1
|
Siavoshi F, Ladakis DC, Muller A, Nourbakhsh B, Bhargava P. Ocrelizumab alters the circulating metabolome in people with relapsing-remitting multiple sclerosis. Ann Clin Transl Neurol 2024; 11:2485-2498. [PMID: 39185939 PMCID: PMC11537130 DOI: 10.1002/acn3.52167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Circulating metabolite levels are altered in multiple sclerosis (MS) and are associated with MS severity. However, how metabolic profiles shift following highly efficacious therapies, like ocrelizumab remains unclear. OBJECTIVE Circulating metabolite levels are altered in multiple sclerosis (MS) and are associated with MS severity. However, how metabolic profiles shift following highly efficacious therapies, like ocrelizumab remains unclear. To assess changes in the circulating metabolome produced by ocrelizumab treatment in people with relapsing-remitting MS (RRMS). METHODS Thirty-one individuals with RRMS eligible for beginning treatment with ocrelizumab were recruited and followed with demographic, clinical, quality-of-life, and global metabolomics data collected at each visit. Modules of highly correlated metabolites were identified using the weighted correlation network analysis approach. Changes in each module's eigenmetabolite values and individual metabolites during the study were evaluated using linear mixed-effects models. RESULTS Patients with a mean age of 40.8 (SD = 10.30) years, and median disease duration of 4.0 (IQR = 8.5) years, were monitored for a median of 3.36 (IQR = 1.43) years. Two out of twelve identified sets of metabolites were altered significantly. The first module mainly contained androgenic and pregnenolone steroids (p-value <0.001, coefficient: -0.10). The second module primarily consisted of several lysophospholipids, arachidonic acid, some endocannabinoids, and monohydroxy fatty acid metabolites (p-value = 0.016, coefficient: -0.12), which its reduction was significantly associated with improvement based on overall disability response score (OR 3.09e-01, 95% CI: 6.83e-02, 9.09e-01, p-value = 3.15E-02). INTERPRETATION In this longitudinal observational study, using a global untargeted metabolomics approach, we showed significant alteration in circulating metabolome in RRMS patients undergoing ocrelizumab treatment. In particular, we observed a significant reduction in metabolites involved in the lysophospholipid pathway, which was associated with patients' improvement.
Collapse
Affiliation(s)
- Fatemeh Siavoshi
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Dimitrios C. Ladakis
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Ashley Muller
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Bardia Nourbakhsh
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Pavan Bhargava
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
2
|
Zheng Z, Han L, Li Y, Chen Z, Yang W, Liu C, Tao M, Jiang Y, Ke X, Liu Y, Guo X. Phospholipase A2-activating protein induces mitophagy trough anti-apoptotic MCL1-mediated NLRX1 oligomerization. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023:119487. [PMID: 37211156 DOI: 10.1016/j.bbamcr.2023.119487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/17/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Mitochondrial protein homeostasis is fine-tuned by diverse physiological processes such as mitochondria-associated degradation (MAD), which is regulated by valosin-containing protein (VCP) and its cofactors. As a cofactor of VCP, the mutation of phospholipase A-2-activating protein (PLAA) is the genetic cause of PLAA-associated neurodevelopmental disorder (PLAAND). However, the physiological and pathological roles of PLAA in mitochondria remain unclear. Here, we demonstrate that PLAA partially associates with mitochondria. Deficiency in PLAA increases mitochondrial reactive oxygen species (ROS) production, reduces mitochondrial membrane potential, inhibits mitochondrial respiratory activity and causes excessive mitophagy. Mechanically, PLAA interacts with myeloid cell leukemia-1 (MCL1) and facilitates its retro-translocation and proteasome-dependent degradation. The upregulation of MCL1 promotes the oligomerization of NLR family member X1 (NLRX1) and activation of mitophagy. Whereas downregulating NLRX1 abolishes MCL1 induced mitophagy. In summary, our data identify PLAA as a novel mediator of mitophagy by regulating MCL1-NLRX1 axis. We propose mitophagy as a target for therapeutic intervention in PLAAND.
