1
|
Lamb RJ, Griffiths K, Lip GYH, Sorokin V, Frenneaux MP, Feelisch M, Madhani M. ALDH2 polymorphism and myocardial infarction: From alcohol metabolism to redox regulation. Pharmacol Ther 2024; 259:108666. [PMID: 38763322 DOI: 10.1016/j.pharmthera.2024.108666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Acute myocardial infarction (AMI) remains a leading cause of death worldwide. Increased formation of reactive oxygen species (ROS) during the early reperfusion phase is thought to trigger lipid peroxidation and disrupt redox homeostasis, leading to myocardial injury. Whilst the mitochondrial enzyme aldehyde dehydrogenase 2 (ALDH2) is chiefly recognised for its central role in ethanol metabolism, substantial experimental evidence suggests an additional cardioprotective role for ALDH2 independent of alcohol intake, which mitigates myocardial injury by detoxifying breakdown products of lipid peroxidation including the reactive aldehydes, malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). Epidemiological evidence suggests that an ALDH2 mutant variant with reduced activity that is highly prevalent in the East Asian population increases AMI risk. Additional studies have uncovered a strong association between coronary heart disease and this ALDH2 mutant variant. It appears this enzyme polymorphism (in particular, in ALDH2*2/2 carriers) has the potential to have wide-ranging effects on thiol reactivity, redox tone and therefore numerous redox-related signaling processes, resilience of the heart to cope with lifestyle-related and environmental stressors, and the ability of the whole body to achieve redox balance. In this review, we summarize the journey of ALDH2 from a mitochondrial reductase linked to alcohol metabolism, via pre-clinical studies aimed at stimulating ALDH2 activity to reduce myocardial injury to clinical evidence for its protective role in the heart.
Collapse
Affiliation(s)
- Reece J Lamb
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, United Kingdom
| | - Kayleigh Griffiths
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, United Kingdom
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom; Danish Centre for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Vitaly Sorokin
- Department of Cardiac, Thoracic, and Vascular Surgery, National University Heart Centre, National University Health System, Singapore
| | | | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and NIHR Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Melanie Madhani
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, United Kingdom.
| |
Collapse
|
2
|
Jiang W, Chen J, Zhang P, Zheng N, Ma L, Zhang Y, Zhang H. Repurposing Drugs for Inhibition against ALDH2 via a 2D/3D Ligand-Based Similarity Search and Molecular Simulation. Molecules 2023; 28:7325. [PMID: 37959744 PMCID: PMC10650273 DOI: 10.3390/molecules28217325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Aldehyde dehydrogenase-2 (ALDH2) is a crucial enzyme participating in intracellular aldehyde metabolism and is acknowledged as a potential therapeutic target for the treatment of alcohol use disorder and other addictive behaviors. Using previously reported ALDH2 inhibitors of Daidzin, CVT-10216, and CHEMBL114083 as reference molecules, here we perform a ligand-based virtual screening of world-approved drugs via 2D/3D similarity search methods, followed by the assessments of molecular docking, toxicity prediction, molecular simulation, and the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) analysis. The 2D molecular fingerprinting of ECFP4 and FCFP4 and 3D molecule-shape-based USRCAT methods show good performances in selecting compounds with a strong binding behavior with ALDH2. Three compounds of Zeaxanthin (q = 0), Troglitazone (q = 0), and Sequinavir (q = +1 e) are singled out as potential inhibitors; Zeaxanthin can only be hit via USRCAT. These drugs displayed a stronger binding strength compared to the reported potent inhibitor CVT-10216. Sarizotan (q = +1 e) and Netarsudil (q = 0/+1 e) displayed a strong binding strength with ALDH2 as well, whereas they displayed a shallow penetration into the substrate-binding tunnel of ALDH2 and could not fully occupy it. This likely left a space for substrate binding, and thus they were not ideal inhibitors. The MM-PBSA results indicate that the selected negatively charged compounds from the similarity search and Vina scoring are thermodynamically unfavorable, mainly due to electrostatic repulsion with the receptor (q = -6 e for ALDH2). The electrostatic attraction with positively charged compounds, however, yielded very strong binding results with ALDH2. These findings reveal a deficiency in the modeling of electrostatic interactions (in particular, between charged moieties) in the virtual screening via the 2D/3D similarity search and molecular docking with the Vina scoring system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing100083, China
