1
|
Keller I, Ungvári Á, Major E, Horváth D, Kónya Z, Tóth E, Erdődi F, Kiss A, Lontay B. Magnesium-dependent-protein phosphatase 1B regulates the protein arginine methyltransferase 5 through the modulation of myosin phosphatase. J Biol Chem 2024; 301:108107. [PMID: 39706272 DOI: 10.1016/j.jbc.2024.108107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
Dysregulation of the expression levels and the activity of kinases/phosphatases is an intrinsic hallmark of tumor transformation and progression, as either as a primary cause or consequence. The myosin phosphatase (MP)/protein arginine methyltransferase 5 (PRMT5)/histone (H4) pathway is an oncogenic signaling pathway downregulating the gene expression of tumor suppressors. However, the upstream regulators of the pathway are unknown. We show that the Mg2+-dependent protein phosphatase 1 B (PP2Cb or PPM1B) interacts and regulates MP through the MYPT1 regulatory subunit, and this interplay results in the inactivation of the tumorigenic pathway driven by PRMT5. The phospho-Thr696 inhibitory residues of the MYPT1 regulatory subunit of MP was dephosphorylated by PPM1B. The inhibition of PPM1B by sanguinarine resulted in the deactivation of MP and the increased activity of PRMT5 leading to increased symmetric dimethylation of histone H4 in HeLa cells. The overexpression of the PPM1B had the opposite action. The overexpression of PPM1B decreased the colonization activity of HeLa cells through modulation of MP. Finally, human cervical carcinoma biopsies showed almost complete elimination of PPM1B compared to their healthy control counterparts. The phosphorylation of the inhibitory MYPT1pT696 and the regulatory PRMT5pT80 residues and the symmetric dimethylation of H4 were elevated in the cancer biopsies and it resulted in a decrease in retinoblastoma protein expression. The results indicate a tumor suppressor role of the PPM1B/MP axis via inhibition of PRMT5, thereby regulating gene expression through H4 arginine dimethylation. Collectively, PPM1B is a tumor suppressor and a possible tumor marker for cervical carcinoma.
Collapse
Affiliation(s)
- Ilka Keller
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ádám Ungvári
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Evelin Major
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dániel Horváth
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Kónya
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Emese Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beáta Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
2
|
Lin C, Lin P, Yao H, Liu S, Lin X, He R, Teng Z, Zuo X, Li Y, Ye J, Zhu G. Modulation of YBX1-mediated PANoptosis inhibition by PPM1B and USP10 confers chemoresistance to oxaliplatin in gastric cancer. Cancer Lett 2024; 587:216712. [PMID: 38364962 DOI: 10.1016/j.canlet.2024.216712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
Gastric cancer (GC) is a common malignant tumor of the digestive tract, and chemoresistance significantly impacts GC patients' prognosis. PANoptosis has been associated with oxaliplatin-induced cell death. However, the direct regulatory role of YBX1 in cellular chemoresistance through PANoptosis remains unclear. In this study, we investigated the impact of YBX1 on regulating PANoptosis and its influence on the resistance of gastric cancer cells to oxaliplatin. Through overexpression and silencing experiments, we assessed YBX1's effect on proliferation and PANoptosis regulation in gastric cancer cells. Additionally, we identified PPM1B and USP10 as interacting proteins with YBX1 and confirmed their influence on YBX1 molecular function and protein expression levels. Our results demonstrate that YBX1 suppresses PANoptosis, leading to enhanced resistance of gastric cancer cells to oxaliplatin. Furthermore, we found that PPM1B and USP10 play critical roles in regulating YBX1-mediated PANoptosis inhibition. PPM1B directly interacts with YBX1, causing dephosphorylation of YBX1 at serine 314 residue. This dephosphorylation process affects the deubiquitination of YBX1 mediated by USP10, resulting in decreased YBX1 protein expression levels and impacting PANoptosis and oxaliplatin resistance in gastric cancer cells. Additionally, we discovered that the 314th amino acid of YBX1 has a profound impact on its own protein expression abundance, thereby affecting the functionality of YBX1. In conclusion, our study reveals the significance of PPM1B-mediated dephosphorylation of YBX1 and USP10-mediated deubiquitination in regulating PANoptosis and sensitivity to oxaliplatin in gastric cancer cells. These findings offer a potential therapeutic strategy for patients with oxaliplatin-resistant gastric cancer.
Collapse
Affiliation(s)
- Chunlin Lin
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Penghang Lin
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Hengxin Yao
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Songyi Liu
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Xiang Lin
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Ruofan He
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Zuhong Teng
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Xinyi Zuo
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Yuxuan Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Jianxin Ye
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Guangwei Zhu
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
3
|
Li Y, Wei D, Chen Z, Chen Y, Deng Y, Li M, Zhao Y, Niu K. RBM10 regulates the tumorigenic potential of human cancer cells by modulating PPM1B and YBX1 activities. Exp Cell Res 2024; 435:113932. [PMID: 38246397 DOI: 10.1016/j.yexcr.2024.113932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
RNA binding protein RBM10 participates in various RNA metabolism, and its decreased expression or loss of function by mutation has been identified in many human cancers. However, how its dysregulation contributes to human cancer pathogenesis remains to be determined. Here, we found that RBM10 expression was decreased in breast tumors, and breast cancer patients with low RBM10 expression presented poorer survival rates. RBM10 depletion in breast cancer cells significantly promotes the cellular proliferation and migration. We further demonstrated that RBM10 forms a triple complex with YBX1 and phosphatase 1B (PPM1B), in which PPM1B serves as the phosphatase of YBX1. RBM10 knock-down markedly attenuated association between YBX1 and PPM1B, leading to elevated levels of YBX1 phosphorylation and its nuclear translocation. Furthermore, cancer cells with RBM10 depletion had a significantly accelerated tumor growth in nude mice. Importantly, these enhanced tumorigenic phenotypes can be reversed by overexpression of PPM1B. Our findings provide the mechanistic bases for functional loss of RBM10 in promoting tumorigenicity, and are potentially useful in the development of combined therapeutic strategies for cancer patients with defective RBM10.
Collapse
Affiliation(s)
- Yueyang Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China; China National Center for Bioinformation, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Di Wei
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China; China National Center for Bioinformation, Beijing, 100101, China
| | - Zixiang Chen
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China; China National Center for Bioinformation, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yukun Chen
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China; China National Center for Bioinformation, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuchun Deng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China; China National Center for Bioinformation, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengge Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China; China National Center for Bioinformation, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongliang Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China; China National Center for Bioinformation, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Kaifeng Niu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China; China National Center for Bioinformation, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Cai X, Wang R, Zhu J, Li X, Liu X, Ouyang G, Wang J, Li Z, Zhu C, Deng H, Xiao W. Factor inhibiting HIF negatively regulates antiviral innate immunity via hydroxylation of IKKϵ. Cell Rep 2024; 43:113606. [PMID: 38127621 DOI: 10.1016/j.celrep.2023.113606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 10/20/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Activation of type I interferon (IFN-1) signaling is essential to protect host cells from viral infection. The full spectrum of IFN-I induction requires the activation of a number of cellular factors, including IκB kinase epsilon (IKKϵ). However, the regulation of IKKϵ activation in response to viral infection remains largely unknown. Here, we show that factor inhibiting hypoxia-inducible factor (HIF) (FIH), an asparaginyl hydroxylase, interacts with IKKϵ and catalyzes asparagine hydroxylation of IKKϵ at Asn-254, Asn-700, and Asn-701, resulting in the suppression of IKKϵ activation. FIH-mediated hydroxylation of IKKϵ prevents IKKϵ binding to TBK1 and TRAF3 and attenuates the cIAP1/cIAP2/TRAF2 E3 ubiquitin ligase complex-catalyzed K63-linked polyubiquitination of IKKϵ at Lys-416. In addition, Fih-deficient mice and zebrafish are more resistant to viral infection. This work uncovers a previously unrecognized role of FIH in suppressing IKKϵ activation for IFN signaling and antiviral immune responses.
Collapse
Affiliation(s)
- Xiaolian Cai
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Rui Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116000, P.R. China
| | - Junji Zhu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Xiong Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xing Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Gang Ouyang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Jing Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhi Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chunchun Zhu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Hongyan Deng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Wuhan Xiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; Hubei Hongshan Laboratory, Wuhan 430070, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| |
Collapse
|
5
|
Lin Y, Yang J, Yang Q, Zeng S, Zhang J, Zhu Y, Tong Y, Li L, Tan W, Chen D, Sun Q. PTK2B promotes TBK1 and STING oligomerization and enhances the STING-TBK1 signaling. Nat Commun 2023; 14:7567. [PMID: 37989995 PMCID: PMC10663505 DOI: 10.1038/s41467-023-43419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023] Open
Abstract
TANK-binding kinase 1 (TBK1) is a key kinase in regulating antiviral innate immune responses. While the oligomerization of TBK1 is critical for its full activation, the molecular mechanism of how TBK1 forms oligomers remains unclear. Here, we show that protein tyrosine kinase 2 beta (PTK2B) acts as a TBK1-interacting protein and regulates TBK1 oligomerization. Functional assays reveal that PTK2B depletion reduces antiviral signaling in mouse embryonic fibroblasts, macrophages and dendritic cells, and genetic experiments show that Ptk2b-deficient mice are more susceptible to viral infection than control mice. Mechanistically, we demonstrate that PTK2B directly phosphorylates residue Tyr591 of TBK1, which increases TBK1 oligomerization and activation. In addition, we find that PTK2B also interacts with the stimulator of interferon genes (STING) and can promote its oligomerization in a kinase-independent manner. Collectively, PTK2B enhances the oligomerization of TBK1 and STING via different mechanisms, subsequently regulating STING-TBK1 activation to ensure efficient antiviral innate immune responses.
Collapse
Affiliation(s)
- Yongfang Lin
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Jia #3 Datun Road, Chaoyang District, 100101, Beijing, China
- Institute of Biomedical Research, Yunnan University, 650500, Kunming, China
- Institute for Stem Cells and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jing Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Jia #3 Datun Road, Chaoyang District, 100101, Beijing, China
- Institute for Stem Cells and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qili Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Jia #3 Datun Road, Chaoyang District, 100101, Beijing, China
- Institute for Stem Cells and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Sha Zeng
- Institute of Biomedical Research, Yunnan University, 650500, Kunming, China
| | - Jiayu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Jia #3 Datun Road, Chaoyang District, 100101, Beijing, China
- Institute for Stem Cells and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuanxiang Zhu
- Institute of Biomedical Research, Yunnan University, 650500, Kunming, China
| | - Yuxin Tong
- Institute of Biomedical Research, Yunnan University, 650500, Kunming, China
| | - Lin Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Jia #3 Datun Road, Chaoyang District, 100101, Beijing, China
- Institute for Stem Cells and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
| | - Weiqi Tan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Jia #3 Datun Road, Chaoyang District, 100101, Beijing, China
- Institute for Stem Cells and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, 650500, Kunming, China.
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Jia #3 Datun Road, Chaoyang District, 100101, Beijing, China.
- Institute for Stem Cells and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China.
