1
|
Takahashi T, Takahashi T, Ikawa T, Terui H, Takahashi T, Segawa Y, Sumida H, Yoshizaki A, Sato S, Asano Y. Serum levels of AGGF1: Potential association with cutaneous and cardiopulmonary involvements in systemic sclerosis. J Dermatol 2024; 51:1083-1090. [PMID: 38619119 DOI: 10.1111/1346-8138.17233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/09/2024] [Accepted: 03/31/2024] [Indexed: 04/16/2024]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by vasculopathy, aberrant immune activation, and extensive tissue fibrosis of the skin and internal organs. Because of the complicated nature of its pathogenesis, the underlying mechanisms of SSc remain incompletely understood. Angiogenic factor with a G-patch domain and a Forkhead-associated domain 1 (AGGF1) is a critical factor in angiogenesis expressed on vascular endothelial cells, associated with inflammatory and fibrotic responses. To elucidate the possible implication of AGGF1 in SSc pathogenesis, we investigated the association between serum AGGF1 levels and clinical manifestations in SSc patients. We conducted a cross-sectional analysis of AGGF1 levels in sera from 60 SSc patients and 19 healthy controls with enzyme-linked immunosorbent assay. Serum AGGF1 levels in SSc patients were significantly higher than those in healthy individuals. In particular, diffuse cutaneous SSc patients with shorter disease duration had higher levels compared to those with longer disease duration and limited cutaneous SSc patients. Patients with higher serum AGGF1 levels had a higher incidence of digital ulcers, higher modified Rodnan Skin Scores (mRSS), elevated serum Krebs von den Lungen-6 (KL-6) levels, C-reactive protein levels, and right ventricular systolic pressures (RVSP) on the echocardiogram, whereas they had reduced percentage of vital capacity (%VC) and percentage of diffusing capacity of the lungs for carbon monoxide (%DLCO) in pulmonary functional tests. In line, serum AGGF1 levels were significantly correlated with mRSS, serum KL-6 and surfactant protein D levels, RVSP, and %DLCO. These results uncovered notable correlations between serum AGGF1 levels and key cutaneous and vascular involvements in SSc, suggesting potential roles of AGGF1 in SSc pathogenesis.
Collapse
Affiliation(s)
- Takuya Takahashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takehiro Takahashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Ikawa
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hitoshi Terui
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshiya Takahashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuichiro Segawa
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hayakazu Sumida
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
- Scleroderma Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yoshihide Asano
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
2
|
Ji W, Wan T, Zhang F, Guo S, Mei X. The Role of AGGF1 in the Classification and Evaluating Prognosis of Adult Septic Patients: An Observational Study. Infect Drug Resist 2024; 17:1153-1160. [PMID: 38529068 PMCID: PMC10962459 DOI: 10.2147/idr.s447922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Purpose Angiogenic factor with G patch and FHA domains 1 (AGGF1) is a crucial angiogenic factor that is involved in a variety of diseases and in the regulation of inflammatory responses. However, its role in sepsis is poorly understood. We have investigated the role of AGGF1 in the classification and prognostic evaluation of adult septic patients in a clinical context. Patients and Methods A total of 126 septic patients who visited the Emergency Department of Beijing Chao-Yang Hospital and 76 non-sepsis patients visiting the Physical Examination Center of Beijing Chao-Yang Hospital were enrolled. AGGF1 levels in plasma were detected by enzyme-linked immunosorbent assay. Spearman correlation analysis was used to determine correlations between plasma AGGF1 and Sequential Organ Failure Assessment (SOFA) score, Acute Pathology and Chronic Health Evaluation II (APACHE II) score, procalcitonin and lactate. We evaluated the classification significance of AGGF1 in sepsis using receiver operating characteristic (ROC) curves. We also assessed the predictive significance of AGGF1 for 28-day mortality in sepsis using ROC curves and Kaplan-Meier analyses. Results Plasma AGGF1 levels were higher in sepsis patients than in non-sepsis patients (P < 0.001). Among sepsis patients, plasma AGGF1 levels were higher in non-survivors than in survivors (P < 0.001). Increased plasma AGGF1 levels were positively correlated with SOFA score, APACHE II score, procalcitonin and lactate. Plasma AGGF1 levels could distinguish sepsis patients from non-sepsis patients (area under the curve [AUC] = 0.777). AGGF1 had a higher predictive value than SOFA score, APACHE II score, lactate, procalcitonin, and white blood cell count for 28-day mortality in patients with sepsis (AUC = 0.876). Furthermore, Kaplan-Meier analysis indicated that lower plasma AGGF1 levels were associated with lower 28-day mortality compared with higher plasma AGGF1 levels (log rank P < 0.001). Conclusion AGGF1 is useful for the classification and evaluating prognosis of adult septic patients.
Collapse
Affiliation(s)
- Wenqing Ji
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Tiantian Wan
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Fang Zhang
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Shubin Guo
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xue Mei
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Wang R, Zhao J, Liu C, Li S, Liu W, Cao Q. Decreased AGGF1 facilitates the progression of placenta accreta spectrum via mediating the P53 signaling pathway under the regulation of miR-1296-5p. Reprod Biol 2023; 23:100735. [PMID: 36753931 DOI: 10.1016/j.repbio.2023.100735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023]
Abstract
Placenta accreta spectrum (PAS), an emerging health issue worldwide, is the major causative factor of maternal morbidity and mortality in modern obstetrics, but limited studies have contributed to our understanding of the molecular biology of PAS. This study addressed the expression of AGGF1 and its specific role in the etiology of PAS. The expression of AGGF1 in the placentas of PAS was determined by quantitative PCR, western blot and immunohistochemistry. CCK-8 assay, wound healing assay, Transwell invasion assay and flow cytometry assay were performed to monitor cell proliferation, migration, invasion and apoptosis. The interaction between miR-1296-5p and AGGF1 was detected by dual-luciferase reporter gene assay. Results showed that the mRNA and protein expression of AGGF1 was decremented in placental tissues of PAS patients, compared with samples from women with placenta previa and normal pregnant women. Downregulation of AGGF1 promoted cell proliferation, invasion and migration, inhibited apoptosis in vitro, decreased P53 and Bax expression, and simultaneously increased Bcl-2 expression, whereas overexpression of AGGF1 had the opposite results. Additionally, the dual-luciferase assay confirmed AGGF1 as a target gene of miR-1296-5p in placental tissues of PAS. Particularly, miR-1296-5p fostered HTR8/SVneo cell proliferation, invasion, repression of apoptosis and regulation of P53 signaling axis by downregulating AGGF1 expression. Collectively, our study accentuated that downregulation of placental AGGF1 promoted trophoblast over-invasion by mediating the P53 signaling pathway under the regulation of miR-1296-5p.
Collapse
Affiliation(s)
- Runfang Wang
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Obstetrics and Gynecology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Jing Zhao
- Department of Obstetrics and Gynecology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Cuilian Liu
- Department of Obstetrics and Gynecology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Shengxian Li
- Department of Obstetrics and Gynecology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Weifang Liu
- Department of Obstetrics and Gynecology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Qinying Cao
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Obstetrics and Gynecology, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, China.
| |
Collapse
|
4
|
Ding S, Liu J, Han X, Ding W, Liu Z, Zhu Y, Zhan W, Wan Y, Gai S, Hou J, Wang X, Wu Y, Wu A, Li CY, Zheng Z, Tian XL, Cao H. ICAM-1-related noncoding RNA accelerates atherosclerosis by amplifying NF-κB signaling. J Mol Cell Cardiol 2022; 170:75-86. [PMID: 35714558 DOI: 10.1016/j.yjmcc.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/20/2022] [Accepted: 06/04/2022] [Indexed: 11/28/2022]
Abstract
Long noncoding RNAs (lncRNAs) are critical regulators of inflammation with great potential as new therapeutic targets. However, the role of lncRNAs in early atherosclerosis remains poorly characterized. This study aimed to identify the key lncRNA players in activated endothelial cells (ECs). The lncRNAs in response to pro-inflammatory factors in ECs were screened through RNA sequencing. ICAM-1-related non-coding RNA (ICR) was identified as the most potential candidate for early atherosclerosis. ICR is essential for intercellular adhesion molecule-1 (ICAM1) expression, EC adhesion and migration. In a high fat diet-induced atherosclerosis model in mice, ICR is upregulated in the development of atherosclerosis. After intravenous injection of adenovirus carrying shRNA for mouse ICR, the atherosclerotic plaque area was markedly reduced with the declined expression of ICR and ICAM1. Mechanistically, ICR stabilized the mRNA of ICAM1 in quiescent ECs; while under inflammatory stress, ICR upregulated ICAM1 in a nuclear factor kappa B (NF-κB) dependent manner. RNA-seq analysis showed pro-inflammatory targets of NF-κB were regulated by ICR. Furthermore, the chromatin immunoprecipitation assays showed that p65 binds to ICR promoter and facilitates its transcription. Interestingly, ICR, in turn, promotes p65 accumulation and activity, forming a positive feedback loop to amplify NF-κB signaling. Preventing the degradation of p65 using proteasome inhibitors rescued the expression of NF-κB targets suppressed by ICR. Taken together, ICR acts as an accelerator to amplify NF-κB signaling in activated ECs and suppressing ICR is a promising early intervention for atherosclerosis through ICR/p65 loop blockade.