| |
Collapse
|
3
|
Zhong L, Han J, Fan X, Huang Z, Su L, Cai X, Lin S, Chen X, Huang W, Dai S, Ye B. Novel GSDMD inhibitor GI-Y1 protects heart against pyroptosis and ischemia/reperfusion injury by blocking pyroptotic pore formation. Basic Res Cardiol 2023; 118:40. [PMID: 37782407 DOI: 10.1007/s00395-023-01010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Activation of gasdermin D (GSDMD) and its concomitant cardiomyocyte pyroptosis are critically involved in multiple cardiac pathological conditions. Pharmacological inhibition or gene knockout of GSDMD could protect cardiomyocyte from pyroptosis and dysfunction. Thus, seeking and developing highly potent GSDMD inhibitors probably provide an attractive strategy for treating diseases targeting GSDMD. Through structure-based virtual screening, pharmacological screening and subsequent pharmacological validations, we preliminarily identified GSDMD inhibitor Y1 (GI-Y1) as a selective GSDMD inhibitor with cardioprotective effects. Mechanistically, GI-Y1 binds to GSDMD and inhibits lipid- binding and pyroptotic pore formation of GSDMD-N by targeting the Arg7 residue. Importantly, we confirmed the cardioprotective effect of GI-Y1 on myocardial I/R injury and cardiac remodeling by targeting GSDMD. More extensively, GI-Y1 also inhibited the mitochondrial binding of GSDMD-N and its concomitant mitochondrial dysfunction. The findings of this study identified a new drug (GI-Y1) for the treatment of cardiac disorders by targeting GSDMD, and provide a new tool compound for pyroptosis research.
Collapse
Affiliation(s)
- Lingfeng Zhong
- Department of Cardiology and The Key Laboratory of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jibo Han
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiaoxi Fan
- Department of Cardiology and The Key Laboratory of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhouqing Huang
- Department of Cardiology and The Key Laboratory of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lan Su
- Department of Cardiology and The Key Laboratory of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xueli Cai
- Department of Cardiology and The Key Laboratory of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shuang Lin
- Department of Cardiology and The Key Laboratory of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xudong Chen
- Department of Cardiology and The Key Laboratory of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weijian Huang
- Department of Cardiology and The Key Laboratory of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Shanshan Dai
- The Key Laboratory of Emergency and Disaster Medicine of Wenzhou, Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Bozhi Ye
- Department of Cardiology and The Key Laboratory of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
4
|
Yang H, Wang Q, Zhang P, Cheng K, Li H, Wang H, Cai M, Ming Y, Zhao Y. Preliminary mechanism of inhibitor of SGLT2 in fatty liver cold ischemia injury. Biochem Biophys Res Commun 2023; 646:96-102. [PMID: 36708596 DOI: 10.1016/j.bbrc.2022.12.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022]
Abstract
With rapid development of liver transplantation technology, the demand for transplants have reached beyond the supply of organs, and thus development of effective strategies to reduce cold ischemia injury in fatty liver is important. Here, we explored the potential effect of SGLT-2 inhibitor in cold ischemia injury, fatty livers from 2 weeks methionine and choline deficient diet (MCD) rats were administered. After one week of intragastric administration of Sodium-dependent glucose transporters (SGLT-2) inhibitor empagliflozin (EMPA) or NaCI, liver were stored for 24 h. The results showed that EMPA could significantly reduce the cold ischemic injury in the mitochondria of fatty liver. To explore the mechanism, signal transducers and activators of transcription 3(STAT3) inhibitor AG490 group was used in a similar manner. We detected the changes in p-signal transducers and activators of transcription 3 (P-STAT3), alcohol-dehydrogenase 2 (ALDH2) and degree of apoptosis in three distinct groups. The results suggested that the protein expression of P-STAT3 and ALDH2 was higher in the EMPA group than in other two groups, whereas extent of apoptosis in the EMPA group was lower than other two groups. The data suggested that SGLT2 inhibitors could alleviate cold ischemia damage of mitochondria in fatty liver, which may be related to the inhibition of apoptosis and the activation of P-STAT3 and ALDH2.
