1
|
Zhang X, Xu Z, Chen Q, Zhou Z. Notch signaling regulates pulmonary fibrosis. Front Cell Dev Biol 2024; 12:1450038. [PMID: 39450276 PMCID: PMC11499121 DOI: 10.3389/fcell.2024.1450038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Pulmonary fibrosis is a progressive interstitial lung disease associated with aging. The pathogenesis of pulmonary fibrosis remains unclear, however, alveolar epithelial cell injury, myofibroblast activation, and extracellular matrix (ECM) accumulation are recognized as key contributors. Moreover, recent studies have implicated cellular senescence, endothelial-mesenchymal transition (EndMT), and epigenetic modifications in the pathogenesis of fibrotic diseases. Various signaling pathways regulate pulmonary fibrosis, including the TGF-β, Notch, Wnt, Hedgehog, and mTOR pathways. Among these, the TGF-β pathway is extensively studied, while the Notch pathway has emerged as a recent research focus. The Notch pathway influences the fibrotic process by modulating immune cell differentiation (e.g., macrophages, lymphocytes), inhibiting autophagy, and promoting interstitial transformation. Consequently, inhibiting Notch signaling represents a promising approach to mitigating pulmonary fibrosis. In this review, we discuss the role of Notch signaling pathway in pulmonary fibrosis, aiming to offer insights for future therapeutic investigations.
Collapse
Affiliation(s)
| | - Zhihao Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | | | | |
Collapse
|
2
|
Phadte P, Bishnu A, Dey P, M M, Mehrotra M, Singh P, Chakrabarty S, Majumdar R, Rekhi B, Patra M, De A, Ray P. Autophagy-mediated ID1 turnover dictates chemo-resistant fate in ovarian cancer stem cells. J Exp Clin Cancer Res 2024; 43:222. [PMID: 39123206 PMCID: PMC11316295 DOI: 10.1186/s13046-024-03147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND The mechanisms enabling dynamic shifts between drug-resistant and drug-sensitive states in cancer cells are still underexplored. This study investigated the role of targeted autophagic protein degradation in regulating ovarian cancer stem cell (CSC) fate decisions and chemo-resistance. METHODS Autophagy levels were compared between CSC-enriched side population (SP) and non-SP cells (NSP) in multiple ovarian cancer cell lines using immunoblotting, immunofluorescence, and transmission electron microscopy. The impact of autophagy modulation on CSC markers and differentiation was assessed by flow cytometry, immunoblotting and qRT-PCR. In silico modeling and co-immunoprecipitation identified ID1 interacting proteins. Pharmacological and genetic approaches along with Annexin-PI assay, ChIP assay, western blotting, qRT-PCR and ICP-MS were used to evaluate effects on cisplatin sensitivity, apoptosis, SLC31A1 expression, promoter binding, and intracellular platinum accumulation in ID1 depleted backdrop. Patient-derived tumor spheroids were analyzed for autophagy and SLC31A1 levels. RESULTS Ovarian CSCs exhibited increased basal autophagy compared to non-CSCs. Further autophagy stimulation by serum-starvation and chemical modes triggered proteolysis of the stemness regulator ID1, driving the differentiation of chemo-resistant CSCs into chemo-sensitive non-CSCs. In silico modeling predicted TCF12 as a potent ID1 interactor, which was validated by co-immunoprecipitation. ID1 depletion freed TCF12 to transactivate the cisplatin influx transporter SLC31A1, increasing intracellular cisplatin levels and cytotoxicity. Patient-derived tumor spheroids exhibited a functional association between autophagy, ID1, SLC31A1, and platinum sensitivity. CONCLUSIONS This study reveals a novel autophagy-ID1-TCF12-SLC31A1 axis where targeted autophagic degradation of ID1 enables rapid remodeling of CSCs to reverse chemo-resistance. Modulating this pathway could counter drug resistance in ovarian cancer.
Collapse
Affiliation(s)
- Pratham Phadte
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Aniketh Bishnu
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Pranay Dey
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Manikandan M
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Megha Mehrotra
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Prerna Singh
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Shritama Chakrabarty
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Indian Institute of Science Education and Research, Bhopal, 462066, India
| | - Rounak Majumdar
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Indian Institute of Science Education and Research, Kolkata, 741246, India
| | - Bharat Rekhi
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Department of Pathology, Tata Memorial Hospital, Mumbai, 400012, India
| | - Malay Patra
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Pritha Ray
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India.
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
3
|
Fortini F, Vieceli Dalla Sega F, Lazzarini E, Aquila G, Sysa-Shah P, Bertero E, Ascierto A, Severi P, Ouambo Talla AW, Schirone A, Gabrielson K, Morciano G, Patergnani S, Pedriali G, Pinton P, Ferrari R, Tremoli E, Ameri P, Rizzo P. ErbB2-NOTCH1 axis controls autophagy in cardiac cells. Biofactors 2024. [PMID: 38994725 DOI: 10.1002/biof.2091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/16/2024] [Indexed: 07/13/2024]
Abstract
Although the epidermal growth factor receptor 2 (ErbB2) and Notch1 signaling pathways have both significant roles in regulating cardiac biology, their interplay in the heart remains poorly investigated. Here, we present evidence of a crosstalk between ErbB2 and Notch1 in cardiac cells, with effects on autophagy and proliferation. Overexpression of ErbB2 in H9c2 cardiomyoblasts induced Notch1 activation in a post-transcriptional, p38-dependent manner, while ErbB2 inhibition with the specific inhibitor, lapatinib, reduced Notch1 activation. Moreover, incubation of H9c2 cells with lapatinib resulted in stalled autophagic flux and decreased proliferation, consistent with the established cardiotoxicity of this and other ErbB2-targeting drugs. Confirming the findings in H9c2 cells, exposure of primary neonatal mouse cardiomyocytes to exogenous neuregulin-1, which engages ErbB2, stimulated proliferation, and this effect was abrogated by concomitant inhibition of the enzyme responsible for Notch1 activation. Furthermore, the hearts of transgenic mice specifically overexpressing ErbB2 in cardiomyocytes had increased levels of active Notch1 and of Notch-related genes. These data expand the knowledge of ErbB2 and Notch1 functions in the heart and may allow better understanding the mechanisms of the cardiotoxicity of ErbB2-targeting cancer treatments.
Collapse
Affiliation(s)
| | | | - Edoardo Lazzarini
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale Lugano, Lugano, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
| | - Giorgio Aquila
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Polina Sysa-Shah
- The Brady Urological Institute and Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Edoardo Bertero
- Department of Internal Medicine and Specialties (Di.M.I.), University of Genova, Genova, Italy
| | - Alessia Ascierto
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Severi
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Achille Wilfred Ouambo Talla
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Alessio Schirone
- Oncology and Hematology Department, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Giampaolo Morciano
- GVM Care & Research, Maria Cecilia Hospital, Ravenna, Italy
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Gaia Pedriali
- GVM Care & Research, Maria Cecilia Hospital, Ravenna, Italy
| | - Paolo Pinton
- GVM Care & Research, Maria Cecilia Hospital, Ravenna, Italy
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Ferrari
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Elena Tremoli
- GVM Care & Research, Maria Cecilia Hospital, Ravenna, Italy
| | - Pietro Ameri
- Department of Internal Medicine and Specialties (Di.M.I.), University of Genova, Genova, Italy
- Cardiac, Thoracic, and Vascular Department, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Rizzo
- GVM Care & Research, Maria Cecilia Hospital, Ravenna, Italy
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
Wu W, Chen P, Yang J, Liu Y. A Low Dose of Rapamycin Promotes Hair Cell Differentiation by Enriching SOX2 + Progenitors in the Neonatal Mouse Inner Ear Organoids. J Assoc Res Otolaryngol 2024; 25:149-165. [PMID: 38472516 PMCID: PMC11018585 DOI: 10.1007/s10162-024-00938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
PURPOSE To investigate the impact of rapamycin on the differentiation of hair cells. METHODS Murine cochlear organoids were derived from cochlear progenitor cells. Different concentrations of rapamycin were added into the culture medium at different proliferation and differentiation stages. RESULTS Rapamycin exhibited a concentration-dependent reduction in the proliferation of these inner ear organoids. Nevertheless, organoids subjected to a 10-nM dose of rapamycin demonstrated a markedly increased proportion of hair cells. Furthermore, rapamycin significantly upregulated the expression of markers associated with both hair cells and supporting cells, including ATOH1, MYO7A, and SOX2. Mechanistic studies revealed that rapamycin preferentially suppressed cells without Sox2 expression during the initial proliferation stage, thereby augmenting and refining the population of SOX2+ progenitors. These enriched progenitors were predisposed to differentiate into hair cells during the later stages of organoid development. Conversely, the use of the mTOR activator MHY 1485 demonstrated opposing effects. CONCLUSION Our findings underscore a practical strategy for enhancing the generation of inner ear organoids with a low dose of rapamycin, achieved by enriching SOX2+ progenitors in an in vitro setting.
Collapse
Affiliation(s)
- Wenjin Wu
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Penghui Chen
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jun Yang
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| | - Yupeng Liu
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
5
|
Strippoli R, Niayesh-Mehr R, Adelipour M, Khosravi A, Cordani M, Zarrabi A, Allameh A. Contribution of Autophagy to Epithelial Mesenchymal Transition Induction during Cancer Progression. Cancers (Basel) 2024; 16:807. [PMID: 38398197 PMCID: PMC10886827 DOI: 10.3390/cancers16040807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Epithelial Mesenchymal Transition (EMT) is a dedifferentiation process implicated in many physio-pathological conditions including tumor transformation. EMT is regulated by several extracellular mediators and under certain conditions it can be reversible. Autophagy is a conserved catabolic process in which intracellular components such as protein/DNA aggregates and abnormal organelles are degraded in specific lysosomes. In cancer, autophagy plays a controversial role, acting in different conditions as both a tumor suppressor and a tumor-promoting mechanism. Experimental evidence shows that deep interrelations exist between EMT and autophagy-related pathways. Although this interplay has already been analyzed in previous studies, understanding mechanisms and the translational implications of autophagy/EMT need further study. The role of autophagy in EMT is not limited to morphological changes, but activation of autophagy could be important to DNA repair/damage system, cell adhesion molecules, and cell proliferation and differentiation processes. Based on this, both autophagy and EMT and related pathways are now considered as targets for cancer therapy. In this review article, the contribution of autophagy to EMT and progression of cancer is discussed. This article also describes the multiple connections between EMT and autophagy and their implication in cancer treatment.
Collapse
Affiliation(s)
- Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- National Institute for Infectious Diseases “Lazzaro Spallanzani”, I.R.C.C.S., 00149 Rome, Italy
| | - Reyhaneh Niayesh-Mehr
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran P.O. Box 14115-331, Iran;
| | - Maryam Adelipour
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran;
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye;
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain;
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran P.O. Box 14115-331, Iran;
| |
Collapse
|
6
|
Kolahdouzmohammadi M, Pahlavan S, Sotoodehnejadnematalahi F, Tahamtani Y, Totonchi M. Activation of AMPK promotes cardiac differentiation by stimulating the autophagy pathway. J Cell Commun Signal 2023; 17:939-955. [PMID: 37040028 PMCID: PMC10409960 DOI: 10.1007/s12079-023-00744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/22/2023] [Indexed: 04/12/2023] Open
Abstract
Autophagy, a critical catabolic process for cell survival against different types of stress, has a role in the differentiation of various cells, such as cardiomyocytes. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is an energy-sensing protein kinase involved in the regulation of autophagy. In addition to its direct role in regulating autophagy, AMPK can also influence other cellular processes by regulating mitochondrial function, posttranslational acetylation, cardiomyocyte metabolism, mitochondrial autophagy, endoplasmic reticulum stress, and apoptosis. As AMPK is involved in the control of various cellular processes, it can influence the health and survival of cardiomyocytes. This study investigated the effects of an AMPK inducer (Metformin) and an autophagy inhibitor (Hydroxychloroquine) on the differentiation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). The results showed that autophagy was upregulated during cardiac differentiation. Furthermore, AMPK activation increased the expression of CM-specific markers in hPSC-CMs. Additionally, autophagy inhibition impaired cardiomyocyte differentiation by targeting autophagosome-lysosome fusion. These results indicate the significance of autophagy in cardiomyocyte differentiation. In conclusion, AMPK might be a promising target for the regulation of cardiomyocyte generation by in vitro differentiation of pluripotent stem cells.
