1
|
Liu Y, Chen SJ, Ai C, Yu PX, Fang M, Wang H. Prenatal dexamethasone exposure impairs rat blood-testis barrier function and sperm quality in adult offspring via GR/KDM1B/FSTL3/TGFβ signaling. Acta Pharmacol Sin 2024; 45:1237-1251. [PMID: 38472317 PMCID: PMC11130295 DOI: 10.1038/s41401-024-01244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Both epidemiological and animal studies suggest that adverse environment during pregnancy can change the offspring development programming, but it is difficult to achieve prenatal early warning. In this study we investigated the impact of prenatal dexamethasone exposure (PDE) on sperm quality and function of blood-testis barrier (BTB) in adult offspring and the underlying mechanisms. Pregnant rats were injected with dexamethasone (0.1, 0.2 and 0.4 mg·kg-1·d-1, s.c.) from GD9 to GD20. After weaning (PW4), the pups were fed with lab chow. At PW12 and PW28, the male offspring were euthanized to collect blood and testes samples. We showed that PDE significantly decreased sperm quality (including quantity and motility) in male offspring, which was associated with impaired BTB and decreased CX43/E-cadherin expression in the testis. We demonstrated that PDE induced morphological abnormalities of fetal testicle and Sertoli cell development originated from intrauterine. By tracing to fetal testicular Sertoli cells, we found that PDE dose-dependently increased expression of histone lysine demethylases (KDM1B), decreasing histone 3 lysine 9 dimethylation (H3K9me2) levels of follistatin-like-3 (FSTL3) promoter region and increased FSTL3 expression, and inhibited TGFβ signaling and CX43/E-cadherin expression in offspring before and after birth. These results were validated in TM4 Sertoli cells following dexamethasone treatment. Meanwhile, the H3K9me2 levels of FSTL3 promoter in maternal peripheral blood mononuclear cell (PBMC) and placenta were decreased and its expression increased, which was positively correlated with the changes in offspring testis. Based on analysis of human samples, we found that the H3K9me2 levels of FSTL3 promoter in maternal blood PBMC and placenta were positively correlated with fetal blood testosterone levels after prenatal dexamethasone exposure. We conclude that PDE can reduce sperm quality in adult offspring rats, which is related to the damage of testis BTB via epigenetic modification and change of FSTL3 expression in Sertoli cells. The H3K9me2 levels of the FSTL3 promoter and its expression in the maternal blood PBMC can be used as a prenatal warning marker for fetal testicular dysplasia.
Collapse
Affiliation(s)
- Yi Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Si-Jia Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Can Ai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Peng-Xia Yu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Man Fang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
2
|
Bai Y, Li L, Li J, Lu X. Association analysis of FXYD5 with prognosis and immunological characteristics across pan-cancer. Heliyon 2024; 10:e30727. [PMID: 38774095 PMCID: PMC11107115 DOI: 10.1016/j.heliyon.2024.e30727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/24/2024] Open
Abstract
Background The FXYD domain-containing ion transport regulator 5 (FXYD5) gene is a cancer promoter. However, evidence for an association between FXYD5 and various types of cancer is still lacking. Using multi-omics bioinformatics, our study aimed to reveal the expression distribution, prognostic value, immune infiltration correlation, and molecular functions of FXYD5. Methods Using pan-cancer multi-omics data (including The Cancer Genome Atlas, PrognoScan, Gene Expression Profiling Interactive Analysis, cBioPortal, Gene Expression Omnibus, TIMER and scTIME Portal), we assessed the differences in the expression and prognostic value of FXYD5 in malignant tumors. Furthermore, at the single-cell level, we analyze the expression distribution of FXYD5 across different cell types within the tumor microenvironment, and its relationship with the immune microenvironment. Finally, focusing on ovarian cancer, we conducted preliminary validation of the above findings using cell and molecular biology techniques. Results Our results indicated that FXYD5 was up-regulated in various tumor types and was positively associated with tumor progression. We also revealed that FXYD5 was ubiquitously expressed in microenvironmental cells at the single-cell level, and its upregulation was associated with enhanced immune infiltration, cancer-associated fibroblast infiltration, and dysfunction of tumor-infiltrating cytotoxic T lymphocyte. Additionally, its expression was positively correlated with immune checkpoint genes, DNA mismatch repair genes, MSI (microsatellite instability) and TMB (tumor mutational burden) across various cancers. Its higher expression in cytotoxic T lymphocytes attenuated its ability to predict patient survival with PD-L1 (programmed death-ligand 1) blockade therapy, and FXYD5 was found to be a potential regulator of tumor immune escape and resistance to cancer immunotherapies. Based on GSEA (gene set enrichment analysis) and experimental verification, FXYD5 activated TGF-β/SMAD signaling and drove EMT (epithelial-mesenchymal transition) to promote ovarian cancer progression. Conclusion In summary, our study revealed that FXYD5-TGFβ axis may coregulate the interaction between tumors, CAFs (carcinoma-associated fibroblasts) and immune cells to reshape the tumor immune microenvironment and promote tumorigenesis and tumor progression. Thus, FXYD5 could be used as an immune-related biomarker for diagnosing and predicting the prognosis of multiple cancer types. Therefore, our findings suggest that targeting FXYD5 in TME (tumor microenvironment) may be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Yang Bai
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Liangdong Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jun Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Xin Lu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| |
Collapse
|
3
|
Bahar-Shany K, Barnabas GD, Deutsch L, Deutsch N, Glick-Saar E, Dominissini D, Sapoznik S, Helpman L, Perri T, Blecher A, Katz G, Yagel I, Rosenblatt O, Shai D, Brandt B, Meyer R, Mohr-Sasson A, Volodarsky-Perel A, Zilberman I, Armon S, Jakobson-Setton A, Eitan R, Kadan Y, Beiner M, Josephy D, Brodsky M, Friedman E, Anafi L, Molchanov Y, Korach J, Geiger T, Levanon K. Proteomic signature for detection of high-grade ovarian cancer in germline BRCA mutation carriers. Int J Cancer 2023; 152:781-793. [PMID: 36214786 DOI: 10.1002/ijc.34318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/21/2022] [Accepted: 09/05/2022] [Indexed: 02/01/2023]
Abstract
No current screening methods for high-grade ovarian cancer (HGOC) guarantee effective early detection for high-risk women such as germline BRCA mutation carriers. Therefore, the standard-of-care remains risk-reducing salpingo-oophorectomy (RRSO) around age 40. Proximal liquid biopsy is a promising source of biomarkers, but sensitivity has not yet qualified for clinical implementation. We aimed to develop a proteomic assay based on proximal liquid biopsy, as a decision support tool for monitoring high-risk population. Ninety Israeli BRCA1 or BRCA2 mutation carriers were included in the training set (17 HGOC patients and 73 asymptomatic women), (BEDOCA trial; ClinicalTrials.gov Identifier: NCT03150121). The proteome of the microvesicle fraction of the samples was profiled by mass spectrometry and a classifier was developed using logistic regression. An independent cohort of 98 BRCA mutation carriers was used for validation. Safety information was collected for all women who opted for uterine lavage in a clinic setting. We present a 7-protein diagnostic signature, with AUC >0.97 and a negative predictive value (NPV) of 100% for detecting HGOC. The AUC of the biomarker in the independent validation set was >0.94 and the NPV >99%. The sampling procedure was clinically acceptable, with favorable pain scores and safety. We conclude that the acquisition of Müllerian tract proximal liquid biopsies in women at high-risk for HGOC and the application of the BRCA-specific diagnostic assay demonstrates high sensitivity, specificity, technical feasibility and safety. Similar classifier for an average-risk population is warranted.