Collapse
Affiliation(s)
- Shuangjin Ding
- Aging and Vascular Diseases, Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Jiangxi, China; Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jiankun Liu
- Aging and Vascular Diseases, Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Jiangxi, China
| | - XiaoRui Han
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Wanqiu Ding
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Zhirui Liu
- Aging and Vascular Diseases, Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Jiangxi, China
| | - Ying Zhu
- Aging and Vascular Diseases, Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Jiangxi, China
| | - Wenxing Zhan
- Aging and Vascular Diseases, Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Jiangxi, China
| | - Yiqi Wan
- Aging and Vascular Diseases, Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Jiangxi, China
| | - Shujie Gai
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junjie Hou
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Xiaoxia Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Yixia Wu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Andong Wu
- Aging and Vascular Diseases, Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Jiangxi, China
| | - Chuan-Yun Li
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Zhe Zheng
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Jiangxi, China.
| | - Huiqing Cao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
| |
Collapse
|
5
|
Li JR, Tang M, Li Y, Amos CI, Cheng C. Genetic variants associated mRNA stability in lung. BMC Genomics 2022; 23:196. [PMID: 35272635 PMCID: PMC8915503 DOI: 10.1186/s12864-022-08405-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Abstract
Background Expression quantitative trait loci (eQTLs) analyses have been widely used to identify genetic variants associated with gene expression levels to understand what molecular mechanisms underlie genetic traits. The resultant eQTLs might affect the expression of associated genes through transcriptional or post-transcriptional regulation. In this study, we attempt to distinguish these two types of regulation by identifying genetic variants associated with mRNA stability of genes (stQTLs). Results Here, we presented a computational framework that takes advantage of recently developed methods to infer the mRNA stability of genes based on RNA-seq data and performed association analysis to identify stQTLs. Using the Genotype-Tissue Expression (GTEx) lung RNA-Seq data, we identified a total of 142,801 stQTLs for 3942 genes and 186,132 eQTLs for 4751 genes from 15,122,700 genetic variants for 13,476 genes on the autosomes, respectively. Interestingly, our results indicated that stQTLs were enriched in the CDS and 3’UTR regions, while eQTLs are enriched in the CDS, 3’UTR, 5’UTR, and upstream regions. We also found that stQTLs are more likely than eQTLs to overlap with RNA binding protein (RBP) and microRNA (miRNA) binding sites. Our analyses demonstrate that simultaneous identification of stQTLs and eQTLs can provide more mechanistic insight on the association between genetic variants and gene expression levels. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08405-y.
Collapse
Affiliation(s)
- Jian-Rong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Mabel Tang
- Department of BioSciences, Biochemistry and Cell Biology, Rice University, Houston, TX, USA
| | - Yafang Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Christopher I Amos
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA. .,Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA. .,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
6
|
Wu X, Zhang X, Zhao L, Jiang S. Neuroprotective effect of AGGF1 against isoflurane-induced cognitive dysfunction in aged rats through activating the PI3K/AKT signaling pathways. Physiol Int 2022; 109:58-69. [PMID: 35218336 DOI: 10.1556/2060.2022.00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/27/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE This study aimed to evaluate and identify the value and explore the mechanisms of Angiogenic Factor with G-patch and FHA domains 1 (AGGF1) in postoperative cognitive dysfunction (POCD). METHODS Rats were separated into four different groups, namely sham, isoflurane, isoflurane + recombinant human Aggf1 (rh-Aggf1) (5 μg kg-1), and isoflurane + rh-Aggf1 (10 μg kg-1). qPCR and western blot assays were applied to detect the correlation between the expression of AGGF1 and isoflurane administration. Then, the Morris water maze (MWM) test was applied to evaluate the effect of AGGF1 on improving the POCD rats. Subsequently, TUNEL assay was applied and the cell apoptosis-related proteins were tested to reveal the anti-apoptotic effect of AGGF1 in POCD rats. Furthermore, the mRNA and protein levels of TNF-α, IL-6, and IL-1β were also detected by qPCR and ELISA to verify the anti-inflammatory effects of AGGF1 on POCD rats. Besides, the protein expression levels of PI3K, Akt, and NF-κB in each group were examined by western blot. RESULTS In this study, the results revealed that isoflurane induced a decrease in AGGF1 expression in the hippocampus of aged rats. In addition, exogenous AGGF1 attenuated POCD in aged rats. Meanwhile, exogenous AGGF1 had anti-apoptotic and anti-inflammatory effects in POCD rats. Further research indicated that AGGF1 activated the PI3K/Akt pathway. CONCLUSION AGGF1 has neuroprotective effect against isoflurane-induced cognitive dysfunction in aged rats via activating the PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Xiaoping Wu
- 1 Department of Neurology, Chengdu First People's Hospital, Chengdu, Sichuan, 610041,China
| | - Xuan Zhang
- 1 Department of Neurology, Chengdu First People's Hospital, Chengdu, Sichuan, 610041,China
| | - Lei Zhao
- 1 Department of Neurology, Chengdu First People's Hospital, Chengdu, Sichuan, 610041,China
| | - Shan Jiang
- 2 Department of Anesthesiology, (Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology), Wuhan, Hubei, 430016,China
| |
Collapse
|
7
|
Li R, Yao G, Zhou L, Zhang M, Yan J, Wang X, Li Y. Autophagy is required for the promoting effect of angiogenic factor with G patch domain and forkhead-associated domain 1 (AGGF1) in retinal angiogenesis. Microvasc Res 2021; 138:104230. [PMID: 34339727 DOI: 10.1016/j.mvr.2021.104230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To investigate the effect of angiogenic factor with G patch domain and forkhead-associated domain 1 (AGGF1) on retinal angiogenesis in ischemic retinopathy and its association with autophagy. METHODS RF/6A cells were divided into the control group, hypoxia group and high-glucose group, and the expression of AGGF1 in cells was detected. C57BL/6 J mice were divided into the control group, oxygen-induced retinopathy (OIR) group and diabetic retinopathy (DR) group, and AGGF1 expression in the retina was observed. RF/6A cells were then divided into the control group and different AGGF1 concentration groups, and the expression of autophagy marker, LC3 was detected. Then, RF/6A cells were divided into the control group, AGGF1 group, 3-methyladenine (3-MA, an early autophagy inhibitor) + AGGF1 group and chloroquine (CQ, a late autophagy inhibitor) + AGGF1 group, and the expression of autophagy markers, LC3 and p62, autophagic flux, as well as was key signaling pathway proteins in autophagy, PI3K, AKT, and mTOR was detected. Finally, the cell proliferation, migration and tube formation were detected in the four groups. RESULTS AGGF1 expression in RF/6A cells and in the retinas of OIR and DR mouse model was found to be increased in the state of hypoxic and high glucose condition. AGGF1 treatment led to increased expressions of LC3 and decreased p62; therby induced autophagic flux, and the phosphorylation of PI3K, AKT and mTOR was down-regulated in RF/6A cells. When autophagy was inhibited by 3-MA or CQ, confirmed by corresponding changes of these indicators of autophagy, cellular proliferation, migration and tube formation of RF/6A cells were weakened by AGGF1 treatment when compared with that of AGGF1 treatment alone. CONCLUSION This study experimentally revealed that AGGF1 activates autophagy to promote angiogenesis for ischemic retinopathy and inhibition of PI3K/AKT/mTOR pathway may be involved in the activation of autophagy by AGGF1.
Collapse
Affiliation(s)
- Rong Li
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Medical University, No.48 West Fenghao Road, Xi'an, 710077, Shaanxi, China.
| | - Guomin Yao
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Medical University, No.48 West Fenghao Road, Xi'an, 710077, Shaanxi, China
| | - Lingxiao Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Medical University, No.48 West Fenghao Road, Xi'an, 710077, Shaanxi, China
| | - Min Zhang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Medical University, No.48 West Fenghao Road, Xi'an, 710077, Shaanxi, China
| | - Jin Yan
- College of Medical Technology of Xi'an Medical University, No.1 Xinwang Road, Xi'an, 710021, Shaanxi, China
| | - Xiaodi Wang
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Medical University, No.48 West Fenghao Road, Xi'an, 710077, Shaanxi, China
| | - Ya Li
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Medical University, No.48 West Fenghao Road, Xi'an, 710077, Shaanxi, China
| |
Collapse
|
8
|
Wang J, Peng H, Timur AA, Pasupuleti V, Yao Y, Zhang T, You SA, Fan C, Yu Y, Jia X, Chen J, Xu C, Chen Q, Wang Q. Receptor and Molecular Mechanism of AGGF1 Signaling in Endothelial Cell Functions and Angiogenesis. Arterioscler Thromb Vasc Biol 2021; 41:2756-2769. [PMID: 34551592 PMCID: PMC8580577 DOI: 10.1161/atvbaha.121.316867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Objective Angiogenic factor AGGF1 (angiogenic factor with G-patch and FHA [Forkhead-associated] domain 1) promotes angiogenesis as potently as VEGFA (vascular endothelial growth factor A) and regulates endothelial cell (EC) proliferation, migration, specification of multipotent hemangioblasts and venous ECs, hematopoiesis, and vascular development and causes vascular disease Klippel-Trenaunay syndrome when mutated. However, the receptor for AGGF1 and the underlying molecular mechanisms remain to be defined. Approach and Results Using functional blocking studies with neutralizing antibodies, we identified [alpha]5[beta]1 as the receptor for AGGF1 on ECs. AGGF1 interacts with [alpha]5[beta]1 and activates FAK (focal adhesion kinase), Src (proto-oncogene tyrosine-protein kinase), and AKT (protein kinase B). Functional analysis of 12 serial N-terminal deletions and 13 C-terminal deletions by every 50 amino acids mapped the angiogenic domain of AGGF1 to a domain between amino acids 604-613 (FQRDDAPAS). The angiogenic domain is required for EC adhesion and migration, capillary tube formation, and AKT activation. The deletion of the angiogenic domain eliminated the effects of AGGF1 on therapeutic angiogenesis and increased blood flow in a mouse model for peripheral artery disease. A 40-mer or 15-mer peptide containing the angiogenic domain blocks AGGF1 function, however, a 15-mer peptide containing a single amino acid mutation from -RDD- to -RGD- (a classical RGD integrin-binding motif) failed to block AGGF1 function. Conclusions We have identified integrin [alpha]5[beta]1 as an EC receptor for AGGF1 and a novel AGGF1-mediated signaling pathway of [alpha]5[beta]1-FAK-Src-AKT for angiogenesis. Our results identify an FQRDDAPAS angiogenic domain of AGGF1 crucial for its interaction with [alpha]5[beta]1 and signaling.