Collapse
Affiliation(s)
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
7
|
Kolahdouzmohammadi M, Kolahdouz-Mohammadi R, Tabatabaei SA, Franco B, Totonchi M. Revisiting the Role of Autophagy in Cardiac Differentiation: A Comprehensive Review of Interplay with Other Signaling Pathways. Genes (Basel) 2023; 14:1328. [PMID: 37510233 PMCID: PMC10378789 DOI: 10.3390/genes14071328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Autophagy is a critical biological process in which cytoplasmic components are sequestered in autophagosomes and degraded in lysosomes. This highly conserved pathway controls intracellular recycling and is required for cellular homeostasis, as well as the correct functioning of a variety of cellular differentiation programs, including cardiomyocyte differentiation. By decreasing oxidative stress and promoting energy balance, autophagy is triggered during differentiation to carry out essential cellular remodeling, such as protein turnover and lysosomal degradation of organelles. When it comes to controlling cardiac differentiation, the crosstalk between autophagy and other signaling networks such as fibroblast growth factor (FGF), Wnt, Notch, and bone morphogenetic proteins (BMPs) is essential, yet the interaction between autophagy and epigenetic controls remains poorly understood. Numerous studies have shown that modulating autophagy and precisely regulating it can improve cardiac differentiation, which can serve as a viable strategy for generating mature cardiac cells. These findings suggest that autophagy should be studied further during cardiac differentiation. The purpose of this review article is not only to discuss the relationship between autophagy and other signaling pathways that are active during the differentiation of cardiomyocytes but also to highlight the importance of manipulating autophagy to produce fully mature cardiomyocytes, which is a tough challenge.
Collapse
Affiliation(s)
- Mina Kolahdouzmohammadi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran P.O. Box 16635-148, Iran
| | - Roya Kolahdouz-Mohammadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | | | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
- Genomics and Experimental Medicine Program, Scuola Superiore Meridionale (SSM, School of Advanced Studies), 80138 Naples, Italy
- Medical Genetics, Department of Translational Medicine, University of Naples "Federico II", Via Sergio Pansini, 80131 Naples, Italy
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran P.O. Box 16635-148, Iran
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| |
Collapse
|
8
|
Ma Q, Yu J, Zhang X, Wu X, Deng G. Wnt/β-catenin signaling pathway-a versatile player in apoptosis and autophagy. Biochimie 2023; 211:57-67. [PMID: 36907502 DOI: 10.1016/j.biochi.2023.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
The Wnt/β-catenin signaling pathway is a highly conserved pathway that is involved in cell development, proliferation, differentiation, apoptosis and autophagy. Among these processes, apoptosis and autophagy occur physiologically during host defense and the maintenance of intracellular homeostasis. Mounting evidence suggests that the crosstalk between Wnt/β-catenin-regulated apoptosis and autophagy has broad functional significance in various diseases. Herein, we summarize the recent studies in understanding the role of the Wnt/β-catenin signaling pathway in apoptosis and autophagy, and draw the following conclusions: a) For apoptosis, the regulation of Wnt/β-catenin is generally positive. However, a small amount of evidence indicates the presence of a negatively regulated relationship between Wnt/β-catenin and apoptosis; b) Wnt/β-catenin influences the occurrence and development of autophagy by regulating autophagy-related factors, and these factors in turn affect Wnt/β-catenin pathway; c) Wnt/β-catenin always balances the molecular damage caused by the crosstalk between autophagy and apoptosis in a compensatory manner. Understanding the specific role of the Wnt/β-catenin signaling pathway during different stages of autophagy and apoptosis may provide new insights into the progression of related diseases regulated by the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Qinmei Ma
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, China; School of Life Science, Ningxia University, Yinchuan, NingXia, China.
| | - Jialin Yu
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, China; School of Life Science, Ningxia University, Yinchuan, NingXia, China.
| | - Xu Zhang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, NingXia, China.
| | - Xiaoling Wu
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, China; School of Life Science, Ningxia University, Yinchuan, NingXia, China.
| | - Guangcun Deng
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, China; School of Life Science, Ningxia University, Yinchuan, NingXia, China.
| |
Collapse
|
9
|
Balatskyi VV, Sowka A, Dobrzyn P, Piven OO. WNT/β-catenin pathway is a key regulator of cardiac function and energetic metabolism. Acta Physiol (Oxf) 2023; 237:e13912. [PMID: 36599355 DOI: 10.1111/apha.13912] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/24/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
The WNT/β-catenin pathway is a master regulator of cardiac development and growth, and its activity is low in healthy adult hearts. However, even this low activity is essential for maintaining normal heart function. Acute activation of the WNT/β-catenin signaling cascade is considered to be cardioprotective after infarction through the upregulation of prosurvival genes and reprogramming of metabolism. Chronically high WNT/β-catenin pathway activity causes profibrotic and hypertrophic effects in the adult heart. New data suggest more complex functions of β-catenin in metabolic maturation of the perinatal heart, establishing an adult pattern of glucose and fatty acid utilization. Additionally, low basal activity of the WNT/β-catenin cascade maintains oxidative metabolism in the adult heart, and this pathway is reactivated by physiological or pathological stimuli to meet the higher energy needs of the heart. This review summarizes the current state of knowledge of the organization of canonical WNT signaling and its function in cardiogenesis, heart maturation, adult heart function, and remodeling. We also discuss the role of the WNT/β-catenin pathway in cardiac glucose, lipid metabolism, and mitochondrial physiology.
Collapse
Affiliation(s)
- Volodymyr V Balatskyi
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Adrian Sowka
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Oksana O Piven
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
10
|
Ma J, Ye W, Yang Y, Wu T, Wang Y, Li J, Pei R, He M, Zhang L, Zhou J. The interaction between autophagy and the epithelial-mesenchymal transition mediated by NICD/ULK1 is involved in the formation of diabetic cataracts. Mol Med 2022; 28:116. [PMID: 36104669 PMCID: PMC9476327 DOI: 10.1186/s10020-022-00540-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cataracts are the leading cause of blindness and a common ocular complication of diabetes. The epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) and altered autophagic activity occur during the development of diabetic cataracts. The disturbed interaction of autophagy with EMT in LECs stimulated by high glucose levels may participate in cataract formation.
Methods
A rat diabetic cataract model induced by streptozotocin (STZ) and human lens epithelial cells (HLE-B3) stimulated with a high glucose concentration were employed in the study. These models were treated with rapamycin (an inhibitor of mammalian target of rapamycin (mTOR)), and N-(N-[3,5-difluorophenacetyl]-1-alanyl)-S-phenylglycine t-butyl ester (DAPT, an inhibitor of γ-secretase) alone or in combination. Lens opacity was observed and photographed under a slit-lamp microscope. Histological changes in paraffin sections of lenses were detected under a light microscope after hematoxylin and eosin staining. Alterations of autophagosomes in LECs were counted and evaluated under a transmission electron microscope. The expression levels of proteins involved in the EMT, autophagy, and the signaling pathways in LECs were measured using Western blotting and immunofluorescence staining. Cell migration was determined by performing transwell and scratch wound assays. Coimmunoprecipitation (Co-IP) was performed to verify protein-protein interactions. Proteins were overexpressed in transfected cells to confirm their roles in the signaling pathways of interest.
Results
In LECs, a high glucose concentration induces the EMT by activating Jagged1/Notch1/Notch intracellular domain (NICD)/Snail signaling and inhibits autophagy through the AKT/mTOR/unc 51-like kinase 1 (ULK1) signaling pathway in vivo and in vitro, resulting in diabetic cataracts. Enhanced autophagic activity induced by rapamycin suppressed the EMT by inducing Notch1 degradation by SQSTM1/p62 and microtubule-associated protein light chain 3 (LC3) in LECs, while inhibition of the Notch signaling pathway with DAPT not only prevented the EMT but also activated autophagy by decreasing the levels of NICD, which bound to ULK1, phosphorylated it, and then inhibited the initiation of autophagy.
Conclusions
We describe a new interaction of autophagy and the EMT involving NICD/ULK1 signaling, which mediates crosstalk between these two important events in the formation of diabetic cataracts. Activating autophagy and suppressing the EMT mutually promote each other, revealing a potential target and strategy for the prevention of diabetic cataracts.
Collapse
|
11
|
Yoshida G, Kawabata T, Takamatsu H, Saita S, Nakamura S, Nishikawa K, Fujiwara M, Enokidani Y, Yamamuro T, Tabata K, Hamasaki M, Ishii M, Kumanogoh A, Yoshimori T. Degradation of the NOTCH intracellular domain by elevated autophagy in osteoblasts promotes osteoblast differentiation and alleviates osteoporosis. Autophagy 2022; 18:2323-2332. [PMID: 35025696 PMCID: PMC9542956 DOI: 10.1080/15548627.2021.2017587] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Maintenance of bone integrity is mediated by the balanced actions of osteoblasts and osteoclasts. Because macroautophagy/autophagy regulates osteoblast mineralization, osteoclast differentiation, and their secretion from osteoclast cells, autophagy deficiency in osteoblasts or osteoclasts can disrupt this balance. However, it remains unclear whether upregulation of autophagy becomes beneficial for suppression of bone-associated diseases. In this study, we found that genetic upregulation of autophagy in osteoblasts facilitated bone formation. We generated mice in which autophagy was specifically upregulated in osteoblasts by deleting the gene encoding RUBCN/Rubicon, a negative regulator of autophagy. The rubcnflox/flox;Sp7/Osterix-Cre mice showed progressive skeletal abnormalities in femur bones. Consistent with this, RUBCN deficiency in osteoblasts resulted in elevated differentiation and mineralization, as well as an increase in the elevated expression of key transcription factors involved in osteoblast function such as Runx2 and Bglap/Osteocalcin. Furthermore, RUBCN deficiency in osteoblasts accelerated autophagic degradation of NOTCH intracellular domain (NICD) and downregulated the NOTCH signaling pathway, which negatively regulates osteoblast differentiation. Notably, osteoblast-specific deletion of RUBCN alleviated the phenotype in a mouse model of osteoporosis. We conclude that RUBCN is a key regulator of bone homeostasis. On the basis of these findings, we propose that medications targeting RUBCN or autophagic degradation of NICD could be used to treat age-related osteoporosis and bone fracture.Abbreviations: ALPL: alkaline phosphatase, liver/bone/kidney; BCIP/NBT: 5-bromo-4-chloro-3'-indolyl phosphate/nitro blue tetrazolium; BMD: bone mineral density; BV/TV: bone volume/total bone volume; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NICD: NOTCH intracellular domain; RB1CC1/FIP200: RB1-inducible coiled-coil 1; RUBCN/Rubicon: RUN domain and cysteine-rich domain containing, Beclin 1-interacting protein; SERM: selective estrogen receptor modulator; TNFRSF11B/OCIF: tumor necrosis factor receptor superfamily, member 11b (osteoprotegerin).
Collapse
Affiliation(s)
- Gota Yoshida
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tsuyoshi Kawabata
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan,Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Hyota Takamatsu
- Department of Respiratory Medicine, Allergy and Rheumatic Disease, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shotaro Saita
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan,Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan,Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Keizo Nishikawa
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan,Faculty of Life and Medical Sciences, Department of Medical Life Systems, Doshisha University, Kyoto, Japan
| | - Mari Fujiwara
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan,Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yusuke Enokidani
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan,Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Tadashi Yamamuro
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan,Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Keisuke Tabata
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan,Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Maho Hamasaki
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan,Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine, Allergy and Rheumatic Disease, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan,Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan,CONTACT Tamotsu Yoshimori Osaka University, Osaka, Japan
| |
Collapse
|
12
|
Gómez-Virgilio L, Silva-Lucero MDC, Flores-Morelos DS, Gallardo-Nieto J, Lopez-Toledo G, Abarca-Fernandez AM, Zacapala-Gómez AE, Luna-Muñoz J, Montiel-Sosa F, Soto-Rojas LO, Pacheco-Herrero M, Cardenas-Aguayo MDC. Autophagy: A Key Regulator of Homeostasis and Disease: An Overview of Molecular Mechanisms and Modulators. Cells 2022; 11:cells11152262. [PMID: 35892559 PMCID: PMC9329718 DOI: 10.3390/cells11152262] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is a highly conserved lysosomal degradation pathway active at basal levels in all cells. However, under stress conditions, such as a lack of nutrients or trophic factors, it works as a survival mechanism that allows the generation of metabolic precursors for the proper functioning of the cells until the nutrients are available. Neurons, as post-mitotic cells, depend largely on autophagy to maintain cell homeostasis to get rid of damaged and/or old organelles and misfolded or aggregated proteins. Therefore, the dysfunction of this process contributes to the pathologies of many human diseases. Furthermore, autophagy is highly active during differentiation and development. In this review, we describe the current knowledge of the different pathways, molecular mechanisms, factors that induce it, and the regulation of mammalian autophagy. We also discuss its relevant role in development and disease. Finally, here we summarize several investigations demonstrating that autophagic abnormalities have been considered the underlying reasons for many human diseases, including liver disease, cardiovascular, cerebrovascular diseases, neurodegenerative diseases, neoplastic diseases, cancers, and, more recently, infectious diseases, such as SARS-CoV-2 caused COVID-19 disease.
Collapse
Affiliation(s)
- Laura Gómez-Virgilio
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; (L.G.-V.); (M.-d.-C.S.-L.); (D.-S.F.-M.); (J.G.-N.); (G.L.-T.); (A.-M.A.-F.)
| | - Maria-del-Carmen Silva-Lucero
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; (L.G.-V.); (M.-d.-C.S.-L.); (D.-S.F.-M.); (J.G.-N.); (G.L.-T.); (A.-M.A.-F.)
| | - Diego-Salvador Flores-Morelos
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; (L.G.-V.); (M.-d.-C.S.-L.); (D.-S.F.-M.); (J.G.-N.); (G.L.-T.); (A.-M.A.-F.)