Collapse
Affiliation(s)
- Keren Bahar-Shany
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Georgina D Barnabas
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Lisa Deutsch
- BioStats, Statistical Consulting Ltd, Modiin, Israel
| | | | - Efrat Glick-Saar
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Dan Dominissini
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | - Stav Sapoznik
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Limor Helpman
- Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel.,Department of Gynecologic Oncology, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Tamar Perri
- Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel.,Department of Gynecologic Oncology, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Anna Blecher
- Department of Gynecologic Oncology, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Guy Katz
- Department of Gynecologic Oncology, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Itai Yagel
- Department of Gynecologic Oncology, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Orgad Rosenblatt
- Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel.,Department of Gynecologic Oncology, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Daniel Shai
- Department of Gynecologic Oncology, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Benny Brandt
- Department of Gynecologic Oncology, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Raanan Meyer
- Division of Obstetrics and Gynecology, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Aya Mohr-Sasson
- Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel.,Division of Obstetrics and Gynecology, Chaim Sheba Medical Center, Ramat Gan, Israel
| | | | - Itamar Zilberman
- Division of Obstetrics and Gynecology, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Shunit Armon
- Department of Obstetrics & Gynecology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Ariella Jakobson-Setton
- Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel.,Department of Gynecologic Oncology, Rabin Medical Center, Petah Tikva, Israel
| | - Ram Eitan
- Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel.,Department of Gynecologic Oncology, Rabin Medical Center, Petah Tikva, Israel
| | - Yfat Kadan
- Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel.,Division of Gynecologic Oncology, Meir Medical Center, Kfar Saba, Israel
| | - Mario Beiner
- Division of Gynecologic Oncology, Meir Medical Center, Kfar Saba, Israel
| | - Dana Josephy
- Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel.,Division of Gynecologic Oncology, Meir Medical Center, Kfar Saba, Israel
| | - Malka Brodsky
- Meirav Breast Health Center, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Eitan Friedman
- Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel.,The Susanne-Levy Gertner Oncogenetics Unit, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Liat Anafi
- Department of Pathology, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Yossef Molchanov
- Department of Pathology, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Jacob Korach
- Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel.,Department of Gynecologic Oncology, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Levanon
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| |
Collapse
|
4
|
Tian C, Liu Y, Xue L, Zhang D, Zhang X, Su J, Chen J, Li X, Wang L, Jiao S. Sorafenib inhibits ovarian cancer cell proliferation and mobility and induces radiosensitivity by targeting the tumor cell epithelial–mesenchymal transition. Open Life Sci 2022; 17:616-625. [PMID: 35800071 PMCID: PMC9202537 DOI: 10.1515/biol-2022-0066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022] Open
Abstract
Sorafenib, a pan-protein kinase inhibitor, inhibits the activity of various kinases (like vascular endothelial growth factor, platelet-derived growth factor, and rapidly accelerated fibrosarcoma) and clinically has been used to treat different human cancers. This study investigated its antitumor activity in ovarian cancer and the underlying molecular events. To achieve that, ovarian cancer SKOV-3 cells were treated with or without sorafenib (10 µM), transforming growth factor (TGF)-β1 (10 ng/mL), sorafenib (10 µM) + TGF-β1 (10 ng/mL), and TGF-β1 (10 ng/mL) + Ly2157299 (5 µM), followed by 8-Gy radiation. The cells were then subjected to cell viability, wound healing, Transwell, caspase-3 activity, and western blot assays. TGF-β1 treatment enhanced ovarian cancer cell epithelial–mesenchymal transition (EMT), whereas sorafenib and a selective TGF-β1 inhibitor Ly2157299 reversed tumor cell EMT, invasion, and expression of EMT markers (E-cadherin and vimentin). Sorafenib and Ly2157299 treatment also significantly reduced the tumor cell viability. Furthermore, both sorafenib and Ly2157299 significantly enhanced ovarian cancer cell radiosensitivity, as assessed by a caspase-3 activity assay. In conclusion, sorafenib inhibited ovarian cancer cell proliferation and mobility and induced tumor cell radiosensitivity. Molecularly, sorafenib could inhibit the TGF-β1-mediated EMT. Future studies will assess sorafenib anti-ovarian cancer activity plus TGF-β1 inhibitors in ovarian cancer in vivo.
Collapse
Affiliation(s)
- Chuntao Tian
- Department of Oncology, The Sanmenxia Central Hospital , Henan 472000 , China
| | - Ying Liu
- Department of Pathology, The Sanmenxia Central Hospital , Henan 472000 , China
| | - Lingfei Xue
- Department of Oncology, The Sanmenxia Central Hospital , Henan 472000 , China
| | - Dong Zhang
- Department of Oncology, The Sanmenxia Central Hospital , Henan 472000 , China
| | - Xiaotong Zhang
- Department of Oncology, The Sanmenxia Central Hospital , Henan 472000 , China
| | - Jing Su
- Department of Oncology, The Sanmenxia Central Hospital , Henan 472000 , China
| | - Jiaohong Chen
- Department of Oncology, The Sanmenxia Central Hospital , Henan 472000 , China
| | - Xiangke Li
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University , Zhengzhou 450052 , China
| | - Liuxing Wang
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University , Zhengzhou 450052 , China
| | - Shunchang Jiao
- Department of Oncology, The General Hospital of Chinese PLA , Beijing 100853 , China
| |
Collapse
|
5
|
Miranda AL, Kourdova LT, Racca AC, Cruz Del Puerto M, Rojas ML, Marques ALX, Silva ECO, Fonseca EJS, Gazzoni Y, Gruppi A, Borbely AU, Genti‐Raimondi S, Panzetta‐Dutari GM. Krüppel‐like factor 6 participates in extravillous trophoblast cell differentiation and its expression is reduced in abnormally invasive placenta. FEBS Lett 2022; 596:1700-1719. [DOI: 10.1002/1873-3468.14367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Andrea L. Miranda
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Lucille T. Kourdova
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Ana C. Racca
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Mariano Cruz Del Puerto
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Maria L. Rojas
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Aldilane L. X. Marques
- Cell Biology Laboratory Institute of Health and Biological Sciences Federal University of Alagoas Maceio Brazil
| | - Elaine C. O. Silva
- Optics and Nanoscopy Group Physics Institute Federal University of Alagoas Maceio Brazil
| | - Eduardo J. S. Fonseca
- Optics and Nanoscopy Group Physics Institute Federal University of Alagoas Maceio Brazil
| | - Yamila Gazzoni
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Adriana Gruppi
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Alexandre U. Borbely
- Cell Biology Laboratory Institute of Health and Biological Sciences Federal University of Alagoas Maceio Brazil
| | - Susana Genti‐Raimondi
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Graciela M. Panzetta‐Dutari
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| |
Collapse
|
6
|