Collapse
Affiliation(s)
- Zhilong Zheng
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Lu Han
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China; Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanbo Li
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhen Chen
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wangju Yang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunyue Liu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengdan Tao
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yueqing Jiang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyan Ke
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xing Guo
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
3
|
Kovács P, Pushparaj PN, Takács R, Mobasheri A, Matta C. The clusterin connectome: Emerging players in chondrocyte biology and putative exploratory biomarkers of osteoarthritis. Front Immunol 2023; 14:1103097. [PMID: 37033956 PMCID: PMC10081159 DOI: 10.3389/fimmu.2023.1103097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionClusterin is amoonlighting protein that hasmany functions. It is amultifunctional Q6 holdase chaperone glycoprotein that is present intracellularly and extracellularly in almost all bodily fluids. Clusterin is involved in lipid transport, cell differentiation, regulation of apoptosis, and clearance of cellular debris, and plays a protective role in ensuring cellular survival. However, the possible involvement of clusterin in arthritic disease remains unclear. Given the significant potential of clusterin as a biomarker of osteoarthritis (OA), a more detailed analysis of its complex network in an inflammatory environment, specifically in the context of OA, is required. Based on the molecular network of clusterin, this study aimed to identify interacting partners that could be developed into biomarker panels for OA.MethodsThe STRING database and Cytoscape were used to map and visualize the clusterin connectome. The Qiagen Ingenuity Pathway Analysis (IPA) software was used to analyze and study clusterinassociated signaling networks in OA. We also analyzed transcription factors known to modulate clusterin expression, which may be altered in OA.ResultsThe top hits in the clusterin network were intracellular chaperones, aggregate-forming proteins, apoptosis regulators and complement proteins. Using a text-mining approach in Cytoscape, we identified additional interacting partners, including serum proteins, apolipoproteins, and heat shock proteins.DiscussionBased on known interactions with proteins, we predicted potential novel components of the clusterin connectome in OA, including selenoprotein R, semaphorins, and meprins, which may be important for designing new prognostic or diagnostic biomarker panels.
Collapse
Affiliation(s)
- Patrik Kovács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research (CEGMR), Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Roland Takács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ali Mobasheri
- FibroHealth Interdisciplinary Research Programme, Fibrobesity Cluster, Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
- *Correspondence: Csaba Matta, ; Ali Mobasheri,
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Csaba Matta, ; Ali Mobasheri,
| |
Collapse
|
4
|
Relation of serum IL-32 levels and gene polymorphism rs45499297 with obesity in Mexican patients: a laboratory and in silico analysis. NUTR HOSP 2022; 39:313-319. [DOI: 10.20960/nh.03804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
5
|
Cytosolic phospholipase A 2-α participates in lipid body formation and PGE 2 release in human neutrophils stimulated with an L-amino acid oxidase from Calloselasma rhodostoma venom. Sci Rep 2020; 10:10976. [PMID: 32620771 PMCID: PMC7334223 DOI: 10.1038/s41598-020-67345-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/05/2020] [Indexed: 12/02/2022] Open
Abstract
Cr-LAAO, an l-amino acid oxidase isolated from Calloselasma rhodosthoma snake venom, has been demonstrated as a potent stimulus for neutrophil activation and inflammatory mediator production. However, the mechanisms involved in Cr-LAAO induced neutrophil activation has not been well characterized. Here we investigated the mechanisms involved in Cr-LAAO-induced lipid body (also known as lipid droplet) biogenesis and eicosanoid formation in human neutrophils. Using microarray analysis, we show for the first time that Cr-LAAO plays a role in the up-regulation of the expression of genes involved in lipid signalling and metabolism. Those include different members of phospholipase A2, mostly cytosolic phospholipase A2-α (cPLA2-α); and enzymes involved in prostaglandin synthesis including cyclooxygenases 2 (COX-2), and prostaglandin E synthase (PTGES). In addition, genes involved in lipid droplet formation, including perilipin 2 and 3 (PLIN 2 and 3) and diacylglycerol acyltransferase 1 (DGAT1), were also upregulated. Furthermore, increased phosphorylation of cPLA2-α, lipid droplet biogenesis and PGE2 synthesis were observed in human neutrophils stimulated with Cr-LAAO. Treatment with cPLA2-α inhibitor (CAY10650) or DGAT-1 inhibitor (A922500) suppressed lipid droplets formation and PGE2 secretion. In conclusion, we demonstrate for the first time the effects of Cr-LAAO to regulate neutrophil lipid metabolism and signalling.