Collapse
Affiliation(s)
- Jingjing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
- Institute of Genetics and Development, Chinese Academy of Sciences, Beijing, China
| | - Huixin Peng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Ayse Anil Timur
- Robert J. Tomsich Pathology & Laboratory Medicine Institute Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Cardiology, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Vinay Pasupuleti
- Department of Molecular Cardiology, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Yufeng Yao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Teng Zhang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sun-Ah You
- Department of Molecular Cardiology, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Chun Fan
- Department of Molecular Cardiology, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Yubing Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Xinzhen Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Jing Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Qiuyun Chen
- Department of Molecular Cardiology, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Present Address, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| | - Qing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
- Department of Molecular Cardiology, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| |
Collapse
|
9
|
Zhang CF, Wang HM, Wu A, Li Y, Tian XL. FHA domain of AGGF1 is essential for its nucleocytoplasmic transport and angiogenesis. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1884-1894. [PMID: 33471274 DOI: 10.1007/s11427-020-1844-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022]
Abstract
Angiogenic factor with G-patch and FHA domains 1 (AGGF1) exhibits a dynamic distribution from the nucleus to the cytoplasm in endothelial cells during angiogenesis, but the biological significance and underlying mechanism of this nucleocytoplasmic transport remains unknown. Here, we demonstrate that the dynamic distribution is essential for AGGF1 to execute its angiogenic function. To search the structural bases for this nucleocytoplasmic transport, we characterized three potential nuclear localization regions, one potential nuclear export region, forkhead-associated (FHA), and G-patch domains to determine their effects on nucleocytoplasmic transport and angiogenesis, and we show that AGGF1 remains intact during the dynamic subcellular distribution and the region from 260 to 288 amino acids acts as a signal for its nuclear localization. The distribution of AGGF1 in cytoplasm needs both FHA domain and 14-3-3α/β. Binding of AGGF1 via FHA domain to 14-3-3α/β is required to complete the transport. Thus, we for the first time established structural bases for the nucleocytoplasmic transport of AGGF1 and revealed that the FHA domain of AGGF1 is essential for its nucleocytoplasmic transport and angiogenesis.
Collapse
Affiliation(s)
- Cui-Fang Zhang
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Han-Ming Wang
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Andong Wu
- Aging and Vascular Diseases, Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China
| | - Yang Li
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Xiao-Li Tian
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, 100871, China. .,Aging and Vascular Diseases, Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China.
| |
Collapse
|
10
|
Li Y, Yan H, Guo J, Han Y, Zhang C, Liu X, Du J, Tian XL. Down-regulated RGS5 by genetic variants impairs endothelial cell function and contributes to coronary artery disease. Cardiovasc Res 2021; 117:240-255. [PMID: 31605122 DOI: 10.1093/cvr/cvz268] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/22/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022] Open
Abstract
AIMS Genetic contribution to coronary artery disease (CAD) remains largely unillustrated. Although transcriptomic profiles have identified dozens of genes that are differentially expressed in normal and atherosclerotic vessels, whether those genes are genetically associated with CAD remains to be determined. Here, we combined genetic association studies, transcriptome profiles and in vitro and in vivo functional experiments to identify novel susceptibility genes for CAD. METHODS AND RESULTS Through an integrative analysis of transcriptome profiles with genome-wide association studies for CAD, we obtained 18 candidate genes and selected one representative single nucleotide polymorphism (SNP) for each gene for multi-centred validations. We identified an intragenic SNP, rs1056515 in RGS5 gene (odds ratio = 1.17, 95% confidence interval =1.10-1.24, P = 3.72 × 10-8) associated with CAD at genome-wide significance. Rare genetic variants in linkage disequilibrium with rs1056515 were identified in CAD patients leading to a decreased expression of RGS5. The decreased expression was also observed in atherosclerotic vessels and endothelial cells treated by various cardiovascular risk factors. Through siRNA knockdown and adenoviral overexpression, we further showed that RGS5 regulated endothelial inflammation, vascular remodelling, as well as canonical NF-κB signalling activation. Moreover, CXCL12, a specific downstream target of the non-canonical NF-κB pathway, was strongly affected by RGS5. However, the p100 processing, a well-documented marker for non-canonical NF-κB pathway activation, was not altered, suggesting an existence of a novel mechanism by which RGS5 regulates CXCL12. CONCLUSIONS We identified RGS5 as a novel susceptibility gene for CAD and showed that the decreased expression of RGS5 impaired endothelial cell function and functionally contributed to atherosclerosis through a variety of molecular mechanisms. How RGS5 regulates the expression of CXCL12 needs further studies.
Collapse
Affiliation(s)
- Yang Li
- Vascular Biology Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing, China
| | - Han Yan
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, No. 5 Yiheyuan Road, Beijing, China
| | - Jian Guo
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, No. 5 Yiheyuan Road, Beijing, China
| | - Yingchun Han
- Vascular Biology Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing, China
| | - Cuifang Zhang
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, No. 5 Yiheyuan Road, Beijing, China
| | - Xiuying Liu
- Center for Molecular Systems Biology, Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jie Du
- Vascular Biology Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing, China
| | - Xiao-Li Tian
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, No. 5 Yiheyuan Road, Beijing, China
- Department of Human Population Genetics, A217 Life Science Building, Human Aging Research Institute and School of Life Science, Jiangxi Key Laboratory of Human Aging, Nanchang University, 999 Xuefu Road, Honggutan New District, Nanchang City, Jiangxi Province 330031, China
| |
Collapse
|
11
|
Angiogenic factor AGGF1 acts as a tumor suppressor by modulating p53 post-transcriptional modifications and stability via MDM2. Cancer Lett 2020; 497:28-40. [PMID: 33069768 DOI: 10.1016/j.canlet.2020.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 11/22/2022]
Abstract
Angiogenesis factors are widely known to promote tumor growth by increasing tumor angiogenesis in the tumor microenvironment, however, little is known whether their intracellular function is involved in tumorigenesis. Here we show that AGGF1 acts as a tumor suppressor by regulating p53 when acting inside tumor cells. AGGF1 antagonizes MDM2 function to inhibit p53 ubiquitination, increases the acetylation, phosphorylation, stability and expression levels of p53, activates transcription of p53 target genes, and regulates cell proliferation, cell cycle, and apoptosis. AGGF1 also interacts with p53 through the FHA domain. Somatic AGGF1 variants in the FHA domain in human tumors, including p.Q467H, p.Y469 N, and p.N483T, inhibit AGGF1 activity on tumor suppression. These results identify a key role for AGGF1 in an AGGF1-MDM2-p53 signaling axis with important functions in tumor suppression, and uncover a novel trans-tumor-suppression mechanism dependent on p53. This study has potential implications in diagnosis and therapies of cancer.
Collapse
|
12
|
Abstract
Vascular anomalies are developmental defects of the vasculature and encompass a variety of disorders. The identification of genes mutated in the different malformations provides insight into the etiopathogenic mechanisms and the specific roles the associated proteins play in vascular development and maintenance. A few familial forms of vascular anomalies exist, but most cases occur sporadically. It is becoming evident that somatic mosaicism plays a major role in the formation of vascular lesions. The use of Next Generating Sequencing for high throughput and "deep" screening of both blood and lesional DNA and RNA has been instrumental in detecting such low frequency somatic changes. The number of novel causative mutations identified for many vascular anomalies has soared within a 10-year period. The discovery of such genes aided in unraveling a holistic overview of the pathogenic mechanisms, by which in vitro and in vivo models could be generated, and opening the doors to development of more effective treatments that do not address just symptoms. Moreover, as many mutations and the implicated signaling pathways are shared with cancers, current oncological therapies could potentially be repurposed for the treatment of vascular anomalies.
Collapse
Affiliation(s)
- Ha-Long Nguyen
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Laurence M Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium; Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, Saint Luc University Hospital, Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium; Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, Saint Luc University Hospital, Brussels, Belgium; WELBIO (Walloon Excellence in Lifesciences and Biotechnology), de Duve Institute, University of Louvain, Brussels, Belgium.
| |
Collapse
|
13
|
Shen S, Shang L, Liu H, Liang Q, Liang W, Ge S. AGGF1 inhibits the expression of inflammatory mediators and promotes angiogenesis in dental pulp cells. Clin Oral Investig 2020; 25:581-592. [PMID: 32789654 DOI: 10.1007/s00784-020-03498-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To determine the role of angiogenic factor with G-patch and FHA domain 1 (AGGF1) in inflammatory response of human dental pulp cells (DPCs) and the underneath mechanism and to explore its role in angiogenesis. MATERIALS AND METHODS The expression of AGGF-1 in human healthy and inflammatory pulp tissues was detected by immunohistochemistry. RT-qPCR and Western blot were used to evaluate the expression of AGGF1 in DPCs stimulated by lipopolysaccharide (LPS). After AGGF1 was knocked down, the expression of LPS-induced inflammatory cytokines in DPCs was quantified by RT-qPCR and ELISA. Immunofluorescence and Western blot were used to assess the activation of NF-κB signaling. Inflammatory cytokines were detected by RT-qPCR and ELISA in DPCs pretreated with NF-κB pathway inhibitors before LPS stimulation, and then the effect of AGGF1 on angiogenesis was also evaluated. RESULTS AGGF1 expression increased in inflammatory dental pulp tissues. In DPCs stimulated by LPS, AGGF1 was upregulated in a dose-dependent manner (P < 0.05). In AGGF1 knockdown cells, the expression of IL-6, IL-8, and monocyte chemoattractant protein-1 (MCP-1/CCL-2) increased by LPS stimulation (P < 0.001). Nuclear translocation of p65 was promoted, and the addition of NF-κB inhibitors inhibited the expression of inflammatory factors. Meanwhile, knockdown of AGGF1 inhibited vascularization. CONCLUSIONS AGGF1 inhibited the synthesis of inflammatory cytokines through NF-κB signaling pathway and promoted the angiogenesis of DPCs. CLINICAL RELEVANCE This study might shed light in the treatment of pulpitis and regeneration of dental pulp tissues; however, more clinical trials are required to validate these findings.