Collapse
Affiliation(s)
- Hanwen Yang
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Third Xiangya Hospital, Central South University, Changsha, 410006, China
| | - Qiang Wang
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Third Xiangya Hospital, Central South University, Changsha, 410006, China
| | - Pengpeng Zhang
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Third Xiangya Hospital, Central South University, Changsha, 410006, China
| | - Ke Cheng
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Third Xiangya Hospital, Central South University, Changsha, 410006, China
| | - Hao Li
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Third Xiangya Hospital, Central South University, Changsha, 410006, China
| | - Huan Wang
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Third Xiangya Hospital, Central South University, Changsha, 410006, China
| | - Mingxin Cai
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Third Xiangya Hospital, Central South University, Changsha, 410006, China
| | - Yingzi Ming
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Third Xiangya Hospital, Central South University, Changsha, 410006, China
| | - Yujun Zhao
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Third Xiangya Hospital, Central South University, Changsha, 410006, China.
| |
Collapse
|
5
|
Ding WJ, Chen GH, Deng SH, Zeng KF, Lin KL, Deng B, Zhang SW, Tan ZB, Xu YC, Chen S, Chen JB, Chen TF, Tan YZ, Zhou YC, Zhang JZ, Liu B. Calycosin protects against oxidative stress-induced cardiomyocyte apoptosis by activating aldehyde dehydrogenase 2. Phytother Res 2023; 37:35-49. [PMID: 36059198 DOI: 10.1002/ptr.7591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/08/2022] [Accepted: 08/02/2022] [Indexed: 01/19/2023]
Abstract
Myocardial infarction (MI) is the leading cause of death worldwide, and oxidative stress is part of the process that causes MI. Calycosin, a naturally occurring substance with cardioprotective properties, is one of the major active constituents in Radix Astragali. In this study, effect of Calycosin was investigated in vivo and in vitro to determine whether it could alleviate oxidative stress and oxidative stress-induced cardiac apoptosis in neonatal cardiomyocytes (NCMs) via activation of aldehyde dehydrogenase 2 (ALDH2). Calycosin protected against oxidative stress and oxidative stress-induced apoptosis in NCMs. Molecular docking revealed that the ALDH2-Calycosin complex had a binding energy of -9.885 kcal/mol. In addition, molecular docking simulations demonstrated that the ALDH2-Calycosin complex was stable. Using BLI assays, we confirmed that Calycosin could interact with ALDH2 (KD = 1.9 × 10-4 M). Furthermore, an ALDH2 kinase activity test revealed that Calycosin increased ALDH2 activity, exhibiting an EC50 of 91.79 μM. Pre-incubation with ALDH2 inhibitor (CVT-10216 or disulfiram) reduced the cardio-protective properties Calycosin. In mice with MI, Calycosin therapy substantially reduced myocardial apoptosis, oxidative stress, and activated ALDH2. Collectively, our findings clearly suggest that Calycosin reduces oxidative stress and oxidative stress-induced apoptosis via the regulation of ALDH2 signaling, which supports potential therapeutic use in MI.