- School of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
6
|
Tian X, Zhang Z, Ding M. TXLNA enhances TBK1 phosphorylation by suppressing PPM1B recruitment. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119550. [PMID: 37506885 DOI: 10.1016/j.bbamcr.2023.119550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
In recent years, there has been a notable increase in cancer incidence and mortality, and immune abnormalities have been closely linked to malignancy development. TANK-binding kinase 1 (TBK1) is a non-classical IκB kinase that regulates interferon and NF-κB signaling pathways and plays a crucial role in innate immunity. Recent studies have shown high expression levels of TBK1 and increased activity in various tumor cells, suggesting its involvement in the development and progression of multiple cancers. Targeting TBK1 for tumor therapy may be a possibility. However, little is known about the abnormal activation and dynamic regulation of TBK1 in cancer. First, we utilized the BioID biotinylation technique combined with TMT-based quantitative proteomics to analyze the TBK1 interacting proteins. Our results revealed that TXLNA interacts with TBK1 and binds to the α-helical scaffold of TBK1. The expression of TXLNA could affect the S172 phosphorylation of TBK1. PPM1B is a phosphatase that can dephosphorylate TBK1 S172, so we used the APEX2 proximity labeling technique combined with TMT-based quantitative proteomics to explore the interacting proteins of PPM1B and search for the regulatory pathway of TXLNA on TBK1 phosphorylation. We found that PPM1B interacts with TXLNA. Based on these results, we further found that TXLNA impairs the binding of PPM1B to TBK1, inhibiting the dephosphorylation of TBK1 and contributing to the abnormal enhancement of TBK1 activity in cancer cells. This study sheds light on the potential mechanism of aberrant activation and dynamic regulation of TBK1 in tumors and provides a potential target for tumor therapy.
Collapse
Affiliation(s)
- Xiao Tian
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211199, China
| | - Zhiyuan Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211199, China
| | - Ming Ding
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211199, China.
| |
Collapse
|
7
|
Li Z, Chen R, Li Y, Zhou Q, Zhao H, Zeng K, Zhao B, Lu Z. A comprehensive overview of PPM1B: From biological functions to diseases. Eur J Pharmacol 2023; 947:175633. [PMID: 36863552 DOI: 10.1016/j.ejphar.2023.175633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/08/2023] [Accepted: 02/28/2023] [Indexed: 03/04/2023]
Abstract
Reversible phosphorylation of proteins is an important mechanism that regulates cellular processes, which are precisely regulated by protein kinases and phosphatases. PPM1B is a metal ion-dependent serine/threonine protein phosphatase, which regulates multiple biological functions by targeting substrate dephosphorylation, such as cell cycle, energy metabolism, inflammatory responses. In this review, we summarized the occurrent understandings of PPM1B focused on its regulation of signaling pathways, related diseases, and small-molecular inhibitors, which may provide new insights for the identification of PPM1B inhibitors and the treatment of PPM1B-related diseases.
Collapse
Affiliation(s)
- Zhongyao Li
- School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, 250117, Shandong, China
| | - Ruoyu Chen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, Shandong, China
| | - Yanxia Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, Shandong, China
| | - Qian Zhou
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, Shandong, China
| | - Huanxin Zhao
- School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, 250117, Shandong, China
| | - Kewu Zeng
- School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, 250117, Shandong, China.
| | - Baobing Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, Shandong, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, Shandong, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, Shandong, China.
| | - Zhiyuan Lu
- School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, 250117, Shandong, China.
| |
Collapse
|
8
|
Post-Translational Modifications of cGAS-STING: A Critical Switch for Immune Regulation. Cells 2022; 11:cells11193043. [PMID: 36231006 PMCID: PMC9563579 DOI: 10.3390/cells11193043] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/13/2022] [Accepted: 09/24/2022] [Indexed: 12/02/2022] Open
Abstract
Innate immune mechanisms initiate immune responses via pattern-recognition receptors (PRRs). Cyclic GMP-AMP synthase (cGAS), a member of the PRRs, senses diverse pathogenic or endogenous DNA and activates innate immune signaling pathways, including the expression of stimulator of interferon genes (STING), type I interferon, and other inflammatory cytokines, which, in turn, instructs the adaptive immune response development. This groundbreaking discovery has rapidly advanced research on host defense, cancer biology, and autoimmune disorders. Since cGAS/STING has enormous potential in eliciting an innate immune response, understanding its functional regulation is critical. As the most widespread and efficient regulatory mode of the cGAS-STING pathway, post-translational modifications (PTMs), such as the covalent linkage of functional groups to amino acid chains, are generally considered a regulatory mechanism for protein destruction or renewal. In this review, we discuss cGAS-STING signaling transduction and its mechanism in related diseases and focus on the current different regulatory modalities of PTMs in the control of the cGAS-STING-triggered innate immune and inflammatory responses.
Collapse
|
9
|
Fang M, Zhang A, Du Y, Lu W, Wang J, Minze LJ, Cox TC, Li XC, Xing J, Zhang Z. TRIM18 is a critical regulator of viral myocarditis and organ inflammation. J Biomed Sci 2022; 29:55. [PMID: 35909127 PMCID: PMC9339186 DOI: 10.1186/s12929-022-00840-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/19/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Infections by viruses including severe acute respiratory syndrome coronavirus 2 could cause organ inflammations such as myocarditis, pneumonia and encephalitis. Innate immunity to viral nucleic acids mediates antiviral immunity as well as inflammatory organ injury. However, the innate immune mechanisms that control viral induced organ inflammations are unclear. METHODS To understand the role of the E3 ligase TRIM18 in controlling viral myocarditis and organ inflammation, wild-type and Trim18 knockout mice were infected with coxsackievirus B3 for inducing viral myocarditis, influenza A virus PR8 strain and human adenovirus for inducing viral pneumonia, and herpes simplex virus type I for inducing herpes simplex encephalitis. Mice survivals were monitored, and heart, lung and brain were harvested for histology and immunohistochemistry analysis. Real-time PCR, co-immunoprecipitation, immunoblot, enzyme-linked immunosorbent assay, luciferase assay, flow cytometry, over-expression and knockdown techniques were used to understand the molecular mechanisms of TRIM18 in regulating type I interferon (IFN) production after virus infection in this study. RESULTS We find that knockdown or deletion of TRIM18 in human or mouse macrophages enhances production of type I IFN in response to double strand (ds) RNA and dsDNA or RNA and DNA virus infection. Importantly, deletion of TRIM18 protects mice from viral myocarditis, viral pneumonia, and herpes simplex encephalitis due to enhanced type I IFN production in vivo. Mechanistically, we show that TRIM18 recruits protein phosphatase 1A (PPM1A) to dephosphorylate TANK binding kinase 1 (TBK1), which inactivates TBK1 to block TBK1 from interacting with its upstream adaptors, mitochondrial antiviral signaling (MAVS) and stimulator of interferon genes (STING), thereby dampening antiviral signaling during viral infections. Moreover, TRIM18 stabilizes PPM1A by inducing K63-linked ubiquitination of PPM1A. CONCLUSIONS Our results indicate that TRIM18 serves as a negative regulator of viral myocarditis, lung inflammation and brain damage by downregulating innate immune activation induced by both RNA and DNA viruses. Our data reveal that TRIM18 is a critical regulator of innate immunity in viral induced diseases, thereby identifying a potential therapeutic target for treatment.
Collapse
Affiliation(s)
- Mingli Fang
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Ao Zhang
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yong Du
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Wenting Lu
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Junying Wang
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Laurie J Minze
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Timothy C Cox
- Department of Oral & Craniofacial Sciences, School of Dentistry & Department of Pediatrics, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Xian Chang Li
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA
| | - Junji Xing
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA.
| | - Zhiqiang Zhang
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA.
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
10
|
Therapeutic targeting of TANK-binding kinase signaling towards anticancer drug development: Challenges and opportunities. Int J Biol Macromol 2022; 207:1022-1037. [PMID: 35358582 DOI: 10.1016/j.ijbiomac.2022.03.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022]
Abstract
TANK-binding kinase 1 (TBK1) plays a fundamental role in regulating the cellular responses and controlling several signaling cascades. It regulates inflammatory, interferon, NF-κB, autophagy, and Akt pathways. Post-translational modifications (PTM) of TBK1 control its action and subsequent cellular signaling. The dysregulation of the TBK1 pathway is correlated to many pathophysiological conditions, including cancer, that implicates the promising therapeutic advantage for targeting TBK1. The present study summarizes current updates on the molecular mechanisms and cancer-inducing roles of TBK1. Designed inhibitors of TBK1 are considered a potential therapeutic agent for several diseases, including cancer. Data from pre-clinical tumor models recommend that the targeting of TBK1 could be an attractive strategy for anti-tumor therapy. This review further highlighted the therapeutic potential of potent and selective TBK1 inhibitors, including Amlexanox, Compound II, BX795, MRT67307, SR8185 AZ13102909, CYT387, GSK8612, BAY985, and Domainex. These inhibitors may be implicated to facilitate therapeutic management of cancer and TBK1-associated diseases in the future.
Collapse
|
11
|
Runde AP, Mack R, S J PB, Zhang J. The role of TBK1 in cancer pathogenesis and anticancer immunity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:135. [PMID: 35395857 PMCID: PMC8994244 DOI: 10.1186/s13046-022-02352-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023]
Abstract
The TANK-binding kinase 1 (TBK1) is a serine/threonine kinase belonging to the non-canonical inhibitor of nuclear factor-κB (IκB) kinase (IKK) family. TBK1 can be activated by pathogen-associated molecular patterns (PAMPs), inflammatory cytokines, and oncogenic kinases, including activated K-RAS/N-RAS mutants. TBK1 primarily mediates IRF3/7 activation and NF-κB signaling to regulate inflammatory cytokine production and the activation of innate immunity. TBK1 is also involved in the regulation of several other cellular activities, including autophagy, mitochondrial metabolism, and cellular proliferation. Although TBK1 mutations have not been reported in human cancers, aberrant TBK1 activation has been implicated in the oncogenesis of several types of cancer, including leukemia and solid tumors with KRAS-activating mutations. As such, TBK1 has been proposed to be a feasible target for pharmacological treatment of these types of cancer. Studies suggest that TBK1 inhibition suppresses cancer development not only by directly suppressing the proliferation and survival of cancer cells but also by activating antitumor T-cell immunity. Several small molecule inhibitors of TBK1 have been identified and interrogated. However, to this point, only momelotinib (MMB)/CYT387 has been evaluated as a cancer therapy in clinical trials, while amlexanox (AMX) has been evaluated clinically for treatment of type II diabetes, nonalcoholic fatty liver disease, and obesity. In this review, we summarize advances in research into TBK1 signaling pathways and regulation, as well as recent studies on TBK1 in cancer pathogenesis. We also discuss the potential molecular mechanisms of targeting TBK1 for cancer treatment. We hope that our effort can help to stimulate the development of novel strategies for targeting TBK1 signaling in future approaches to cancer therapy.