Collapse
Affiliation(s)
- Song Shen
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, 250012, Jinan, People's Republic of China
| | - Lingling Shang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, 250012, Jinan, People's Republic of China
| | - Hongrui Liu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, 250012, Jinan, People's Republic of China
| | - Qianyu Liang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, 250012, Jinan, People's Republic of China
| | - Wei Liang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, 250012, Jinan, People's Republic of China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, 250012, Jinan, People's Republic of China.
| |
Collapse
|
14
|
Yao G, Li R, Du J, Yao Y. Angiogenic factor with G patch and FHA domains 1 protects retinal vascular endothelial cells under hyperoxia by inhibiting autophagy. J Biochem Mol Toxicol 2020; 34:e22572. [PMID: 32633013 DOI: 10.1002/jbt.22572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/07/2020] [Accepted: 06/23/2020] [Indexed: 11/06/2022]
Abstract
Angiogenic factor with G patch and FHA domains 1 (AGGF1) has strong proangiogenic effects on embryonic vascular development and angiogenesis in disease; however, its role in retinopathy has not been elucidated. Retinopathy of prematurity is a serious retinal disorder of premature infants, which is caused by the arrest of immature retinal vascular growth under hyperoxia. This study aims to investigate the effects of AGGF1 on retinal vascular endothelial cells under hyperoxia and the association with autophagy by using rhesus macaque choroid-retinal endothelial (RF/6A) cells. Western blot analysis and immunofluorescence staining were used to detect the expression of AGGF1 in RF/6A cells. Cell Counting Kit-8, flow cytometry, and transwell and matrigel assays were applied to detect the vitality, apoptosis, migration, and tube formation of RF/6A cells, respectively. Western blot analysis was then used to detect the expression of autophagy markers LC3 and Beclin-1, and mCherry-GFP-LC3 adenovirus was used to detect autophagy flux in RF/6A cells. Under hyperoxia, the expression of AGGF1 in RF/6A cells decreased compared with the control. Cell vitality, migration, and tube formation decreased, and apoptosis of RF/6A cells increased under hyperoxia, and these effects of hyperoxia were attenuated by AGGF1. The protein expressions of LC3 and Beclin-1 increased in RF/6A cells and autophagy flux enhanced under hyperoxia. AGGF1 reduced the expression of LC3 and Beclin-1 as well as the autophagy flux stimulated by hyperoxia. The results clearly showed that exogenous AGGF1 can protect retinal vascular endothelial cells and promote angiogenesis under hyperoxia, in which the expression of AGGF1 was inhibited. Inhibition of autophagy by AGGF1 may be one of the mechanisms involved.
Collapse
Affiliation(s)
- Guomin Yao
- Department of Ophthalmology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Rong Li
- Department of Ophthalmology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Junhui Du
- Department of Ophthalmology, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Yang Yao
- Department of Central laboratory, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China
| |
Collapse
|
15
|
Vaccarin Regulates Diabetic Chronic Wound Healing through FOXP2/AGGF1 Pathways. Int J Mol Sci 2020; 21:ijms21061966. [PMID: 32183046 PMCID: PMC7139532 DOI: 10.3390/ijms21061966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Diabetes mellitus is a growing global health issue nearly across the world. Diabetic patients who are prone to develop diabetes-related complications often exhibit progressive neuropathy (painless and sensory loss). It is usual for small wounds to progress to ulceration, which especially worsens with peripheral arterial disease and in the presence of anaerobic bacteria, culminating into gangrene. In our study, vaccarin (VAC), the main active monomer extracted from Chinese herb vaccariae semen, is proven to have a role in promoting diabetic chronic wound healing through a cytoprotective role under high glucose conditions. Materials and methods: We constructed a pressure ulcer on both VAC-treated and control mice based on a type 1 diabetes (T1DM) model. The wound healing index was evaluated by an experimental wound assessment tool (EWAT). We also determined the effect of VAC on the proliferation and cell migration of human microvascular endothelial cells (HMEC-1) by a cell counting kit (CCK-8), a scratch and transwell assay. Results: The results demonstrated that VAC could promote the proliferation and migration of high glucose-stimulated HMEC-1 cells, which depend on the activation of FOXP2/AGGF1. Activation of the angiogenic factor with G patch and FHA domains 1 (AGGF1) caused enhanced phosphorylation of serine/threonine kinase (Akt) and extracellular regulated protein kinases (Erk1/2). By silencing the expression of forkhead box p2 (FOXP2) protein by siRNA, both mRNA and protein expression of AGGF1 were downregulated, leading to a decreased proliferation and migration of HMEC-1 cells. In addition, a diabetic chronic wound model in vivo unveiled that VAC had a positive effect on chronic wound healing, which involved the activation of the above-mentioned pathways. Conclusions: In summary, our study found that VAC promoted chronic wound healing in T1DM mice by activating the FOXP2/AGGF1 pathway, indicating that VAC may be a promising candidate for the treatment of the chronic wounds of diabetic patients.
Collapse
|
16
|
Ma L, Dai J, Chen J, Cai HW, Li JY, Li XY, Chen SJ, Mao W. Research Progress of Angiogenesis in Atherosclerotic Plaque in Chinese Medicine and Western Medicine. Chin J Integr Med 2018; 24:950-955. [PMID: 30178090 DOI: 10.1007/s11655-018-2569-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2018] [Indexed: 10/28/2022]
Abstract
Angiogenesis in atherosclerotic plaque plays a critical role in the mechanism of atherosclerotic physiopathology. Present consensus shows that angiogenesis in atherosclerotic plaque is mainly resulted in hypoxia, inflammation and some pro-angiogenic factors. The homeostasis in plaque, which is hypoxic and infiltrated by inflammatory cells, may lead to angiogenesis, increase the plaque instability and the incidence rate of vascular events. This article reviews the progression of pathogenetic mechanism, physiopathological significance, relevant detecting technique and corresponding therapeutic methods of Chinese and Western medicine of angiogenesis in atherosclerotic plaque, so as to provide more theoretical basis for atherosclerotic clinical treatment.
Collapse
Affiliation(s)
- Lan Ma
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jin Dai
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jie Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hong-Wen Cai
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jia-Ying Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xin-Yao Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shen-Jie Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wei Mao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
17
|
Wang N, Xu M, Liao S. [ole of AGGF1 in DNA damage repair and modulating chemotherapy resistance in human colon cancer cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:861-866. [PMID: 33168501 DOI: 10.3969/j.issn.1673-4254.2018.07.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the role of AGGF1 in DNA damage repair and modulating chemotherapy resistance in human colon cancer cells. METHODS Cisplatin-induced human colon cancer HCT116 cells transfected with AGGF1 siRNA and siNC via Lipofectamine 2000 were examined for AGGF1, γH2AX and pNBS1 expressions using Western blotting. Immunofluorescence analysis was used to detect the recruitment of phosphorylated γH2AX and AGGF1 at the site of cisplatin-induced double-strand DNA breaks, and MTS method was used to investigate the proliferation of the damaged cells. Immunohistochemical method was used to detect the expression level of AGGF1 in human colon cancer and adjacent normal tissues. RESULTS Western blotting showed that AGGF1 expression was significantly down-regulated in HCT116 cells after cisplatin exposure, and transfection withAGGF1 siRNAobviously inhibited the expression of phosphorylated γH2AX and NBS1. Immunofluorescence assay showed the co-localization of AGGF1 and γH2AX. Down-regulation of AGGF1 mediated by siRNA obviously increased the chemosensitivity of the cells (P < 0.01). In the clinical specimens, AGGF1 was found to be overexpressed in colon cancer tissues as compared with the adjacent normal tissues (P < 0.01), suggesting its association with the malignant phenotype of the tumor. CONCLUSIONS Down-regulation of AGGF1 inhibits DNA damage repair and increases the chemosensitivity in colon cancer cells possibly in relation with the suppressed phosphorylation of NBS1.
Collapse
Affiliation(s)
- Nan Wang
- Laboratory of Cell and Molecular Biology, College of Life Sciences, Meizhou 514015, China
| | - Meilan Xu
- Clinical Microbiology and Immunology Laboratory, Medical College, Jiaying University, Meizhou 514015, China
| | - Shuting Liao
- Laboratory of Cell and Molecular Biology, College of Life Sciences, Meizhou 514015, China
| |
Collapse
|
18
|
Aggf1 attenuates neuroinflammation and BBB disruption via PI3K/Akt/NF-κB pathway after subarachnoid hemorrhage in rats. J Neuroinflammation 2018; 15:178. [PMID: 29885663 PMCID: PMC5994242 DOI: 10.1186/s12974-018-1211-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/20/2018] [Indexed: 12/23/2022] Open
Abstract
Background Neuroinflammation and blood-brain barrier (BBB) disruption are two critical mechanisms of subarachnoid hemorrhage (SAH)-induced brain injury, which are closely related to patient prognosis. Recently, angiogenic factor with G-patch and FHA domain 1 (Aggf1) was shown to inhibit inflammatory effect and preserve vascular integrity in non-nervous system diseases. This study aimed to determine whether Aggf1 could attenuate neuroinflammation and preserve BBB integrity after experimental SAH, as well as the underlying mechanisms of its protective roles. Methods Two hundred forty-nine male Sprague-Dawley rats were subjected to the endovascular perforation model of SAH. Recombinant human Aggf1 (rh-Aggf1) was administered intravenously via tail vein injection at 1 h after SAH induction. To investigate the underlying neuroprotection mechanism, Aggf1 small interfering RNA (Aggf1 siRNA) and PI3K-specific inhibitor LY294002 were administered through intracerebroventricular (i.c.v.) before SAH induction. SAH grade, neurological score, brain water content, BBB permeability, Western blot, and immunohistochemistry were performed. Results Expression of endogenous Aggf1 was markedly increased after SAH. Aggf1 was primarily expressed in endothelial cells and astrocytes, as well as microglia after SAH. Administration of rh-Aggf1 significantly reduced brain water content and BBB permeability, decreased the numbers of infiltrating neutrophils, and activated microglia in the ipsilateral cerebral cortex following SAH. Furthermore, rh-Aggf1 treatment improved both short- and long-term neurological functions after SAH. Meanwhile, exogenous rh-Aggf1 significantly increased the expression of PI3K, p-Akt, VE-cadherin, Occludin, and Claudin-5, as well as decreased the expression of p-NF-κB p65, albumin, myeloperoxidase (MPO), TNF-α, and IL-1β. Conversely, knockdown of endogenous Aggf1 aggravated BBB breakdown, inflammatory response and neurological impairments at 24 h after SAH. Additionally, the protective roles of rh-Aggf1 were abolished by LY294002. Conclusions Taken together, exogenous Aggf1 treatment attenuated neuroinflammation and BBB disruption, improved neurological deficits after SAH in rats, at least in part through the PI3K/Akt/NF-κB pathway. Electronic supplementary material The online version of this article (10.1186/s12974-018-1211-8) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Si W, Xie W, Deng W, Xiao Y, Karnik SS, Xu C, Chen Q, Wang QK. Angiotensin II increases angiogenesis by NF-κB-mediated transcriptional activation of angiogenic factor AGGF1. FASEB J 2018; 32:5051-5062. [PMID: 29641288 DOI: 10.1096/fj.201701543rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Angiogenic factor with G-patch and FHA domains 1 (AGGF1) is involved in vascular development, angiogenesis, specification of hemangioblasts, and differentiation of veins. When mutated, however, it causes Klippel-Trenaunay syndrome, a vascular disorder. In this study, we show that angiotensin II (AngII)-the major effector of the renin-angiotensin system and one of the most important regulators of the cardiovascular system-induces the expression of AGGF1 through NF-κB, and that AGGF1 plays a key role in AngII-induced angiogenesis. AngII significantly up-regulated the levels of AGGF1 mRNA and protein in HUVECs at concentrations of 10-40 μg/ml but not >60 μg/ml. AngII type 1 receptor (AT1R) inhibitor losartan inhibited AngII-induced up-regulation of AGGF1, whereas AT2R inhibitor PD123319 further increased AngII-induced up-regulation of AGGF1. Up-regulation of AGGF1 by AngII was blocked by NF-κB inhibitors, and p65 binds directly to a binding site at the promoter/regulatory region of AGGF1 and transcriptionally activates AGGF1 expression. AngII-induced endothelial tube formation was blocked by small interfering RNAs (siRNAs) for RELA (RELA proto-oncogene, NF-κB subunit)/p65 or AGGF1, and the effect of RELA siRNA was rescued by AGGF1. AngII-induced angiogenesis from aortic rings was severely impaired in Aggf1+/- mice, and the effect was restored by AGGF1. These data suggest that AngII acts as a critical regulator of AGGF1 expression through NF-κB, and that AGGF1 plays a key role in AngII-induced angiogenesis.-Si, W., Xie, W., Deng, W., Xiao, Y., Karnik, S. S., Xu, C., Chen, Q., Wang, Q. K. Angiotensin II increases angiogenesis by NF-κB-mediated transcriptional activation of angiogenic factor AGGF1.