Niu G, Zhang X, Hong R, Yang X, Gu J, Song T, Hu Z, Chen L, Wang X, Xia J, Ke Z, Ren J, Hong L. GJA1 promotes hepatocellular carcinoma progression by mediating TGF-β-induced activation and the epithelial-mesenchymal transition of hepatic stellate cells. Open Med (Wars) 2021; 16:1459-1471. [PMID: 34693020 PMCID: PMC8486017 DOI: 10.1515/med-2021-0344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 08/12/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Introduction Gap junction protein, alpha 1 (GJA1), which is correlated with recurrences and unfavorable prognoses in hepatocellular carcinomas (HCCs), is one of the specific proteins expressed by activated hepatic stellate cells (HSCs). Methods Expression of GJA1 was compared between HCCs and nontumor tissues (NTs), between hepatic cirrhosis and NTs, and between primary and metastatic HCCs using transcriptomic datasets from the Gene Expression Omnibus and the Integrative Molecular Database of Hepatocellular Carcinoma. The in vitro activities of GJA1 were investigated in cultured HSCs and HCC cells. The underlying mechanism was characterized using Gene Set Enrichment Analysis and validated by western blotting. Results The expression of GJA1 was significantly increased in HCCs and hepatic cirrhosis compared to that in NTs. GJA1 was also overexpressed in pulmonary metastases from HCCs when compared with HCCs without metastasis. Overexpression of GJA1 promoted while knockdown of GJA1 inhibited proliferation and transforming growth factor (TGF)-β-mediated activation and migration of cultured HSCs. Overexpression of GJA1 by lentivirus infection promoted proliferation and migration, while conditioned medium from HSCs overexpressing GJA1 promoted migration but inhibited proliferation of Hep3B and PLC-PRF-5 cells. Lentivirus infection with shGJA1 or conditioned medium from shGJA1-infected HSCs inhibited the proliferation and migration of HCCLM3 cells that had a high propensity toward lung metastasis. Mechanistically, GJA1 induced the epithelial–mesenchymal transition (EMT) in HSCs and HCCLM3 cells. Conclusion GJA1 promoted HCC progression by inducing HSC activation and the EMT in HSCs. GJA1 is potentially regulated by TGF-β and thus may be a therapeutic target to inhibit HCC progression.
Collapse
Affiliation(s)
- Gengming Niu
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, Minhang District, Shanghai, 200240, People's Republic of China
| | - Xiaotian Zhang
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, Minhang District, Shanghai, 200240, People's Republic of China
| | - Runqi Hong
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, Minhang District, Shanghai, 200240, People's Republic of China
| | - Ximin Yang
- Department of Radiology, Dongying New District Hospital, Dongying, Shandong Province, 257000, People's Republic of China
| | - Jiawei Gu
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, Minhang District, Shanghai, 200240, People's Republic of China
| | - Tao Song
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, Minhang District, Shanghai, 200240, People's Republic of China
| | - Zhiqing Hu
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, Minhang District, Shanghai, 200240, People's Republic of China
| | - Liang Chen
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, Minhang District, Shanghai, 200240, People's Republic of China
| | - Xin Wang
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, Minhang District, Shanghai, 200240, People's Republic of China
| | - Jie Xia
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, Minhang District, Shanghai, 200240, People's Republic of China
| | - Zhongwei Ke
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Minhang District, Shanghai, 200240, People's Republic of China
| | - Jun Ren
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Minhang District, Shanghai, 200240, People's Republic of China
| | - Liang Hong
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Minhang District, Shanghai, 200240, People's Republic of China
| |
Collapse
|
7
|
Collagen synthesis and gap junctions: the highway for metastasis of ovarian cancer. J Transl Med 2021; 101:540-542. [PMID: 36775376 DOI: 10.1038/s41374-021-00546-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/08/2022] Open
|
8
|
Yang Y, Liu W, Wei J, Cui Y, Zhang D, Xie J. Transforming growth factor-β1-induced N-cadherin drives cell-cell communication through connexin43 in osteoblast lineage. Int J Oral Sci 2021; 13:15. [PMID: 33850101 PMCID: PMC8044142 DOI: 10.1038/s41368-021-00119-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/29/2020] [Accepted: 02/01/2021] [Indexed: 02/05/2023] Open
Abstract
Gap junction (GJ) has been indicated to have an intimate correlation with adhesion junction. However, the direct interaction between them partially remains elusive. In the current study, we aimed to elucidate the role of N-cadherin, one of the core components in adhesion junction, in mediating connexin 43, one of the functional constituents in gap junction, via transforming growth factor-β1(TGF-β1) induction in osteoblasts. We first elucidated the expressions of N-cadherin induced by TGF-β1 and also confirmed the upregulation of Cx43, and the enhancement of functional gap junctional intercellular communication (GJIC) triggered by TGF-β1 in both primary osteoblasts and MC3T3 cell line. Colocalization analysis and Co-IP experimentation showed that N-cadherin interacts with Cx43 at the site of cell-cell contact. Knockdown of N-cadherin by siRNA interference decreased the Cx43 expression and abolished the promoting effect of TGF-β1 on Cx43. Functional GJICs in living primary osteoblasts and MC3T3 cell line were also reduced. TGF-β1-induced increase in N-cadherin and Cx43 was via Smad3 activation, whereas knockdown of Smad3 signaling by using siRNA decreased the expressions of both N-cadherin and Cx43. Overall, these data indicate the direct interactions between N-cadherin and Cx43, and reveal the intervention of adhesion junction in functional gap junction in living osteoblasts.
Collapse
Affiliation(s)
- Yueyi Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenjing Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - JieYa Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Hu Y, Zheng M, Wang S, Gao L, Gou R, Liu O, Dong H, Li X, Lin B. Identification of a five-gene signature of the RGS gene family with prognostic value in ovarian cancer. Genomics 2021; 113:2134-2144. [PMID: 33845140 DOI: 10.1016/j.ygeno.2021.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/01/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
The RGS (regulator of G protein signaling) gene family, which includes negative regulators of G protein-coupled receptors, comprises important drug targets for malignant tumors. It is thus of great significance to explore the value of RGS family genes for diagnostic and prognostic prediction in ovarian cancer. The RNA-seq, immunophenotype, and stem cell index data of pan-cancer, The Cancer Genome Atlas (TCGA) data, and GTEx data of ovarian cancer were downloaded from the UCSC Xena database. In the pan-cancer database, the expression level of RGS1, RGS18, RGS19, and RGS13 was positively correlated with stromal and immune cell scores. Cancer patients with high RGS18 expression were more sensitive to cyclophosphamide and nelarabine, whereas those with high RGS19 expression were more sensitive to cladribine and nelarabine. The relationship between RGS family gene expression and overall survival (OS) and progression-free survival (PFS) of ovarian cancer patients was analyzed using the KM-plotter database, RGS17, RGS16, RGS1, and RGS8 could be used as diagnostic biomarkers of the immune subtype of ovarian cancer, and RGS10 and RGS16 could be used as biomarkers to predict the clinical stage of this disease. Further, Lasso cox analysis identified a five-gene risk score (RGS11, RGS10, RGS13, RGS4, and RGS3). Multivariate COX analysis showed that the risk score was an independent prognostic factor for patients with ovarian cancer. Immunohistochemistry and the HPA protein database confirmed that the five-gene signature is overexpressed in ovarian cancer. GSEA showed that it is mainly involved in the ECM-receptor interaction, TGF-beta signaling pathway, Wnt signaling pathway, and chemokine signaling pathway, which promote the occurrence and development of ovarian cancer. The prediction model of ovarian cancer constructed using RGS family genes is of great significance for clinical decision making and the personalized treatment of patients with ovarian cancer.