Collapse
Affiliation(s)
- Austin P Runde
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Ryan Mack
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin S J
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Departments of Pathology and Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
12
|
Wang Z, Li T, Gong Z, Xie J. Role of ISG15 post-translational modification in immunity against Mycobacterium tuberculosis infection. Cell Signal 2022; 94:110329. [PMID: 35390466 DOI: 10.1016/j.cellsig.2022.110329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022]
Abstract
ISG15 encoded by a type I interferon (IFN) inducible gene mediates an important cellular process called ISGylation. ISGylation emerges as a powerful host tactic against intracellular pathogens like Mycobacterium tuberculosis (Mtb). However, the exact role of ISGylation in immunity remains elusive. To shed light on how ISGylation, which is both interesting and complex, participates in immunity against Mtb, this manuscript summarized the current knowledge about the structural characteristics and targets of ISG15 and how ISGylation cross-talks with other host post-translational modifications to exert its effect.
Collapse
Affiliation(s)
- Zilu Wang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Tongxin Li
- Chongqing Public Health Medical Center, Southwest University Public Health Hospital, central laboratory Chongqing, 400030, China
| | - Zhen Gong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
13
|
Liu Y, Li M, Lv X, Bao K, Yu Tian X, He L, Shi L, Zhu Y, Ai D. YAP Targets the TGFβ Pathway to Mediate High-Fat/High-Sucrose Diet-Induced Arterial Stiffness. Circ Res 2022; 130:851-867. [PMID: 35176871 DOI: 10.1161/circresaha.121.320464] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Metabolic syndrome is related to cardiovascular diseases, which is attributed in part, to arterial stiffness; however, the mechanisms remain unclear. The present study aimed to investigate the molecular mechanisms of metabolic syndrome-induced arterial stiffness and to identify new therapeutic targets. METHODS Arterial stiffness was induced by high-fat/high-sucrose diet in mice, which was quantified by Doppler ultrasound. Four-dimensional label-free quantitative proteomic analysis, affinity purification and mass spectrometry, and immunoprecipitation and GST pull-down experiments were performed to explore the mechanism of YAP (Yes-associated protein)-mediated TGF (transforming growth factor) β pathway activation. RESULTS YAP protein was upregulated in the aortic tunica media of mice fed a high-fat/high-sucrose diet for 2 weeks and precedes arterial stiffness. Smooth muscle cell-specific YAP knockdown attenuated high-fat/high-sucrose diet-induced arterial stiffness and activation of TGFβ-Smad2/3 signaling pathway in arteries. By contrast, Myh11CreERT2-YapTg mice exhibited exacerbated high-fat/high-sucrose diet-induced arterial stiffness and enhanced TGFβ-activated Smad2/3 phosphorylation in arteries. PPM1B (protein phosphatase, Mg2+/Mn2+-dependent 1B) was identified as a YAP-bound phosphatase that translocates into the nucleus to dephosphorylate Smads in response to TGFβ. This process was inhibited by YAP through removal of the K63-linked ubiquitin chain of PPM1B at K326. CONCLUSIONS This study provides a new mechanism by which smooth muscle cell YAP regulates the TGFβ pathway and a potential therapeutic target in metabolic syndrome-associated arterial stiffness.
Collapse
Affiliation(s)
- Yanan Liu
- Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University, Tianjin Medical University, China. (Y.L., X.L., D.A.)
| | - Mengke Li
- Department of Physiology and Pathophysiology, Tianjin Medical University, China. (M.L., Y.Z., D.A.)
| | - Xue Lv
- Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University, Tianjin Medical University, China. (Y.L., X.L., D.A.)
| | - Kaiwen Bao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, China. (K.B., L.S.)
| | - Xiao Yu Tian
- School of Biomedical Sciences, Chinese University of Hong Kong (X.Y.T., L.H.)
| | - Lei He
- School of Biomedical Sciences, Chinese University of Hong Kong (X.Y.T., L.H.)
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, China. (K.B., L.S.)
| | - Yi Zhu
- Department of Physiology and Pathophysiology, Tianjin Medical University, China. (M.L., Y.Z., D.A.)
| | - Ding Ai
- Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University, Tianjin Medical University, China. (Y.L., X.L., D.A.).,Department of Physiology and Pathophysiology, Tianjin Medical University, China. (M.L., Y.Z., D.A.)
| |
Collapse
|
14
|
Chathuranga K, Weerawardhana A, Dodantenna N, Lee JS. Regulation of antiviral innate immune signaling and viral evasion following viral genome sensing. Exp Mol Med 2021; 53:1647-1668. [PMID: 34782737 PMCID: PMC8592830 DOI: 10.1038/s12276-021-00691-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/15/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
A harmonized balance between positive and negative regulation of pattern recognition receptor (PRR)-initiated immune responses is required to achieve the most favorable outcome for the host. This balance is crucial because it must not only ensure activation of the first line of defense against viral infection but also prevent inappropriate immune activation, which results in autoimmune diseases. Recent studies have shown how signal transduction pathways initiated by PRRs are positively and negatively regulated by diverse modulators to maintain host immune homeostasis. However, viruses have developed strategies to subvert the host antiviral response and establish infection. Viruses have evolved numerous genes encoding immunomodulatory proteins that antagonize the host immune system. This review focuses on the current state of knowledge regarding key host factors that regulate innate immune signaling molecules upon viral infection and discusses evidence showing how specific viral proteins counteract antiviral responses via immunomodulatory strategies.
Collapse
Affiliation(s)
- Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Asela Weerawardhana
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Niranjan Dodantenna
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea.
| |
Collapse
|
15
|
Stimulus-specific responses in innate immunity: Multilayered regulatory circuits. Immunity 2021; 54:1915-1932. [PMID: 34525335 DOI: 10.1016/j.immuni.2021.08.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/07/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022]
Abstract
Immune sentinel cells initiate immune responses to pathogens and tissue injury and are capable of producing highly stimulus-specific responses. Insight into the mechanisms underlying such specificity has come from the identification of regulatory factors and biochemical pathways, as well as the definition of signaling circuits that enable combinatorial and temporal coding of information. Here, we review the multi-layered molecular mechanisms that underlie stimulus-specific gene expression in macrophages. We categorize components of inflammatory and anti-pathogenic signaling pathways into five layers of regulatory control and discuss unifying mechanisms determining signaling characteristics at each layer. In this context, we review mechanisms that enable combinatorial and temporal encoding of information, identify recurring regulatory motifs and principles, and present strategies for integrating experimental and computational approaches toward the understanding of signaling specificity in innate immunity.
Collapse
|
16
|
Peroxiredoxin 1 Interacts with TBK1/IKKε and Negatively Regulates Pseudorabies Virus Propagation by Promoting Innate Immunity. J Virol 2021; 95:e0092321. [PMID: 34260286 DOI: 10.1128/jvi.00923-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peroxiredoxin 1 (PRDX1) is a cellular antioxidant enzyme that is crucial for diverse fundamental biological processes, such as autophagy, inflammation, and carcinogenesis. However, molecular mechanisms underpinning its diverse roles are not well understood. Here, we report that PRDX1 positively regulates interferon (IFN) induction and that pseudorabies virus (PRV) targets PRDX1 to evade IFN induction. PRV UL13 encodes a serine/threonine kinase important for PRV infection, although its biological function remains obscure. We identified PRDX1 as a UL13-interacting protein. Virological and biochemical assays demonstrate that PRDX1 promotes IFN induction by interacting with TANK-binding kinase 1 (TBK1) and IκB kinase ε (IKKε). Conversely, UL13 accelerates PRDX1 degradation via the ubiquitin-proteosome pathway in a kinase-dependent manner. In doing so, PRV inhibits IFN induction during productive infection, which requires PRDX1 expression. This study uncovers an essential role of PRDX1 in the innate immune response and reveals a new viral immune evasion strategy to counteract cellular defenses. IMPORTANCE PRV interacts with numerous cellular proteins during productive infection. Here, we demonstrated the interaction of viral protein UL13 with the antioxidant enzyme PRDX1, which functions in multiple signal transduction pathways. We found that PRDX1 participates in the type I IFN pathway by interacting with TBK1 and IKKε, thereby negatively regulating PRV propagation. However, UL13 ubiquitinates PRDX1, which routes PRDX1 into proteasomes for degradation and effectively reduces its expression. These results illuminate the fundamental role that PRDX1 plays in the IFN pathway, and they identify a potential target for the control of PRV infection.
Collapse
|
17
|
Chang MX. The negative regulation of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) signaling pathway in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104038. [PMID: 33548290 DOI: 10.1016/j.dci.2021.104038] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/30/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
At each stage of innate immune response, there are stimulatory and inhibitory signals that modulate the strength and character of the response. RIG-I-like receptor (RLR) signaling pathway plays pivotal roles in antiviral innate immune response. Recent studies have revealed the molecular mechanisms that viral infection leads to the activation of RLRs-mediated downstream signaling cascades and the production of type I interferons (IFNs). However, antiviral immune responses must be tightly regulated in order to prevent detrimental type I IFNs production. Previous reviews have highlighted negative regulation of RLR signaling pathway, which mainly target to directly regulate RIG-I, MDA5, MAVS and TBK1 function in mammals. In this review, we summarize recent advances in our understanding of negative regulators of RLR signaling pathway in teleost, with specific focus on piscine and viral regulatory mechanisms that directly or indirectly inhibit the function of RIG-I, MDA5, LGP2, MAVS, TRAF3, TBK1, IRF3 and IRF7 both in the steady state or upon viral infection. We also further discuss important directions for future studies, especially for non-coding RNAs and post-translational modifications via fish specific TRIM proteins. The knowledge of negative regulators of RLR signaling pathway in teleost will shed new light on the critical information for potential therapeutic purposes.
Collapse
Affiliation(s)
- Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
18
|
Jami R, Mérour E, Lamoureux A, Bernard J, Millet JK, Biacchesi S. Deciphering the Fine-Tuning of the Retinoic Acid-Inducible Gene-I Pathway in Teleost Fish and Beyond. Front Immunol 2021; 12:679242. [PMID: 33995423 PMCID: PMC8113963 DOI: 10.3389/fimmu.2021.679242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Interferons are the first lines of defense against viral pathogen invasion during the early stages of infection. Their synthesis is tightly regulated to prevent excessive immune responses and possible deleterious effects on the host organism itself. The RIG-I-like receptor signaling cascade is one of the major pathways leading to the production of interferons. This pathway amplifies danger signals and mounts an appropriate innate response but also needs to be finely regulated to allow a rapid return to immune homeostasis. Recent advances have characterized different cellular factors involved in the control of the RIG-I pathway. This has been most extensively studied in mammalian species; however, some inconsistencies remain to be resolved. The IFN system is remarkably well conserved in vertebrates and teleost fish possess all functional orthologs of mammalian RIG-I-like receptors as well as most downstream signaling molecules. Orthologs of almost all mammalian regulatory components described to date exist in teleost fish, such as the widely used zebrafish, making fish attractive and powerful models to study in detail the regulation and evolution of the RIG-I pathway.