Collapse
|
6
|
Gokhale S, Lu W, Zhu S, Liu Y, Hart RP, Rabinowitz JD, Xie P. Elevated Choline Kinase α-Mediated Choline Metabolism Supports the Prolonged Survival of TRAF3-Deficient B Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2019; 204:459-471. [PMID: 31826940 DOI: 10.4049/jimmunol.1900658] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022]
Abstract
Specific deletion of the tumor suppressor TRAF3 from B lymphocytes in mice leads to the prolonged survival of mature B cells and expanded B cell compartments in secondary lymphoid organs. In the current study, we investigated the metabolic basis of TRAF3-mediated regulation of B cell survival by employing metabolomic, lipidomic, and transcriptomic analyses. We compared the polar metabolites, lipids, and metabolic enzymes of resting splenic B cells purified from young adult B cell-specific Traf3 -/- and littermate control mice. We found that multiple metabolites, lipids, and enzymes regulated by TRAF3 in B cells are clustered in the choline metabolic pathway. Using stable isotope labeling, we demonstrated that phosphocholine and phosphatidylcholine biosynthesis was markedly elevated in Traf3 -/- mouse B cells and decreased in TRAF3-reconstituted human multiple myeloma cells. Furthermore, pharmacological inhibition of choline kinase α, an enzyme that catalyzes phosphocholine synthesis and was strikingly increased in Traf3 -/- B cells, substantially reversed the survival phenotype of Traf3 -/- B cells both in vitro and in vivo. Taken together, our results indicate that enhanced phosphocholine and phosphatidylcholine synthesis supports the prolonged survival of Traf3 -/- B lymphocytes. Our findings suggest that TRAF3-regulated choline metabolism has diagnostic and therapeutic value for B cell malignancies with TRAF3 deletions or relevant mutations.
Collapse
Affiliation(s)
- Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854
| | - Wenyun Lu
- Department of Chemistry, Princeton University, Princeton, NJ 08544.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901; and
| | - Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854
| | - Yingying Liu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901; and.,W.M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ 08544.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901; and
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854; .,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901; and
| |
Collapse
|
7
|
Szymczak-Pajor I, Kleniewska P, Wieczfinska J, Pawliczak R. Wide-Range Effects of 1,25(OH)2D3 on Group 4A Phospholipases Is Related to Nuclear Factor κ-B and Phospholipase-A2 Activating Protein Activity in Mast Cells. Int Arch Allergy Immunol 2019; 181:56-70. [PMID: 31707382 DOI: 10.1159/000503628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/24/2019] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Phospholipases are enzymes that occur in many types of human cells, including mast cells, and play an important role in the molecular background of asthma pathogenesis, and the development of inflammation NF-κB activities that affect numerous biological processes has been reported in many inflammatory diseases including asthma. Vitamin D is a widely studied factor that affects many diseases, including asthma. The aim of this study is to assess the influence of 1,25-(OH)2D3 on regulation of chosen phospholipase-A2 (PLA2) expression-selected inflammation mediators. METHODS LUVA mast cells were stimulated with 1,25(OH)2D3, and inhibitors of NF-κB p65 and ubiquitination. Expression analysis of phospholipases (PLA2G5, PLA2G10, PLA2G12, PLA2G15, PLA2G4A, PLA2G4B, PLA2G4C, PLAA, NF-κB p65, and UBC) was done utilizing real-time PCR and Western blot. Eicosanoid (LTC4, LXA4, 15[S]-HETE, and PGE2) levels and sPLA2 were also measured. RESULTS We found that 1,25(OH)2D3 decreased the expression of PLA2G5, PLA2G15, PLA2G5,UBC, and NF-κB p65 but increased expression of PLAA and PLA2G4C (p < 0.05). Moreover, the expression of PLA2G5 and PLA2G15 decreased after inhibition of NF-κB p65 and UBC. Increased levels of released LXA4 and 15(S)-HETE, decreased levels of LTC4, and sPLA2s enzymatic activity in response to 1,25(OH)2D3 were also observed. Additionally, NF-κB p65 inhibition led to an increase in the LXA4 concentration. CONCLUSION Future investigations will be needed to further clarify the role of 1,25(OH)2D3 in the context of asthma and the inflammatory process; however, these results confirm a variety of effects which can be caused by this vitamin. 1,25(OH)2D3-mediated action may result in the development of new therapeutic strategies for asthma treatment.