Collapse
Affiliation(s)
- Yuexin Hu
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Mingjun Zheng
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China; Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Shuang Wang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Lingling Gao
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Rui Gou
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Ouxuan Liu
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Hui Dong
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Xiao Li
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Bei Lin
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China.
| |
Collapse
|
10
|
Huang P, Qi B, Yao H, Zhang L, Li Y, Li Q. Knockdown of DANCR Suppressed the Biological Behaviors of Ovarian Cancer Cells Treated with Transforming Growth Factor-β (TGF-β) by Sponging MiR-214. Med Sci Monit 2020; 26:e922760. [PMID: 32417846 PMCID: PMC7251966 DOI: 10.12659/msm.922760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Ovarian cancer is one of the most common gynecological malignancies and mortality ranks the highest in cancer-associated death in females' worldwide. Here, we attempted to evaluate the effect of DANCR on the biological behavior of transforming growth factor-ß (TGF-ß) stimulated ovarian cancer cells. MATERIAL AND METHODS The expression of DANCR in ovarian cancer cells (A2780 and SKOV3) treated with TGF-ß were detected by quantitative real-time polymerase chain reaction (qRT-PCR). DANCR silencing was constructed using lentiviral transfection in ovarian cancer cells. The Cell Counting Kit-8 (CCK-8), flow cytometry and Transwell assays were performed to measure some cytology index. Western blot was utilized to explore the effect of DANCR on Krüppel-like factor 5 (KLF5) expression. RESULTS The expression of DANCR in cancer cells (A2780 and SKOV3) treated with TGF-ß was significantly higher. DANCR silencing suppressed cell viability, migration and invasion, and induced cell apoptosis of TGF-ß treated ovarian cancer cells. Bioinformatics analysis showed that DANCR served as a sponge for miR-214, and also showed that KLF5 was targeted by miR-214. In addition, DANCR could inhibit the expression of KLF5. CONCLUSIONS We are the first to report that knockdown of DANCR could affect the biological process of ovarian cancer cells treated with TGF-ß by sponging miR-214, which may provide new therapeutic ideas of ovarian cancer.
Collapse
Affiliation(s)
- Ping Huang
- Department of Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei, China (mainland)
| | - Bingli Qi
- Department of Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei, China (mainland)
| | - Hairong Yao
- Department of Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei, China (mainland)
| | - Liang Zhang
- Department of Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei, China (mainland)
| | - Yanying Li
- Department of Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei, China (mainland)
| | - Qian Li
- Department of Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei, China (mainland)
| |
Collapse
|
11
|
Isoflurane Postconditioning Upregulates Phosphorylated Connexin 43 in the Middle Cerebral Artery Occlusion Model and Is Probably Associated with the TGF- β1/Smad2/3 Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3451215. [PMID: 32258113 PMCID: PMC7103038 DOI: 10.1155/2020/3451215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/20/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023]
Abstract
Aim Connexin 43 (Cx43) has been identified to be important for cerebral ischemia/reperfusion (I/R) injury as well as protection from it. This study was aimed at investigating the relationship between phosphorylated Cx43 (p-Cx43), transforming growth factor-β1 (TGF-β1 (TGF. Methods The middle cerebral artery occlusion (MCAO) model was induced in 96 male Sprague-Dawley rats, weighing 250-300 g. The rats were randomized into 12 groups, namely, sham, middle cerebral artery occlusion (MCAO)/I/R, I/R+1.5% ISPOC, I/R+LY2157299 (blocker of TGF-β1 (TGF-β1 (TGF-β1 (TGF-β1 (TGF. Results Neurological deficit scores, brain infarct volume, and damaged neurons in the I/R group significantly increased compared to those in the sham group (P < 0.05). However, in the ISPOC group, damage of the brain was significantly ameliorated (P < 0.05). However, in the ISPOC group, damage of the brain was significantly ameliorated (P < 0.05). However, in the ISPOC group, damage of the brain was significantly ameliorated (β1 (TGF-P < 0.05). However, in the ISPOC group, damage of the brain was significantly ameliorated (β1 (TGF-P < 0.05). However, in the ISPOC group, damage of the brain was significantly ameliorated (β1 (TGF-β1 (TGF-P < 0.05). However, in the ISPOC group, damage of the brain was significantly ameliorated (. Conclusion Isoflurane postconditioning (ISPOC) may alleviate cerebral I/R injury through upregulating the expression of p-Cx43, and the TGF-β1/Smad2/3 signaling pathway may be involved in the process.β1 (TGF.
Collapse
|
12
|
Li X, Guo L, Yang X, Wang J, Hou Y, Zhu S, Du J, Feng J, Xie Y, Zhuang L, He X, Liu Y. TGF-β1-induced connexin43 promotes scar formation via the Erk/MMP-1/collagen III pathway. J Oral Rehabil 2019; 47 Suppl 1:99-106. [PMID: 31175668 DOI: 10.1111/joor.12829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/07/2019] [Accepted: 05/26/2019] [Indexed: 12/11/2022]
Abstract
Wound healing can be divided into different phases, and timely initiation and cessation of these stages is key to successful wound healing; otherwise, scar tissue forms in the wounded area. Connexins (Cxs) were confirmed to influence scar formation, and Cx43, an indispensable member of the Cx family, was shown to be involved in this process. Our study investigated the regulatory role of Cx43 in scar formation and the possible cell signalling pathways. We established oral mucosa and skin wound healing models in C57BL/6J mice. RT-PCR, western blotting, immunohistochemistry and immunofluorescence were used to examine the expression of ECM components and key proteins in cell signalling pathways (TGF-β1, Smad2/3, Cx43, Erk1/2 MMP-1 and collagen III). After injury, buccal mucosa wounds healed with no scar, whereas skin wounds healed with an evident scar. Nevertheless, TGF-β1 expression gradually increased by the 5th day after injury; Cx43 expression showed a similar response, with a progressive increase in the skin and a peak on day 14. In contrast, TGF-β1 and Cx43 expression in the oral mucosa remained low. The high level of TGF-β1 increased p-Smad2/3 levels and then induced Cx43, whereas increased expression of Cx43 antagonised the phosphorylation of Erk1/2, a protein downstream of Cx43, which affected MMP-1 synthesis. MMP-1 deficiency led to collagen III accumulation and facilitated scar formation. We demonstrated that TGF-β1-induced Cx43 promotes scar formation via the Erk/MMP-1/collagen III pathway.