Collapse
Affiliation(s)
- Raphaël Jami
- University Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Emilie Mérour
- University Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Annie Lamoureux
- University Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Julie Bernard
- University Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Jean K Millet
- University Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | |
Collapse
|
19
|
Seumen CHT, Grimm TM, Hauck CR. Protein phosphatases in TLR signaling. Cell Commun Signal 2021; 19:45. [PMID: 33882943 PMCID: PMC8058998 DOI: 10.1186/s12964-021-00722-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are critical sensors for the detection of potentially harmful microbes. They are instrumental in initiating innate and adaptive immune responses against pathogenic organisms. However, exaggerated activation of TLR receptor signaling can also be responsible for the onset of autoimmune and inflammatory diseases. While positive regulators of TLR signaling, such as protein serine/threonine kinases, have been studied intensively, only little is known about phosphatases, which counterbalance and limit TLR signaling. In this review, we summarize protein phosphorylation events and their roles in the TLR pathway and highlight the involvement of protein phosphatases as negative regulators at specific steps along the TLR-initiated signaling cascade. Then, we focus on individual phosphatase families, specify the function of individual enzymes in TLR signaling in more detail and give perspectives for future research. A better understanding of phosphatase-mediated regulation of TLR signaling could provide novel access points to mitigate excessive immune activation and to modulate innate immune signaling.![]() Video Abstract
Collapse
Affiliation(s)
- Clovis H T Seumen
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457, Konstanz, Germany
| | - Tanja M Grimm
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457, Konstanz, Germany.,Konstanz Research School Chemical Biology, Universität Konstanz, 78457, Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457, Konstanz, Germany. .,Konstanz Research School Chemical Biology, Universität Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
20
|
Sun Y, Pan Q, Ma L, Chen C, Zhao S, Liu H. Ppm1b Negatively Regulates 3-Bromopyruvate Induced Necroptosis in Breast Cancer Cells. Front Oncol 2021; 10:555546. [PMID: 33520691 PMCID: PMC7841011 DOI: 10.3389/fonc.2020.555546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
Up to 30% of breast cancer mortality is caused by cancer relapse despite primary clinical treatments due to distant metastases. Further research focusing on breast cancer mechanisms are needed for deeper understanding of disease prognosis. 3-bromopyruvate (3-BP), a glycolysis inhibitor, has been studied as one of the antitumor agents in recent years. In this report, we want to investigate the form of cell death induced by 3-BP and demonstrate the inhibitory effect of 3-BP on breast cancer cell proliferation and its mechanism in vivo and in vitro. We found that 3-BP could inhibit MDA-MB-231 and MCF-7 breast cancer cell proliferation, through energy metabolism inhibition. Further, necroptosis characters in MDA-MB-231 cells after 3-BP treatment were observed, which could be negatively regulated through Ppm1b by dephosphorylation of RIP3. In addition, 3-BP treatment in an MDA-MB-231 cell-transplanted mouse model showed a significant antitumor effect, which correlated with necroptosis-related protein Ppm1b. The findings demonstrate the potential for 3-BP in the treatment of breast cancer, providing impetus for further clinical studies.
Collapse
Affiliation(s)
- Yiming Sun
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qiong Pan
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Linyan Ma
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Chao Chen
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Surong Zhao
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| |
Collapse
|
21
|
Lee YH, Im E, Hyun M, Park J, Chung KC. Protein phosphatase PPM1B inhibits DYRK1A kinase through dephosphorylation of pS258 and reduces toxic tau aggregation. J Biol Chem 2021; 296:100245. [PMID: 33380426 PMCID: PMC7948726 DOI: 10.1074/jbc.ra120.015574] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 11/06/2022] Open
Abstract
Down syndrome (DS) is mainly caused by an extra copy of chromosome 21 (trisomy 21), and patients display a variety of developmental symptoms, including characteristic facial features, physical growth delay, intellectual disability, and neurodegeneration (i.e., Alzheimer's disease; AD). One of the pathological hallmarks of AD is insoluble deposits of neurofibrillary tangles (NFTs) that consist of hyperphosphorylated tau. The human DYRK1A gene is mapped to chromosome 21, and the protein is associated with the formation of inclusion bodies in AD. For example, DYRK1A directly phosphorylates multiple serine and threonine residues of tau, including Thr212. However, the mechanism underpinning DYRK1A involvement in Trisomy 21-related pathological tau aggregation remains unknown. Here, we explored a novel regulatory mechanism of DYRK1A and subsequent tau pathology through a phosphatase. Using LC-MS/MS technology, we analyzed multiple DYRK1A-binding proteins, including PPM1B, a member of the PP2C family of Ser/Thr protein phosphatases, in HEK293 cells. We found that PPM1B dephosphorylates DYRK1A at Ser258, contributing to the inhibition of DYRK1A activity. Moreover, PPM1B-mediated dephosphorylation of DYRK1A reduced tau phosphorylation at Thr212, leading to inhibition of toxic tau oligomerization and aggregation. In conclusion, our study demonstrates that DYRK1A autophosphorylates Ser258, the dephosphorylation target of PPM1B, and PPM1B negatively regulates DYRK1A activity. This finding also suggests that PPM1B reduces the toxic formation of phospho-tau protein via DYRK1A modulation, possibly providing a novel cellular protective mechanism to regulate toxic tau-mediated neuropathology in AD of DS.
Collapse
Affiliation(s)
- Ye Hyung Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Eunju Im
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Minju Hyun
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Joongkyu Park
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea.
| |
Collapse
|
22
|
Lv Y, Deng H, Liu Y, Chang K, Du H, Zhou P, Mao H, Hu C. The tyrosine kinase SRC of grass carp (Ctenopharyngodon idellus) up-regulates the expression of IFN I by activating TANK binding kinase 1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103834. [PMID: 32827605 DOI: 10.1016/j.dci.2020.103834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
In response to viral infections, various pattern recognition receptors (PRRs) are activated for the production of type I interferon (IFN I). As a center of these receptor responses, TANK binding kinase-1 (TBK1) activates interferon regulatory factor 3 (IRF3). SRC is a member of Src family kinases (SFK) which participates in TBK1-mediated IFN I signaling pathway. In mammals, the immunological function of SRC is depended on its interaction with TBK1. To date, SRC has not been studied in fish. In this paper, we cloned the ORF of grass carp (Ctenopharyngodon idellus) SRC (CiSRC). CiSRC has a closer relationship with Sinocyclocheilus rhinocerous SRC (SrSRC). The expression level of CiSRC was significantly up-regulated following poly (I:C) stimulation in grass carp tissues and cells. Subcellular localization results showed that CiSRC is located both in the cytoplasm and nucleus, while CiTBK1 is only located in the cytoplasm of CIK cells. When GFP-CiSRC and FLAG-CiTBK1 were co-transfected into CIK cells, we found that they were co-localized in the cytoplasm. GST-pulldown and Co-immunoprecipitation analysis revealed that CiSRC and CiSRC tyrosine kinase domain deletion mutant (SRC-ΔTyrkc) can interact with CiTBK1, respectively. CiSRC promotes the phosphorylation of CiTBK1. Furthermore, the phosphorylation of TBK1 is more strongly under poly (I:C) stimulation. We also demonstrated that SRC can up-regulate IFN I expression. These results above unraveled that CiSRC initiates innate immune response by binding to and then up-regulating the phosphorylation of TBK1.
Collapse
Affiliation(s)
- Yangfeng Lv
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Hang Deng
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yapeng Liu
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Kaile Chang
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Hailing Du
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Pengcheng Zhou
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Huiling Mao
- College of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Chengyu Hu
- College of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
23
|
Yu K, Tian H, Deng H. PPM1G restricts innate immune signaling mediated by STING and MAVS and is hijacked by KSHV for immune evasion. SCIENCE ADVANCES 2020; 6:6/47/eabd0276. [PMID: 33219031 PMCID: PMC7679160 DOI: 10.1126/sciadv.abd0276] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/07/2020] [Indexed: 05/10/2023]
Abstract
The adaptor proteins, STING and MAVS, are components of critical pathogen-sensing pathways that induce innate immunity. Phosphorylation of either adaptor results in activation of the type I interferon pathway. How this phosphorylation is regulated and how it is manipulated by pathogens remain largely unknown. Here, we identified host protein phosphatase, Mg2+/Mn2+ dependent 1G (PPM1G) as a negative regulator of innate immune pathways and showed that this host system is hijacked by Kaposi's sarcoma-associated herpesvirus (KSHV). Mechanistically, KSHV tegument protein ORF33 interacts with STING/MAVS and enhances recruitment of PPM1G to dephosphorylate p-STING/p-MAVS for immunosuppression. Inhibition of PPM1G expression improves the antiviral response against both DNA and RNA viruses. Collectively, our study shows that PPM1G restricts both cytosolic DNA- and RNA-sensing pathways to naturally balance the intensity of the antiviral response. Manipulation of PPM1G by KSHV provides an important strategy for immune evasion.
Collapse
Affiliation(s)
- Kuai Yu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huabin Tian
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongyu Deng
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
24
|
Revach OY, Liu S, Jenkins RW. Targeting TANK-binding kinase 1 (TBK1) in cancer. Expert Opin Ther Targets 2020; 24:1065-1078. [PMID: 32962465 PMCID: PMC7644630 DOI: 10.1080/14728222.2020.1826929] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION TANK-binding kinase 1 (TBK1) is a Ser/Thr kinase with a central role in coordinating the cellular response to invading pathogens and regulating key inflammatory signaling cascades. While intact TBK1 signaling is required for successful anti-viral signaling, dysregulated TBK1 signaling has been linked to a variety of pathophysiologic conditions, including cancer. Several lines of evidence support a role for TBK1 in cancer pathogenesis, but the specific roles and regulation of TBK1 remain incompletely understood. A key challenge is the diversity of cellular processes that are regulated by TBK1, including inflammation, cell cycle, autophagy, energy homeostasis, and cell death. Nevertheless, evidence from pre-clinical cancer models suggests that targeting TBK1 may be an effective strategy for anti-cancer therapy in specific settings. AREAS COVERED This review provides an overview of the roles and regulation of TBK1 with a focus on cancer pathogenesis and drug targeting of TBK1 as an anti-cancer strategy. Relevant literature was derived from a PubMed search encompassing studies from 1999 to 2020. EXPERT OPINION TBK1 is emerging as a potential target for anti-cancer therapy. Inhibition of TBK1 alone may be insufficient to restrain the growth of most cancers; hence, combination strategies will likely be necessary. Improved understanding of tumor-intrinsic and tumor-extrinsic TBK1 signaling will inform novel therapeutic strategies.
Collapse
Affiliation(s)
- Or-yam Revach
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Shuming Liu
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Russell W. Jenkins
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Lu Z, Xiao P, Zhou Y, Li Z, Yu X, Sun J, Shen Y, Zhao B. Identification of HN252 as a potent inhibitor of protein phosphatase PPM1B. J Cell Mol Med 2020; 24:13463-13471. [PMID: 33048454 PMCID: PMC7701510 DOI: 10.1111/jcmm.15975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/20/2020] [Accepted: 09/20/2020] [Indexed: 12/25/2022] Open
Abstract
Protein phosphatase 1B (PPM1B), a member of metal-dependent protein serine/threonine phosphatase family, is involved in the regulation of several signalling pathways. However, our understanding of its substrate interaction and physiological functions is still largely limited. There is no reported PPM1B inhibitor to date. In this study, we identified HN252, a p-terphenyl derivative, as a potent PPM1B inhibitor (Ki = 0.52 ± 0.06 µM). HN252 binding to PPM1B displayed remarkable and specific inhibition of PPM1B in both in vitro and ex vivo. With the aid of this small molecular inhibitor, we identified 30 proteins' serine/threonine phosphorylation as potential substrates of PPM1B, 5 of which were demonstrated by immunoprecipitation, including one known (CDK2) and 4 novel ones (AKT1, HSP90B, β-catenin and BRCA1). Furthermore, GO and KEGG analysis of dramatically phosphorylated proteins by PPM1B inhibition indicated that PPM1B plays roles in the regulation of multiple cellular processes and signalling pathways, such as gene transcription, inflammatory regulation, ageing and tumorigenesis. Our work provides novel insights into further investigation of molecular mechanisms of PPM1B.