Collapse
Affiliation(s)
- Izabela Szymczak-Pajor
- Department of Immunopathology, Faculty of Biomedical Science and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| | - Paulina Kleniewska
- Department of Immunopathology, Faculty of Biomedical Science and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| | - Joanna Wieczfinska
- Department of Immunopathology, Faculty of Biomedical Science and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| | - Rafal Pawliczak
- Department of Immunopathology, Faculty of Biomedical Science and Postgraduate Training, Medical University of Lodz, Lodz, Poland,
| |
Collapse
|
8
|
Prata DP, Costa-Neves B, Cosme G, Vassos E. Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: A systematic review. J Psychiatr Res 2019; 114:178-207. [PMID: 31096178 DOI: 10.1016/j.jpsychires.2019.04.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To systematically review findings of GWAS in schizophrenia (SZ) and in bipolar disorder (BD); and to interpret findings, with a focus on identifying independent replications. METHOD PubMed search, selection and review of all independent GWAS in SZ or BD, published since March 2011, i.e. studies using non-overlapping samples within each article, between articles, and with those of the previous review (Li et al., 2012). RESULTS From the 22 GWAS included in this review, the genetic associations surviving standard GWAS-significance were for genetic markers in the regions of ACSL3/KCNE4, ADCY2, AMBRA1, ANK3, BRP44, DTL, FBLN1, HHAT, INTS7, LOC392301, LOC645434/NMBR, LOC729457, LRRFIP1, LSM1, MDM1, MHC, MIR2113/POU3F2, NDST3, NKAPL, ODZ4, PGBD1, RENBP, TRANK1, TSPAN18, TWIST2, UGT1A1/HJURP, WHSC1L1/FGFR1 and ZKSCAN4. All genes implicated across both reviews are discussed in terms of their function and implication in neuropsychiatry. CONCLUSION Taking all GWAS to date into account, AMBRA1, ANK3, ARNTL, CDH13, EFHD1 (albeit with different alleles), MHC, PLXNA2 and UGT1A1 have been implicated in either disorder in at least two reportedly non-overlapping samples. Additionally, evidence for a SZ/BD common genetic basis is most strongly supported by the implication of ANK3, NDST3, and PLXNA2.
Collapse
Affiliation(s)
- Diana P Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal; Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, SE5 8AF, UK; Instituto Universitário de Lisboa (ISCTE-IUL), Centro de Investigação e Intervenção Social, Lisboa, Portugal.
| | - Bernardo Costa-Neves
- Lisbon Medical School, University of Lisbon, Av. Professor Egas Moniz, 1649-028, Lisbon, Portugal; Centro Hospitalar Psiquiátrico de Lisboa, Av. do Brasil, 53 1749-002, Lisbon, Portugal
| | - Gonçalo Cosme
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, 16 De Crespigny Park, SE5 8AF, UK
| |
Collapse
|
9
|
Abstract
Interleukin-32 (IL-32) is a novel cytokine involved in inflammation and cancer development. IL-32 gene consists of eight small exons, and IL-32 mRNA has nine alternative spliced isoforms, and was thought to be secreted because it contains an internal signal sequence and lacks a transmembrane region. IL-32 is initially expressed selectively in activated T cells by mitogen and activated NK cells and their expression is strongly augmented by microbes, mitogens, and other cytokines. The IL-32 is induced mainly by pathogens and pro-inflammatory cytokines, but IL-32 is more prominent in immune cells than in non-immune tissues. The IL-32 transcript is expressed in various human tissues and organs such as the spleen, thymus, leukocyte, lung, small intestine, colon, prostate, heart, placenta, liver, muscle, kidney, pancreas, and brain. Cytokines are critical components of cell signaling pathways that are involved in the regulation of cell growth, metabolism, hormone signaling, immune regulation and a variety of other physiological functions. Earlier studies have demonstrated that IL-32 regulates cell growth, metabolism and immune regulation and is therefore involved in the pathologic regulator or protectant of inflammatory diseases. Previous studies defined that IL-32 is upregulated in the patients with several inflammatory diseases, and is induced by inflammatory responses. However, several reports suggested that IL-32 is downregulated in several inflammatory diseases including asthma, HIV infection disease, neuronal diseases, metabolic disorders, experimental colitis and metabolic disorders. IL-32 is also involved in various cancer malignancies including renal cancer, esophageal cancer and hepatocellular carcinoma, lung cancer, gastric cancer, breast cancer, pancreatic cancer, lymphoma, osteosarcoma, breast cancer, colon cancer and thyroid carcinoma. Other studies suggested that IL-32 decreases tumor development including cervical cancer, colon cancer and prostate cancer, melanoma, pancreatic cancer, liver cancer and chronic myeloid leukemia. Nevertheless, review articles that discuss the roles and its mechanism of IL-32 isoforms focusing on the therapeutic approaches have not yet been reported. In this review article, we will discuss recent findings regarding IL-32 in the development of diseases and further discuss therapeutic approaches targeting IL-32. Moreover, we will suggest that IL-32 could be the target of several diseases and the therapeutic agents for targeting IL-32 may have potential beneficial effects for the treatment of inflammatory diseases and cancers. Future research should open new avenues for the design of novel therapeutic approaches targeting IL-32.