Collapse
Affiliation(s)
- Wen-Jun Ding
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guang-Hong Chen
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, China
| | - Sui-Hui Deng
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ke-Feng Zeng
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kai-Li Lin
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Bo Deng
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuang-Wei Zhang
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhang-Bin Tan
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - You-Cai Xu
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Si Chen
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun-Bang Chen
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ting-Fang Chen
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yong-Zhen Tan
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying-Chun Zhou
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, China
| | - Jing-Zhi Zhang
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Liu
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Pan G, Roy B, Giri S, Lanfear DE, Thandavarayan RA, Guha A, Ortiz PA, Palaniyandi SS. Aldehyde Dehydrogenase 2 Activator Augments the Beneficial Effects of Empagliflozin in Mice with Diabetes-Associated HFpEF. Int J Mol Sci 2022; 23:10439. [PMID: 36142350 PMCID: PMC9499333 DOI: 10.3390/ijms231810439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 01/24/2023] Open
Abstract
To ameliorate diabetes mellitus-associated heart failure with preserved ejection fraction (HFpEF), we plan to lower diabetes-mediated oxidative stress-induced 4-hydroxy-2-nonenal (4HNE) accumulation by pharmacological agents that either decrease 4HNE generation or increase its detoxification.A cellular reactive carbonyl species (RCS), 4HNE, was significantly increased in diabetic hearts due to a diabetes-induced decrease in 4HNE detoxification by aldehyde dehydrogenase (ALDH) 2, a cardiac mitochondrial enzyme that metabolizes 4HNE. Therefore, hyperglycemia-induced 4HNE is critical for diabetes-mediated cardiotoxicity and we hypothesize that lowering 4HNE ameliorates diabetes-associated HFpEF. We fed a high-fat diet to ALDH2*2 mice, which have intrinsically low ALDH2 activity, to induce type-2 diabetes. After 4 months of diabetes, the mice exhibited features of HFpEF along with increased 4HNE adducts, and we treated them with vehicle, empagliflozin (EMP) (3 mg/kg/d) to reduce 4HNE and Alda-1 (10 mg/kg/d), and ALDH2 activator to enhance ALDH2 activity as well as a combination of EMP + Alda-1 (E + A), via subcutaneous osmotic pumps. After 2 months of treatments, cardiac function was assessed by conscious echocardiography before and after exercise stress. EMP + Alda-1 improved exercise tolerance, diastolic and systolic function, 4HNE detoxification and cardiac liver kinase B1 (LKB1)-AMP-activated protein kinase (AMPK) pathways in ALDH2*2 mice with diabetes-associated HFpEF. This combination was even more effective than EMP alone. Our data indicate that ALDH2 activation along with the treatment of hypoglycemic agents may be a salient strategy to alleviate diabetes-associated HFpEF.
Collapse
Affiliation(s)
- Guodong Pan
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit, MI 48202, USA
| | - Bipradas Roy
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit, MI 48202, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - David E. Lanfear
- Heart and Vascular Institute, Henry Ford Hospital, Detroit, MI 48202, USA
- Center for Health Policy and Health Services Research, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | - Ashrith Guha
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Pablo A. Ortiz
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit, MI 48202, USA
| | - Suresh Selvaraj Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
7
|
Hellenthal KEM, Brabenec L, Gross ER, Wagner NM. TRP Channels as Sensors of Aldehyde and Oxidative Stress. Biomolecules 2021; 11:biom11101401. [PMID: 34680034 PMCID: PMC8533644 DOI: 10.3390/biom11101401] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
The transient receptor potential (TRP) cation channel superfamily comprises more than 50 channels that play crucial roles in physiological processes. TRP channels are responsive to several exogenous and endogenous biomolecules, with aldehydes emerging as a TRP channel trigger contributing to a cellular cascade that can lead to disease pathophysiology. The body is not only exposed to exogenous aldehydes via tobacco products or alcoholic beverages, but also to endogenous aldehydes triggered by lipid peroxidation. In response to lipid peroxidation from inflammation or organ injury, polyunsaturated fatty acids undergo lipid peroxidation to aldehydes, such as 4-hydroxynonenal. Reactive aldehydes activate TRP channels via aldehyde-induced protein adducts, leading to the release of pro-inflammatory mediators driving the pathophysiology caused by cellular injury, including inflammatory pain and organ reperfusion injury. Recent studies have outlined how aldehyde dehydrogenase 2 protects against aldehyde toxicity through the clearance of toxic aldehydes, indicating that targeting the endogenous aldehyde metabolism may represent a novel treatment strategy. An addition approach can involve targeting specific TRP channel regions to limit the triggering of a cellular cascade induced by aldehydes. In this review, we provide a comprehensive summary of aldehydes, TRP channels, and their interactions, as well as their role in pathological conditions and the different therapeutical treatment options.