Collapse
Affiliation(s)
- Zhiyuan Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan Zhou
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenyu Li
- Department of Pharmacy, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jinpeng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baobing Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
26
|
Metal-dependent Ser/Thr protein phosphatase PPM family: Evolution, structures, diseases and inhibitors. Pharmacol Ther 2020; 215:107622. [PMID: 32650009 DOI: 10.1016/j.pharmthera.2020.107622] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Protein phosphatases and kinases control multiple cellular events including proliferation, differentiation, and stress responses through regulating reversible protein phosphorylation, the most important post-translational modification. Members of metal-dependent protein phosphatase (PPM) family, also known as PP2C phosphatases, are Ser/Thr phosphatases that bind manganese/magnesium ions (Mn2+/Mg2+) in their active center and function as single subunit enzymes. In mammals, there are 20 isoforms of PPM phosphatases: PPM1A, PPM1B, PPM1D, PPM1E, PPM1F, PPM1G, PPM1H, PPM1J, PPM1K, PPM1L, PPM1M, PPM1N, ILKAP, PDP1, PDP2, PHLPP1, PHLPP2, PP2D1, PPTC7, and TAB1, whereas there are only 8 in yeast. Phylogenetic analysis of the DNA sequences of vertebrate PPM isoforms revealed that they can be divided into 12 different classes: PPM1A/PPM1B/PPM1N, PPM1D, PPM1E/PPM1F, PPM1G, PPM1H/PPM1J/PPM1M, PPM1K, PPM1L, ILKAP, PDP1/PDP2, PP2D1/PHLPP1/PHLPP2, TAB1, and PPTC7. PPM-family members have a conserved catalytic core region, which contains the metal-chelating residues. The different isoforms also have isoform specific regions within their catalytic core domain and terminal domains, and these regions may be involved in substrate recognition and/or functional regulation of the phosphatases. The twenty mammalian PPM phosphatases are involved in regulating diverse cellular functions, such as cell cycle control, cell differentiation, immune responses, and cell metabolism. Mutation, overexpression, or deletion of the PPM phosphatase gene results in abnormal cellular responses, which lead to various human diseases. This review focuses on the structures and biological functions of the PPM-phosphatase family and their associated diseases. The development of specific inhibitors against the PPM phosphatase family as a therapeutic strategy will also be discussed.
Collapse
|
27
|
Deng M, Tam JW, Wang L, Liang K, Li S, Zhang L, Guo H, Luo X, Zhang Y, Petrucelli A, Davis BK, Conti BJ, June Brickey W, Ko CC, Lei YL, Sun S, Ting JPY. TRAF3IP3 negatively regulates cytosolic RNA induced anti-viral signaling by promoting TBK1 K48 ubiquitination. Nat Commun 2020; 11:2193. [PMID: 32366851 PMCID: PMC7198545 DOI: 10.1038/s41467-020-16014-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 04/07/2020] [Indexed: 12/24/2022] Open
Abstract
Innate immunity to nucleic acids forms the backbone for anti-viral immunity and several inflammatory diseases. Upon sensing cytosolic viral RNA, retinoic acid-inducible gene-I-like receptors (RLRs) interact with the mitochondrial antiviral signaling protein (MAVS) and activate TANK-binding kinase 1 (TBK1) to induce type I interferon (IFN-I). TRAF3-interacting protein 3 (TRAF3IP3, T3JAM) is essential for T and B cell development. It is also well-expressed by myeloid cells, where its role is unknown. Here we report that TRAF3IP3 suppresses cytosolic poly(I:C), 5'ppp-dsRNA, and vesicular stomatitis virus (VSV) triggers IFN-I expression in overexpression systems and Traf3ip3-/- primary myeloid cells. The mechanism of action is through the interaction of TRAF3IP3 with endogenous TRAF3 and TBK1. This leads to the degradative K48 ubiquitination of TBK1 via its K372 residue in a DTX4-dependent fashion. Mice with myeloid-specific gene deletion of Traf3ip3 have increased RNA virus-triggered IFN-I production and reduced susceptibility to virus. These results identify a function of TRAF3IP3 in the regulation of the host response to cytosolic viral RNA in myeloid cells.
Collapse
Affiliation(s)
- Meng Deng
- Oral and Craniofacial Biomedicine PhD Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Department of Craniofacial and Surgery Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Jason W Tam
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Lufei Wang
- Oral and Craniofacial Biomedicine PhD Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Kaixin Liang
- Oral and Craniofacial Biomedicine PhD Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Sirui Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Lu Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Haitao Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Xiaobo Luo
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Yang Zhang
- Department of Dermatology, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Alex Petrucelli
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Beckley K Davis
- Department of Biology, Franklin and Marshall College, Lancaster, PA, 17604, USA
| | - Brian J Conti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - W June Brickey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Ching-Chang Ko
- Oral and Craniofacial Biomedicine PhD Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Department of Craniofacial and Surgery Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Yu L Lei
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Shaocong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jenny P-Y Ting
- Oral and Craniofacial Biomedicine PhD Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
28
|
Hu L, Xie H, Liu X, Potjewyd F, James LI, Wilkerson EM, Herring LE, Xie L, Chen X, Cabrera JC, Hong K, Liao C, Tan X, Baldwin AS, Gong K, Zhang Q. TBK1 Is a Synthetic Lethal Target in Cancer with VHL Loss. Cancer Discov 2020; 10:460-475. [PMID: 31810986 PMCID: PMC7058506 DOI: 10.1158/2159-8290.cd-19-0837] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/25/2019] [Accepted: 12/03/2019] [Indexed: 11/16/2022]
Abstract
TANK binding kinase 1 (TBK1) is an important kinase involved in the innate immune response. Here we discover that TBK1 is hyperactivated by von Hippel-Lindau (VHL) loss or hypoxia in cancer cells. Tumors from patients with kidney cancer with VHL loss display elevated TBK1 phosphorylation. Loss of TBK1 via genetic ablation, pharmacologic inhibition, or a new cereblon-based proteolysis targeting chimera specifically inhibits VHL-deficient kidney cancer cell growth, while leaving VHL wild-type cells intact. TBK1 depletion also significantly blunts kidney tumorigenesis in an orthotopic xenograft model in vivo. Mechanistically, TBK1 hydroxylation on Proline 48 triggers VHL as well as the phosphatase PPM1B binding that leads to decreased TBK1 phosphorylation. We identify that TBK1 phosphorylates p62/SQSTM1 on Ser366, which is essential for p62 stability and kidney cancer cell proliferation. Our results establish that TBK1, distinct from its role in innate immune signaling, is a synthetic lethal target in cancer with VHL loss. SIGNIFICANCE: The mechanisms that lead to TBK1 activation in cancer and whether this activation is connected to its role in innate immunity remain unclear. Here, we discover that TBK1, distinct from its role in innate immunity, is activated by VHL loss or hypoxia in cancer.See related commentary by Bakouny and Barbie, p. 348.This article is highlighted in the In This Issue feature, p. 327.
Collapse
Affiliation(s)
- Lianxin Hu
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Haibiao Xie
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Xijuan Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Frances Potjewyd
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Lindsey I James
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Emily M Wilkerson
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina
| | - Laura E Herring
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| | - Johnny Castillo Cabrera
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Kai Hong
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chengheng Liao
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xianming Tan
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Kan Gong
- Department of Urology, Peking University First Hospital, Beijing, China.
| | - Qing Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina.
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
29
|
Ying H, Ji L, Xu Z, Fan X, Tong Y, Liu H, Zhao J, Cai X. TRIM59 promotes tumor growth in hepatocellular carcinoma and regulates the cell cycle by degradation of protein phosphatase 1B. Cancer Lett 2019; 473:13-24. [PMID: 31875525 DOI: 10.1016/j.canlet.2019.12.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/28/2019] [Accepted: 12/19/2019] [Indexed: 12/24/2022]
Abstract
Tripartite motif 59 (TRIM59) is a member of Tripartite motif protein family, which is frequently increased in many human cancers. However, the molecular mechanism of TRIM59 in hepatocellular carcinoma (HCC) has not been fully elucidated. In this study, we report that TRIM59 plays an essential role in growth of HCC. We analyzed RNA sequencing data to explore abnormally expressed TRIM59 in HCC. The effects of TRIM59 on HCC were investigated through in vitro and in vivo assays (i.e., CCK-8 assay, colony formation assay, flow cytometry assay, xenograft model, immunohistochemistry, immunofluorescence and western blot). The mechanism of TRIM59 action was explored through co-immunoprecipitation, immunofluorescence, mass spectrometry and bioinformatics. TRIM59 expression is up-regulated in HCC tissues. A high level of TRIM59 expression is correlated with poor overall and disease-free survival of HCC patients. Knockdown of TRIM59 attenuated proliferation, induced cells arrested at G1/S phase and reduced tumor growth in the mouse xenograft model. Ectopic expression of TRIM59 had the opposite results. Mechanistically, TRIM59 promoted growth and regulated cell cycle. Further studies indicated that TRIM59 might interacted physically with PPM1B, which has been reported to negatively regulate CDKs phosphorylation. We also discovered that TRIM59 increased degradation of PPM1B. TRIM59 overexpression in HCC patients correlated with reduced expression of PPM1B and increased CDKs phosphorylation and cell cycle proteins. Our findings demonstrate that TRIM59 promotes growth by PPM1B/CDKs signaling pathway, indicating a new prognostic biomarker candidate and a potential antitumor target for HCC.
Collapse
Affiliation(s)
- Hanning Ying
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Ji
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhiyao Xu
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yifan Tong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Liu
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia Zhao
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
30
|
Zhao C, Zhao W. TANK-binding kinase 1 as a novel therapeutic target for viral diseases. Expert Opin Ther Targets 2019; 23:437-446. [DOI: 10.1080/14728222.2019.1601702] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chunyuan Zhao
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Department of Cell Biology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Wei Zhao
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Department of Cell Biology, School of Basic Medical Science, Shandong University, Jinan, China
| |
Collapse
|
31
|
He TS, Xie T, Li J, Yang YX, Li C, Wang W, Cao L, Rao H, Ju C, Xu LG. THO Complex Subunit 7 Homolog Negatively Regulates Cellular Antiviral Response against RNA Viruses by Targeting TBK1. Viruses 2019; 11:v11020158. [PMID: 30769920 PMCID: PMC6410154 DOI: 10.3390/v11020158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 12/21/2022] Open
Abstract
RNA virus invasion induces a cytosolic RIG-I-like receptor (RLR) signaling pathway by promoting assembly of the Mitochondrial antiviral-signaling protein (MAVS) signalosome and triggers the rapid production of type I interferons (IFNs) and proinflammatory cytokines. During this process, the pivotal kinase TANK binding kinase 1 (TBK1) is recruited to the MAVS signalosome to transduce a robust innate antiviral immune response by phosphorylating transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor (NF)-κB and promoting their nuclear translocation. However, the molecular mechanisms underlying the negative regulation of TBK1 are largely unknown. In the present study, we found that THO complex subunit 7 homolog (THOC7) negatively regulated the cellular antiviral response by promoting the proteasomal degradation of TBK1. THOC7 overexpression potently inhibited Sendai virus- or polyI:C-induced IRF3 dimerization and phosphorylation and IFN-β production. In contrast, THOC7 knockdown had the opposite effects. Moreover, we simulated a node-activated pathway to show that THOC7 regulated the RIG-I-like receptors (RLR)-/MAVS-dependent signaling cascade at the TBK1 level. Furthermore, THOC7 was involved in the MAVS signalosome and promoted TBK1 degradation by increasing its K48 ubiquitin-associated polyubiquitination. Together, these findings suggest that THOC7 negatively regulates type I IFN production by promoting TBK1 proteasomal degradation, thus improving our understanding of innate antiviral immune responses.