Collapse
Affiliation(s)
- Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 361-951, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 361-951, Republic of Korea
| | - Chong Kil Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 361-951, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Republic of Korea
| | - Dong Hun Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 361-951, Republic of Korea; Department of Pediatrics, Children's Heart Research and Outcomes (HeRO) Center, Emory University School of Medicine, 2015 Uppergate Drive, Lab 260, Atlanta, GA, 30322, United States
| | - Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 361-951, Republic of Korea.
| |
Collapse
|
10
|
Falik Zaccai TC, Savitzki D, Zivony-Elboum Y, Vilboux T, Fitts EC, Shoval Y, Kalfon L, Samra N, Keren Z, Gross B, Chasnyk N, Straussberg R, Mullikin JC, Teer JK, Geiger D, Kornitzer D, Bitterman-Deutsch O, Samson AO, Wakamiya M, Peterson JW, Kirtley ML, Pinchuk IV, Baze WB, Gahl WA, Kleta R, Anikster Y, Chopra AK. Phospholipase A2-activating protein is associated with a novel form of leukoencephalopathy. Brain 2016; 140:370-386. [PMID: 28007986 DOI: 10.1093/brain/aww295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022] Open
Abstract
Leukoencephalopathies are a group of white matter disorders related to abnormal formation, maintenance, and turnover of myelin in the central nervous system. These disorders of the brain are categorized according to neuroradiological and pathophysiological criteria. Herein, we have identified a unique form of leukoencephalopathy in seven patients presenting at ages 2 to 4 months with progressive microcephaly, spastic quadriparesis, and global developmental delay. Clinical, metabolic, and imaging characterization of seven patients followed by homozygosity mapping and linkage analysis were performed. Next generation sequencing, bioinformatics, and segregation analyses followed, to determine a loss of function sequence variation in the phospholipase A2-activating protein encoding gene (PLAA). Expression and functional studies of the encoded protein were performed and included measurement of prostaglandin E2 and cytosolic phospholipase A2 activity in membrane fractions of fibroblasts derived from patients and healthy controls. Plaa-null mice were generated and prostaglandin E2 levels were measured in different tissues. The novel phenotype of our patients segregated with a homozygous loss-of-function sequence variant, causing the substitution of leucine at position 752 to phenylalanine, in PLAA, which causes disruption of the protein's ability to induce prostaglandin E2 and cytosolic phospholipase A2 synthesis in patients' fibroblasts. Plaa-null mice were perinatal lethal with reduced brain levels of prostaglandin E2 The non-functional phospholipase A2-activating protein and the associated neurological phenotype, reported herein for the first time, join other complex phospholipid defects that cause leukoencephalopathies in humans, emphasizing the importance of this axis in white matter development and maintenance.