Collapse
Affiliation(s)
- Wenxia Si
- Key Laboratory of Molecular Biophysics-Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital-Edong Healthcare Group, Hubei Polytechnic University School of Medicine, Huangshi, China
| | - Wen Xie
- Key Laboratory of Molecular Biophysics-Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbing Deng
- Key Laboratory of Molecular Biophysics-Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Xiao
- College of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Sadashiva S Karnik
- Center for Cardiovascular Genetics, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; and.,Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Learner College of Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; and
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics-Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyun Chen
- Center for Cardiovascular Genetics, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; and.,Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Learner College of Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; and
| | - Qing Kenneth Wang
- Key Laboratory of Molecular Biophysics-Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China.,College of Physics, Huazhong University of Science and Technology, Wuhan, China.,Center for Cardiovascular Genetics, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; and.,Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Learner College of Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; and.,Department of Genetics and Genome Science, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
20
|
Yao Y, Lu Q, Hu Z, Yu Y, Chen Q, Wang QK. A non-canonical pathway regulates ER stress signaling and blocks ER stress-induced apoptosis and heart failure. Nat Commun 2017; 8:133. [PMID: 28743963 PMCID: PMC5527107 DOI: 10.1038/s41467-017-00171-w] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 06/07/2017] [Indexed: 01/20/2023] Open
Abstract
Endoplasmic reticulum stress is an evolutionarily conserved cell stress response associated with numerous diseases, including cardiac hypertrophy and heart failure. The major endoplasmic reticulum stress signaling pathway causing cardiac hypertrophy involves endoplasmic reticulum stress sensor PERK (protein kinase-like kinase) and eIF2α-ATF4-CHOP signaling. Here, we describe a non-canonical, AGGF1-mediated regulatory system for endoplasmic reticulum stress signaling associated with increased p-eIF2α and ATF4 and decreased sXBP1 and CHOP. Specifically, we see a reduced AGGF1 level consistently associated with induction of endoplasmic reticulum stress signaling in mouse models and human patients with heart failure. Mechanistically, AGGF1 regulates endoplasmic reticulum stress signaling by inhibiting ERK1/2 activation, which reduces the level of transcriptional repressor ZEB1, leading to induced expression of miR-183-5p. miR-183-5p post-transcriptionally downregulates CHOP and inhibits endoplasmic reticulum stress-induced apoptosis. AGGF1 protein therapy and miR-183-5p regulate endoplasmic reticulum stress signaling and block endoplasmic reticulum stress-induced apoptosis, cardiac hypertrophy, and heart failure, providing an attractive paradigm for treatment of cardiac hypertrophy and heart failure. Endoplasmic reticulum (ER) stress promotes cardiac dysfunction. Here the authors uncover a pathway whereby AGGF1 blocks ER stress by inhibiting ERK1/2 activation and the transcriptional repressor ZEB1, leading to induction of miR-183-5p and down-regulation of CHOP, and show that AGGF1 can effectively treat cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Yufeng Yao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430074, China
| | - Qiulun Lu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430074, China
| | - Zhenkun Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430074, China
| | - Yubin Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430074, China
| | - Qiuyun Chen
- Department of Molecular Cardiology, Center for Cardiovascular Genetics, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, CCLCM, Case Western Reserve University, Cleveland, OH, 44195, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430074, China. .,Department of Molecular Cardiology, Center for Cardiovascular Genetics, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Department of Molecular Medicine, CCLCM, Case Western Reserve University, Cleveland, OH, 44195, USA. .,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44195, USA.
| |
Collapse
|
21
|
Yao Y, Hu Z, Ye J, Hu C, Song Q, Da X, Yu Y, Li H, Xu C, Chen Q, Wang QK. Targeting AGGF1 (angiogenic factor with G patch and FHA domains 1) for Blocking Neointimal Formation After Vascular Injury. J Am Heart Assoc 2017. [PMID: 28649088 PMCID: PMC5669188 DOI: 10.1161/jaha.117.005889] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Despite recent improvements in angioplasty and placement of drug‐eluting stents in treatment of atherosclerosis, restenosis and in‐stent thrombosis impede treatment efficacy and cause numerous deaths. Research efforts are needed to identify new molecular targets for blocking restenosis. We aim to establish angiogenic factor AGGF1 (angiogenic factor with G patch and FHA domains 1) as a novel target for blocking neointimal formation and restenosis after vascular injury. Methods and Results AGGF1 shows strong expression in carotid arteries; however, its expression is markedly decreased in arteries after vascular injury. AGGF1+/− mice show increased neointimal formation accompanied with increased proliferation of vascular smooth muscle cells (VSMCs) in carotid arteries after vascular injury. Importantly, AGGF1 protein therapy blocks neointimal formation after vascular injury by inhibiting the proliferation and promoting phenotypic switching of VSMCs to the contractile phenotype in mice in vivo. In vitro, AGGF1 significantly inhibits VSMCs proliferation and decreases the cell numbers at the S phase. AGGF1 also blocks platelet‐derived growth factor‐BB–induced proliferation, migration of VSMCs, increases expression of cyclin D, and decreases expression of p21 and p27. AGGF1 inhibits phenotypic switching of VSMCs to the synthetic phenotype by countering the inhibitory effect of platelet‐derived growth factor‐BB on SRF expression and the formation of the myocardin/SRF/CArG‐box complex involved in activation of VSMCs markers. Finally, we show that AGGF1 inhibits platelet‐derived growth factor‐BB–induced phosphorylation of MEK1/2, ERK1/2, and Elk phosphorylation involved in the phenotypic switching of VSMCs, and that overexpression of Elk abolishes the effect of AGGF1. Conclusions AGGF1 protein therapy is effective in blocking neointimal formation after vascular injury by regulating a novel AGGF1‐MEK1/2‐ERK1/2‐Elk‐myocardin‐SRF/p27 signaling pathway.
Collapse
Affiliation(s)
- Yufeng Yao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenkun Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Ye
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Changqing Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qixue Song
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xingwen Da
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yubin Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyun Chen
- Department of Molecular Cardiology, Center for Cardiovascular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH .,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH
| | - Qing Kenneth Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China .,Department of Molecular Cardiology, Center for Cardiovascular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
22
|
Zhou B, Zeng S, Li N, Yu L, Yang G, Yang Y, Zhang X, Fang M, Xia J, Xu Y. Angiogenic Factor With G Patch and FHA Domains 1 Is a Novel Regulator of Vascular Injury. Arterioscler Thromb Vasc Biol 2017; 37:675-684. [PMID: 28153879 DOI: 10.1161/atvbaha.117.308992] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/20/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Phenotypic modulation of vascular smooth muscle cells represents a hallmark event in vascular injury. The underlying mechanism is not completely sorted out. We investigated the involvement of angiogenic factor with G patch and FHA domains 1 (Aggf1) in vascular injury focusing on the transcriptional regulation of vascular smooth muscle cell signature genes. APPROACH AND RESULTS We report here that Aggf1 expression was downregulated in several different cell models of phenotypic modulation in vitro and in the vessels after carotid artery ligation in mice. Adenovirus-mediated Aggf1 overexpression dampened vascular injury and normalized vascular smooth muscle cell signature gene expression. Mechanistically, Aggf1 interacted with myocardin and was imperative for the formation of a serum response factor-myocardin complex on gene promoters. In response to injurious stimuli, kruppel-like factor 4 was recruited to the Aggf1 promoter and enlisted histone deacetylase 11 to repress Aggf1 transcription. In accordance, depletion of kruppel-like factor 4 or histone deacetylase 11 restored Aggf1 expression and abrogated vascular smooth muscle cell phenotypic modulation. Finally, treatment of a histone deacetylase 11 inhibitor attenuated vascular injury in mice. CONCLUSIONS Therefore, we have unveiled a previously unrecognized role for Aggf1 in regulating vascular injury.