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Guerrero, Mexico;
| | - Jazmin Gallardo-Nieto
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; (L.G.-V.); (M.-d.-C.S.-L.); (D.-S.F.-M.); (J.G.-N.); (G.L.-T.); (A.-M.A.-F.)
- Biotechnology Engeniering, Universidad Politécnica de Quintana Roo, Cancún 77500, Quintana Roo, Mexico
| | - Gustavo Lopez-Toledo
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; (L.G.-V.); (M.-d.-C.S.-L.); (D.-S.F.-M.); (J.G.-N.); (G.L.-T.); (A.-M.A.-F.)
| | - Arminda-Mercedes Abarca-Fernandez
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; (L.G.-V.); (M.-d.-C.S.-L.); (D.-S.F.-M.); (J.G.-N.); (G.L.-T.); (A.-M.A.-F.)
- Biotechnology Engeniering, Universidad Politécnica de Quintana Roo, Cancún 77500, Quintana Roo, Mexico
| | - Ana-Elvira Zacapala-Gómez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Guerrero, Mexico;
| | - José Luna-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 53150, Estado de México, Mexico; (J.L.-M.); (F.M.-S.)
- Banco Nacional de Cerebros-UNPHU, Universidad Nacional Pedro Henríquez Ureña, Santo Domingo 11805, Dominican Republic
| | - Francisco Montiel-Sosa
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 53150, Estado de México, Mexico; (J.L.-M.); (F.M.-S.)
| | - Luis O. Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico;
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico
| | - Mar Pacheco-Herrero
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros 51000, Dominican Republic;
| | - Maria-del-Carmen Cardenas-Aguayo
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; (L.G.-V.); (M.-d.-C.S.-L.); (D.-S.F.-M.); (J.G.-N.); (G.L.-T.); (A.-M.A.-F.)
- Correspondence: ; Tel.: +52-55-2907-0937
| |
Collapse
|
13
|
Liu BH, Liu GB, Zhang BB, Shen J, Xie LL, Liu XQ, Yao W, Dong R, Bi YL, Dong KR. Tumor Suppressive Role of MUC6 in Wilms Tumor via Autophagy-Dependent β-Catenin Degradation. Front Oncol 2022; 12:756117. [PMID: 35574418 PMCID: PMC9097904 DOI: 10.3389/fonc.2022.756117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Wilms tumor is the most common renal malignancy in children. Known gene mutations account for about 40% of all wilms tumor cases, but the full map of genetic mutations in wilms tumor is far from clear. Whole genome sequencing and RNA sequencing were performed in 5 pairs of wilms tumor tissues and adjacent normal tissues to figure out important genetic mutations. Gene knock-down, CRISPR-induced mutations were used to investigate their potential effects in cell lines and in-vivo xenografted model. Mutations in seven novel genes (MUC6, GOLGA6L2, GPRIN2, MDN1, MUC4, OR4L1 and PDE4DIP) occurred in more than one patient. The most prevalent mutation was found in MUC6, which had 7 somatic exonic variants in 4 patients. In addition, TaqMan assay and immunoblot confirmed that MUC6 expression was reduced in WT tissues when compared with control tissues. Moreover, the results of MUC6 knock-down assay and CRISPR-induced MUC6 mutations showed that MUC6 inhibited tumor aggression via autophagy-dependent β-catenin degradation while its mutations attenuated tumor-suppressive effects of MUC6. Seven novel mutated genes (MUC6, GOLGA6L2, GPRIN2, MDN1, MUC4, OR4L1 and PDE4DIP) were found in WT, among which MUC6 was the most prevalent one. MUC6 acted as a tumor suppressive gene through autophagy dependent β-catenin pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yun-Li Bi
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
| | - Kui-Ran Dong
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
| |
Collapse
|
14
|
Zhang C, Li Y, Cao J, Yu B, Zhang K, Li K, Xu X, Guo Z, Liang Y, Yang X, Yang Z, Sun Y, Kaartinen V, Ding K, Wang J. Hedgehog signalling controls sinoatrial node development and atrioventricular cushion formation. Open Biol 2021; 11:210020. [PMID: 34062094 PMCID: PMC8169207 DOI: 10.1098/rsob.210020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Smoothened is a key receptor of the hedgehog pathway, but the roles of Smoothened in cardiac development remain incompletely understood. In this study, we found that the conditional knockout of Smoothened from the mesoderm impaired the development of the venous pole of the heart and resulted in hypoplasia of the atrium/inflow tract (IFT) and a low heart rate. The blockage of Smoothened led to reduced expression of genes critical for sinoatrial node (SAN) development in the IFT. In a cardiac cell culture model, we identified a Gli2–Tbx5–Hcn4 pathway that controls SAN development. In the mutant embryos, the endocardial-to-mesenchymal transition (EndMT) in the atrioventricular cushion failed, and Bmp signalling was downregulated. The addition of Bmp2 rescued the EndMT in mutant explant cultures. Furthermore, we analysed Gli2+ scRNAseq and Tbx5−/− RNAseq data and explored the potential genes downstream of hedgehog signalling in posterior second heart field derivatives. In conclusion, our study reveals that Smoothened-mediated hedgehog signalling controls posterior cardiac progenitor commitment, which suggests that the mutation of Smoothened might be involved in the aetiology of congenital heart diseases related to the cardiac conduction system and heart valves.
Collapse
Affiliation(s)
- Chaohui Zhang
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Yuxin Li
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Jiaheng Cao
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Beibei Yu
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Kaiyue Zhang
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Ke Li
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Xinhui Xu
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Zhikun Guo
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Yinming Liang
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, People's Republic of China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing 210061, People's Republic of China
| | - Yunfu Sun
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Keyue Ding
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou 450003, People's Republic of China
| | - Jikui Wang
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| |
Collapse
|
15
|
Zada S, Hwang JS, Ahmed M, Lai TH, Pham TM, Elashkar O, Kim DR. Cross talk between autophagy and oncogenic signaling pathways and implications for cancer therapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188565. [PMID: 33992723 DOI: 10.1016/j.bbcan.2021.188565] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023]
Abstract
Autophagy is a highly conserved metabolic process involved in the degradation of intracellular components including proteins and organelles. Consequently, it plays a critical role in recycling metabolic energy for the maintenance of cellular homeostasis in response to various stressors. In cancer, autophagy either suppresses or promotes cancer progression depending on the stage and cancer type. Epithelial-mesenchymal transition (EMT) and cancer metastasis are directly mediated by oncogenic signal proteins including SNAI1, SLUG, ZEB1/2, and NOTCH1, which are functionally correlated with autophagy. In this report, we discuss the crosstalk between oncogenic signaling pathways and autophagy followed by possible strategies for cancer treatment via regulation of autophagy. Although autophagy affects EMT and cancer metastasis, the overall signaling pathways connecting cancer progression and autophagy are still illusive. In general, autophagy plays a critical role in cancer cell survival by providing a minimum level of energy via self-digestion. Thus, cancer cells face nutrient limitations and challenges under stress during EMT and metastasis. Conversely, autophagy acts as a potential cancer suppressor by degrading oncogenic proteins, which are essential for cancer progression, and by removing damaged components such as mitochondria to enhance genomic stability. Therefore, autophagy activators or inhibitors represent possible cancer therapeutics. We further discuss the regulation of autophagy-dependent degradation of oncogenic proteins and its functional correlation with oncogenic signaling pathways, with potential applications in cancer therapy.
Collapse
Affiliation(s)
- Sahib Zada
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Jin Seok Hwang
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Trang Huyen Lai
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Trang Minh Pham
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Omar Elashkar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea.
| |
Collapse
|
16
|
Zeng J, Jing Y, Wu Q, Zeng J, Wei L, Liu J. Autophagy Is Required for Hepatic Differentiation of Hepatic Progenitor Cells via Wnt Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6627506. [PMID: 33928152 PMCID: PMC8049791 DOI: 10.1155/2021/6627506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/22/2021] [Accepted: 03/31/2021] [Indexed: 12/29/2022]
Abstract
The molecular mechanisms regulating differentiation of hepatic progenitor cells (HPCs), which play pivotal roles in liver regeneration and development, remain obscure. Autophagy and Wnt signaling pathways regulate the development and differentiation of stem cells in various organs. However, the roles of autophagy and Wnt signaling pathways in hepatic differentiation of HPCs are not well understood. Here, we describe the effects of autophagy and Wnt signaling pathways during hepatic differentiation of HPCs. We used a well-established rat hepatic progenitor cell line called WB-F344, which was treated with differentiation medium to promote differentiation of WB-F344 cells along the hepatic phenotype. Firstly, autophagy was highly activated in HPCs and gradually decreased during hepatic differentiation of HPCs. Induction of autophagy by rapamycin or starvation suppressed hepatic differentiation of HPCs. Secondly, Wnt3a signaling pathway was downregulated, and Wnt5a signaling pathway was upregulated in hepatic differentiation of HPCs. At last, Wnt3a signaling pathway was enhanced, and Wnt5a signaling pathway was inhibited by activation of autophagy during hepatic differentiation of HPCs. In summary, these results demonstrate that autophagy regulates hepatic differentiation of hepatic progenitor cells through Wnt signaling pathway.
Collapse
Affiliation(s)
- Jianxing Zeng
- Department of Hepatic Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Fujian Provincial Medical Center of Hepatobiliary, Fuzhou 350025, China
| | - Yingying Jing
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200438, China
| | - Qionglan Wu
- Department of Pathology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China
| | - Jinhua Zeng
- Department of Hepatic Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Fujian Provincial Medical Center of Hepatobiliary, Fuzhou 350025, China
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200438, China
| | - Jingfeng Liu
- Department of Hepatic Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Fujian Provincial Medical Center of Hepatobiliary, Fuzhou 350025, China
| |
Collapse
|
17
|
Sinha A, Fan VB, Ramakrishnan AB, Engelhardt N, Kennell J, Cadigan KM. Repression of Wnt/β-catenin signaling by SOX9 and Mastermind-like transcriptional coactivator 2. SCIENCE ADVANCES 2021; 7:7/8/eabe0849. [PMID: 33597243 PMCID: PMC7888933 DOI: 10.1126/sciadv.abe0849] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/05/2021] [Indexed: 05/06/2023]
Abstract
Wnt/β-catenin signaling requires inhibition of a multiprotein destruction complex that targets β-catenin for proteasomal degradation. SOX9 is a potent antagonist of the Wnt pathway and has been proposed to act through direct binding to β-catenin or the β-catenin destruction complex. Here, we demonstrate that SOX9 promotes turnover of β-catenin in mammalian cell culture, but this occurs independently of the destruction complex and the proteasome. This activity requires SOX9's ability to activate transcription. Transcriptome analysis revealed that SOX9 induces the expression of the Notch coactivator Mastermind-like transcriptional activator 2 (MAML2), which is required for SOX9-dependent Wnt/β-catenin antagonism. MAML2 promotes β-catenin turnover independently of Notch signaling, and MAML2 appears to associate directly with β-catenin in an in vitro binding assay. This work defines a previously unidentified pathway that promotes β-catenin degradation, acting in parallel to established mechanisms. SOX9 uses this pathway to restrict Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Abhishek Sinha
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109, USA
| | - Vinson B Fan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109, USA
| | - Aravinda-Bharathi Ramakrishnan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109, USA
| | - Nicole Engelhardt
- Department of Biology, Vassar College, 124 Raymond Ave, Poughkeepsie, NY 12604, USA
| | - Jennifer Kennell
- Department of Biology, Vassar College, 124 Raymond Ave, Poughkeepsie, NY 12604, USA
| | - Ken M Cadigan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109, USA.
| |
Collapse
|
18
|
Yang J, Kitami M, Pan H, Nakamura MT, Zhang H, Liu F, Zhu L, Komatsu Y, Mishina Y. Augmented BMP signaling commits cranial neural crest cells to a chondrogenic fate by suppressing autophagic β-catenin degradation. Sci Signal 2021; 14:14/665/eaaz9368. [PMID: 33436499 DOI: 10.1126/scisignal.aaz9368] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cranial neural crest cells (CNCCs) are a population of multipotent stem cells that give rise to craniofacial bone and cartilage during development. Bone morphogenetic protein (BMP) signaling and autophagy have been individually implicated in stem cell homeostasis. Mutations that cause constitutive activation of the BMP type I receptor ACVR1 cause the congenital disorder fibrodysplasia ossificans progressiva (FOP), which is characterized by ectopic cartilage and bone in connective tissues in the trunk and sometimes includes ectopic craniofacial bones. Here, we showed that enhanced BMP signaling through the constitutively activated ACVR1 (ca-ACVR1) in CNCCs in mice induced ectopic cartilage formation in the craniofacial region through an autophagy-dependent mechanism. Enhanced BMP signaling suppressed autophagy by activating mTORC1, thus blocking the autophagic degradation of β-catenin, which, in turn, caused CNCCs to adopt a chondrogenic identity. Transient blockade of mTORC1, reactivation of autophagy, or suppression of Wnt-β-catenin signaling reduced ectopic cartilages in ca-Acvr1 mutants. Our results suggest that BMP signaling and autophagy coordinately regulate β-catenin activity to direct the fate of CNCCs during craniofacial development. These findings may also explain why some patients with FOP develop ectopic bones through endochondral ossification in craniofacial regions.