Collapse
Affiliation(s)
- Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Xiaohui Yang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Jingyi Wang
- School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yanan Hou
- Department of Orthodontics the Third Dental Center, Peking University School of Stomatology, Beijing, China
| | - Siying Zhu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Jie Feng
- Department of General Dentistry, School of Stomatology, Capital Medical University, Beijing, China
| | - Yongmei Xie
- Department of General Dentistry, School of Stomatology, Capital Medical University, Beijing, China
| | - Li Zhuang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Xin He
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Liu W, Zhang D, Li X, Zheng L, Cui C, Cui Y, Sun J, Xie J, Zhou X. TGF-β1 facilitates cell-cell communication in osteocytes via connexin43- and pannexin1-dependent gap junctions. Cell Death Discov 2019; 5:141. [PMID: 31666990 PMCID: PMC6814792 DOI: 10.1038/s41420-019-0221-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/04/2019] [Accepted: 10/01/2019] [Indexed: 02/05/2023] Open
Abstract
Connexins and pannexins are two families of channel forming proteins that are able to pass small molecules to achieve communication between cells. While connexins have been recognized to mediate gap junctional intercellular communication (GJIC), pannexins are far less known. Our previous study reported the potential role of TGF-β1 in mediating of connexins in osteocytes in vitro. Herein, we aimed to elucidate the influence of TGF-β1 on cell-cell communication based on gap junctions assembled by connexins and pannexins in vitro and ex vivo. We first showed that TGF-β1 positively affected the elongation of dendritic processes of osteocytes. Our data indicated that TGF-β1 increased expressions of connexin43 (Cx43) and pannexin1 (panx1), which are indispensable for hemichannel formation in gap junctions, in osteocytes in vitro and ex vivo. TGF-β1 enhanced gap junction formation and impacted cell-cell communication in living osteocytes, as indicated by the scrape loading and Lucifer yellow transfer assays. TGF-β1 enhanced the expressions of Cx43 and panx1 via activation of ERK1/2 and Smad3/4 signalling. The TGF-β1-restored expressions of Cx43 and panx1 in osteocytes in the presence of an ERK inhibitor, U0126, further demonstrated the direct participation of Smad3/4 signalling. TGF-β1 increased the accumulation of Smad3 in the nuclear region (immunofluorescence assay) and promoted the enrichment of Smad3 at the binding sites of the promoters of Gja1 (Cx43) and Panx1 (ChIP assay), thereby initiating the enhanced gene expression. These results provide a deep understanding of the molecular mechanisms involved in the modulation of cell-cell communication in osteocytes induced by TGF-β1.
Collapse
Affiliation(s)
- Wenjing Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chen Cui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianxun Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Zhao J, Klausen C, Yi Y, Cheng JC, Chang HM, Leung PCK. Betacellulin enhances ovarian cancer cell migration by up-regulating Connexin43 via MEK-ERK signaling. Cell Signal 2019; 65:109439. [PMID: 31654720 DOI: 10.1016/j.cellsig.2019.109439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 01/02/2023]
Abstract
Epithelial ovarian cancer is the fifth common cause of cancer death in women and the most lethal gynecological malignancies. Our previous studies have shown that up-regulation of Connexin43, a gap-junction subunit crucial for cell-cell communication, enhances ovarian cancer cell migration. Betacellulin is a member of the epidermal growth factor (EGF) family which can bind to multiple EGF family receptors. Overexpression of betacellulin is found in a variety of cancers and is associated with reduced survival. However, the specific roles and molecular mechanisms of betacellulin in ovarian cancer progression are poorly understood. In the current study, we tested the hypothesis that betacellulin induces ovarian cancer cell migration by up-regulating Connexin43. Our results showed that treatment with betacellulin significantly increased Connexin43 expression and cell migration in both OVCAR4 and SKOV3 ovarian cancer cell lines. Moreover, betacellulin induced the activation of MEK-ERK signaling, and its effects on Connexin43 were inhibited by pre-treatment with U0126. Pre-treatment with AG1478 totally blocked the activation of MEK-ERK signaling but only partially inhibited betacellulin-induced Connexin43 expression and cell migration. Most importantly, betacellulin-induced cell migration was attenuated by knockdown of Connexin43, and co-treatment with gap junction inhibitor carbenoxolone did not alter this effect. Our results suggest a bilateral role of Connexin43 in ovarian cancer migration, and also demonstrate a gap junction-independent mechanism of betacellulin.
Collapse
Affiliation(s)
- Jianfang Zhao
- Department of Obstetrics and Gynecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada; Department of Plastic and Cosmetic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Christian Klausen
- Department of Obstetrics and Gynecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Yuyin Yi
- Department of Obstetrics and Gynecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Jung-Chien Cheng
- Department of Obstetrics and Gynecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada.
| |
Collapse
|
15
|
Sun Y, Xiaoyan H, Yun L, Chaoqun L, Jialing W, Liu Y, Yingqi Z, Peipei Y, Junjun P, Yuanming L. Identification of Key Candidate Genes and Pathways for Relationship between Ovarian Cancer and Diabetes Mellitus Using Bioinformatical Analysis. Asian Pac J Cancer Prev 2019; 20:145-155. [PMID: 30678426 PMCID: PMC6485580 DOI: 10.31557/apjcp.2019.20.1.145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer is one of the three major gynecologic cancers in the world. The aim of this study is to find the
relationship between ovarian cancer and diabetes mellitus by using the genetic screening technique. By GEO database
query and related online tools of analysis, we analyzed 185 cases of ovarian cancer and 10 control samples from
GSE26712, and a total of 379 different genes were identified, including 104 up-regulated genes and 275 down-regulated
genes. The up-regulated genes were mainly enriched in biological processes, including cell adhesion, transcription of
nucleic acid and biosynthesis, and negative regulation of cell metabolism. The down-regulated genes were enriched in
cell proliferation, migration, angiogenesis and macromolecular metabolism. Protein-protein interaction was analyzed
by network diagram and module synthesis analysis. The top ten hub genes (CDC20, H2AFX, ENO1, ACTB, ISG15,
KAT2B, HNRNPD, YWHAE, GJA1 and CAV1) were identified, which play important roles in critical signaling
pathways that regulate the process of oxidation-reduction reaction and carboxylic acid metabolism. CTD analysis
showed that the hub genes were involved in 1,128 distinct diseases (bonferroni-corrected P<0.05). Further analysis by
drawing the Kaplan-Meier survival curve indicated that CDC20 and ISG15 were statistically significant (P<0.05). In
conclusion, glycometabolism was related to ovarian cancer and genes and proteins in glycometabolism could serve as
potential targets in ovarian cancer treatment.
Collapse
Affiliation(s)
- Yi Sun
- Department of Toxicology, Guilin Medical University School of Public Health, Guilin, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Newsted D, Banerjee S, Watt K, Nersesian S, Truesdell P, Blazer LL, Cardarelli L, Adams JJ, Sidhu SS, Craig AW. Blockade of TGF-β signaling with novel synthetic antibodies limits immune exclusion and improves chemotherapy response in metastatic ovarian cancer models. Oncoimmunology 2018; 8:e1539613. [PMID: 30713798 DOI: 10.1080/2162402x.2018.1539613] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a leading cause of cancer-related death in women. EOC is often diagnosed at late stages, with peritoneal metastases and ascites production. Current surgery and platinum-based chemotherapy regimes fail to prevent recurrence in most patients. High levels of Transforming growth factor-β (TGF-β) within ascites has been linked to poor prognosis. TGF-β signaling promotes epithelial-mesenchymal transition (EMT) in EOC tumor cells, and immune suppression within the tumor microenvironment, with both contributing to chemotherapy resistance and metastasis. The goal of this study was to develop specific synthetic inhibitory antibodies to the Type II TGF-β receptor (TGFBR2), and test these antibodies in EOC cell and tumor models. Following screening of a phage-displayed synthetic antigen-binding fragment (Fab) library with the extracellular domain of TGFBR2, we identified a lead inhibitory Fab that suppressed TGF-β signaling in mouse and human EOC cell lines. Affinity maturation of the lead inhibitory Fab resulted in several derivative Fabs with increased affinity for TGFBR2 and efficacy as suppressors of TGF-β signaling, EMT and EOC cell invasion. In EOC xenograft and syngeneic tumor models, blockade of TGFBR2 with our lead antibodies led to improved chemotherapy response. This correlated with reversal of EMT and immune exclusion in these tumor models with TGFBR2 blockade. Together, these results describe new inhibitors of the TGF-β pathway that improve antitumor immunity, and response to chemotherapy in preclinical EOC models.