Collapse
Affiliation(s)
- Bisheng Zhou
- From the Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (B.Z., S.Z., N.L., L.Y., G.Y., X.Z., Y.X.); State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing (Y.Y.); Department of Nursing, Jiangsu Jiankang Vocational University, Nanjing, China (M.F.); and Department of Respiratory Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China (J.X.)
| | - Sheng Zeng
- From the Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (B.Z., S.Z., N.L., L.Y., G.Y., X.Z., Y.X.); State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing (Y.Y.); Department of Nursing, Jiangsu Jiankang Vocational University, Nanjing, China (M.F.); and Department of Respiratory Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China (J.X.)
| | - Nan Li
- From the Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (B.Z., S.Z., N.L., L.Y., G.Y., X.Z., Y.X.); State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing (Y.Y.); Department of Nursing, Jiangsu Jiankang Vocational University, Nanjing, China (M.F.); and Department of Respiratory Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China (J.X.)
| | - Liming Yu
- From the Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (B.Z., S.Z., N.L., L.Y., G.Y., X.Z., Y.X.); State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing (Y.Y.); Department of Nursing, Jiangsu Jiankang Vocational University, Nanjing, China (M.F.); and Department of Respiratory Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China (J.X.)
| | - Guang Yang
- From the Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (B.Z., S.Z., N.L., L.Y., G.Y., X.Z., Y.X.); State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing (Y.Y.); Department of Nursing, Jiangsu Jiankang Vocational University, Nanjing, China (M.F.); and Department of Respiratory Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China (J.X.)
| | - Yuyu Yang
- From the Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (B.Z., S.Z., N.L., L.Y., G.Y., X.Z., Y.X.); State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing (Y.Y.); Department of Nursing, Jiangsu Jiankang Vocational University, Nanjing, China (M.F.); and Department of Respiratory Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China (J.X.)
| | - Xinjian Zhang
- From the Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (B.Z., S.Z., N.L., L.Y., G.Y., X.Z., Y.X.); State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing (Y.Y.); Department of Nursing, Jiangsu Jiankang Vocational University, Nanjing, China (M.F.); and Department of Respiratory Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China (J.X.)
| | - Mingming Fang
- From the Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (B.Z., S.Z., N.L., L.Y., G.Y., X.Z., Y.X.); State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing (Y.Y.); Department of Nursing, Jiangsu Jiankang Vocational University, Nanjing, China (M.F.); and Department of Respiratory Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China (J.X.)
| | - Jun Xia
- From the Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (B.Z., S.Z., N.L., L.Y., G.Y., X.Z., Y.X.); State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing (Y.Y.); Department of Nursing, Jiangsu Jiankang Vocational University, Nanjing, China (M.F.); and Department of Respiratory Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China (J.X.)
| | - Yong Xu
- From the Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (B.Z., S.Z., N.L., L.Y., G.Y., X.Z., Y.X.); State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing (Y.Y.); Department of Nursing, Jiangsu Jiankang Vocational University, Nanjing, China (M.F.); and Department of Respiratory Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China (J.X.).
| |
Collapse
|
23
|
Xu W, Zeng S, Li M, Fan Z, Zhou B. Aggf1 attenuates hepatic inflammation and activation of hepatic stellate cells by repressing Ccl2 transcription. J Biomed Res 2017; 31:428-436. [PMID: 28958996 PMCID: PMC5706435 DOI: 10.7555/jbr.30.20160046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Liver injury represents a continuum of pathophysiological processes involving a complex interplay between hepatocytes, macrophages, and hepatic stellate cells. The mechanism whereby these intercellular interactions contribute to liver injury and fibrosis is not completely understood. We report here that angiogenic factor with G patch and FHA domains 1 (Aggf1) was downregulated in the livers of cirrhotic patients compared to healthy controls and in primary hepatocytes in response to carbon tetrachloride (CCl4) stimulation. Overexpression of Aggf1 attenuated macrophage chemotaxis. Aggf1 interacted with NF-κB to block its binding to theCcl2 gene promoter and repressed Ccl2 transcription in hepatocytes. Macrophages cultured in the conditioned media collected from Aggf1-overexpressing hepatocytes antagonized HSC activation. Taken together, our data illustrate a novel role for Aggf1 in regulating hepatic inflammation and provide insights on the development of interventional strategies against cirrhosis.
Collapse
Affiliation(s)
- Wenping Xu
- Department of Nursing, Jiangsu Jiankang Vocational University, Nanjing, Jiangsu 210029, China
| | - Sheng Zeng
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Min Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhiwen Fan
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bisheng Zhou
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
24
|
Shao J, Zeng S, Zhou B, Xu H, Bian Y, Xu Y. Angiogenic factor with G patch and FHA domains 1 (Aggf1) promotes hepatic steatosis in mice. Biochem Biophys Res Commun 2016; 482:134-140. [PMID: 27865839 DOI: 10.1016/j.bbrc.2016.10.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 11/18/2022]
Abstract
Increased uptake of nutrients coupled with reduced activity leads to the development of a host of metabolic disorders in humans. In the present study we examined the role of angiogenic factor with G patch and FHA domains 1 (Aggf1) in the pathogenesis of steatosis, characterized by accumulation of lipids in the liver and consequently hepatic insulin resistance. We report here that Aggf1 expression was up-regulated in the liver in both genetically predisposed and diet-induced mouse model of steatosis. Aggf1 expression was also stimulated by free fatty acids in primary hepatocytes. Over-expression of Aggf1 in mice promoted steatosis. On the contrary, Aggf1 depletion ameliorated steatosis in mice. Mechanistically, Aggf1 activated the expression of gluconeogenesis gene and skewed the insulin signaling pathway to induce insulin resistance. Taken together, our data suggest that Aggf1 plays a role in steatosis in vivo and as such may be a new target in the development of therapeutics solutions against steatosis.
Collapse
Affiliation(s)
- Jing Shao
- College of Basic Medical Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng Zeng
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Bisheng Zhou
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.
| | - Huihui Xu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yaoyao Bian
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Xu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
25
|
Zhou X, Han X, Wittfeldt A, Sun J, Liu C, Wang X, Gan LM, Cao H, Liang Z. Long non-coding RNA ANRIL regulates inflammatory responses as a novel component of NF-κB pathway. RNA Biol 2016; 13:98-108. [PMID: 26618242 DOI: 10.1080/15476286.2015.1122164] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Antisense Noncoding RNA in the INK4 Locus (ANRIL) is the prime candidate gene at Chr9p21, the well-defined genetic risk locus associated with multiple human diseases including coronary artery disease (CAD), while little is known regarding its role in the pathological processes. Endothelial dysfunction triggers atherosclerotic processes that are causatively linked to CAD. To evaluate the function of ANRIL in human endothelial cells (ECs), we examined ANRIL expression under pathological stimuli and found ANRIL was markedly induced by pro-inflammatory factors. Loss-of-function and chromatin immunoprecipitation approaches revealed that NF-κB mediates TNF-α induced ANRIL expression. RNA sequencing revealed that ANRIL silencing dysregulated expression of inflammatory genes including IL6 and IL8 under TNF-α treatment. We explored the regulatory mechanism of ANRIL on IL6/8 and found that Yin Yang 1 (YY1), an ANRIL binding transcriptional factor revealed by RNA immunoprecipitation, was required for IL6/8 expression under TNF-α treatment. YY1 was enriched at promoter loci of IL6/8 and ANRIL silencing impaired the enrichment, indicating a cooperation between ANRIL and YY1 in the regulation of inflammatory genes. For the first time, we establish the connection between ANRIL and NF-κB pathway and show that ANRIL regulates inflammatory responses through binding with YY1. The newly identified TNF-α-NF-κB-ANRIL/YY1-IL6/8 pathway enhances understanding of the etiology of CAD and provides potential therapeutic target for treatment of CAD.
Collapse
Affiliation(s)
- Xiao Zhou
- a Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University , Beijing , 100871 , China
| | - Xiaorui Han
- a Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University , Beijing , 100871 , China
| | - Ann Wittfeldt
- b Department of Molecular and Clinical Medicine , Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg , Sweden
| | - Jingzhi Sun
- c Department of Cardiolody , Affiliated Hospital of Jining Medical University , Jining , 272000 , China
| | - Chujun Liu
- d Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University , Beijing , 100871 , China
| | - Xiaoxia Wang
- a Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University , Beijing , 100871 , China
| | - Li-Ming Gan
- b Department of Molecular and Clinical Medicine , Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg , Sweden.,e AstraZeneca R&D , Mölndal , Sweden
| | - Huiqing Cao
- a Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University , Beijing , 100871 , China
| | - Zicai Liang
- a Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University , Beijing , 100871 , China
| |
Collapse
|
26
|
Shadrina AS, Smetanina MA, Sevost'ianova KS, Sokolova EA, Shevela AI, Selivestrov EI, Demekhova MY, Shonov OA, Ilyukhin EA, Voronina EN, Zolotukhin IA, Kirienko AI, Filipenko ML. Polymorphic Variants rs13155212 (T/C) and rs7704267 (G/C) in the AGGF1 Gene and Risk of Varicose Veins of the Lower Extremities in the Population of Ethnic Russians. Bull Exp Biol Med 2016; 161:698-702. [PMID: 27704351 DOI: 10.1007/s10517-016-3488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Indexed: 10/20/2022]
Abstract
We analyzed associations between single nucleotide polymorphisms (SNP) rs13155212 and rs7704267 in the AGGF1 gene (angiogenic factor with G patch and FHA domains 1) and the risk of risk of varicose veins of the legs in ethnic Russians. Frequencies of alleles, genotypes, and haplotypes were estimated in the sample of patients with this disease (474 patients) and in the control group of participants (478 volunteers) without a history of chronic venous disease. None of the studied polymorphisms was associated with the risk of this pathology. The whole AGGF1 gene sequence lies in a single block of high linkage disequilibrium, and both studied polymorphic variants are representative of all other SNP within this region. From these results, a conclusion was made that AGGF1 gene polymorphism does not affect the risk of varicose veins of the legs in ethnic Russians, or its contribution is low and can be revealed only after analysis of larger cohorts.