Collapse
Affiliation(s)
- Tian-Sheng He
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
| | - Tao Xie
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
| | - Jing Li
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
| | - Ya-Xian Yang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
| | - Changsheng Li
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
| | - Weiying Wang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
| | - Lingzhen Cao
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
| | - Hua Rao
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Liang-Guo Xu
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
| |
Collapse
|
32
|
Zhang K, Zhang Y, Xue J, Meng Q, Liu H, Bi C, Li C, Hu L, Yu H, Xiong T, Yang Y, Cui S, Bu Z, He X, Li J, Huang L, Weng C. DDX19 Inhibits Type I Interferon Production by Disrupting TBK1-IKKε-IRF3 Interactions and Promoting TBK1 and IKKε Degradation. Cell Rep 2019; 26:1258-1272.e4. [DOI: 10.1016/j.celrep.2019.01.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/27/2018] [Accepted: 01/08/2019] [Indexed: 12/22/2022] Open
|
33
|
Huang H, Xiong Q, Wang N, Chen R, Ren H, Siwko S, Han H, Liu M, Qian M, Du B. Kisspeptin/GPR54 signaling restricts antiviral innate immune response through regulating calcineurin phosphatase activity. SCIENCE ADVANCES 2018; 4:eaas9784. [PMID: 30101190 PMCID: PMC6082648 DOI: 10.1126/sciadv.aas9784] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/02/2018] [Indexed: 05/04/2023]
Abstract
G protein-coupled receptor 54 (GPR54), the key receptor for the neuropeptide hormone kisspeptin, plays essential roles in regulating puberty development and cancer metastasis. However, its role in the antiviral innate immune response is unknown. We report that virus-induced type I interferon (IFN-I) production was significantly enhanced in Gpr54-deficient cells and mice and resulted in restricted viral replication. We found a marked increase of kisspeptin in mouse serum during viral infection, which, in turn, impaired IFN-I production and antiviral immunity through the GPR54/calcineurin axis. Mechanistically, kisspeptin/GPR54 signaling recruited calcineurin and increased its phosphatase activity to dephosphorylate and deactivate TANK [tumor necrosis factor receptor-associated factor (TRAF) family member-associated NF-κB activator]-binding kinase 1 (TBK1) in a Ca2+-dependent manner. Thus, our data reveal a kisspeptin/GPR54/calcineurin-mediated immune evasion pathway exploited by virus through the negative feedback loop of TBK1 signaling. These findings also provide insights into the function and cross-talk of kisspeptin, a known neuropeptide hormone, in antiviral innate immune response.
Collapse
Affiliation(s)
- Hongjun Huang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qingqing Xiong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ning Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ruoyu Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hua Ren
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Stefan Siwko
- Institute of Biosciences and Technology, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Honghui Han
- Shanghai Bioray Laboratories Inc., Shanghai 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Institute of Biosciences and Technology, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Min Qian
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Corresponding author. (B.D.); (M.Q.)
| | - Bing Du
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Corresponding author. (B.D.); (M.Q.)
| |
Collapse
|
34
|
Gao X, Chen D, Hu X, Zhou Y, Wang Y, Wu C, Chen J, Wang Y, Pei R, Chen X. PLA1A Participates in the Antiviral Innate Immune Response by Facilitating the Recruitment of TANK-Binding Kinase 1 to Mitochondria. J Innate Immun 2018; 10:315-327. [PMID: 30016790 DOI: 10.1159/000489832] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/02/2018] [Indexed: 12/22/2022] Open
Abstract
As a key molecule in the antiviral innate immune response, the activation of TANK-binding kinase 1 (TBK1) is under tight regulation. In this report, we identified phosphatidylserine-specific phospholipase PLA1A as a host factor that modulates the TBK1 activation. Knockdown of PLA1A expression suppressed the innate immune signaling induced by RNA viruses, while PLA1A overexpression enhanced the signaling. PLA1A functioned at the TBK1 level of the signaling pathway, as PLA1A silencing blocked TBK1, but not interferon regulatory factor 3 (IRF3) induced interferon-β (IFN-β) promoter activity. The phosphorylation and kinase activity of TBK1 was reduced in PLA1A knockdown cells. Mechanistically, PLA1A was required in TBK1-mitochondrial antiviral signaling protein (MAVS) interactions but not the interactions of TBK1 with other adaptor proteins. Furthermore, PLA1A knockdown reduced the recruitment of TBK1 and IRF3 to mitochondria, concomitant with altered mitochondria morphology.
Collapse
Affiliation(s)
- Xiaoxiao Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dan Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yuan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yun Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chunchen Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jizheng Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yanyi Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Rongjuan Pei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
35
|
The methyltransferase PRMT6 attenuates antiviral innate immunity by blocking TBK1-IRF3 signaling. Cell Mol Immunol 2018; 16:800-809. [PMID: 29973649 DOI: 10.1038/s41423-018-0057-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/24/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) play diverse biological roles and are specifically involved in immune cell development and inflammation. However, their role in antiviral innate immunity has not been elucidated. Viral infection triggers the TBK1-IRF3 signaling pathway to stimulate the production of type-I interferon, which mediates antiviral immunity. We performed a functional screen of the nine mammalian PRMTs for regulators of IFN-β expression and found that PRMT6 inhibits the antiviral innate immune response. Viral infection also upregulated PRMT6 protein levels. We generated PRMT6-deficient mice and found that they exhibited enhanced antiviral innate immunity. PRMT6 deficiency promoted the TBK1-IRF3 interaction and subsequently enhanced IRF3 activation and type-I interferon production. Mechanistically, viral infection enhanced the binding of PRMT6 to IRF3 and inhibited the interaction between IRF3 and TBK1; this mechanism was independent of PRMT6 methyltransferase activity. Thus, PRMT6 inhibits antiviral innate immunity by sequestering IRF3, thereby blocking TBK1-IRF3 signaling. Our work demonstrates a methyltransferase-independent role for PRMTs. It also identifies a negative regulator of the antiviral immune response, which may protect the host from the damaging effects of an overactive immune system and/or be exploited by viruses to escape immune detection.
Collapse
|
36
|
Cai J, Chen HY, Peng SJ, Meng JL, Wang Y, Zhou Y, Qian XP, Sun XY, Pang XW, Zhang Y, Zhang J. USP7-TRIM27 axis negatively modulates antiviral type I IFN signaling. FASEB J 2018; 32:5238-5249. [PMID: 29688809 DOI: 10.1096/fj.201700473rr] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ubiquitination and deubiquitination are important post-translational regulatory mechanisms responsible for fine tuning the antiviral signaling. In this study, we identified a deubiquitinase, the ubiquitin-specific peptidase 7/herpes virus associated ubiquitin-specific protease (USP7/HAUSP) as an important negative modulator of virus-induced signaling. Overexpression of USP7 suppressed Sendai virus and polyinosinic-polycytidylic acid and poly(deoxyadenylic-deoxythymidylic)-induced ISRE and IFN-β activation, and enhanced virus replication. Knockdown or knockout of endogenous USP7 expression had the opposite effect. Coimmunoprecipitation assays showed that USP7 physically interacted with tripartite motif (TRIM)27. This interaction was enhanced after SeV infection. In addition, TNF receptor-associated factor family member-associated NF-kappa-B-binding kinase (TBK)-1 was pulled down in the TRIM27-USP7 complex. Overexpression of USP7 promoted the ubiquitination and degradation of TBK1 through promoting the stability of TRIM27. Knockout of endogenous USP7 led to enhanced TRIM27 degradation and reduced TBK1 ubiquitination and degradation, resulting in enhanced type I IFN signaling. Our findings suggest that USP7 acts as a negative regulator in antiviral signaling by stabilizing TRIM27 and promoting the degradation of TBK1.-Cai, J., Chen, H.-Y., Peng, S.-J., Meng, J.-L., Wang, Y., Zhou, Y., Qian, X.-P., Sun, X.-Y., Pang, X.-W., Zhang, Y., Zhang, J. USP7-TRIM27 axis negatively modulates antiviral type I IFN signaling.
Collapse
Affiliation(s)
- Juan Cai
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Hong-Yan Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Shu-Jie Peng
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Jun-Ling Meng
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Yan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Yu Zhou
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Xiao-Ping Qian
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Xiu-Yuan Sun
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Xue-Wen Pang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| |
Collapse
|
37
|
Hu YW, Zhang J, Wu XM, Cao L, Nie P, Chang MX. TANK-Binding Kinase 1 (TBK1) Isoforms Negatively Regulate Type I Interferon Induction by Inhibiting TBK1-IRF3 Interaction and IRF3 Phosphorylation. Front Immunol 2018; 9:84. [PMID: 29441066 PMCID: PMC5797597 DOI: 10.3389/fimmu.2018.00084] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/11/2018] [Indexed: 12/21/2022] Open
Abstract
TANK-binding kinase 1 (TBK1) is an important serine/threonine-protein kinase that mediates phosphorylation and nuclear translocation of IRF3, which contributes to induction of type I interferons (IFNs) in the innate antiviral response. In mammals, TBK1 spliced isoform negatively regulates the virus-triggered IFN-β signaling pathway by disrupting the interaction between retinoic acid-inducible gene I (RIG-I) and mitochondria antiviral-signaling protein (MAVS). However, it is still unclear whether alternative splicing patterns and the function of TBK1 isoform(s) exist in teleost fish. In this study, we identify two alternatively spliced isoforms of TBK1 from zebrafish, termed TBK1_tv1 and TBK1_tv2. Both TBK1_tv1 and TBK1_tv2 contain an incomplete STKc_TBK1 domain. Moreover, the UBL_TBK1_like domain is also missing for TBK1_tv2. TBK1_tv1 and TBK1_tv2 are expressed in zebrafish larvae. Overexpression of TBK1_tv1 and TBK1_tv2 inhibits RIG-I-, MAVS-, TBK1-, and IRF3-mediated activation of IFN promoters in response to spring viremia of carp virus infection. Also, TBK1_tv1 and TBK1_tv2 inhibit expression of IFNs and IFN-stimulated genes induced by MAVS and TBK1. Mechanistically, TBK1_tv1 and TBK1_tv2 competitively associate with TBK1 and IRF3 to disrupt the formation of a functional TBK1-IRF3 complex, impeding the phosphorylation of IRF3 mediated by TBK1. Collectively, these results demonstrate that TBK1 spliced isoforms are dominant negative regulators in the RIG-I/MAVS/TBK1/IRF3 antiviral pathway by targeting the functional TBK1-IRF3 complex formation. Identification and functional characterization of piscine TBK1 spliced isoforms may contribute to understanding the role of TBK1 expression in innate antiviral response.