Collapse
Affiliation(s)
- Daniel Newsted
- Department of Biomedical and Molecular Sciences, Queen's University; Cancer Biology & Genetics division, Queen's Cancer Research Institute, Kingston, ON, Canada
| | | | - Kathleen Watt
- Department of Biomedical and Molecular Sciences, Queen's University; Cancer Biology & Genetics division, Queen's Cancer Research Institute, Kingston, ON, Canada
| | - Sarah Nersesian
- Department of Biomedical and Molecular Sciences, Queen's University; Cancer Biology & Genetics division, Queen's Cancer Research Institute, Kingston, ON, Canada
| | - Peter Truesdell
- Department of Biomedical and Molecular Sciences, Queen's University; Cancer Biology & Genetics division, Queen's Cancer Research Institute, Kingston, ON, Canada
| | - Levi L Blazer
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Lia Cardarelli
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Jarrett J Adams
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Sachdev S Sidhu
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Andrew W Craig
- Department of Biomedical and Molecular Sciences, Queen's University; Cancer Biology & Genetics division, Queen's Cancer Research Institute, Kingston, ON, Canada
| |
Collapse
|
17
|
Chu Y, Fang Y, Chi J, Li J, Zhang D, Zou Y, Wang Z. Astragalus polysaccharides decrease proliferation, migration, and invasion but increase apoptosis of human osteosarcoma cells by up-regulation of microRNA-133a. ACTA ACUST UNITED AC 2018; 51:e7665. [PMID: 30462772 PMCID: PMC6247244 DOI: 10.1590/1414-431x20187665] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 09/12/2018] [Indexed: 11/21/2022]
Abstract
Osteosarcoma (OS) has a high incidence, malignity, and frequency of recurrence and metastasis. In this study, we aimed to explore the potential anti-cancer effects of Astragalus polysaccharides (APS) on human OS MG63 cells as well as underlying mechanisms. Viability of MG63 cells was assessed by CCK-8 assay to determine the adequate concentration of APS. Then, effects of APS on MG63 cell proliferation, cell cycle distribution, apoptosis, and migration and invasion were analyzed by BrdU incorporation, PI staining, flow cytometry, and transwell assays, respectively. The expression levels of proteins involved in these physiological processes were assessed by western blot analysis. Afterwards, miR-133a level in APS-treated cells was determined by qRT-PCR, and whether APS affected MG63 cells through regulation of miR-133a was determined. Finally, the activation of c-Jun N-terminal protein kinase (JNK) pathway was detected. We found that APS treatment suppressed the viability, proliferation, migration, and invasion of MG63 cells, as well as induced cell apoptosis. Moreover, APS enhanced the expression of miR-133a in MG63 cells. Knockdown of miR-133a reversed the APS treatment-induced MG63 cell proliferation, migration and invasion inhibition, as well as cell apoptosis. Furthermore, APS inactivated JNK pathway in MG63 cells. Knockdown of miR-133a reversed the APS treatment-induced inactivation of JNK pathway in MG63 cells. To conclude, APS repressed proliferation, migration, and invasion while induced apoptosis of OS MG63 cells by up-regulating miR-133a and then inactivating JNK pathway.
Collapse
Affiliation(s)
- Yanchen Chu
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yuan Fang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jingwei Chi
- Key Laboratory of Thyroidism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jing Li
- Department of Gynaecology and Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Dongyang Zhang
- Department of Orthopedics, Laixi People's Hospital, Laixi, Shandong, China
| | - Yunwen Zou
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zhijie Wang
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
18
|
Yang J, Zhang N, Gao R, Zhu Y, Zhang Z, Xu X, Wang J, Li Z, Liu X, Li Z, Li J, Bi J, Kong C. TGF-β1 induced fascin1 expression facilitates the migration and invasion of kidney carcinoma cells through ERK and JNK signaling pathways. Biochem Biophys Res Commun 2018; 501:913-919. [DOI: 10.1016/j.bbrc.2018.05.081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/13/2018] [Indexed: 12/26/2022]
|
19
|
James CC, Zeitz MJ, Calhoun PJ, Lamouille S, Smyth JW. Altered translation initiation of Gja1 limits gap junction formation during epithelial-mesenchymal transition. Mol Biol Cell 2018; 29:797-808. [PMID: 29467255 PMCID: PMC5905293 DOI: 10.1091/mbc.e17-06-0406] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is activated during development, wound healing, and pathologies including fibrosis and cancer metastasis. Hallmarks of EMT are remodeling of intercellular junctions and adhesion proteins, including gap junctions. The GJA1 mRNA transcript encoding the gap junction protein connexin43 (Cx43) has been demonstrated to undergo internal translation initiation, yielding truncated isoforms that modulate gap junctions. The PI3K/Akt/mTOR pathway is central to translation regulation and is activated during EMT, leading us to hypothesize that altered translation initiation would contribute to gap junction loss. Using TGF-β-induced EMT as a model, we find reductions in Cx43 gap junctions despite increased transcription and stabilization of Cx43 protein. Biochemical experiments reveal suppression of the internally translated Cx43 isoform, GJA1-20k in a Smad3 and ERK-dependent manner. Ectopic expression of GJA1-20k does not halt EMT, but is sufficient to rescue gap junction formation. GJA1-20k localizes to the Golgi apparatus, and using superresolution localization microscopy we find retention of GJA1-43k at the Golgi in mesenchymal cells lacking GJA1-20k. NativePAGE demonstrates that levels of GJA1-20k regulate GJA1-43k hexamer oligomerization, a limiting step in Cx43 trafficking. These findings reveal alterations in translation initiation as an unexplored mechanism by which the cell regulates Cx43 gap junction formation during EMT.