Collapse
Affiliation(s)
- Katharina E. M. Hellenthal
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, 48149 Muenster, Germany; (K.E.M.H.); (L.B.)
| | - Laura Brabenec
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, 48149 Muenster, Germany; (K.E.M.H.); (L.B.)
| | - Eric R. Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Nana-Maria Wagner
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, 48149 Muenster, Germany; (K.E.M.H.); (L.B.)
- Correspondence: ; Tel.: +49-251-83-46837
| |
Collapse
|
8
|
Wilkerson JL, Bilbrey JA, Felix JS, Makriyannis A, McMahon LR. Untapped endocannabinoid pharmacological targets: Pipe dream or pipeline? Pharmacol Biochem Behav 2021; 206:173192. [PMID: 33932409 DOI: 10.1016/j.pbb.2021.173192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
It has been established that the endogenous cannabinoid (endocannabinoid) system plays key modulatory roles in a wide variety of pathological conditions. The endocannabinoid system comprises both cannabinoid receptors, their endogenous ligands including 2-arachidonoylglycerol (2-AG), N-arachidonylethanolamine (anandamide, AEA), and enzymes that regulate the synthesis and degradation of endogenous ligands which include diacylglycerol lipase alpha (DAGL-α), diacylglycerol lipase beta (DAGL-β), fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), α/β hydrolase domain 6 (ABHD6). As the endocannabinoid system exerts considerable involvement in the regulation of homeostasis and disease, much effort has been made towards understanding endocannabinoid-related mechanisms of action at cellular, physiological, and pathological levels as well as harnessing the various components of the endocannabinoid system to produce novel therapeutics. However, drug discovery efforts within the cannabinoid field have been slower than anticipated to reach satisfactory clinical endpoints and raises an important question into the validity of developing novel ligands that therapeutically target the endocannabinoid system. To answer this, we will first examine evidence that supports the existence of an endocannabinoid system role within inflammatory diseases, neurodegeneration, pain, substance use disorders, mood disorders, as well as metabolic diseases. Next, this review will discuss recent clinical studies, within the last 5 years, of cannabinoid compounds in context to these diseases. We will also address some of the challenges and considerations within the cannabinoid field that may be important in the advancement of therapeutics into the clinic.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| | - Joshua A Bilbrey
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Jasmine S Felix
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; Departments of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
9
|
Dionizio A, Melo CGS, Sabino-Arias IT, Araujo TT, Ventura TMO, Leite AL, Souza SRG, Santos EX, Heubel AD, Souza JG, Perles JVCM, Zanoni JN, Buzalaf MAR. Effects of acute fluoride exposure on the jejunum and ileum of rats: Insights from proteomic and enteric innervation analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140419. [PMID: 32886984 DOI: 10.1016/j.scitotenv.2020.140419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/04/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Fluoride (F) is largely employed in dentistry, in therapeutic doses, to control caries. However, excessive intake may lead to adverse effects in the body. Since F is absorbed mostly from the gastrointestinal tract (GIT), gastrointestinal symptoms are the first signs following acute F exposure. Nevertheless, little is known about the mechanistic events that lead to these symptoms. Therefore, the present study evaluated changes in the proteomic profile as well as morphological changes in the jejunum and ileum of rats upon acute exposure to F. Male rats received, by gastric gavage, a single dose of F containing 0 (control) or 25 mg/Kg for 30 days. Upon exposure to F, there was a decrease in the thickness of the tunic muscularis for both segments and a decrease in the thickness of the wall only for the ileum. In addition, a decrease in the density of HuC/D-IR neurons and nNOS-IR neurons was found for the