Collapse
Affiliation(s)
- Jingwen Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.,Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Megumi Kitami
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX 77030, USA.,Graduate Program in Genes and Development, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Haichun Pan
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Masako Toda Nakamura
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Honghao Zhang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fei Liu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lingxin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yoshihiro Komatsu
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX 77030, USA. .,Graduate Program in Genes and Development, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
19
|
Sex-Specific Alterations in Cardiac DNA Methylation in Adult Mice by Perinatal Lead Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020577. [PMID: 33445541 PMCID: PMC7826866 DOI: 10.3390/ijerph18020577] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/27/2020] [Accepted: 01/04/2021] [Indexed: 12/27/2022]
Abstract
Environmental factors play an important role in the etiology of cardiovascular diseases. Cardiovascular diseases exhibit marked sexual dimorphism; however, the sex-specific effects of environmental exposures on cardiac health are incompletely understood. Perinatal and adult exposures to the metal lead (Pb) are linked to several adverse cardiovascular outcomes, but the sex-specific effects of this toxicant on the heart have received little attention. Perinatal environmental exposures can lead to disease through disruption of the normal epigenetic programming that occurs during early development. Using a mouse model of human-relevant perinatal environmental exposure, we investigated the effects of exposure to Pb during gestation and lactation on DNA methylation in the hearts of adult offspring mice (n = 6 per sex). Two weeks prior to mating, dams were assigned to control or Pb acetate (32 ppm) water, and exposure continued until offspring were weaned at three weeks of age. Enhanced reduced-representation bisulfite sequencing was used to measure DNA methylation in the hearts of offspring at five months of age. Although Pb exposure stopped at three weeks of age, we discovered hundreds of differentially methylated cytosines (DMCs) and regions (DMRs) in males and females at five months of age. DMCs/DMRs and their associated genes were sex-specific, with a small, but statistically significant subset overlapping between sexes. Pathway analysis revealed altered methylation of genes important for cardiac and other tissue development in males, and histone demethylation in females. Together, these data demonstrate that perinatal exposure to Pb induces sex-specific changes in cardiac DNA methylation that are present long after cessation of exposure, and highlight the importance of considering sex in environmental epigenetics and mechanistic toxicology studies.
Collapse
|
20
|
Autophagy and the Wnt signaling pathway: A focus on Wnt/β-catenin signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118926. [PMID: 33316295 DOI: 10.1016/j.bbamcr.2020.118926] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/07/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022]
Abstract
Cellular homeostasis and adaptation to various environmental conditions are importantly regulated by the sophisticated mechanism of autophagy and its crosstalk with Wnt signaling and other developmental pathways. Both autophagy and Wnt signaling are involved in embryogenesis and differentiation. Autophagy is responsible for degradation and recycling of cytosolic materials by directing them to lysosomes through the phagophore compartment. A dual feedback mechanism regulates the interface between autophagy and Wnt signaling pathways. During nutrient deprivation, β-catenin and Dishevelled (essential Wnt signaling proteins) are targeted for autophagic degradation by LC3. When Wnt signaling is activated, β-catenin acts as a corepressor of one of the autophagy proteins, p62. In contrast, another key Wnt signaling protein, GSK3β, negatively regulates the Wnt pathway and has been shown to induce autophagy by phosphorylation of the TSC complex. This article reviews the interplay between autophagy and Wnt signaling, describing how β-catenin functions as a key cellular integration point coordinating proliferation with autophagy, and it discusses the clinical importance of the crosstalk between these mechanisms.
Collapse
|
21
|
Chen X, Sun K, Zhao S, Geng T, Fan X, Sun S, Zheng M, Jin Q. Irisin promotes osteogenic differentiation of bone marrow mesenchymal stem cells by activating autophagy via the Wnt//β-catenin signal pathway. Cytokine 2020; 136:155292. [PMID: 32950809 DOI: 10.1016/j.cyto.2020.155292] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/16/2020] [Accepted: 09/06/2020] [Indexed: 11/30/2022]
Abstract
Osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) plays a crucial role in osteoporosis. Irisin, an exercise-induced muscle-dependent myokine, has been reported to stimulate the development of brown adipose tissue and regulate energy expenditure. The present study aimed to investigate the effects of irisin on autophagy in BMSCs. Furthermore, the osteogenic differentiation ability was evaluated, as well as the activation of autophagy. It was found that 40 μM irisin for 48 h was an appropriate concentration and time period, with regards to cell viability, which was measured with a Cell Counting Kit-8. Moreover, the increasing expression levels of microtubule-associated protein light chain 3 (Lc3)-I/II and autophagy related 5 (Atg5) by irisin demonstrated the upregulation of autophagy. Mechanistically, bafilomycin A1 and Atg5 small interfering RNA were used to evaluate the possible mechanism of autophagy activated by irisin, and it was identified that irisin may upregulate autophagy by increasing the Atg12-Atg5-Atg16L complex. In addition, with the increasing level of autophagy, osteogenesis and the Wnt/β-catenin signal pathway were also enhanced. However, inhibition of autophagy by bafilomycin A1 negatively regulated osteogenic differentiation. Collectively, the present results suggested that irisin may stimulate autophagy in BMSCs and that osteogenic differentiation may be enhanced by stimulating autophagy.
Collapse
Affiliation(s)
- Xi Chen
- Department of Surgery, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Kening Sun
- Department of Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Sijia Zhao
- Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng, Beijing 100730, China
| | - Tianxiang Geng
- Department of Surgery, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Xin Fan
- Department of Surgery, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Shouxuan Sun
- Department of Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Mengxue Zheng
- Department of Surgery, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Qunhua Jin
- Department of Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
22
|
Jiang M, Liu T, Zhang J, Gao S, Tao B, Cao R, Qiu Y, Liu J, Li Y, Wang Y, Cao F. Rapamycin Promotes Cardiomyocyte Differentiation of Human Induced Pluripotent Stem Cells in a Stage-Dependent Manner. Stem Cells Dev 2020; 29:1229-1239. [PMID: 32693734 DOI: 10.1089/scd.2020.0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are a promising source for cardiac regenerative therapy, and ideal for in vitro cell modeling of cardiovascular diseases and drug screening. Recent studies have shown that rapamycin can promote cardiomyocyte differentiation in various stem cells. However, how rapamycin affects cardiomyocyte differentiation of iPSCs is still not fully understood. This study aimed to investigate the effect of rapamycin on cardiomyocyte differentiation based on embryoid body (EB) method. First, to determine the autophagy induction protocol, different concentrations of rapamycin were applied in hEBs on day 6. The autophagy was most significant when applying rapamycin at 1 μM for 48 h, demonstrating by the LC3II/LC3I ratio and p62 expression. Then, 1 μM rapamycin was applied for 48 h at different time points of cardiomyocyte differentiation to investigate the role of rapamycin in this process. Compared with control, rapamycin applied on days 0-4 of differentiation significantly decreased the proportion of beating EBs and expression of cardiomyocyte-specific genes, while rapamycin applied on days 4-14 significantly increased them. Among all groups, rapamycin applied on days 4-6 achieved highest cardiomyocyte differentiation efficiency. Furthermore, using autophagy inhibitor NH4Cl and GSK-3β inhibitor CHIR-99021, we found rapamycin-induced autophagy promoted cardiomyocyte differentiation at middle stage by negatively regulating the Wnt/β-catenin signaling pathway. These results suggest that rapamycin regulates EB-based cardiomyocyte differentiation in a stage-dependent manner, and the negative regulation of Wnt/β-catenin signaling pathway by autophagy was involved in the prodifferentiation effect of rapamycin at middle stage.
Collapse
Affiliation(s)
- Min Jiang
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Tong Liu
- Department of Cardiology, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, China
| | - Jibin Zhang
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Shan Gao
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Bo Tao
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Ruihua Cao
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Ya Qiu
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Junsong Liu
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Yanhua Li
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Yabin Wang
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Feng Cao
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
23
|
Alleviation by Mahuang Fuzi and Shenzhuo Decoction in High Glucose-Induced Podocyte Injury by Inhibiting the Activation of Wnt/ β-Catenin Signaling Pathway, Resulting in Activation of Podocyte Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7809427. [PMID: 32963573 PMCID: PMC7486640 DOI: 10.1155/2020/7809427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 05/16/2020] [Accepted: 06/15/2020] [Indexed: 11/17/2022]
Abstract
Background Organ fibrosis is a common endpoint of a variety of diseases. Many studies have shown that the pathogenesis of diabetic kidney disease (DKD) is related to the excessive activation of the Wnt/β-catenin signaling pathway on podocytes, so the treatment of DKD starts from this signaling pathway. At the same time, DKD, as a metabolic disease, has many connections related to podocyte autophagy. Objectives We experimented the effects of Mahuang Fuzi and Shenzhuo decoction (MFSD) which is the combination of Mahuang Fuzi decoction and Shenzhuo decoction in traditional Chinese medicine compounds used "The Golden Chamber" in high glucose-induced podocytes, determined whether this effect was related to Wnt/β-catenin signaling pathway, and further investigated the relationship between this effect and autophagy. Methods The mice podocytes were stimulated by using 30 mmol/L of high glucose and serum containing MFSD or Wnt/β-catenin signaling pathway inhibitor DKK1 (100 ng/ml) was used to intervene podocytes before high glucose stimulation. Podocyte injury-related proteins, Wnt/β-catenin signaling pathway-related proteins, and autophagy-related proteins were detected by using western blotting and immunofluorescence analysis. Results Our results showed that DKK1 and MFSD treatment significantly upregulated the protein expressions of nephrin, podocin, podocalyxin, and podoplanin in high glucose-induced podocytes and downregulated the β-catenin protein expression. Furthermore, the protein expressions of beclin1, LC3B, and P62 were also significantly increased in high glucose-induced podocytes. Conclusion Our experiments confirmed that the destruction of podocytes in DKD is related to the excessive activation of Wnt/β-catenin signaling pathway and the inhibition of autophagy after activation. MFSD treatment can inhibit the activation of Wnt/β-catenin signaling pathway in podocytes stimulated by high glucose and helpful in reducing the podocyte injury. This protective mechanism can be related to the enhancement of podocyte autophagy by MFSD treatment.
Collapse
|
24
|
Long J, Yang C, Zheng Y, Loughran P, Guang F, Li Y, Liao H, Scott MJ, Tang D, Billiar TR, Deng M. Notch signaling protects CD4 T cells from STING-mediated apoptosis during acute systemic inflammation. SCIENCE ADVANCES 2020; 6:6/39/eabc5447. [PMID: 32967837 PMCID: PMC7531880 DOI: 10.1126/sciadv.abc5447] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/11/2020] [Indexed: 05/05/2023]
Abstract
Dysregulation of T cell apoptosis contributes to the pathogenesis of acute systemic inflammation-induced immunosuppression, as seen in sepsis and trauma. However, the regulatory mechanisms of T cell apoptosis are unclear. Activation of stimulator of interferon genes (STING) has been shown to induce T cell apoptosis. Notch was previously identified as the top negative regulator of STING in macrophages through a kinase inhibitor library screening. However, how Notch signaling regulates STING activation in T cells is unknown. Here, using a γ-secretase inhibitor to block Notch signaling, we found that Notch protected CD4 T cells from STING-mediated apoptosis during endotoxemia. Mechanistically, Notch intracellular domain (NICD) interacted with STING at the cyclic dinucleotide (CDN) binding domain and competed with CDN to inhibit STING activation. In conclusion, our data reveal a previously unidentified role of Notch in negative regulation of STING-mediated apoptosis in CD4 T cells.
Collapse
Affiliation(s)
- Junke Long
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Department of Surgery current visiting research scholar, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chenxuan Yang
- Tsinghua University School of Medicine, Beijing, China
- Department of Surgery former visiting research scholar; 10/24/2016 to 7/27/2018, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yawen Zheng
- Department of Surgery current visiting research scholar, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fu Guang
- Department of Surgery current visiting research scholar, University of Pittsburgh, Pittsburgh, PA, USA
- Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
- Department of Surgery former visiting research scholar; 9/1/2018 to 1/31/2020, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hong Liao
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Melanie J Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Meihong Deng
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
25
|
Russell KL, Gorgulho CM, Allen A, Vakaki M, Wang Y, Facciabene A, Lee D, Roy P, Buchser WJ, Appleman LJ, Maranchie J, Storkus WJ, Lotze MT. Inhibiting Autophagy in Renal Cell Cancer and the Associated Tumor Endothelium. ACTA ACUST UNITED AC 2020; 25:165-177. [PMID: 31135523 PMCID: PMC10395074 DOI: 10.1097/ppo.0000000000000374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The clear cell subtype of kidney cancer encompasses most renal cell carcinoma cases and is associated with the loss of von Hippel-Lindau gene function or expression. Subsequent loss or mutation of the other allele influences cellular stress responses involving nutrient and hypoxia sensing. Autophagy is an important regulatory process promoting the disposal of unnecessary or degraded cellular components, tightly linked to almost all cellular processes. Organelles and proteins that become damaged or that are no longer needed in the cell are sequestered and digested in autophagosomes upon fusing with lysosomes, or alternatively, released via vesicular exocytosis. Tumor development tends to disrupt the regulation of the balance between this process and apoptosis, permitting prolonged cell survival and increased replication. Completed trials of autophagic inhibitors using hydroxychloroquine in combination with other anticancer agents including rapalogues and high-dose interleukin 2 have now been reported. The complex nature of autophagy and the unique biology of clear cell renal cell carcinoma warrant further understanding to better develop the next generation of relevant anticancer agents.