Collapse
Affiliation(s)
- A S Shadrina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia. .,Novosibirsk National Research State University, Novosibirsk, Russia.
| | - M A Smetanina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - K S Sevost'ianova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E A Sokolova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk National Research State University, Novosibirsk, Russia
| | - A I Shevela
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E I Selivestrov
- N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | | | | | - E N Voronina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk National Research State University, Novosibirsk, Russia
| | - I A Zolotukhin
- N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A I Kirienko
- N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - M L Filipenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk National Research State University, Novosibirsk, Russia
| |
Collapse
|
27
|
Genetic Modifiers of White Blood Cell Count, Albuminuria and Glomerular Filtration Rate in Children with Sickle Cell Anemia. PLoS One 2016; 11:e0164364. [PMID: 27711207 PMCID: PMC5053442 DOI: 10.1371/journal.pone.0164364] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/24/2016] [Indexed: 11/19/2022] Open
Abstract
Discovery and validation of genetic variants that influence disease severity in children with sickle cell anemia (SCA) could lead to early identification of high-risk patients, better screening strategies, and intervention with targeted and preventive therapy. We hypothesized that newly identified genetic risk factors for the general African American population could also impact laboratory biomarkers known to contribute to the clinical disease expression of SCA, including variants influencing the white blood cell count and the development of albuminuria and abnormal glomerular filtration rate. We first investigated candidate genetic polymorphisms in well-characterized SCA pediatric cohorts from three prospective NHLBI-supported clinical trials: HUSTLE, SWiTCH, and TWiTCH. We also performed whole exome sequencing to identify novel genetic variants, using both a discovery and a validation cohort. Among candidate genes, DARC rs2814778 polymorphism regulating Duffy antigen expression had a clear influence with significantly increased WBC and neutrophil counts, but did not affect the maximum tolerated dose of hydroxyurea therapy. The APOL1 G1 polymorphism, an identified risk factor for non-diabetic renal disease, was associated with albuminuria. Whole exome sequencing discovered several novel variants that maintained significance in the validation cohorts, including ZFHX4 polymorphisms affecting both the leukocyte and neutrophil counts, as well as AGGF1, CYP4B1, CUBN, TOR2A, PKD1L2, and CD163 variants affecting the glomerular filtration rate. The identification of robust, reliable, and reproducible genetic markers for disease severity in SCA remains elusive, but new genetic variants provide avenues for further validation and investigation.
Collapse
|
28
|
Lu Q, Yao Y, Hu Z, Hu C, Song Q, Ye J, Xu C, Wang AZ, Chen Q, Wang QK. Angiogenic Factor AGGF1 Activates Autophagy with an Essential Role in Therapeutic Angiogenesis for Heart Disease. PLoS Biol 2016; 14:e1002529. [PMID: 27513923 PMCID: PMC4981375 DOI: 10.1371/journal.pbio.1002529] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/12/2016] [Indexed: 01/13/2023] Open
Abstract
AGGF1 is an angiogenic factor with therapeutic potential to treat coronary artery disease (CAD) and myocardial infarction (MI). However, the underlying mechanism for AGGF1-mediated therapeutic angiogenesis is unknown. Here, we show for the first time that AGGF1 activates autophagy, a housekeeping catabolic cellular process, in endothelial cells (ECs), HL1, H9C2, and vascular smooth muscle cells. Studies with Atg5 small interfering RNA (siRNA) and the autophagy inhibitors bafilomycin A1 (Baf) and chloroquine demonstrate that autophagy is required for AGGF1-mediated EC proliferation, migration, capillary tube formation, and aortic ring-based angiogenesis. Aggf1+/- knockout (KO) mice show reduced autophagy, which was associated with inhibition of angiogenesis, larger infarct areas, and contractile dysfunction after MI. Protein therapy with AGGF1 leads to robust recovery of myocardial function and contraction with increased survival, increased ejection fraction, reduction of infarct areas, and inhibition of cardiac apoptosis and fibrosis by promoting therapeutic angiogenesis in mice with MI. Inhibition of autophagy in mice by bafilomycin A1 or in Becn1+/- and Atg5 KO mice eliminates AGGF1-mediated angiogenesis and therapeutic actions, indicating that autophagy acts upstream of and is essential for angiogenesis. Mechanistically, AGGF1 initiates autophagy by activating JNK, which leads to activation of Vps34 lipid kinase and the assembly of Becn1-Vps34-Atg14 complex involved in the initiation of autophagy. Our data demonstrate that (1) autophagy is essential for effective therapeutic angiogenesis to treat CAD and MI; (2) AGGF1 is critical to induction of autophagy; and (3) AGGF1 is a novel agent for treatment of CAD and MI. Our data suggest that maintaining or increasing autophagy is a highly innovative strategy to robustly boost the efficacy of therapeutic angiogenesis. Treatment with the angiogenic factor AGGF1 dramatically improves survival and cardiac function in mouse models for coronary artery disease and myocardial infarction by activating autophagy and angiogenesis. Coronary artery disease is the number one killer disease worldwide. Recently, therapeutic angiogenesis has been proposed as an attractive new strategy for treating this and other ischemic diseases. This study establishes the angiogenic factor AGGF1 as a novel target and agent that can successfully treat coronary artery disease and acute myocardial infarction and dramatically improve survival and cardiac function in mouse models. We present the unexpected finding that AGGF1 has these effects via activating autophagy, and that autophagy is essential for therapeutic angiogenesis in animals. We find that AGGF1 is a novel master regulator of autophagy not only in endothelial cells but also in all other cell types examined in the study. Mechanistically, AGGF1 activates autophagy by activating JNK, which leads to activation of the Vps34 lipid kinase and assembly of the Becn1-Vps34-Atg14 complex involved in the initiation of autophagy. The study thus provides a link connecting the therapeutic angiogenesis and autophagy pathways in heart disease.
Collapse
MESH Headings
- Angiogenic Proteins/genetics
- Angiogenic Proteins/metabolism
- Angiogenic Proteins/pharmacology
- Animals
- Autophagy/drug effects
- Autophagy/genetics
- Autophagy/physiology
- Autophagy-Related Protein 5/genetics
- Autophagy-Related Protein 5/metabolism
- Beclin-1/genetics
- Beclin-1/metabolism
- Blotting, Western
- Cell Line
- Cells, Cultured
- Enzyme Inhibitors/pharmacology
- Heart Diseases/drug therapy
- Heart Diseases/genetics
- Heart Diseases/metabolism
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/metabolism
- Human Umbilical Vein Endothelial Cells/physiology
- Humans
- Macrolides/pharmacology
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Physiologic/drug effects
- Recombinant Proteins/metabolism
- Recombinant Proteins/pharmacology
Collapse
Affiliation(s)
- Qiulun Lu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yufeng Yao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Zhenkun Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Changqing Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qixue Song
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Jian Ye
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Annabel Z. Wang
- Duke University, Durham, North Carolina, United States of America
| | - Qiuyun Chen
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Qing Kenneth Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P. R. China
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: ;
| |
Collapse
|
29
|
Guo J, Li Y, Ren YH, Sun Z, Dong J, Yan H, Xu Y, Wang DW, Zheng GY, Du J, Tian XL. Mutant LRP6 Impairs Endothelial Cell Functions Associated with Familial Normolipidemic Coronary Artery Disease. Int J Mol Sci 2016; 17:E1173. [PMID: 27455246 PMCID: PMC4964544 DOI: 10.3390/ijms17071173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 11/16/2022] Open
Abstract
Mutations in the genes low-density lipoprotein (LDL) receptor-related protein-6 (LRP6) and myocyte enhancer factor 2A (MEF2A) were reported in families with coronary artery disease (CAD). We intend to determine the mutational spectrum of these genes among hyperlipidemic and normolipidemic CAD families. Forty probands with early-onset CAD were recruited from 19 hyperlipidemic and 21 normolipidemic Chinese families. We sequenced all exons and intron-exon boundaries of LRP6 and MEF2A, and found a novel heterozygous variant in LRP6 from a proband with normolipidemic CAD. This variant led to a substitution of histidine to tyrosine (Y418H) in an evolutionarily conserved domain YWTD in exon 6 and was not found in 1025 unrelated healthy individuals. Co-segregated with CAD in the affected family, LRP6Y418H significantly debilitated the Wnt3a-associated signaling pathway, suppressed endothelial cell proliferation and migration, and decreased anti-apoptotic ability. However, it exhibited no influences on low-density lipoprotein cholesterol uptake. Thus, mutation Y418H in LRP6 likely contributes to normolipidemic familial CAD via impairing endothelial cell functions and weakening the Wnt3a signaling pathway.
Collapse
Affiliation(s)
- Jian Guo
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing 100871, China.
| | - Yang Li
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing 100871, China.
| | - Yi-Hong Ren
- Department of Cardiovascular, PLA General Hospital, Beijing 100853, China.
| | - Zhijun Sun
- Department of Cardiovascular, PLA General Hospital, Beijing 100853, China.
| | - Jie Dong
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing 100871, China.
| | - Han Yan
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing 100871, China.
| | - Yujun Xu
- The Institute of Hypertension and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Dao Wen Wang
- The Institute of Hypertension and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Gu-Yan Zheng
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing 100871, China.
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing 100029, China.
| | - Xiao-Li Tian
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing 100871, China.