jejunum, but for the ileum only nNOS-IR neurons were decreased upon F exposure. Moreover, SP-IR varicosities were increased in both segments, while VIP-IR varicosities were increased in the jejunum and decreased in the ileum. As for the proteomic analysis, the proteins with altered expression were mostly negatively regulated and associated mainly with protein synthesis and energy metabolism. Proteomics also revealed alterations in proteins involved in oxidative/antioxidant defense, apoptosis and as well as in cytoskeletal proteins. Our results, when analyzed together, suggest that the gastrointestinal symptoms found in cases of acute F exposure might be related to the morphological alterations in the gut (decrease in the thickness of the tunica muscularis) that, at the molecular level, can be explained by alterations in the gut vipergic innervation and in proteins that regulate the cytoskeleton.
Collapse
Affiliation(s)
- Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | | | - Tamara Teodoro Araujo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | - Aline Lima Leite
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | - Erika Xavier Santos
- Department of Morphophysiological Sciences, State University of Maringá, Maringá, Brazil
| | | | - Juliana Gadelha Souza
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | | | | |
Collapse
|
10
|
Luo ZH, Liu ZW, Mao Y, Shu R, Fu LC, Yang RY, Hu YJ, Shen XL. Cajanolactone A, a stilbenoid from cajanus cajan, prevents ovariectomy-induced obesity and liver steatosis in mice fed a regular diet. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 78:153290. [PMID: 32777485 DOI: 10.1016/j.phymed.2020.153290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/03/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Visceral obesity and fatty liver are prevalent in postmenopausal women. The stilbene-rich extract of Cajanus cajan (L.) Millsp. has been reported to prevent ovariectomy-induced and diet-induced weight gain in animal models, and stilbenoids from C. cajan are thought to have the potential to prevent postmenopausal obesity and fatty liver. PURPOSE Cajanolactone A (CLA) is the main stilbenoid from C. cajan with osteoblastogenic promoting activity. This study investigated the potential of CLA to prevent postmenopausal obesity and fatty liver. Underlying mechanisms were also investigated. METHOD Ovariectomized C57BL/6 mice fed a regular diet were used as mimics of postmenopausal women and given 10, 20, or 40 mg/kg/d of CLA, 0.1 mg/kg/d of estradiol valerate (EV, positive control), or vehicle (OVX) orally for 16 weeks. Mice of the same age subjected to a sham operation were used as control (Sham). Body weights were recorded every 2 weeks for 16 weeks. Body compositions were analyzed via micro-CT. Serum levels of lipids, adipocytokines and aminotransferases were measured using the relevant kits. mRNA levels of genes of interest were detected by RT-qPCR. Proteomic study of perigonadal white adipose tissue (pWAT) was performed using tandem-mass-tags-based proteomic technology combined with Parallel-Reaction-Monitoring (PRM) validation. RESULTS CLA showed potential equivalent to that of EV to prevent ovariectomy-induced overweight, obesity, dyslipidemia, liver steatosis and liver dysfunction, but did not prevent uterine atrophy. In the liver, CLA significantly inhibited ovariectomy-induced upregulation in expression of lipogenic genes SREBP-1c and ChREBP, and stimulated the mRNA expression of apolipoprotein B gene ApoB. In pWAT, CLA reversed, or partially reversed ovariectomy-induced downregulation in the expression of a number of metabolism- and mitochondrial-function-related proteins, including Ndufa3, Pcx, Pdhb, Acly, Acaca, Aldh2, Aacs and Echs1. In addition, ovariectomy-inhibited mRNA expression of Pdhb, Aacs, Acsm5, Echs1, and Aldh2 genes in pWAT was also reversed. CONCLUSION CLA was demonstrated to be a potential non-estrogen-like drug candidate for prevention of postmenopausal obesity and fatty liver. The underlying mechanism might involve the inhibition of lipogenesis and promotion of triglycerides output in the liver, and the promotion of metabolism and mitochondrial functions of visceral white adipose tissue.