Collapse
Affiliation(s)
| | | | - Abigail Allen
- Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | | | | | - Andrea Facciabene
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | | | - Partha Roy
- Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | | | | | | | | | | |
Collapse
|
26
|
Chen L, Bao J, Yang Y, Wang Z, Xia M, Tan J, Zhou L, Wu Y, Sun W. Autophagy was involved in tumor necrosis factor-α-inhibited osteogenic differentiation of murine calvarial osteoblasts through Wnt/β-catenin pathway. Tissue Cell 2020; 67:101401. [PMID: 32835949 DOI: 10.1016/j.tice.2020.101401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
Periodontitis is an inflammatory disease with a high incidence characterized by irreversible destruction of alveolar bone. This study aimed to investigate the effect of tumor necrosis factor-α (TNF-α) on osteogenic differentiation and its molecular mechanism. TNF-α inhibited osteogenic differentiation as revealed by the lower accumulation of osteoblastic genes like runt-related transcription factor (Runx2), alkaline phosphatase (ALP), osteoprotegerin (OPG), and osteocalcin (OCN). Moreover, TNF-α down-regulated the expressions of LC3II, ATG7, and beclin 1 (BECN1); suggesting that autophagy was inhibited during the process of osteogenic differentiation. Consistently, Wnt/β-catenin signaling pathway members such as low-density lipoprotein receptor-related protein 5 (LRP5), β-catenin, and phosphorylated-β-catenin (p-β-catenin) were reduced by TNF-α. Furthermore, the inhibitory effect of TNF-α on osteogenic differentiation and the Wnt/β-catenin signaling pathway could be abated by autophagy inducers but exacerbated by autophagy inhibitors. The most intriguing finding of all was that TNF-α inhibited osteoblastic differentiation and the Wnt/β-catenin signaling pathway by down-regulating autophagy, and autophagy positively regulated the Wnt/β-catenin pathway and thus influenced osteoblastic differentiation. Our study provides a theoretical basis for autophagy-inducer therapy for the alveolar bone loss caused by periodontitis.
Collapse
Affiliation(s)
- Lili Chen
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jiaqi Bao
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China; Cancer Institute, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, China
| | - Yuting Yang
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Zhongxiu Wang
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Mengjiao Xia
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jingyi Tan
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Lili Zhou
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yanmin Wu
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Weilian Sun
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China.
| |
Collapse
|
27
|
VEGF Triggers Transient Induction of Autophagy in Endothelial Cells via AMPKα1. Cells 2020; 9:cells9030687. [PMID: 32168879 PMCID: PMC7140637 DOI: 10.3390/cells9030687] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is activated by vascular endothelial growth factor (VEGF) in endothelial cells and it is significantly involved in VEGF-induced angiogenesis. This study investigates whether the VEGF/AMPK pathway regulates autophagy in endothelial cells and whether this is linked to its pro-angiogenic role. We show that VEGF leads to AMPKα1-dependent phosphorylation of Unc-51-like kinase 1 (ULK1) at its serine residue 556 and to the subsequent phosphorylation of the ULK1 substrate ATG14. This triggers initiation of autophagy as shown by phosphorylation of ATG16L1 and conjugation of the microtubule-associated protein light chain 3B, which indicates autophagosome formation; this is followed by increased autophagic flux measured in the presence of bafilomycin A1 and by reduced expression of the autophagy substrate p62. VEGF-induced autophagy is transient and probably terminated by mechanistic target of rapamycin (mTOR), which is activated by VEGF in a delayed manner. We show that functional autophagy is required for VEGF-induced angiogenesis and may have specific functions in addition to maintaining homeostasis. In line with this, inhibition of autophagy impaired VEGF-mediated formation of the Notch intracellular domain, a critical regulator of angiogenesis. Our study characterizes autophagy induction as a pro-angiogenic function of the VEGF/AMPK pathway and suggests that timely activation of autophagy-initiating pathways may help to initiate angiogenesis.
Collapse
|
28
|
Fan Y, Hou T, Dan W, Liu T, Luan J, Liu B, Li L, Zeng J. Silibinin inhibits epithelial‑mesenchymal transition of renal cell carcinoma through autophagy‑dependent Wnt/β‑catenin signaling. Int J Mol Med 2020; 45:1341-1350. [PMID: 32323735 PMCID: PMC7138295 DOI: 10.3892/ijmm.2020.4521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/22/2020] [Indexed: 01/07/2023] Open
Abstract
Silibinin is a flavonoid extracted from milk thistle seeds which has been widely used as a hepatoprotective and antioxidant agent. Recently, accumulating evidence has demonstrated the anti-cancer effects of silibinin in various cancer models. It was previously reported that silibinin induced apoptosis and decreased metastasis by activating autophagy in renal cell carcinoma (RCC). However, the underlying molecular mechanisms by which silibinin regulates autophagy remain largely unknown. The aim of the present study was to investigate the effects of silibinin on RCC metastasis in vitro and in vivo, with a focus on autophagy-dependent Wnt/β-catenin signaling. Human RCC 786-O and ACHN cell lines were used as the model system in vitro and RCC xenografts of nude mice were used for in vivo studies. Silibinin inhibited metastasis and epithelial-mesenchymal transition (EMT) of RCC in vitro and in vivo, by regulating the Wnt/β-catenin signaling pathway. Furthermore, silibinin inhibited the Wnt/β-catenin signaling pathway in an autophagy-dependent manner. Autophagic degradation of β-catenin induced by silibinin was associated with the anti-metastatic effects of silibinin against RCC. These findings identify a novel mechanism by which silibinin inhibits EMT and metastasis of RCC, highlighting a potential novel strategy for treating metastatic RCC.
Collapse
Affiliation(s)
- Yizeng Fan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Tao Hou
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Weichao Dan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Tianjie Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jiaxin Luan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Bo Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Zeng
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
29
|
Chen H, Yang H, Fan D, Deng J. The Anticancer Activity and Mechanisms of Ginsenosides: An Updated Review. EFOOD 2020. [DOI: 10.2991/efood.k.200512.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
30
|
Ljungberg JK, Kling JC, Tran TT, Blumenthal A. Functions of the WNT Signaling Network in Shaping Host Responses to Infection. Front Immunol 2019; 10:2521. [PMID: 31781093 PMCID: PMC6857519 DOI: 10.3389/fimmu.2019.02521] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
It is well-established that aberrant WNT expression and signaling is associated with developmental defects, malignant transformation and carcinogenesis. More recently, WNT ligands have emerged as integral components of host responses to infection but their functions in the context of immune responses are incompletely understood. Roles in the modulation of inflammatory cytokine production, host cell intrinsic innate defense mechanisms, as well as the bridging of innate and adaptive immunity have been described. To what degree WNT responses are defined by the nature of the invading pathogen or are specific for subsets of host cells is currently not well-understood. Here we provide an overview of WNT responses during infection with phylogenetically diverse pathogens and highlight functions of WNT ligands in the host defense against infection. Detailed understanding of how the WNT network orchestrates immune cell functions will not only improve our understanding of the fundamental principles underlying complex immune response, but also help identify therapeutic opportunities or potential risks associated with the pharmacological targeting of the WNT network, as currently pursued for novel therapeutics in cancer and bone disorders.
Collapse
Affiliation(s)
- Johanna K Ljungberg
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jessica C Kling
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Thao Thanh Tran
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
31
|
Quantitative Proteome Analysis of Atg5-Deficient Mouse Embryonic Fibroblasts Reveals the Range of the Autophagy-Modulated Basal Cellular Proteome. mSystems 2019; 4:4/6/e00481-19. [PMID: 31690592 PMCID: PMC6832020 DOI: 10.1128/msystems.00481-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Autophagy performs housekeeping functions for cells and maintains a functional mode by degrading damaged proteins and organelles and providing energy under starvation conditions. The process is tightly regulated by the evolutionarily conserved Atg genes, of which Atg5 is one such crucial mediator. Here, we have done a comprehensive quantitative proteome analysis of mouse embryonic fibroblasts that lack a functional autophagy pathway (Atg5 knockout). We observe that 14% of the identified cellular proteome is remodeled, and several proteins distributed across diverse cellular processes with functions in signaling, cell adhesion, development, and immunity show either higher or lower levels under autophagy-deficient conditions. These cells have lower levels of crucial immune proteins that are required to mount a protective inflammatory response. This study will serve as a valuable resource to determine the role of autophagy in modulating specific protein levels in cells. Basal autophagy is crucial for maintenance of cellular homeostasis. ATG5 is an essential protein for autophagosome formation, and its depletion has been extensively used as a tool to disrupt autophagy. Here, we characterize the impact of Atg5 deficiency on the cellular proteome of mouse embryonic fibroblasts (MEFs). Using a tandem mass tagging (TMT)-based quantitative proteomics analysis, we observe that 14% of identified proteins show dysregulated levels in atg5−/− MEFs. These proteins were distributed across diverse biological processes, such as cell adhesion, development, differentiation, transport, metabolism, and immune responses. Several of the upregulated proteins were receptors involved in transforming growth factor β (TGF-β) signaling, JAK-STAT signaling, junction adhesion, and interferon/cytokine-receptor interactions and were validated as autophagy substrates. Nearly equal numbers of proteins, including several lysosomal proteins and enzymes, were downregulated, suggesting a complex role of autophagy/ATG5 in regulating their levels. The atg5−/− MEFs had lower levels of key immune sensors and effectors, including Toll-like receptor 2 (TLR2), interferon regulatory factor 3 (IRF3), IRF7, MLKL, and STAT1/3/5/6, which were restored by reexpression of ATG5. While these cells could efficiently mount a type I interferon response to the double-stranded RNA (dsRNA) mimic poly(I·C), they were compromised in their inflammatory response to the bacterial pathogen-associated molecular patterns (PAMPs) lipopolysaccharide (LPS) and Pam3CSK4. Transcriptional activation and secretion of interleukin-6 (IL-6) in these cells could be recovered by ATG5 expression, supporting the role of autophagy in the TLR2-induced inflammatory response. This study provides a key resource for understanding the effect of autophagy/ATG5 deficiency on the fibroblast proteome. IMPORTANCE Autophagy performs housekeeping functions for cells and maintains a functional mode by degrading damaged proteins and organelles and providing energy under starvation conditions. The process is tightly regulated by the evolutionarily conserved Atg genes, of which Atg5 is one such crucial mediator. Here, we have done a comprehensive quantitative proteome analysis of mouse embryonic fibroblasts that lack a functional autophagy pathway (Atg5 knockout). We observe that 14% of the identified cellular proteome is remodeled, and several proteins distributed across diverse cellular processes with functions in signaling, cell adhesion, development, and immunity show either higher or lower levels under autophagy-deficient conditions. These cells have lower levels of crucial immune proteins that are required to mount a protective inflammatory response. This study will serve as a valuable resource to determine the role of autophagy in modulating specific protein levels in cells. Author Video: An author video summary of this article is available.
Collapse
|
32
|
Rezaei-Lotfi S, Hunter N, Farahani RM. Coupled cycling programs multicellular self-organization of neural progenitors. Cell Cycle 2019; 18:2040-2054. [PMID: 31286803 PMCID: PMC6681778 DOI: 10.1080/15384101.2019.1638692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023] Open
Abstract
Self-organization is central to the morphogenesis of multicellular organisms. However, the molecular platform that coordinates the robust emergence of complex morphological patterns from local interactions between cells remains unresolved. Here we demonstrate that neural self- organization is driven by coupled cycling of progenitor cells. In a coupled cycling mode, intercellular contacts relay extrinsic cues to override the intrinsic cycling rhythm of an individual cell and synchronize the population. The stringency of coupling and hence the synchronicity of the population is programmed by recruitment of a key coupler, β-catenin, into junctional complexes. As such, multicellular self-organization is driven by the same basic mathematical principle that governs synchronized behavior of macro-scale biological systems as diverse as the synchronized chirping of crickets, flashing of fireflies and schooling of fish; that is synchronization by coupling. It is proposed that coupled cycling foreshadows a fundamental adaptive change that facilitated evolution and diversification of multicellular life forms.