Collapse
Affiliation(s)
- Tzipora C Falik Zaccai
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel .,Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| | - David Savitzki
- Pediatric Neurology Unit, Galilee Medical Center, Nahariya, Israel
| | | | - Thierry Vilboux
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,Division of Medical Genomics, Inova Translational Medicine Institute, Inova Health System, Falls Church, VA, USA
| | - Eric C Fitts
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yishay Shoval
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Limor Kalfon
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Nadra Samra
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Zohar Keren
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Bella Gross
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel.,Department of Neurology, Galilee Medical Center, Nahariya, Israel
| | - Natalia Chasnyk
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Rachel Straussberg
- Pediatric Neurology Unit, Schneider Children's Medical Center, Petach Tikva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - James C Mullikin
- Comparative Genomics Analysis Unit, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,NIH Intramural Sequencing Center, National Human Genome Research Institute, Rockville, MD, USA
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Dan Geiger
- Computer Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Daniel Kornitzer
- Faculty of Medicine, Technion - I.I.T. and Rappaport Institute for Biomedical Research, Haifa, Israel
| | - Ora Bitterman-Deutsch
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel.,Dermatology Clinic, Galilee Medical Center, Nahariya, Israel
| | - Abraham O Samson
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| | - Maki Wakamiya
- Transgenic Mouse Core Facility, Institute for Translational Sciences and Animal Resource Center, University of Texas Medical Branch, Galveston, TX, USA
| | - Johnny W Peterson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Michelle L Kirtley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Iryna V Pinchuk
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Wallace B Baze
- Department of Veterinary Sciences, MD Anderson Cancer Center, Bastrop, TX, USA
| | - William A Gahl
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert Kleta
- University College, Royal Free Hospital / UCL Medical School, London, UK
| | - Yair Anikster
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Aviv, Israel
| | - Ashok K Chopra
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
11
|
Joosten LAB, Heinhuis B, Netea MG, Dinarello CA. Novel insights into the biology of interleukin-32. Cell Mol Life Sci 2013; 70:3883-92. [PMID: 23463238 PMCID: PMC11113358 DOI: 10.1007/s00018-013-1301-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/11/2013] [Accepted: 02/14/2013] [Indexed: 01/25/2023]
Abstract
Interleukin (IL)-32 is known as a proinflammatory cytokine that is likely involved in several diseases, including infections, chronic inflammation, and cancer. Since the first report in 2005, IL-32 has been the subject of numerous studies to unravel the biological function of this molecule. For example, silencing of endogenous IL-32 in primary or cell lines of human origin consistently suppressed responses to Toll-like receptors. The protein folding structure of the six isoforms of IL-32 does not resemble that of any classical cytokine and as of this writing, a specific IL-32 receptor has not been identified. Instead, we propose a mechanism by which exposure to extracellular IL-32 or overexpression of the molecule results in binding to intracellular partners that influences functions such as gene expression, cell death, or survival. As such, this review offers insights into the role of IL-32 in several diseases, host defense, inflammation, immune function, and cancer. Finally, possibilities to target IL-32 in several diseases are proposed.
Collapse
Affiliation(s)
- Leo A B Joosten
- Department of Medicine (463), Radboud University Nijmegen Medical Centre, Geert Grooteplein zuid 8, 6525 GA, Nijmegen, The Netherlands,
| | | | | | | |
Collapse
|
12
|
Soria J, Durán JA, Etxebarria J, Merayo J, González N, Reigada R, García I, Acera A, Suárez T. Tear proteome and protein network analyses reveal a novel pentamarker panel for tear film characterization in dry eye and meibomian gland dysfunction. J Proteomics 2012. [PMID: 23201116 DOI: 10.1016/j.jprot.2012.11.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dry eye and meibomian gland dysfunction are common ocular surface disorders. Discrimination of both conditions often may be difficult given the overlapping of signs and symptoms, and the lack of correlation with clinical parameters. A total of 144 individuals were included in this study. To search for proteome differences, tear proteins were collected by Merocel sponge and analyzed using 2D-PAGE. Comparative tear protein profile analysis indicated changes in the expression levels of fifteen proteins. Subsequent to MALDI-TOF/TOF protein identification, network analysis revealed expression/interaction connections with other proteins, thereby identifying additional putative markers. A screening validation assay demonstrated the discriminative power of six candidate biomarkers. A further validation study using multiplexed-like ELISA assays in tear samples collected with both sponge and capillary confirmed the high discriminatory power of five biomarkers: S100A6, annexin A1 (ANXA1), annexin A11 (ANXA11), cystatin-S (CST4), and phospholipase A2-activating protein (PLAA) with an area under ROC curve (AUC)≥ 97.9% (sensitivity ≥ 94.3%; specificity ≥ 97.6%) when comparing dry eye and control individuals. This panel also discriminated between dry eye, meibomian gland dysfunction and control individuals, with a global correct assignment (CA) of 73.2% between all groups. Correct assignment was not found to be significantly dependent on the tear collection method.