- Department of Human Population Genetics, Human Aging Research Institute and School of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
30
|
Zhou B, Zeng S, Li L, Fan Z, Tian W, Li M, Xu H, Wu X, Fang M, Xu Y. Angiogenic factor with G patch and FHA domains 1 (Aggf1) regulates liver fibrosis by modulating TGF-β signaling. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1203-13. [DOI: 10.1016/j.bbadis.2016.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 11/26/2022]
|
31
|
Zhan M, Hori Y, Wada N, Ikeda JI, Hata Y, Osuga K, Morii E. Angiogenic Factor with G-patch and FHA Domain 1 (AGGF1) Expression in Human Vascular Lesions. Acta Histochem Cytochem 2016; 49:75-81. [PMID: 27222614 PMCID: PMC4858542 DOI: 10.1267/ahc.15035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/25/2016] [Indexed: 01/06/2023] Open
Abstract
Angiogenic factor with G-patch and FHA domain 1 (AGGF1) is a novel angiogenic factor that was first described in Klippel-Trenaunay syndrome, a congenital vascular disease associated with capillary and venous malformations. AGGF1, similar to vascular endothelial growth factor (VEGF), has been shown to promote strong angiogenesis in chick embryos in vivo. Blocking AGGF1 expression prevented vessel formation, which suggests AGGF1 is a potent angiogenic factor linked to vascular malformations. So far, AGGF1 expression studies in human vascular lesions have not been performed. Here, we immunohistochemically investigated AGGF1 expression in venous, arteriovenous or capillary malformations, and infantile or congenital hemangioma. We found that AGGF1 was mostly expressed in endothelial cells with plump morphology. Moreover, the majority of mast cells strongly expressed AGGF1. Notwithstanding our incomplete knowledge of the molecular mechanism of AGGF1 in angiogenesis, our results show for the first time that AGGF1 is expressed in plump endothelial cells and mast cells.
Collapse
Affiliation(s)
- Maosheng Zhan
- Department of Pathology, Osaka University Graduate School of Medicine
| | - Yumiko Hori
- Department of Pathology, Osaka University Graduate School of Medicine
| | - Naoki Wada
- Department of Pathology, Osaka University Graduate School of Medicine
| | - Jun-ichiro Ikeda
- Department of Pathology, Osaka University Graduate School of Medicine
| | - Yuuki Hata
- Department of Plastic Surgery, Osaka University Graduate School of Medicine
| | - Keigo Osuga
- Department of Radiology, Osaka University Graduate School of Medicine
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine
| |
Collapse
|
32
|
Heininger AU, Hackert P, Andreou AZ, Boon KL, Memet I, Prior M, Clancy A, Schmidt B, Urlaub H, Schleiff E, Sloan KE, Deckers M, Lührmann R, Enderlein J, Klostermeier D, Rehling P, Bohnsack MT. Protein cofactor competition regulates the action of a multifunctional RNA helicase in different pathways. RNA Biol 2016; 13:320-30. [PMID: 26821976 PMCID: PMC4829300 DOI: 10.1080/15476286.2016.1142038] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A rapidly increasing number of RNA helicases are implicated in several distinct cellular processes, however, the modes of regulation of multifunctional RNA helicases and their recruitment to different target complexes have remained unknown. Here, we show that the distribution of the multifunctional DEAH-box RNA helicase Prp43 between its diverse cellular functions can be regulated by the interplay of its G-patch protein cofactors. We identify the orphan G-patch protein Cmg1 (YLR271W) as a novel cofactor of Prp43 and show that it stimulates the RNA binding and ATPase activity of the helicase. Interestingly, Cmg1 localizes to the cytoplasm and to the intermembrane space of mitochondria and its overexpression promotes apoptosis. Furthermore, our data reveal that different G-patch protein cofactors compete for interaction with Prp43. Changes in the expression levels of Prp43-interacting G-patch proteins modulate the cellular localization of Prp43 and G-patch protein overexpression causes accumulation of the helicase in the cytoplasm or nucleoplasm. Overexpression of several G-patch proteins also leads to defects in ribosome biogenesis that are consistent with withdrawal of the helicase from this pathway. Together, these findings suggest that the availability of cofactors and the sequestering of the helicase are means to regulate the activity of multifunctional RNA helicases and their distribution between different cellular processes.
Collapse
Affiliation(s)
- Annika U Heininger
- a Institute for Molecular Biology, Georg-August University , Goettingen , Germany
| | - Philipp Hackert
- a Institute for Molecular Biology, Georg-August University , Goettingen , Germany
| | - Alexandra Z Andreou
- b Institute for Physical Chemistry, University of Muenster , Muenster , Germany
| | - Kum-Loong Boon
- c Max-Planck-Institute for Biophysical Chemistry , Goettingen , Germany
| | - Indira Memet
- a Institute for Molecular Biology, Georg-August University , Goettingen , Germany
| | - Mira Prior
- d III. Institute of Physics-Biophysics, Georg-August University , Goettingen , Germany
| | - Anne Clancy
- a Institute for Molecular Biology, Georg-August University , Goettingen , Germany
| | - Bernhard Schmidt
- e Institute of Cellular Biochemistry, Georg-August University , Goettingen , Germany
| | - Henning Urlaub
- c Max-Planck-Institute for Biophysical Chemistry , Goettingen , Germany
| | - Enrico Schleiff
- f Institute for Molecular Biosciences, Goethe University , Frankfurt , Germany
| | - Katherine E Sloan
- a Institute for Molecular Biology, Georg-August University , Goettingen , Germany
| | - Markus Deckers
- e Institute of Cellular Biochemistry, Georg-August University , Goettingen , Germany
| | - Reinhard Lührmann
- c Max-Planck-Institute for Biophysical Chemistry , Goettingen , Germany
| | - Jörg Enderlein
- d III. Institute of Physics-Biophysics, Georg-August University , Goettingen , Germany
| | - Dagmar Klostermeier
- b Institute for Physical Chemistry, University of Muenster , Muenster , Germany
| | - Peter Rehling
- c Max-Planck-Institute for Biophysical Chemistry , Goettingen , Germany.,e Institute of Cellular Biochemistry, Georg-August University , Goettingen , Germany.,g Goettingen Center for Molecular Biosciences, Georg-August-University , Goettingen , Germany
| | - Markus T Bohnsack
- a Institute for Molecular Biology, Georg-August University , Goettingen , Germany.,g Goettingen Center for Molecular Biosciences, Georg-August-University , Goettingen , Germany
| |
Collapse
|
33
|
Ouyang Z, Buzon MJ, Zheng L, Sun H, Yu XG, Bosch RJ, Mellors JW, Eron JJ, Gandhi RT, Lichterfeld M. Transcriptional Changes in CD8(+) T Cells During Antiretroviral Therapy Intensified With Raltegravir. Open Forum Infect Dis 2015; 2:ofv045. [PMID: 26380343 PMCID: PMC4567091 DOI: 10.1093/ofid/ofv045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/30/2015] [Indexed: 01/12/2023] Open
Abstract
Using an unbiased, microarray-based transcriptional profiling approach, this study identified a total of 121 gene transcripts in CD8 T cells that change significantly during intensification of antiretroviral therapy with Raltegravir. Background. Intensification of antiretroviral therapy with raltegravir does not affect levels of residual human immunodeficiency virus (HIV)-1 viremia, but it has led to increased levels of episomal HIV-1 DNA in some patients, suggesting antiviral activity against otherwise unresponsive components of the viral reservoir. Effects of raltegravir on host cells remain less well understood. Methods. We used comprehensive and unbiased microarray-based transcriptional profiling to analyze gene expression changes in CD8+ T cells from participants in a randomized clinical trial (AIDS Clinical Trials Group [ACTG] A5244) comparing raltegravir-intensified to nonintensified antiretroviral therapy. Results. Although raltegravir intensification failed to induce statistically significant changes in HIV-1 DNA or residual plasma viremia, we observed significant increases in the expression intensity of 121 host gene transcripts. In functional annotations of these transcripts, we found that they were mainly involved in glucose and carbohydrate metabolism, immune regulation, control of cell proliferation, and tumor suppression. Two of the raltegravir-responsive gene transcripts were statistically correlated with levels of residual HIV-1 RNA, but none of the remaining 119 transcripts were associated with immunologic or virologic characteristics of the study patients. Conclusions. Together, these findings demonstrate that raltegravir intensification can induce previously unrecognized, statistically significant gene expression changes in host CD8+ T lymphocytes.
Collapse
Affiliation(s)
- Zhengyu Ouyang
- Ragon Institute of MGH, MIT and Harvard , Cambridge, Massachusetts
| | - Maria J Buzon
- Ragon Institute of MGH, MIT and Harvard , Cambridge, Massachusetts ; Division of Infectious Diseases , Massachusetts General Hospital , Boston
| | - Lu Zheng
- Center for Biostatistics in AIDS Research , Harvard School of Public Health , Boston, Massachusetts
| | - Hong Sun
- Ragon Institute of MGH, MIT and Harvard , Cambridge, Massachusetts
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard , Cambridge, Massachusetts
| | - Ronald J Bosch
- Center for Biostatistics in AIDS Research , Harvard School of Public Health , Boston, Massachusetts
| | - John W Mellors
- Division of Infectious Diseases , University of Pittsburgh , Pennsylvania
| | - Joseph J Eron
- Division of Infectious Diseases , University of North Carolina , Chapel Hill
| | - Rajesh T Gandhi
- Ragon Institute of MGH, MIT and Harvard , Cambridge, Massachusetts ; Division of Infectious Diseases , Massachusetts General Hospital , Boston
| | | |
Collapse
|
34
|
Abstract
Vascular anomalies are developmental defects of the vasculature and encompass a variety of disorders. The majority of these occur sporadically, yet a few are reported to be familial. The identification of genes mutated in the different malformations provides insight into their etiopathogenic mechanisms and the specific roles the associated proteins play in vascular development and maintenance. It is becoming evident that somatic mosaicism plays a major role in the formation of vascular lesions. The importance of utilizing Next-Generating Sequencing (NGS) for high-throughput and "deep" screening of both blood and lesional DNA and RNA is thus emphasized, as the somatic changes are present in low quantities. There are several examples where NGS has already accomplished discovering these changes. The identification of all the causative genes and unraveling of a holistic overview of the pathogenic mechanisms should enable generation of in vitro and in vivo models and lead to development of more effective treatments, not only targeted on symptoms.
Collapse
Affiliation(s)
- Ha-Long Nguyen
- Laboratory of Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, Brussels, Belgium.
| | - Laurence M Boon
- Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Miikka Vikkula
- Laboratory of Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, Brussels, Belgium; Walloon Excellence in Lifesciences and Biotechnology (WELBIO), de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|