Collapse
Affiliation(s)
- Saba Rezaei-Lotfi
- IDR/Westmead Institute for Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Neil Hunter
- IDR/Westmead Institute for Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Ramin M Farahani
- IDR/Westmead Institute for Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
33
|
Zhang JY, Lee JH, Gu X, Wei ZZ, Harris MJ, Yu SP, Wei L. Intranasally Delivered Wnt3a Improves Functional Recovery after Traumatic Brain Injury by Modulating Autophagic, Apoptotic, and Regenerative Pathways in the Mouse Brain. J Neurotrauma 2019; 35:802-813. [PMID: 29108471 DOI: 10.1089/neu.2016.4871] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Traumatic brain injury (TBI) is a prevalent disorder, but no effective therapies currently exist. An underlying pathophysiology of TBI includes the pathological elevation of autophagy. β-Catenin, a downstream mediator of the canonical Wnt pathway, is a repressor of autophagy. The Wnt/β-catenin pathway plays a crucial role in cell proliferation and neuronal plasticity/repair in the adult brain. We hypothesized that activation of this pathway could promote neuroprotection and neural regeneration following TBI. In the controlled cortical impact (CCI) model of TBI in C57BL/6 mice (total n = 160), we examined intranasal application of recombinant Wnt3a (2 μg/kg) in a short-term (1 dose/day for 2 days) and long-term (1 dose/day for 7 days) regimen. Immunohistochemistry was performed at 1 to 14 days post-TBI to assess cell death and neurovascular regeneration. Western blotting measured canonical Wnt3a activity, expression of growth factors, and cell death markers. Longitudinal behavior assays evaluated functional recovery. In short-term experiments, Wnt3a treatment with a 60-min delay post-TBI suppressed TBI-induced autophagic activity in neurons (44.3 ± 6.98 and 4.25 ± 2.53 LC3+/NeuN+ double positive cells in TBI+Saline and TBI+Wnt3a mice, respectively; p < 0.0001, n = 5/group), reduced autophagic markers light chain 3 (LC3)-II and Beclin-1, as well as injury markers caspase-3 and matrix metalloproteinase 9 (MMP-9). The Wnt3a treatment reduced cell death and contusion volume (0.72 ± 0.07 mm2 and 0.26 ± 0.04 mm2 in TBI+Saline and TBI+Wnt3a mice, respectively; p < 0.001, n = 5/group). The 7-day Wnt3a treatment increased levels of β-catenin and growth factors glial-derived growth factor (GDNF) and vascular endothelial growth factor (VEGF). This chronic Wnt3a therapy augmented neurogenesis (0.52 ± 0.09 and 1.25 ± 0.13 BrdU+/NeuN+ co-labeled cells in TBI+Saline mice and TBI+Wnt3a mice, respectively; p < 0.01, n = 6/group) and angiogenesis (0.26 ± 0.07 and 0.74 ± 0.13 BrdU+/GLUT1+ co-labeled cells in TBI+Saline and TBI+Wnt3a mice, respectively; p = 0.014, n = 6/group). The treatment improved performance in the rotarod test and adhesive removal test. Targeting the Wnt pathway implements a unique combination of protective and regenerative approaches after TBI.
Collapse
Affiliation(s)
- James Ya Zhang
- 1 Department of Anesthesiology, Emory University School of Medicine , Atlanta, Georgia
| | - Jin Hwan Lee
- 1 Department of Anesthesiology, Emory University School of Medicine , Atlanta, Georgia
| | - Xiaohuan Gu
- 1 Department of Anesthesiology, Emory University School of Medicine , Atlanta, Georgia
| | - Zheng Zachory Wei
- 1 Department of Anesthesiology, Emory University School of Medicine , Atlanta, Georgia
| | | | - Shan Ping Yu
- 1 Department of Anesthesiology, Emory University School of Medicine , Atlanta, Georgia
| | - Ling Wei
- 1 Department of Anesthesiology, Emory University School of Medicine , Atlanta, Georgia .,2 Department of Neurology, Emory University School of Medicine , Atlanta, Georgia
| |
Collapse
|
34
|
Turcios L, Chacon E, Garcia C, Eman P, Cornea V, Jiang J, Spear B, Liu C, Watt DS, Marti F, Gedaly R. Autophagic flux modulation by Wnt/β-catenin pathway inhibition in hepatocellular carcinoma. PLoS One 2019; 14:e0212538. [PMID: 30794613 PMCID: PMC6386480 DOI: 10.1371/journal.pone.0212538] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/05/2019] [Indexed: 12/14/2022] Open
Abstract
Autophagy targets cellular components for lysosomal-dependent degradation in which the products of degradation may be recycled for protein synthesis and utilized for energy production. Autophagy also plays a critical role in cell homeostasis and the regulation of many physiological and pathological processes and prompts this investigation of new agents to effect abnormal autophagy in hepatocellular carcinoma (HCC). 2,5-Dichloro-N-(2-methyl-4-nitrophenyl) benzenesulfonamide (FH535) is a synthetic inhibitor of the Wnt/β-catenin pathway that exhibits anti-proliferative and anti-angiogenic effects on different types of cancer cells. The combination of FH535 with sorafenib promotes a synergistic inhibition of HCC and liver cancer stem cell proliferation, mediated in part by the simultaneous disruption of mitochondrial respiration and glycolysis. We demonstrated that FH535 decreased HCC tumor progression in a mouse xenograft model. For the first time, we showed the inhibitory effect of an FH535 derivative, FH535-N, alone and in combination with sorafenib on HCC cell proliferation. Our study revealed the contributing effect of Wnt/β-catenin pathway inhibition by FH535 and its derivative (FH535-N) through disruption of the autophagic flux in HCC cells.
Collapse
Affiliation(s)
- Lilia Turcios
- Department of Surgery, Transplant Center, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Eduardo Chacon
- Department of Surgery, Transplant Center, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Catherine Garcia
- Department of Surgery, Transplant Center, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Pedro Eman
- Department of Surgery, Transplant Center, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Virgilius Cornea
- Department of Surgery, Transplant Center, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jieyun Jiang
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Microbiology, Immunology & Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Brett Spear
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Microbiology, Immunology & Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Chunming Liu
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - David S. Watt
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
| | - Francesc Marti
- Department of Surgery, Transplant Center, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Roberto Gedaly
- Department of Surgery, Transplant Center, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
35
|
Wu X, Zhang J, Ma C, Li W, Zeng J, Wang Y, Deng G. A role for Wnt/β-catenin signalling in suppressing Bacillus Calmette-Guerin-induced macrophage autophagy. Microb Pathog 2018; 127:277-287. [PMID: 30550847 DOI: 10.1016/j.micpath.2018.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
Abstract
Mycobacterium tuberculosis (Mtb)-induced autophagy of alveolar macrophages has been confirmed to play a central role in the pathogenesis of tuberculosis. Growing evidence indicates that excessive or uncontrolled autophagic activity, which results in type II programmed cell death, can be regulated by many factors, including Wnt/β-catenin signalling. Wnt/β-catenin signalling has been demonstrated to be involved in multiple diseases through the regulation of autophagy; however, its exact role in regulating autophagy induced by Mtb remains unclear. Accordingly, this study examined the function of the Wnt/β-catenin signalling pathway in regulating Mycobacterium bovis Bacillus Calmette-Guerin (BCG)-induced autophagy in RAW264.7 macrophage cell line. In the present study, we found that BCG induced the autophagy of RAW264.7 cells in a time- and dose-dependent manner along with an accumulation of LC3 (Microtubule-associated protein 1 light chain 3) protein. Intriguingly, Wnt3a, a Wnt/β-catenin signalling ligand, significantly inhibited autophagy, with decreased autophagy rates and autophagic flux. An immunoblot analysis further revealed that Wnt/β-catenin signalling was capable of inhibiting the expression of the LC3 and autophagy-associated gene (Atg) cascade proteins in BCG-infected cells. Mechanistically, Wnt/β-catenin signalling may inhibit autophagy in BCG-infected macrophages by activating mTOR-dependent pathways. Our findings reveal the mechanisms of Wnt/β-catenin signalling regulates cellular autophagy induced by Mtb and provide novel insights into physiological and immune control of tuberculosis by modulating autophagy processes.
Collapse
Affiliation(s)
- Xiaoling Wu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, 750021, Ningxia, China; College of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Jiamei Zhang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, 750021, Ningxia, China; College of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Chenjie Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, 750021, Ningxia, China; College of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Wu Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, 750021, Ningxia, China; College of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Jin Zeng
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, 750021, Ningxia, China; College of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, 750021, Ningxia, China; College of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China.
| | - Guangcun Deng
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, 750021, Ningxia, China; College of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China.
| |
Collapse
|
36
|
Autophagy induction impairs Wnt/β-catenin signalling through β-catenin relocalisation in glioblastoma cells. Cell Signal 2018; 53:357-364. [PMID: 30442596 DOI: 10.1016/j.cellsig.2018.10.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 01/04/2023]
Abstract
Autophagy is an evolutionary conserved process mediating lysosomal degradation of cytoplasmic material. Its involvement in cancer progression is highly controversial, due to its dual role in both limiting tumoural transformation and in protecting established tumoral cells from unfavorable conditions. Little is known about the cross-talk between autophagy and intracellular signalling pathways, as well as about autophagy impact on signalling molecules turnover. An aberrantly activated Wnt/β-catenin signalling is responsible for tumour proliferation, invasion, and stemness maintenance. Here we show that autophagy negatively regulates Wnt/β-catenin signalling in glioblastoma multiforme (GBM) cells, through Dishevelled degradation. We also provide the first evidence that autophagy promotes β-catenin relocalisation within the cell, by inducing a decrease of the nuclear protein fraction. In particular, upon autophagy induction, β-catenin appears mainly localized in sub-membrane areas where it associates with N-cadherin to form epithelial-like cell-cell adhesion structures. Our data indicate, for the first time, that autophagy induction results in Wnt signalling attenuation and in β-catenin relocalisation within the GBM cell. These findings further support the idea that autophagy modulation could represent a potential therapeutical strategy to contrast GBM progression.
Collapse
|
37
|
Guo S, Liang X, Guo M, Zhang X, Li Z. Migration inhibition of water stress proteins from Nostoc commune Vauch. via activation of autophagy in DLD-1 cells. Int J Biol Macromol 2018; 119:669-676. [PMID: 30071226 DOI: 10.1016/j.ijbiomac.2018.07.188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/20/2018] [Accepted: 07/28/2018] [Indexed: 12/27/2022]
Abstract
Water stress proteins (WSP1) from Nostoc commune Vauch. had been proven to selectively induce colon cancer cells apoptosis. In this study, the effect of WSP1 on migration of human colon cancer cells was investigated. It showed that WSP1 inhibited DLD-1 cell migration, but with an insignificant effect on normal human colon epithelial cells. The data further indicated that WSP1 activated autophagy through down regulation of PI3K/AKT/mTOR pathway. Meanwhile, β‑catenin was degraded by autophagy, which then restrained epithelial-mesenchymal transition (EMT) of DLD-1 cell and its migration was subsequently suppressed significantly. The same changes occurred in xenografted nude mice according to the obtained immunohistochemical results. Consistently, the application of autophagy inhibitor largely reversed the inhibited migration by WSP1 treatment. Taken together, WSP1 could suppress migration of DLD-1 cells by autophagy inhibited EMT. The results suggested that WSP1 possessed the potential as a selective therapeutic agent against metastatic colon cancer.
Collapse
Affiliation(s)
- Songjia Guo
- Shanxi Provincial People's Hospital, Center for Precision Medicine, Taiyuan 030006, China; Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Xinxin Liang
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Min Guo
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Xiaoli Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
38
|
Chen Y, Huang Q, Zhou H, Wang Y, Hu X, Li T. Inhibition of canonical WNT/β-catenin signaling is involved in leflunomide (LEF)-mediated cytotoxic effects on renal carcinoma cells. Oncotarget 2018; 7:50401-50416. [PMID: 27391060 PMCID: PMC5226591 DOI: 10.18632/oncotarget.10409] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/13/2016] [Indexed: 11/25/2022] Open
Abstract
Leflunomide (LEF), an inhibitor of dihydroorotate dehydrogenase (DHODH) in pyrimidine biosynthetic pathway, is an immunomodulatory agent approved for the treatment of rheumatoid arthritis. In this study, we show that LEF significantly reduced cell proliferation of renal carcinoma cells in a concentration-dependent manner. LEF at 50 μM induced S-phase arrest and autophagy. Higher doses of LEF (>50 μM) effectively induced cell apoptosis. Modulating the concentration of LEF resulted in distinct effects on the expression of regulatory proteins associated with cell cycle, apoptosis, and autophagy. In particular, high concentrations of LEF inhibited canonical WNT signaling by promoting nucleo-cytoplasmic shuttling and proteasome-dependent degradation of β-catenin. Mechanistic studies showed that the repression of AKT activation partly accounted for LEF-mediated WNT inhibition. Gene expression microarray revealed that LEF treatment greatly inhibited the expression of FZD10 gene, a receptor mediating WNT/β-catenin activation. In vivo xenograft study in NOD/SCID mice further validated the inhibitory effects of LEF on tumor growth and Wnt/β-catenin signaling. However, LEF treatment also triggered cell autophagy and elevated the expression of WNT3a, which ameliorated its cytotoxic effects. The combination of LEF with a WNT inhibitor IWP-2 or autophagy inhibitor HCQ could yield an enhanced anti-tumor outcome. Taken together, these results identify the potential utility and pharmacological feature of LEF in the chemotherapy of renal cell carcinoma (RCC).