Collapse
Affiliation(s)
- Yi Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Lu Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
38
|
Proteomic analysis of chicken embryo fibroblast cells infected with recombinant H5N1 avian influenza viruses with and without NS1 eIF4GI binding domain. Oncotarget 2017; 9:8350-8367. [PMID: 29492200 PMCID: PMC5823584 DOI: 10.18632/oncotarget.23615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/28/2017] [Indexed: 01/07/2023] Open
Abstract
Non-structural 1 (NS1) protein is a key virulence factor that regulates replication of influenza virus. A recombinant H5N1 virus lacking the eIF4GI-binding domain of NS1 (rNS1-SD30) exhibits significantly lower pathogenicity than H5N1 virus with an intact eIF4GI-binding domain (rNS1-wt). To further investigate this phenomenon, we performed comparative proteomics analyses to profile host proteins in chicken embryo fibroblasts (CEFs) infected with rNS1-wt and rNS1-SD30 viruses. In total, 81 differentially expressed (DE) proteins were identified at 12, 24, and 36 h post-infection. These proteins are mainly involved in the cytoskeletal, apoptotic and stress responses, transcription regulation, transport and metabolic processes, mRNA processing and splicing, and cellular signal transduction. Overexpression of DE proteins revealed that ANXA7 suppresses propagation of rNS1-SD30, but not rNS1-wt viruses. Moreover, ALDH7A1, ANXA7, and DCTN2 strongly enhanced IFN-β promoter activity induced by chicken MDA5 (chMDA5), and in the case of ANXA7, also by the rNS1-SD30 viral strain. NS1-wt co-transfection suppressed the ANXA7-mediated increase in IFN-β promoter activity induced by chMDA5. These findings highlight the role of NS1 eIF4GI binding domain in H5N1 pathogenicity, and may contribute to the design of antiviral strategies to reduce the high morbidity and mortality associated with this pathogen.
Collapse
|
39
|
DUSP1 regulates apoptosis and cell migration, but not the JIP1-protected cytokine response, during Respiratory Syncytial Virus and Sendai Virus infection. Sci Rep 2017; 7:17388. [PMID: 29234123 PMCID: PMC5727028 DOI: 10.1038/s41598-017-17689-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022] Open
Abstract
The host antiviral response involves the induction of interferons and proinflammatory cytokines, but also the activation of cell death pathways, including apoptosis, to limit viral replication and spreading. This host defense is strictly regulated to eliminate the infection while limiting tissue damage that is associated with virus pathogenesis. Post-translational modifications, most notably phosphorylation, are key regulators of the antiviral defense implying an important role of protein phosphatases. Here, we investigated the role of the dual-specificity phosphatase 1 (DUSP1) in the host defense against human respiratory syncytial virus (RSV), a pathogenic virus of the Pneumoviridae family, and Sendai virus (SeV), a model virus being developed as a vector for anti-RSV vaccine. We found that DUSP1 is upregulated before being subjected to proteasomal degradation. DUSP1 does not inhibit the antiviral response, but negatively regulates virus-induced JNK/p38 MAPK phosphorylation. Interaction with the JNK-interacting protein 1 scaffold protein prevents dephosphorylation of JNK by DUSP1, likely explaining that AP-1 activation and downstream cytokine production are protected from DUSP1 inhibition. Importantly, DUSP1 promotes SeV-induced apoptosis and suppresses cell migration in RSV-infected cells. Collectively, our data unveils a previously unrecognized selective role of DUSP1 in the regulation of tissue damage and repair during infections by RSV and SeV.
Collapse
|
40
|
Zhou Y, He C, Wang L, Ge B. Post-translational regulation of antiviral innate signaling. Eur J Immunol 2017; 47:1414-1426. [PMID: 28744851 PMCID: PMC7163624 DOI: 10.1002/eji.201746959] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/22/2017] [Accepted: 07/24/2017] [Indexed: 12/23/2022]
Abstract
The innate immune system initiates immune responses by pattern‐recognition receptors (PRR). Virus‐derived nucleic acids are sensed by the retinoic acid‐inducible gene I (RIG‐I)‐like receptor (RLR) family and the toll‐like receptor (TLR) family as well as the DNA sensor cyclic GMP‐AMP (cGAMP) synthase (cGAS). These receptors activate IRF3/7 and NF‐κB signaling pathways to induce the expression of type I interferons (IFNs) and other cytokines firing antiviral responses within the cell. However, to achieve a favorable outcome for the host, a balanced production of IFNs and activation of antiviral responses is required. Post‐translational modifications (PTMs), such as the covalent linkage of functional groups to amino acid chains, are crucial for this immune homeostasis in antiviral responses. Canonical PTMs including phosphorylation and ubiquitination have been extensively studied and other PTMs such as methylation, acetylation, SUMOylation, ADP‐ribosylation and glutamylation are being increasingly implicated in antiviral innate immunity. Here we summarize our recent understanding of the most important PTMs regulating the antiviral innate immune response, and their role in virus‐related immune pathogenesis.
Collapse
Affiliation(s)
- Yilong Zhou
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chenxi He
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Wang
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Baoxue Ge
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Biacchesi S, Mérour E, Chevret D, Lamoureux A, Bernard J, Brémont M. NV Proteins of Fish Novirhabdovirus Recruit Cellular PPM1Bb Protein Phosphatase and Antagonize RIG-I-Mediated IFN Induction. Sci Rep 2017; 7:44025. [PMID: 28276468 PMCID: PMC5343655 DOI: 10.1038/srep44025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/02/2017] [Indexed: 12/17/2022] Open
Abstract
Non virion (NV) protein expression is critical for fish Novirhabdovirus, viral hemorrhagic septicemia virus (VHSV) and infectious hematopoietic necrosis virus (IHNV), in vivo pathogenesis. However, the mechanism by which NV promotes the viral replication is still unclear. We developed an approach based on reverse genetics and interactomic and identified several NV-associated cellular partners underlying cellular pathways as potential viral targets. Among these cell partners, we showed that NV proteins specifically interact with a protein phosphatase, Mg2+/Mn2+-dependent, 1Bb (PPM1Bb) and recruit it in the close vicinity of mitochondria, a subcellular compartment important for retinoic acid-inducible gene-I- (RIG-I)-mediated interferon induction pathway. PPM1B proteins belong to the PP2C family of serine/threonine (Ser/Thr) protein phosphatase and have recently been shown to negatively regulate the host antiviral response via dephosphorylating Traf family member-associated NF-κB activator (TANK)-binding kinase 1 (TBK1). We demonstrated that NV proteins and PPM1Bb counteract RIG-I- and TBK1-dependent interferon (IFN) and IFN-stimulated gene promoter induction in fish cells and, hence, the establishment of an antiviral state. Furthermore, the expression of VHSV NV strongly reduced TBK1 phosphorylation and thus its activation. Our findings provide evidence for a previously undescribed mechanism by which a viral protein recruits PPM1Bb protein phosphatase to subvert innate immune recognition.
Collapse
Affiliation(s)
| | - Emilie Mérour
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Didier Chevret
- PAPPSO, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Annie Lamoureux
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Julie Bernard
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Michel Brémont
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
42
|
The role of alternative polyadenylation in the antiviral innate immune response. Nat Commun 2017; 8:14605. [PMID: 28233779 PMCID: PMC5333124 DOI: 10.1038/ncomms14605] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/17/2017] [Indexed: 01/05/2023] Open
Abstract
Alternative polyadenylation (APA) is an important regulatory mechanism of gene functions in many biological processes. However, the extent of 3' UTR variation and the function of APA during the innate antiviral immune response are unclear. Here, we show genome-wide poly(A) sites switch and average 3' UTR length shortens gradually in response to vesicular stomatitis virus (VSV) infection in macrophages. Genes with APA and mRNA abundance change are enriched in immune-related categories such as the Toll-like receptor, RIG-I-like receptor, JAK-STAT and apoptosis-related signalling pathways. The expression of 3' processing factors is down-regulated upon VSV infection. When the core 3' processing factors are knocked down, viral replication is affected. Thus, our study reports the annotation of genes with APA in antiviral immunity and highlights the roles of 3' processing factors on 3' UTR variation upon viral infection.
Collapse
|
43
|
Li S, Lu LF, LaPatra SE, Chen DD, Zhang YA. Zebrafish STAT6 negatively regulates IFNφ1 production by attenuating the kinase activity of TANK-binding kinase 1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:189-201. [PMID: 27743998 DOI: 10.1016/j.dci.2016.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/02/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
The aquatic spring viremia of carp virus (SVCV) causes significant mortality in common carp (Cyprinus carpio), and TBK1 plays a crucial role in the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) system by phosphorylating its substrates to induce type I interferons (IFNs) and cellular antiviral responses. In this study, we report that zebrafish STAT6 is induced during SVCV infection and reduces IFNφ1 expression by suppressing TBK1 phosphorylation. A typical IFN stimulatory response element (ISRE) motif was found in the promoter region of zebrafish STAT6, and zebrafish STAT6 transcription was significantly upregulated in the early stages of virus infection. Overexpression of STAT6 interfered with IFNφ1 promoter activity in response to SVCV infection. Additionally, TBK1-, but not MITA-mediated activation of the IFNφ1 promoter was impaired by STAT6. Co-immunoprecipitation and Western blot experiments indicated that MITA and IRF3 were significantly phosphorylated by TBK1, and that the N-terminal kinase domain of TBK1 was critical in this process. In the final step, STAT6 interacted with the N-terminal kinase domain of TBK1 causing dephosphorylation, which resulted in reductions in the phosphorylation of IRF3 and the production of IFNφ1. These results indicate that fish STAT6 can attenuate the kinase activity of TBK1, leading to suppression of IFNφ1 expression which may in turn facilitate virus replication.
Collapse
Affiliation(s)
- Shun Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Long-Feng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Scott E LaPatra
- Clear Spring Foods, Inc., Research Division, Buhl, ID 83316, USA
| | - Dan-Dan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yong-An Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
44
|
Li X, Yang M, Yu Z, Tang S, Wang L, Cao X, Chen T. The tyrosine kinase Src promotes phosphorylation of the kinase TBK1 to facilitate type I interferon production after viral infection. Sci Signal 2017; 10:10/460/eaae0435. [PMID: 28049762 DOI: 10.1126/scisignal.aae0435] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Various pattern recognition receptors (PRRs) are activated in response to viral infection to stimulate the production of type I interferons (IFNs). However, central to the responses of all of these receptors is their activation of the kinase TBK1, which stimulates transcription by IFN regulatory factor 3 (IRF3). We investigated the mechanism by which the kinase activity of TBK1 is stimulated in response to viral infection. We found that the tyrosine kinase Src promoted the phosphorylation of TBK1 on Tyr179 upon viral infection of RAW264.7 macrophages. Mutation of Tyr179 to alanine resulted in impaired autophosphorylation of TBK1 at Ser172, which is required for TBK1 activation. The TBK1 Y179A mutant failed to rescue type I IFN production by virally infected RAW264.7 macrophages deficient in TBK1. Pharmacological inhibition of Src with AZD0530 and clustered regularly interspaced short palindromic repeats/Cas9-mediated knockout of Src demonstrated that Src was critical for activating the TBK1-IRF3 pathway and stimulating type I IFN production. However, Src did not directly bind to recombinant TBK1 in vitro but instead bound to the proline-X-X-proline motifs within key PRR adaptor proteins, such as TRIF, MAVS, and STING, which formed complexes with TBK1 after PRR engagement. Together, our data suggest that Src is the major tyrosine kinase that primes TBK1 for autophosphorylation and activation, thus providing mechanistic insights into the regulation of TBK1 activity by various PRRs as part of the innate antiviral response.