Collapse
Affiliation(s)
- J Soria
- Bioftalmik, Parque Tecnológico de Vizcaya, Ed. 800, 2nd Floor, E-48160 Derio, Vizcaya, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lozano JC, Vergé V, Schatt P, Juengel JL, Peaucellier G. Evolution of cyclin B3 shows an abrupt three-fold size increase, due to the extension of a single exon in placental mammals, allowing for new protein-protein interactions. Mol Biol Evol 2012; 29:3855-71. [PMID: 22826462 DOI: 10.1093/molbev/mss189] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cyclin B3 evolution has the unique peculiarity of an abrupt 3-fold increase of the protein size in the mammalian lineage due to the extension of a single exon. We have analyzed the evolution of the gene to define the modalities of this event and the possible consequences on the function of the protein. Database searches can trace the appearance of the gene to the origin of metazoans. Most introns were already present in early metazoans, and the intron-exon structure as well as the protein size were fairly conserved in invertebrates and nonmammalian vertebrates. Although intron gains are considered as rare events, we identified two cases, one at the prochordate-chordate transition and one in murids, resulting from different mechanisms. At the emergence of mammals, the gene was relocated from chromosome 6 of platypus to the X chromosome in marsupials, but the exon extension occurred only in placental mammals. A repetitive structure of 18 amino acids, of uncertain origin, is detectable in the 3,000-nt mammalian exon-encoded sequence, suggesting an extension by multiple internal duplications, some of which are still detectable in the primate lineage. Structure prediction programs suggest that the repetitive structure has no associated three-dimensional structure but rather a tendency for disorder. Splice variant isoforms were detected in several mammalian species but without conserved pattern, notably excluding the constant coexistence of premammalian-like transcripts, without the extension. The yeast two-hybrid method revealed that, in human, the extension allowed new interactions with ten unrelated proteins, most of them with specific three-dimensional structures involved in protein-protein interactions, and some highly expressed in testis, as is cyclin B3. The interactions with activator of cAMP-responsive element modulator in testis (ACT), germ cell-less homolog 1, and chromosome 1 open reading frame 14 remain to be verified in vivo since they may not be expressed at the same stages of spermatogenesis as cyclin B3.
Collapse
|
14
|
Bandorowicz-Pikula J, Wos M, Pikula S. Do annexins participate in lipid messenger mediated intracellular signaling? A question revisited. Mol Membr Biol 2012; 29:229-42. [PMID: 22694075 DOI: 10.3109/09687688.2012.693210] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Annexins are physiologically important proteins that play a role in calcium buffering but also influence membrane structure, participate in Ca²⁺-dependent membrane repair events and in remodelling of the cytoskeleton. Thirty years ago several peptides isolated from lung perfusates, peritoneal leukocytes, neutrophiles and renal cells were proven inhibitory to the activity of phospholipase A₂. Those peptides were found to derive from structurally related proteins: annexins AnxA1 and AnxA2. These findings raised the question whether annexins may participate in regulation of the production of lipid second messengers and, therefore, modulate numerous lipid mediated signaling pathways in the cell. Recent advances in the field of annexins made also with the use of knock-out animal models revealed that these proteins are indeed important constituents of specific signaling pathways. In this review we provide evidence supporting the hypothesis that annexins, as membrane-binding proteins and organizers of the membrane lateral heterogeneity, may participate in lipid mediated signaling pathways by affecting the distribution and activity of lipid metabolizing enzymes (most of the reports point to phospholipase A₂) and of protein kinases regulating activity of these enzymes. Moreover, some experimental data suggest that annexins may directly interact with lipid metabolizing enzymes and, in a calcium-dependent or independent manner, with some of their substrates and products. On the basis of these observations, many investigators suggest that annexins are capable of linking Ca²⁺, redox and lipid signaling to coordinate vital cellular responses to the environmental stimuli.
Collapse
Affiliation(s)
- Joanna Bandorowicz-Pikula
- Laboratory of Cellular Metabolism, Department of Biochemistry, Nencki Institute of Experimental Biology, PL 02-093 Warsaw, Poland.