Collapse
Affiliation(s)
- Yicheng Chen
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Qiaoli Huang
- Department of Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Hua Zhou
- Department of Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Yueping Wang
- Department of Urology, Wuyi First People's Hospital, Wuyi, Zhejiang 321200, China
| | - Xian Hu
- Department of Plastic Surgery, Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Tao Li
- Department of Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| |
Collapse
|
39
|
Ehrlichia Activation of Wnt-PI3K-mTOR Signaling Inhibits Autolysosome Generation and Autophagic Destruction by the Mononuclear Phagocyte. Infect Immun 2017; 85:IAI.00690-17. [PMID: 28993455 DOI: 10.1128/iai.00690-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 09/29/2017] [Indexed: 01/07/2023] Open
Abstract
In multicellular organisms, autophagy is induced as an innate defense mechanism. Notably, the obligate intracellular bacterium Ehrlichia chaffeensis resides in early endosome-like vacuoles and circumvents lysosomal fusion through an unknown mechanism, thereby avoiding destruction in the autophagolysosome. In this report, we reveal that Wnt signaling plays a crucial role in inhibition of lysosomal fusion and autolysosomal destruction of ehrlichiae. During early infection, autophagosomes fuse with ehrlichial vacuoles to form an amphisome indicated by the presence of autophagy markers such as LC3 (microtubule-associated protein 1 light chain 3), Beclin-1, and p62. LC3 colocalized with ehrlichial morulae on days 1, 2, and 3 postinfection, and increased LC3II levels were detected during infection, reaching a maximal level on day 3. Ehrlichial vacuoles did not colocalize with the lysosomal marker LAMP2, and lysosomes were redistributed and dramatically reduced in level in the infected cells. An inhibitor specific for the Wnt receptor signaling component Dishevelled induced lysosomal fusion with ehrlichial inclusions corresponding to p62 degradation and promoted transcription factor EB (TFEB) nuclear localization. E. chaffeensis infection activated the phosphatidylinositol 3-kinase (PI3K)-Akt-mTOR (mechanistic target of rapamycin) pathway, and activation was induced by three ehrlichial tandem repeat protein (TRP) effectors, with TRP120 inducing the strongest activation. Moreover, induction of glycogen synthase kinase-3 (GSK3) performed using a Wnt inhibitor and small interfering RNA (siRNA) knockdown of critical components of PI3K-GSK3-mTOR signaling decreased ehrlichial survival. This report reveals Ehrlichia exploitation of the evolutionarily conserved Wnt pathway to inhibit autolysosome generation, thereby leading to evasion of this important innate immune defense mechanism.
Collapse
|
40
|
Shi X, Li W, Liu H, Yin D, Zhao J. β-Cyclodextrin induces the differentiation of resident cardiac stem cells to cardiomyocytes through autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1425-1434. [DOI: 10.1016/j.bbamcr.2017.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/24/2017] [Accepted: 05/11/2017] [Indexed: 12/13/2022]
|
41
|
Zhang C, Li W, Wen J, Yang Z. Autophagy is involved in mouse kidney development and podocyte differentiation regulated by Notch signalling. J Cell Mol Med 2017; 21:1315-1328. [PMID: 28158917 PMCID: PMC5487928 DOI: 10.1111/jcmm.13061] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/18/2016] [Indexed: 01/19/2023] Open
Abstract
Podocyte dysfunction results in glomerular diseases accounted for 90% of end-stage kidney disease. The evolutionarily conserved Notch signalling makes a crucial contribution in podocyte development and function. However, the underlying mechanism of Notch pathway modulating podocyte differentiation remains less obvious. Autophagy, reported to be related with Notch signalling pathways in different animal models, is regarded as a possible participant during podocyte differentiation. Here, we found the dynamic changes of Notch1 were coincided with autophagy: they both increased during kidney development and podocyte differentiation. Intriguingly, when Notch signalling was down-regulated by DAPT, autophagy was greatly diminished, and differentiation was also impaired. Further, to better understand the relationship between Notch signalling and autophagy in podocyte differentiation, rapamycin was added to enhance autophagy levels in DAPT-treated cells, and as a result, nephrin was recovered and DAPT-induced injury was ameliorated. Therefore, we put forward that autophagy is involved in kidney development and podocyte differentiation regulated by Notch signalling.
Collapse
Affiliation(s)
- Chuyue Zhang
- School of MedicineState Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials Ministry of EducationNankai UniversityTianjinChina
| | - Wen Li
- School of MedicineState Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials Ministry of EducationNankai UniversityTianjinChina
| | - Junkai Wen
- School of MedicineState Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials Ministry of EducationNankai UniversityTianjinChina
| | - Zhuo Yang
- School of MedicineState Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials Ministry of EducationNankai UniversityTianjinChina
| |
Collapse
|
42
|
Magariños M, Pulido S, Aburto MR, de Iriarte Rodríguez R, Varela-Nieto I. Autophagy in the Vertebrate Inner Ear. Front Cell Dev Biol 2017; 5:56. [PMID: 28603711 PMCID: PMC5445191 DOI: 10.3389/fcell.2017.00056] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/09/2017] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a conserved catabolic process that results in the lysosomal degradation of cell components. During development, autophagy is associated with tissue and organ remodeling, and under physiological conditions it is tightly regulated as it plays a housekeeping role in removing misfolded proteins and damaged organelles. The vertebrate inner ear is a complex sensory organ responsible for the perception of sound and for balance. Cell survival, death and proliferation, as well as cell fate specification and differentiation, are processes that are strictly coordinated during the development of the inner ear in order to generate the more than a dozen specialized cell types that constitute this structure. Here, we review the existing evidence that implicates autophagy in the generation of the vertebrate inner ear. At early stages of chicken otic development, inhibiting autophagy impairs neurogenesis and causes aberrant otocyst morphogenesis. Autophagy provides energy for the clearing of dying cells and it favors neuronal differentiation. Moreover, autophagy is required for proper vestibular development in the mouse inner ear. The autophagy-related genes Becn1, Atg4g, Atg5, and Atg9, are expressed in the inner ear from late developmental stages to adulthood, and Atg4b mutants show impaired vestibular behavior associated to defects in otoconial biogenesis that are also common to Atg5 mutants. Autophagic flux appears to be age-regulated, augmenting from perinatal stages to young adulthood in mice. This up-regulation is concomitant with the functional maturation of the hearing receptor. Hence, autophagy can be considered an intracellular pathway fundamental for in vertebrate inner ear development and maturation.
Collapse
Affiliation(s)
- Marta Magariños
- Department of Endocrine and Nervous Systems Pathophysiology, Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAMMadrid, Spain.,CIBERER, Unit 761, Instituto de Salud Carlos IIIMadrid, Spain.,Departamento de Biología, Universidad Autónoma de MadridMadrid, Spain
| | - Sara Pulido
- Department of Endocrine and Nervous Systems Pathophysiology, Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAMMadrid, Spain.,CIBERER, Unit 761, Instituto de Salud Carlos IIIMadrid, Spain
| | - María R Aburto
- Department of Endocrine and Nervous Systems Pathophysiology, Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAMMadrid, Spain
| | - Rocío de Iriarte Rodríguez
- Department of Endocrine and Nervous Systems Pathophysiology, Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAMMadrid, Spain
| | - Isabel Varela-Nieto
- Department of Endocrine and Nervous Systems Pathophysiology, Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAMMadrid, Spain.,CIBERER, Unit 761, Instituto de Salud Carlos IIIMadrid, Spain.,Instituto de Investigación Hospital Universitario La Paz (IdiPAZ)Madrid, Spain
| |
Collapse
|
43
|
Wang G, Chen EN, Liang C, Liang J, Gao LR, Chuai M, Münsterberg A, Bao Y, Cao L, Yang X. Atg7-Mediated Autophagy Is Involved in the Neural Crest Cell Generation in Chick Embryo. Mol Neurobiol 2017; 55:3523-3536. [PMID: 28509082 DOI: 10.1007/s12035-017-0583-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/27/2017] [Indexed: 10/25/2022]
Abstract
Autophagy plays a very important role in numerous physiological and pathological events. However, it still remains unclear whether Atg7-induced autophagy is involved in the regulation of neural crest cell production. In this study, we found the co-location of Atg7 and Pax7+ neural crest cells in early chick embryo development. Upregulation of Atg7 with unilateral transfection of full-length Atg7 increased Pax7+ and HNK-1+ cephalic and trunk neural crest cell numbers compared to either Control-GFP transfection or opposite neural tubes, suggesting that Atg7 over-expression in neural tubes could enhance the production of neural crest cells. BMP4 in situ hybridization and p-Smad1/5/8 immunofluorescent staining demonstrated that upregulation of Atg7 in neural tubes suppressed the BMP4/Smad signaling, which is considered to promote the delamination of neural crest cells. Interestingly, upregulation of Atg7 in neural tubes could significantly accelerate cell progression into the S phase, implying that Atg7 modulates cell cycle progression. However, β-catenin expression was not significantly altered. Finally, we demonstrated that upregulation of the Atg7 gene could activate autophagy as did Atg8. We have also observed that similar phenotypes, such as more HNK-1+ neural crest cells in the unilateral Atg8 transfection side of neural tubes, and the transfection with full-length Atg8-GFP certainly promote the numbers of BrdU+ neural crest cells in comparison to the GFP control. Taken together, we reveal that Atg7-induced autophagy is involved in regulating the production of neural crest cells in early chick embryos through the modification of the cell cycle.
Collapse
Affiliation(s)
- Guang Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China.,Chinese Medicine College, Jinan University, Guangzhou, 510632, China
| | - En-Ni Chen
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China
| | - Chang Liang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China
| | - Jianxin Liang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China.,Chinese Medicine College, Jinan University, Guangzhou, 510632, China
| | - Lin-Rui Gao
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China
| | - Manli Chuai
- Division of Cell and Developmental Biology, University of Dundee, Dundee, DD1 5EH, UK
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7UQ, UK
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, 110001, China.
| | - Xuesong Yang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
44
|
Fu Q, Chen K, Zhu Q, Wang W, Huang F, Miao L, Wu X. β-catenin promotes intracellular bacterial killing via suppression of Pseudomonas aeruginosa-triggered macrophage autophagy. J Int Med Res 2017; 45:556-569. [PMID: 28415949 PMCID: PMC5536651 DOI: 10.1177/0300060517692147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Objective To investigate β-catenin-mediated bacterial elimination during Pseudomonas aeruginosa infection of macrophage-like RAW264.7 cells. Methods Cell viability and catenin beta 1 (CTNNB1) expression in RAW264.7 cells following P. aeruginosa infection versus uninfected cells, were detected by cell counting kit-8 assay and β-catenin Western blots. RAW264.7 cells with CTNNB1 overexpression were established with β-catenin lentivirus using flow cytometry and clonogenic limiting dilution assays. Bacterial killing was measured by plate counts; phagocytosis and nitric oxide (NO) were measured by flow cytometry; and reactive oxygen species (ROS) were measured using Griess reaction. Autophagy was determined by microtubule-associated protein 1 light chain 3 alpha-phosphatidylethanolamine conjugate (LC3-II) protein levels and formation of LC3 puncta, using Western blot and immunofluorescence staining. Results Following P. aeruginosa infection, RAW264.7 cell β-catenin levels were reduced in a time- and multiplicity of infection-dependent manner. CTNNB1 overexpression was associated with increased P. aeruginosa elimination, but had no effect on RAW264.7 cell phagocytosis, ROS and NO. CTNNB1 overexpression reduced LC3-II levels and formation of LC3 puncta, suggesting autophagy inhibition. Rapamycin/starvation-induced autophagy resulted in reduced bacterial killing following P. aeruginosa infection. Conclusion β-catenin may promote bacterial killing via suppression of P. aeruginosa-induced macrophage autophagy.