Collapse
Affiliation(s)
- Xuelian Li
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Mingjin Yang
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Zhou Yu
- National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Songqing Tang
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Lei Wang
- National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xuetao Cao
- National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China.
| | - Taoyong Chen
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
45
|
Si Y, Zhang Y, Chen Z, Zhou R, Zhang Y, Hao D, Yan D. Posttranslational Modification Control of Inflammatory Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1024:37-61. [DOI: 10.1007/978-981-10-5987-2_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
USP38 Inhibits Type I Interferon Signaling by Editing TBK1 Ubiquitination through NLRP4 Signalosome. Mol Cell 2016; 64:267-281. [DOI: 10.1016/j.molcel.2016.08.029] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 08/03/2016] [Accepted: 08/24/2016] [Indexed: 11/24/2022]
|
47
|
Zhang L, Chen WQ, Hu YW, Wu XM, Nie P, Chang MX. TBK1-like transcript negatively regulates the production of IFN and IFN-stimulated genes through RLRs-MAVS-TBK1 pathway. FISH & SHELLFISH IMMUNOLOGY 2016; 54:135-143. [PMID: 27060200 DOI: 10.1016/j.fsi.2016.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/02/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
TANK-binding kinase 1 (TBK1) is an essential serine/threonine-protein kinase required for Toll-like receptor (TLR)- and retinoic acid-inducible gene I (RIG-I) -mediated induction of type I IFN and host antiviral defense. In the present study, TBK1-like transcript, namely TBK1L, was cloned from zebrafish. Compared with TBK1, TBK1L contains an incomplete S_TKc domain, and lacks UBL_TBK1_like domain. Realtime PCR showed that TBK1L was constitutively produced in embryos, early larvae and ZF4 cells, and unchanged in ZF4 cells following SVCV infection. Overexpression of TBK1 but not TBK1L resulted in significant activation of zebrafish IFN1 and IFN3 promoters. Similarly, TBK1L had little impact on the antiviral state of the cells. However, the overexpression of TBK1L negatively regulated the induction of zebrafish IFN1 and/or IFN3 promoters mediated by the retinoic acid-inducible gene I-like receptors (RLRs), MAVS and TBK1. In addition, the overexpression of TBK1L in zebrafish embryos led to the decreased production of many IFN-stimulated genes induced by TBK1. Collectively, these data support that zebrafish TBK1L negatively regulates RLRs-MAVS-TBK1 pathway.
Collapse
Affiliation(s)
- Lin Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Wen Qin Chen
- Hubei Vocational College of Bio-technology, Wuhan, Hubei Province 430070, China
| | - Yi Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | - P Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China.
| |
Collapse
|
48
|
Xiang W, Zhang Q, Lin X, Wu S, Zhou Y, Meng F, Fan Y, Shen T, Xiao M, Xia Z, Zou J, Feng XH, Xu P. PPM1A silences cytosolic RNA sensing and antiviral defense through direct dephosphorylation of MAVS and TBK1. SCIENCE ADVANCES 2016; 2:e1501889. [PMID: 27419230 PMCID: PMC4942338 DOI: 10.1126/sciadv.1501889] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/31/2016] [Indexed: 05/20/2023]
Abstract
Cytosolic RNA sensing is a prerequisite for initiation of innate immune response against RNA viral pathogens. Signaling through RIG-I (retinoic acid-inducible gene I)-like receptors (RLRs) to TBK1 (Tank-binding kinase 1)/IKKε (IκB kinase ε) kinases is transduced by mitochondria-associated MAVS (mitochondrial antiviral signaling protein). However, the precise mechanism of how MAVS-mediated TBK1/IKKε activation is strictly controlled still remains obscure. We reported that protein phosphatase magnesium-dependent 1A (PPM1A; also known as PP2Cα), depending on its catalytic ability, dampened the RLR-IRF3 (interferon regulatory factor 3) axis to silence cytosolic RNA sensing signaling. We demonstrated that PPM1A was an inherent partner of the TBK1/IKKε complex, targeted both MAVS and TBK1/IKKε for dephosphorylation, and thus disrupted MAVS-driven formation of signaling complex. Conversely, a high level of MAVS can dissociate the TBK1/PPM1A complex to override PPM1A-mediated inhibition. Loss of PPM1A through gene ablation in human embryonic kidney 293 cells and mouse primary macrophages enabled robustly enhanced antiviral responses. Consequently, Ppm1a(-/-) mice resisted to RNA virus attack, and transgenic zebrafish expressing PPM1A displayed profoundly increased RNA virus vulnerability. These findings identify PPM1A as the first known phosphatase of MAVS and elucidate the physiological function of PPM1A in antiviral immunity on whole animals.
Collapse
Affiliation(s)
- Weiwen Xiang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Qian Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Xia Lin
- Michael E. DeBakey Department of Surgery and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shiying Wu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Yao Zhou
- Eye Center of the Second Affiliated Hospital School of Medicine, Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Fansen Meng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Yunyun Fan
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Tao Shen
- Michael E. DeBakey Department of Surgery and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mu Xiao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Zongping Xia
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Jian Zou
- Eye Center of the Second Affiliated Hospital School of Medicine, Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xin-Hua Feng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
- Michael E. DeBakey Department of Surgery and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Corresponding author. (X.-H.F.); (P.X.)
| | - Pinglong Xu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
- Corresponding author. (X.-H.F.); (P.X.)
| |
Collapse
|
49
|
Wang H, Chen Y, Han J, Meng Q, Xi Q, Wu G, Zhang B. DCAF4L2 promotes colorectal cancer invasion and metastasis via mediating degradation of NFκb negative regulator PPM1B. Am J Transl Res 2016; 8:405-418. [PMID: 27158335 PMCID: PMC4846892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/03/2016] [Indexed: 06/05/2023]
Abstract
DCAF4L2 is a member of WD-repeat proteins, which commonly serve as mediators of protein-protein interplay. In this study, we reported that elevated DCAF4L2 expression in human colorectal cancer (CRC) significantly correlated with a more advanced clinical stage as in lymphatic and distant metastasis. More importantly, elevated DCAF4L2 expression is an independent prognosis factor for survival. Genetic perturbations demonstrated that DCAF4L2 overexpression in CRC cells promoted cell migration and invasion, whereas knockdown of which had opposing effects. Moreover we discovered that DCAF4L2 overexpression could promote epithelial-mesenchymal-transition (EMT) through activating NFκB signal pathway. Mass spectrometry analysis showed that DCAF4L2 could form an E3 ligase complex with Cul4A and DDB1 thus mediated degradation of PPM1B, which has been reported to negatively regulate NFκB signaling. We identified PPM1B as a substrate of Cul4A-DDB1-DCAF4L2 E3 ligase complex, as knockdown of PPM1B abrogated shDCAF4L2 mediated inhibition of cell invasion in CRC cells. For further verification, DCAF4L2 expression inversely correlated with PPM1B expression in a cohort of 87 CRC patients. These findings may provide insight into the understanding of DCAF4L2 as a novel critical factor and a candidate target for CRC treatment.
Collapse
Affiliation(s)
- Haiyu Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University Shanghai, China
| | - Yusheng Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University Shanghai, China
| | - Jun Han
- Department of General Surgery, Zhongshan Hospital, Fudan University Shanghai, China
| | - Qingyang Meng
- Department of General Surgery, Zhongshan Hospital, Fudan University Shanghai, China
| | - Qiulei Xi
- Department of General Surgery, Zhongshan Hospital, Fudan University Shanghai, China
| | - Guohao Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University Shanghai, China
| | - Bo Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University Shanghai, China
| |
Collapse
|
50
|
Zhan Z, Cao H, Xie X, Yang L, Zhang P, Chen Y, Fan H, Liu Z, Liu X. Phosphatase PP4 Negatively Regulates Type I IFN Production and Antiviral Innate Immunity by Dephosphorylating and Deactivating TBK1. THE JOURNAL OF IMMUNOLOGY 2015; 195:3849-57. [PMID: 26363053 DOI: 10.4049/jimmunol.1403083] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 08/06/2015] [Indexed: 12/20/2022]
Abstract
The effective recognition of viral infection and subsequent type I IFN production is essential for the host antiviral innate immune responses. The phosphorylation and activation of kinase TANK-binding kinase 1 (TBK1) plays crucial roles in the production of type I IFN mediated by TLR and retinoic acid-inducible gene I-like receptors. Type I IFN expression must be tightly regulated to prevent the development of immunopathological disorders. However, how the activated TBK1 is negatively regulated by phosphatases remains poorly understood. In this study, we identified a previously unknown role of protein phosphatase (PP)4 by acting as a TBK1 phosphatase. PP4 expression was upregulated in macrophages infected with RNA virus, vesicular stomatitis virus, and Sendai virus in vitro and in vivo. Knockdown of PP4C, the catalytic subunit of PP4, significantly increased type I IFN production in macrophages and dentritic cells triggered by TLR3/4 ligands, vesicular stomatitis virus, and Sendai virus, and thus inhibited virus replication. Similar results were also found in peritoneal macrophages with PP4C silencing in vivo and i.p. infection of RNA virus. Accordingly, ectopic expression of PP4C inhibited virus-induced type I IFN production and promoted virus replication. However, overexpression of a phosphatase-dead PP4C mutant abolished the inhibitory effects of wild-type PP4C on type I IFN production. Mechanistically, PP4 directly bound TBK1 upon virus infection, then dephosphorylated TBK1 at Ser(172) and inhibited TBK1 activation, and subsequently restrained IFN regulatory factor 3 activation, resulting in suppressed production of type I IFN and IFN-stimulated genes. Thus, serine/threonine phosphatase PP4 functions as a novel feedback negative regulator of RNA virus-triggered innate immunity.
Collapse
Affiliation(s)
- Zhenzhen Zhan
- Research Center for Translational Medicine and Shanghai Heart Failure Research Center, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai 200120, China;
| | - Hao Cao
- Research Center for Translational Medicine and Shanghai Heart Failure Research Center, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xuefeng Xie
- School of Pharmacology, Anhui Medical University, Hefei 230032, China; and
| | - Linshan Yang
- Research Center for Translational Medicine and Shanghai Heart Failure Research Center, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Peng Zhang
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Yihan Chen
- Research Center for Translational Medicine and Shanghai Heart Failure Research Center, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Huimin Fan
- Research Center for Translational Medicine and Shanghai Heart Failure Research Center, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhongmin Liu
- Research Center for Translational Medicine and Shanghai Heart Failure Research Center, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xingguang Liu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|