Collapse
Affiliation(s)
- Carissa C James
- Virginia Tech Carilion Research Institute and School of Medicine, Roanoke, VA 24016.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Michael J Zeitz
- Virginia Tech Carilion Research Institute and School of Medicine, Roanoke, VA 24016
| | - Patrick J Calhoun
- Virginia Tech Carilion Research Institute and School of Medicine, Roanoke, VA 24016.,Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Samy Lamouille
- Virginia Tech Carilion Research Institute and School of Medicine, Roanoke, VA 24016
| | - James W Smyth
- Virginia Tech Carilion Research Institute and School of Medicine, Roanoke, VA 24016.,Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| |
Collapse
|
20
|
Yu YX, Xiu YL, Chen X, Li YL. Transforming Growth Factor-beta 1 Involved in the Pathogenesis of Endometriosis through Regulating Expression of Vascular Endothelial Growth Factor under Hypoxia. Chin Med J (Engl) 2017; 130:950-956. [PMID: 28397725 PMCID: PMC5407042 DOI: 10.4103/0366-6999.204112] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Endometriosis (EMs) is a common gynecological disorder characterized by endometrial-like tissue outside the uterus. Hypoxia induces the expression of many important downstream genes to regulate the implantation, survival, and maintenance of ectopic endometriotic lesions. Transforming growth factor-beta 1 (TGF-β1) plays a major role in the etiology of EMs. We aimed to determine whether TGF-β1 affects EMs development and progression and its related mechanisms in hypoxic conditions. Methods: Endometrial tissue was obtained from women with or without EMs undergoing surgery from October, 2015 to October, 2016. Endometrial cells were cultured and then exposed to hypoxia and TGF-β1 or TGF-β1 inhibitors. The messenger RNA (mRNA) and protein expression levels of TGF-β1, vascular endothelial growth factor (VEGF), and hypoxia-inducible factor-1α (HIF-1α) were measured. A Dual-Luciferase Reporter Assay was used to examine the effect of TGF-β1 and hypoxia on a VEGF promoter construct. Student's t-test was performed for comparison among groups (one-sided or two-sided) and a value of P < 0.05 was considered statistically significant. Results: TGF-β1, VEGF, HIF-1α mRNA, and protein expression were significantly higher in EMs tissue than that in normal endometrial tissue (t = 2.16, P = 0.042). EMs primary cultured cells exposed to hypoxia expressed 43.8% higher VEGF mRNA and protein (t = 6.84, P = 0.023). VEGF mRNA levels increased 12.5% in response to TGF-β, whereas the combined treatment of hypoxia/TGF-β1 resulted in a much higher production (87.5% increases) of VEGF. The luciferase activity of the VEGF promoter construct was increased in the presence of either TGF-β1 (2.6-fold, t = 6.08, P = 0.032) or hypoxia (11.2-fold, t = 32.70, P < 0.001), whereas the simultaneous presence of both stimuli resulted in a significant cooperative effect (18.5-fold, t = 33.50, P < 0.001). Conclusions: The data support the hypothesis that TGF-β1 is involved in the pathogenesis of EMs through regulating VEGF expression. An additive effect of TGF-β1 and hypoxia is taking place at the transcriptional level.
Collapse
Affiliation(s)
- Yue-Xin Yu
- Department of Obstetrics and Gynecology, Chinese People's Liberation Army General Hospital and Chinese People's Liberation Army Medical School, Beijing 100853; Department of Obstetrics and Gynecology, Chinese People's Liberation Army 202 Hospital, Shenyang, Liaoning 110821, China
| | - Yin-Ling Xiu
- Department of Obstetrics and Gynecology, Chinese People's Liberation Army 202 Hospital, Shenyang, Liaoning 110821, China
| | - Xi Chen
- Department of Obstetrics and Gynecology, Chinese People's Liberation Army 202 Hospital, Shenyang, Liaoning 110821, China
| | - Ya-Li Li
- Department of Obstetrics and Gynecology, Chinese People's Liberation Army General Hospital and Chinese People's Liberation Army Medical School, Beijing 100853, China
| |
Collapse
|
21
|
Bilyk O, Coatham M, Jewer M, Postovit LM. Epithelial-to-Mesenchymal Transition in the Female Reproductive Tract: From Normal Functioning to Disease Pathology. Front Oncol 2017; 7:145. [PMID: 28725636 PMCID: PMC5497565 DOI: 10.3389/fonc.2017.00145] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a physiological process that is vital throughout the human lifespan. In addition to contributing to the development of various tissues within the growing embryo, EMT is also responsible for wound healing and tissue regeneration later in adulthood. In this review, we highlight the importance of EMT in the development and normal functioning of the female reproductive organs (the ovaries and the uterus) and describe how dysregulation of EMT can lead to pathological conditions, such as endometriosis, adenomyosis, and carcinogenesis. We also summarize the current literature relating to EMT in the context of ovarian and endometrial carcinomas, with a particular focus on how molecular mechanisms and the tumor microenvironment can govern cancer cell plasticity, therapy resistance, and metastasis.
Collapse
Affiliation(s)
- Olena Bilyk
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Mackenzie Coatham
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Michael Jewer
- Department of Oncology, University of Alberta, Edmonton, AB, Canada.,Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | | |
Collapse
|
22
|
Yang L, Zhang X, Ma Y, Zhao X, Li B, Wang H. Ascites promotes cell migration through the repression of miR-125b in ovarian cancer. Oncotarget 2017; 8:51008-51015. [PMID: 28881624 PMCID: PMC5584225 DOI: 10.18632/oncotarget.16846] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/14/2017] [Indexed: 01/04/2023] Open
Abstract
Interactions between ovarian cancer cells and the surrounding tumor microenvironment are not well characterized. Here, we investigated the molecular mechanisms by which malignant ascites promote the metastasis of ovarian cancer. It was found that ovarian cancer ascites promoted ovarian cancer cell migration which was attenuated by either heat inactivation or antibody blockade of TGF-β. High level (at ng/ml level) of TGF-β was detected in the ascites. In addition, ascites repressed the expression of miRNA-125b in a TGF-β-dependent manner. Mimic of miR-125b blocked ascites-induced cell migration. Furthermore, Gab2 (a target gene of miR-125b) was elevated by ascites in a TGF-β-dependent manner. And forced expression of Gab2 reversed the inhibition of migration induced by miR-125b mimic. Most importantly, the expression of miR-125b and Gab2 mRNA was negatively correlated in ovarian cancer specimens. Taken together, our finding suggested that TGF-β in ascites promoted cancer cell migration through repression of miR-125b in ovarian cancer. This might provide a novel therapeutic target for ovarian cancer in the future.