| | | | | |
Collapse
|
15
|
The Roles of Neutral Sphingomyelinases in Neurological Pathologies. Neurochem Res 2012; 37:1137-49. [DOI: 10.1007/s11064-011-0692-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 11/25/2011] [Accepted: 12/29/2011] [Indexed: 12/14/2022]
|
16
|
Sun GY, Shelat PB, Jensen MB, He Y, Sun AY, Simonyi A. Phospholipases A2 and inflammatory responses in the central nervous system. Neuromolecular Med 2009; 12:133-48. [PMID: 19855947 DOI: 10.1007/s12017-009-8092-z] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 09/25/2009] [Indexed: 12/21/2022]
Abstract
Phospholipases A2 (PLA2s) belong to a superfamily of enzymes responsible for hydrolyzing the sn-2 fatty acids of membrane phospholipids. These enzymes are known to play multiple roles for maintenance of membrane phospholipid homeostasis and for production of a variety of lipid mediators. Over 20 different types of PLA2s are present in the mammalian cells, and in snake and bee venom. Despite their common function in hydrolyzing fatty acids of phospholipids, they are diversely encoded by a number of genes and express proteins that are regulated by different mechanisms. Recent studies have focused on the group IV calcium-dependent cytosolic cPLA2, the group VI calcium-independent iPLA2, and the group II small molecule secretory sPLA2. In the central nervous system (CNS), these PLA2s are distributed among neurons and glial cells. Although the physiological role of these PLA2s in regulating neural cell function has not yet been clearly elucidated, there is increasing evidence for their involvement in receptor signaling and transcriptional pathways that link oxidative events to inflammatory responses that underline many neurodegenerative diseases. Recent studies also reveal an important role of cPLA2 in modulating neuronal excitatory functions, sPLA2 in the inflammatory responses, and iPLA2 with childhood neurologic disorders associated with brain iron accumulation. The goal for this review is to better understand the structure and function of these PLA2s and to highlight specific types of PLA2s and their cross-talk mechanisms in these inflammatory responses under physiological and pathological conditions in the CNS.
Collapse
Affiliation(s)
- Grace Y Sun
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Liu T, Agar SL, Sha J, Chopra AK. Deletion of Braun lipoprotein gene (lpp) attenuates Yersinia pestis KIM/D27 strain: role of Lpp in modulating host immune response, NF-kappaB activation and cell death. Microb Pathog 2009; 48:42-52. [PMID: 19737605 DOI: 10.1016/j.micpath.2009.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 08/25/2009] [Accepted: 09/01/2009] [Indexed: 01/09/2023]
Abstract
The pathogenic species of yersiniae potently blocks immune responses in host cells by using the type III secretion apparatus and its effector proteins. In this study, we characterized potential mechanisms associated with the Braun lipoprotein (Lpp) that contributed to a further attenuation of a pigmentation locus-minus Yersinia pestis KIM/D27 mutant strain and its ability to generate immune responses in mice. The lpp gene encodes one of the major outer membrane lipoproteins that is involved in inflammatory responses and septic shock. We found that sera and splenocytes from Deltalpp mutant-immunized mice, when transferred to naïve animals, provided protection to the latter against challenge with a lethal dose of the Y. pestis parental strain. Further, the Deltalpp mutant promoted ex vivo a significantly higher interleukin (IL)-2 and interferon-gamma production from T cells of immunized mice, when compared to those from animals infected with the sub-lethal dose of the parental Y. pestis KIM/D27 strain. Likewise, murine primary macrophages infected with the mutant, when compared to those infected with the parental strain in vitro, produced significantly higher IL-12 levels. Importantly, increased nuclear factor-kappa B activation and decreased apoptosis were noted in splenocytes and primary macrophages of mice challenged with the Deltalpp mutant, when compared to those in animals infected with the parental Y. pestis KIM/D27 strain. Finally, significantly higher levels of antibodies specific for the parental Y. pestis antigens were developed in mice first immunized with the Deltalpp mutant and then challenged with the parental strain, compared to the antibody levels in animals that were immunized and then infected with the parental KIM/D27 strain. To our knowledge, this is the first report of a mechanistic basis for attenuation and immunological responses associated with deletion of the lpp gene from the Y. pestis KIM/D27 strain.
Collapse
Affiliation(s)
- Tie Liu
- Department of Microbiology & Immunology, Medical Research Building, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | | | | | | |
Collapse
|
18
|
Zhang F, Suarez G, Sha J, Sierra JC, Peterson JW, Chopra AK. Phospholipase A2-activating protein (PLAA) enhances cisplatin-induced apoptosis in HeLa cells. Cell Signal 2009; 21:1085-99. [DOI: 10.1016/j.cellsig.2009.02.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 02/24/2009] [Accepted: 02/24/2009] [Indexed: 11/28/2022]
|