Collapse
Affiliation(s)
- Qiang Fu
- 1 Division of Clinical Laboratory, Zhongshan Hospital of Sun Yat-Sen University, Zhongshan, China
| | - Kang Chen
- 1 Division of Clinical Laboratory, Zhongshan Hospital of Sun Yat-Sen University, Zhongshan, China
| | - Qian Zhu
- 2 Institute of Quality Standard and Testing Technology for Agro-product, Shandong Academy of Agricultural Science, Jinan, China
| | - Weijia Wang
- 1 Division of Clinical Laboratory, Zhongshan Hospital of Sun Yat-Sen University, Zhongshan, China
| | - Fuda Huang
- 1 Division of Clinical Laboratory, Zhongshan Hospital of Sun Yat-Sen University, Zhongshan, China
| | - Lishao Miao
- 1 Division of Clinical Laboratory, Zhongshan Hospital of Sun Yat-Sen University, Zhongshan, China
| | - Xinger Wu
- 1 Division of Clinical Laboratory, Zhongshan Hospital of Sun Yat-Sen University, Zhongshan, China
| |
Collapse
|
45
|
Busquets O, Ettcheto M, Pallàs M, Beas-Zarate C, Verdaguer E, Auladell C, Folch J, Camins A. Long-term exposition to a high fat diet favors the appearance of β-amyloid depositions in the brain of C57BL/6J mice. A potential model of sporadic Alzheimer's disease. Mech Ageing Dev 2016; 162:38-45. [PMID: 27863851 DOI: 10.1016/j.mad.2016.11.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/26/2016] [Accepted: 11/11/2016] [Indexed: 11/15/2022]
Abstract
AIMS The sporadic and late-onset form of Alzheimer's disease (AD) constitutes the most common form of dementia. This non-familiar form could be a consequence of metabolic syndrome, characterized by obesity and the development of a brain-specific insulin resistance known as type III diabetes. This work demonstrates the development of a significant AD-like neuropathology due to these metabolic alterations. METHODS C57BL/6J mice strain were divided into two groups, one fed with a diet rich in palmitic acid (high-fat diet, HFD) since their weaning until 16 months of age, and another group used as a control with a regular diet. The analyses were carried out in the dentate gyrus area of the hippocampus using a Thioflavin-S stain and immunofluorescence assays. RESULTS The most significant finding of the present research was that HFD induced the deposition of the βA peptide. Moreover, the diet also caused alterations in different cell processes, such as increased inflammatory reactions that lead to a decrease in the neuronal precursor cells. In addition, the results show that there were also dysregulations in normal autophagy and apoptosis, mechanisms related to βA formation. CONCLUSIONS The present findings confirm that HFD favors the formation of βA depositions in the brain, a key feature of AD, supporting the metabolic hypothesis of sporadic AD.
Collapse
Affiliation(s)
- Oriol Busquets
- Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Tarragona, Spain; Departament de Farmacologia, Toxicologia i Quimica Terapeurica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Miren Ettcheto
- Departament de Farmacologia, Toxicologia i Quimica Terapeurica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Mercè Pallàs
- Departament de Farmacologia, Toxicologia i Quimica Terapeurica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Insitutut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Beas-Zarate
- Laboratorio de Regeneración y Desarrollo Neural, Instituto de Neurobiología, Departamento de Biología Celular y Molecular, CUCBA, Guadalajara, Mexico
| | - Ester Verdaguer
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Insitutut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Carme Auladell
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Insitutut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Folch
- Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Tarragona, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Antoni Camins
- Departament de Farmacologia, Toxicologia i Quimica Terapeurica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Insitutut de Neurociències, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
46
|
Pamarthy S, Mao L, Katara GK, Fleetwood S, Kulshreshta A, Gilman-Sachs A, Beaman KD. The V-ATPase a2 isoform controls mammary gland development through Notch and TGF-β signaling. Cell Death Dis 2016; 7:e2443. [PMID: 27809299 PMCID: PMC5260869 DOI: 10.1038/cddis.2016.347] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/17/2022]
Abstract
Among all tissues and organs, the mammary gland is unique because most of its development occurs in adulthood. Notch signaling has a major role in mammary gland development and has been implicated in breast cancer. The vacuolar-ATPase (V-ATPase) is a proton pump responsible for the regulation and control of pH in intracellular vesicles and the extracellular milieu. We have previously reported that a2V-ATPase (a2V), an isoform of ‘a' subunit of V-ATPase, regulates processing of Notch receptor and alters Notch signaling in breast cancer. To study the role of a2V in mammary gland development, we generated an a2V-KO model (conditional mammary knockout a2V mouse strain). During normal mammary gland development, the basal level expression of a2V increased from puberty, virginity, and pregnancy through the lactation stage and then decreased during involution. Litters of a2V-KO mice weighed significantly less when compared with litters from wild-type mice and showed reduced expression of the lactation marker β-casein. Whole-mount analysis of mammary glands demonstrated impaired ductal elongation and bifurcation in a2V-KO mice. Consequently, we found disintegrated mammary epithelium as seen by basal and luminal epithelial staining, although the rate of proliferation remained unchanged. Delayed mammary morphogenesis in a2V-KO mice was associated with aberrant activation of Notch and TGF-β (transforming growth factor-β) pathways. Notably, Hey1 (hairy/enhancer-of-split related with YRPW motif) and Smad2, the key downstream mediators of Notch and TGF-β pathways, respectively, were upregulated in a2V-KO mice and also in human mammary epithelial cells treated with a2V siRNA. Taken together, our results show that a2V deficiency disrupts the endolysosomal route in Notch and TGF signaling, thereby impairing mammary gland development. Our findings have broader implications in developmental and oncogenic cellular environments where V-ATPase, Notch and TGF-β are crucial for cell survival.
Collapse
Affiliation(s)
- Sahithi Pamarthy
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.,Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Liquin Mao
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Gajendra K Katara
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Sara Fleetwood
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Arpita Kulshreshta
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Alice Gilman-Sachs
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Kenneth D Beaman
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
47
|
Hu Y, Carraro-Lacroix LR, Wang A, Owen C, Bajenova E, Corey PN, Brumell JH, Voronov I. Lysosomal pH Plays a Key Role in Regulation of mTOR Activity in Osteoclasts. J Cell Biochem 2016. [PMID: 26212375 DOI: 10.1002/jcb.25287] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase involved in the regulation of cell growth. It has been shown to play an important role in osteoclast differentiation, particularly at the earlier stages of osteoclastogenesis. mTOR activation and function, as part of mTORC1 complex, is dependent on lysosomal localization and the vacuolar H(+) -ATPase (V-ATPase) activity; however, the precise mechanism is still not well understood. Using primary mouse osteoclasts that are known to have higher lysosomal pH due to R740S mutation in the V-ATPase a3 subunit, we investigated the role of lysosomal pH in mTORC1 signaling. Our results demonstrated that +/R740S cells had increased basal mTOR protein levels and mTORC1 activity compared to +/+ osteoclasts, while mTOR gene expression was decreased. Treatment with lysosomal inhibitors chloroquine and ammonium chloride, compounds known to raise lysosomal pH, significantly increased mTOR protein levels in +/+ cells, confirming the importance of lysosomal pH in mTOR signaling. These results also suggested that mTOR could be degraded in the lysosome. To test this hypothesis, we cultured osteoclasts with chloroquine or proteasomal inhibitor MG132. Both chloroquine and MG132 increased mTOR and p-mTOR protein levels in +/+ osteoclasts, suggesting that mTOR undergoes both lysosomal and proteasomal degradation. Treatment with cycloheximide, an inhibitor of new protein synthesis, confirmed that mTOR is constitutively expressed and degraded. These results show that, in osteoclasts, the lysosome plays a key role not only in mTOR activation but also in its deactivation through protein degradation, representing a novel molecular mechanism of mTOR regulation.
Collapse
Affiliation(s)
- Yingwei Hu
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Institute of Dental Medicine, Qilu Hospital, Shandong University, Jinan, China
| | | | - Andrew Wang
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Celeste Owen
- Centre for Modeling Human Disease, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Elena Bajenova
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Paul N Corey
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - John H Brumell
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Irina Voronov
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
48
|
Ren L, Han W, Yang H, Sun F, Xu S, Hu S, Zhang M, He X, Hua J, Peng S. Autophagy stimulated proliferation of porcine PSCs might be regulated by the canonical Wnt signaling pathway. Biochem Biophys Res Commun 2016; 479:537-543. [PMID: 27664705 DOI: 10.1016/j.bbrc.2016.09.105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 09/20/2016] [Indexed: 02/07/2023]
Abstract
Porcine pancreatic stem cells (PSCs) are one kind of the potential cells for treatment of human diabetes. Autophagy is a highly conserved cellular degradation process in which it helps to maintain the balance between the synthesis, degradation and subsequent recycling of cellular components. However, how autophagy contributes to PSCs has not yet been investigated. Here, we established GFP-LC3 transfected porcine PSC lines in which the accumulation of autophagosomes can be efficiently visualized to evaluate the autophagic activity. Moreover, we observed that starved PSCs which showed increased autophagic activity exhibited an increased tendency to proliferate through the results of BrdU, flow cytometry and western blotting. Furthermore, increased expression of active β-catenin after inducing autophagy indicated that it might be the canonical Wnt signaling that autophagy activated to exert the function on the stimulation of PSCs proliferation. Collectively, these results demonstrated that autophagy stimulated proliferation of PSCs might be regulated by the canonical Wnt signaling pathway. Our results for the first time shed light on a role of autophagy for stimulating the proliferation of porcine PSCs.
Collapse
Affiliation(s)
- Lipeng Ren
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Wei Han
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Hong Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Fen Sun
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Shuanshuan Xu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Shuxian Hu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Mingzhi Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Xin He
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
49
|
Pamarthy S, Jaiswal MK, Kulshreshtha A, Katara GK, Gilman-Sachs A, Beaman KD. The Vacuolar ATPase a2-subunit regulates Notch signaling in triple-negative breast cancer cells. Oncotarget 2016; 6:34206-20. [PMID: 26418877 PMCID: PMC4741446 DOI: 10.18632/oncotarget.5275] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/07/2015] [Indexed: 12/24/2022] Open
Abstract
Triple Negative Breast Cancer (TNBC) is a subtype of breast cancer with poor prognosis for which no targeted therapies are currently available. Notch signaling has been implicated in breast cancer but the factors that control Notch in TNBC are unknown. Because the Vacuolar ATPase has been shown to be important in breast cancer invasiveness, we investigated the role of a2-subunit isoform of Vacuolar ATPase (a2V) in regulating Notch signaling in TNBC. Confocal microscopy revealed that among all the ‘a’ subunit isoforms, a2V was uniquely expressed on the plasma membrane of breast cancer cells. Both a2V and NOTCH1 were elevated in TNBC tumors tissues and cell lines. a2V knockdown by siRNA as well as V-ATPase inhibition by Bafilomycin A1 (Baf A1) in TNBC cell lines enhanced Notch signaling by increasing the expression of Notch1 intracellular Domain (N1ICD). V-ATPase inhibition blocked NICD degradation by disrupting autophagy and lysosomal acidification as demonstrated by accumulation of LC3B and diminished expression of LAMP1 respectively. Importantly, treatment with Baf A1 or anti-a2V, a novel-neutralizing antibody against a2V hindered cell migration of TNBC cells. Our findings indicate that a2V regulates Notch signaling through its role in endolysosomal acidification and emerges as a potential target for TNBC.
Collapse
Affiliation(s)
- Sahithi Pamarthy
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Mukesh K Jaiswal
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Arpita Kulshreshtha
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Gajendra K Katara
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Alice Gilman-Sachs
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Kenneth D Beaman
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
50
|
Zeng J, Jing Y, Shi R, Pan X, Lai F, Liu W, Li R, Gao L, Hou X, Wu M, Wei L. Autophagy regulates biliary differentiation of hepatic progenitor cells through Notch1 signaling pathway. Cell Cycle 2016; 15:1602-10. [PMID: 27259983 DOI: 10.1080/15384101.2016.1181234] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autophagy plays important roles in self-renewal and differentiation of stem cells. Hepatic progenitor cells (HPCs) are thought to have the ability of self-renewal as well as possess a bipotential capacity, which allows them to differentiate into both hepatocytes and bile ductular cells. However, how autophagy contributes to self-renewal and differentiation of hepatic progenitor cells is not well understood. In this study, we use a well-established rat hepatic progenitor cell lines called WB-F344, which is treated with 3.75 mM sodium butyrate (SB) to promote the differentiation of WB-F344 along the biliary phenotype. We found that autophagy was decreased in the early stage of biliary differentiation, and maintained a low level at the late stage. Activation of autophagy by rapamycin or starvation suppressed the biliary differentiation of WB-F344. Further study reported that autophagy inhibited Notch1 signaling pathway, which contributed to biliary differentiation and morphogenesis. In conclusions, autophagy regulates biliary differentiation of hepatic progenitor cells through Notch1 signaling pathway.
Collapse
Affiliation(s)
- Jianxing Zeng
- a Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China.,c Fujian Medical University , Fuzhou , Fujian , China
| | - Yingying Jing
- a Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China
| | - Rongyu Shi
- a Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China.,c Fujian Medical University , Fuzhou , Fujian , China
| | - Xiaorong Pan
- a Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China.,c Fujian Medical University , Fuzhou , Fujian , China
| | - Fobao Lai
- a Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China.,c Fujian Medical University , Fuzhou , Fujian , China
| | - Wenting Liu
- a Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China
| | - Rong Li
- a Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China
| | - Lu Gao
- a Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China
| | - Xiaojuan Hou
- a Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China
| | - Mengchao Wu
- b Department of Comprehensive Treatment , Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China
| | - Lixin Wei
- a Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China
| |
Collapse
|