Collapse
Affiliation(s)
- Lan Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Xiaoli Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yiming Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Xinhua Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Bin Li
- Department of Gynecological Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Hongying Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
23
|
Ouanouki A, Lamy S, Annabi B. Anthocyanidins inhibit epithelial-mesenchymal transition through a TGFβ/Smad2 signaling pathway in glioblastoma cells. Mol Carcinog 2016; 56:1088-1099. [PMID: 27649384 DOI: 10.1002/mc.22575] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/01/2016] [Accepted: 09/16/2016] [Indexed: 12/17/2022]
Abstract
Epidemiological studies have convincingly demonstrated that diets rich in fruits and vegetables play an important role in preventing cancer due to their polyphenol content. Among polyphenols, the anthocyanidins are known to possess anti-inflammatory, cardioprotective, anti-angiogenic, and anti-carcinogenic properties. Despite the well-known role of transforming growth factor-β (TGF-β) in high grade gliomas, the impact of anthocyanidins on TGF-β-induced epithelial-mesenchymal transition (EMT), a process that allows benign tumor cells to infiltrate surrounding tissues, remains poorly understood. The objective of this study is to investigate the impact of anthocyanidins such as cyanidin (Cy), delphinidin (Dp), malvidin (Mv), pelargonidin (Pg), and petunidin (Pt) on TGF-β-induced EMT and to determine the mechanism(s) underlying such action. Human U-87 glioblastoma (U-87 MG) cells were treated with anthocyanidins prior to, along with or following the addition of TGF-β. We found that anthocyanidins differently affected TGF-β-induced EMT, depending on the treatment conditions. Dp was the most potent EMT inhibitor through its inhibitory effect on the TGF-β Smad and non-Smad signaling pathways. These effects altered expression of the EMT mesenchymal markers fibronectin and Snail, as well as markedly reducing U-87 MG cell migration. Our study highlights a new action of anthocyanidins against EMT that supports their beneficial health and chemopreventive effects in dietary-based strategies against cancer. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amira Ouanouki
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMed, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Sylvie Lamy
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMed, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMed, Université du Québec à Montréal, Montréal, Québec, Canada
| |
Collapse
|
24
|
Niu L, Cui X, Qi Y, Xie D, Wu Q, Chen X, Ge J, Liu Z. Involvement of TGF-β1/Smad3 Signaling in Carbon Tetrachloride-Induced Acute Liver Injury in Mice. PLoS One 2016; 11:e0156090. [PMID: 27224286 PMCID: PMC4880333 DOI: 10.1371/journal.pone.0156090] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/09/2016] [Indexed: 12/17/2022] Open
Abstract
Transforming growth factor-beta1 (TGF-β1) is a major factor in pathogenesis of chronic hepatic injury. Carbon tetrachloride (CCl4) is a liver toxicant, and CCl4-induced liver injury in mouse is a classical animal model of chemical liver injury. However, it is still unclear whether TGF-β1 is involved in the process of CCl4-induced acute chemical liver injury. The present study aimed to evaluate the role of TGF-β1 and its signaling molecule Smad3 in the acute liver injury induce by CCl4. The results showed that CCl4 induced acute liver injury in mice effectively confirmed by H&E staining of liver tissues, and levels of not only liver injury markers serum ALT and AST, but also serum TGF-β1 were elevated significantly in CCl4-treated mice, compared with the control mice treated with olive oil. Our data further revealed that TGF-β1 levels in hepatic tissue homogenate increased significantly, and type II receptor of TGF-β (TβRII) and signaling molecules Smad2, 3, mRNA expressions and Smad3 and phospho-Smad3 protein levels also increased obviously in livers of CCl4-treated mice. To clarify the effect of the elevated TGF-β1/Smad3 signaling on CCl4-induced acute liver injury, Smad3 in mouse liver was overexpressed in vivo by tail vein injection of Smad3-expressing plasmids. Upon CCl4 treatment, Smad3-overexpressing mice showed more severe liver injury identified by H&E staining of liver tissues and higher serum ALT and AST levels. Simultaneously, we found that Smad3-overexpressing mice treated with CCl4 showed more macrophages and neutrophils infiltration in liver and inflammatory cytokines IL-1β and IL-6 levels increment in serum when compared with those in control mice treated with CCl4. Moreover, the results showed that the apoptosis of hepatocytes increased significantly, and apoptosis-associated proteins Bax, cytochrome C and the cleaved caspase 3 expressions were up-regulated in CCl4-treated Smad3-overexpressing mice as well. These results suggested that TGF-β1/Smad3 signaling was activated during CCl4-induced acute liver injury in mice, and Smad3 overexpression aggravated acute liver injury by promoting inflammatory cells infiltration, inflammatory cytokines release and hepatocytes apoptosis. In conclusion, the activation of TGF-β signaling contributes to the CCl4-induced acute liver injury. Thus, TGF-β1/Smad3 may serve as a potential target for acute liver injury therapy.
Collapse
Affiliation(s)
- Liman Niu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xueling Cui
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yan Qi
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dongxue Xie
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Qian Wu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xinxin Chen
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jingyan Ge
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
- * E-mail: (ZL); (JG)
| | - Zhonghui Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
- * E-mail: (ZL); (JG)
| |
Collapse
|
25
|
Majumder S, Bhowal A, Basu S, Mukherjee P, Chatterji U, Sengupta S. Deregulated E2F5/p38/SMAD3 Circuitry Reinforces the Pro-Tumorigenic Switch of TGFβ Signaling in Prostate Cancer. J Cell Physiol 2016; 231:2482-92. [PMID: 26919443 DOI: 10.1002/jcp.25361] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/23/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Subhadipa Majumder
- Department of Biochemistry; University of Calcutta; Kolkata West Bengal India
| | - Ankur Bhowal
- Department of Zoology; University of Calcutta; Kolkata West Bengal India
| | - Sanmitra Basu
- Department of Biochemistry; University of Calcutta; Kolkata West Bengal India
| | - Pritha Mukherjee
- Department of Zoology; University of Calcutta; Kolkata West Bengal India
| | - Urmi Chatterji
- Department of Zoology; University of Calcutta; Kolkata West Bengal India
| | | |
Collapse
|
26
|
Yu S, Yan C, Yang X, He S, Liu J, Qin C, Huang C, Lu Y, Tian Z, Jia L. Pharmacoproteomic analysis reveals that metapristone (RU486 metabolite) intervenes E-cadherin and vimentin to realize cancer metastasis chemoprevention. Sci Rep 2016; 6:22388. [PMID: 26932781 PMCID: PMC4773818 DOI: 10.1038/srep22388] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/10/2016] [Indexed: 12/28/2022] Open
Abstract
Metapristone is the most predominant biological active metabolite of mifepristone, and being developed as a novel cancer metastasis chemopreventive agent by us. Despite its prominent metastasis chemopreventive effect, the underlying mechanism remains elusive. Our study, for the first time, demonstrated that metapristone had the ability to prevent breast cancer cells from migration, invasion, and interfere with their adhesion to endothelial cells. To explore the underlying mechanism of metapristone, we employed the iTRAQ technique to assess the effect of metapristone on MDA-MB-231 cells. In total, 5,145 proteins were identified, of which, 311 proteins showed significant differences in metapristone-treated cells compared to the control group (P-value < 0.05). Bioinformatic analysis showed many differentially expressed proteins (DEPs) functionally associated with post-translational modification, chaperones, translation, transcription, replication, signal transduction, etc. Importantly, many of the DEPs, such as E-cadherin, vimentin, TGF-β receptor I/II, smad2/3, β-catenin, caveolin, and dystroglycan were associated with TGF-β and Wnt signaling pathways, which were also linked to epithelial-to-mesenchymal transition (EMT) process. Further validation of the epithelial marker "E-caderin" and mesenchymal marker "vimetin" were carried out using immunoblot and immunofluorescence. These results have revealed a novel mechanism that metapristone-mediated metastasis chemoprevention is through intervening the EMT-related signaling pathways.
Collapse
Affiliation(s)
- Suhong Yu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Cuicui Yan
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Xingtian Yang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Sudang He
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Jian Liu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Chongtao Qin
- School of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou Fujian, 350108, China
| | - Chuanzhong Huang
- Internal Oncology Laboratory, Fujian Provincial Key Laboratory of Translational Medicine Oncology, Fujian Provincial Cancer Hospital, Fuzhou, Fujian, 350002, China
| | - Yusheng Lu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Zhongping Tian
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| |
Collapse
|