated in a PKA-dependent fashion in forskolin treated cells. The phosphorylation kinetics of p38 was delayed compared to PKA activation. Activated p38 stimulated CREB-mediated transcription and potentiated the transcriptional strength of CREB provoked by forskolin. The p38-mediated activation of CREB was inhibited by dominant negative mutants of MSK-1 and by the PKA/MSK-1 inhibitor H89, but not by dominant negative mutants of MSK-2/RSK-B and MAPKAPK2. Our results suggest that forskolin-induced CREB phosphorylation and activation in NIH 3T3 cells is mediated directly by PKA and by a time-delayed PKA-dependent p38/MSK-1 pathway. This bifurcation and time-dependent regulation of the cAMP-responsive signalling pathways may enable the cell to endure and/or enforce a cellular response provoked by a cAMP-elevating stimulus.
Collapse
Affiliation(s)
- Marit Pedersen Delghandi
- Department of Biochemistry, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | | | | |
Collapse
|
29
|
Cheung R, Erclik MS, Mitchell J. Increased expression of G11α in osteoblastic cells enhances parathyroid hormone activation of phospholipase C and AP-1 regulation of matrix metalloproteinase-13 mRNA. J Cell Physiol 2005; 204:336-43. [PMID: 15693018 DOI: 10.1002/jcp.20299] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In osteoblasts parathyroid hormone (PTH) stimulates the PTH/PTH-related peptide (PTHrP) receptor (PTH1R) that couples via G(s) to adenylyl cyclase stimulation and via G(11) to phospholipase C (PLC) stimulation. We have investigated the effect of increasing G(11)alpha levels in UMR 106-01 osteoblastic cells by transient transfection with cDNA encoding G(11)alpha on PTH stimulation of PLC and protein kinase C (PKC) as well as PTH regulation of mRNA encoding matrix metalloproteinase-13 (MMP-13). Transfection with G(11)alpha cDNA resulted in a 5-fold increase in PTH-stimulated PLC activity with no change in PTH-stimulated adenylyl cyclase. PTH-induced translocation of PKC-betaI, -delta, and -zeta to the cell membrane and PKC-zeta to the nucleus was also increased. Increased G(11)alpha protein resulted in increased stimulation of MMP-13 mRNA levels at all doses of PTH. There was a 2.5 +/- 0.35 fold increase in maximal PTH-stimulation of c-jun mRNA and smaller but significant increases in c-fos accompanied by increased basal and PTH-stimulated AP-1 binding in cells expressing increased G(11)alpha. Runx-2 mRNA and protein levels were not significantly increased by increased G(11)alpha expression. The increase in PTH stimulation of c-jun, c-fos, and MMP-13 in G(11)alpha-transfected cells were all blocked by bisindolylmaleimide I, a selective inhibitor of PKC. These results demonstrate that regulation of the PLC pathway through the PTH1R is significantly increased by elevating expression of G(11)alpha in osteoblastic cells. This leads to increased PTH stimulation of MMP-13 expression by increased stimulation of AP-1 factors c-jun and c-fos.
Collapse
Affiliation(s)
- Ricky Cheung
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
30
|
Abstract
The transactivation domain of the cAMP response element-binding protein (CREB) consists of two major domains. The glutamine-rich Q2 domain, which interacts with the general transcription factor TAFII130/135, is sufficient for the recruitment of a functional RNA polymerase II complex and allows basal transcriptional activity. The kinase-inducible domain, however, mediates signal-induced activation of CREB-mediated transcription. It is generally believed that recruitment of the coactivators CREB-binding protein (CBP) and p300 after signal-induced phosphorylation of this domain at serine-133 strongly enhances CREB-dependent transcription. Transcriptional activity of CREB can also be potentiated by phosphoserine-133-independent mechanisms, and not all stimuli that provoke phosphorylation of serine-133 stimulate CREB-dependent transcription. This review presents an overview of the diversity of stimuli that induce CREB phosphorylation at Ser-133, focuses on phosphoserine-133-dependent and -independent mechanisms that affect CREB-mediated transcription, and discusses different models that may explain the discrepancy between CREB Ser-133 phosphorylation and activation of CREB-mediated transcription.
Collapse
Affiliation(s)
- Mona Johannessen
- Department of Biochemistry, Institute of Medical Biology, University of Tromsø, N-9037, Norway
| | | | | |
Collapse
|