Collapse
Affiliation(s)
- Zhuo-Hui Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, PR China
| | - Zhi-Wen Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, PR China
| | - Yu Mao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, PR China
| | - Rong Shu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, PR China
| | - Lin-Chun Fu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, PR China
| | - Rui-Yi Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, PR China
| | - Ying-Jie Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, PR China.
| | - Xiao-Ling Shen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, PR China.
| |
Collapse
|
11
|
Goodnough CL, Gross ER. Precision Medicine Considerations for the Management of Heart Disease and Stroke in East Asians. CARDIOLOGY PLUS 2020; 5:101-108. [PMID: 33954271 PMCID: PMC8095722 DOI: 10.4103/cp.cp_17_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Heart disease is the leading cause of death in Asian Americans. Importantly, people of East Asian descent are more likely to carry a loss-of-function point mutation in aldehyde dehydrogenase 2 (ALDH2), ALDH2*2, which reduces ALDH2 enzymatic activity by at least 40% relative to wild type ALDH2. Given the role of ALDH2 in removing toxic aldehydes from the cell, ALDH2 is intimately involved in the cardioprotective mechanisms of ischemic preconditioning and the pathophysiology of ischemia reperfusion injury. The ALDH2*2 variant is associated with an increased incidence of coronary artery disease, myocardial infarction, and stroke. Furthermore, this variant is associated with insensitivity to nitroglycerin, which is commonly prescribed in patients with cardiovascular disease. In this review, we discuss the genetic susceptibility and pathophysiology associated with the ALDH2*2 variant in regards to cardiovascular disease. We also present the considerations for the management of heart disease and stroke specific to East Asians carrying the ALDH2*2 genetic variant.
Collapse
Affiliation(s)
- Candida L Goodnough
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Eric R Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
12
|
Aldehyde dehydrogenase 2 inhibited oxidized LDL-induced NLRP3 inflammasome priming and activation via attenuating oxidative stress. Biochem Biophys Res Commun 2020; 529:998-1004. [PMID: 32819611 DOI: 10.1016/j.bbrc.2020.06.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022]
Abstract
Oxidized low-density lipoprotein (ox-LDL)-mediated NLRP3 inflammasome activation is crucial in atherosclerosis (AS) initiation and progression. Aldehyde dehydrogenase 2 (ALDH2) has been reported to display protective effects during AS development; however, the underlying mechanisms are largely unknown. Here we investigate the role of ALDH2 in ox-LDL-induced NLRP3 inflammasome priming and activation. We treated RAW264.7 murine macrophages with ox-LDL with or without ALDH2 activator Alda-1 and measured NLRP3 inflammasome priming and activation, ALDH2 protein expression and enzyme activity, IL-1β release, and DNA damage. It was found that ox-LDL impaired ALDH2 activity and induced NLRP3 inflammasome priming and activation. Alda-1 inhibited both of the priming and activation steps of NLRP3 inflammasome as well as subsequent cell pyroptosis and attenuated ROS and 4-HNE levels in ox-LDL-treated macrophages. Taken together, ALDH2 activation inhibits priming and activation of NLRP3 inflammasome via reducing oxidative stress, which suggests that ALDH2 may be a potential target for anti-inflammatory therapies in AS treatment.
Collapse
|
13
|
Grootveld M, Percival BC, Leenders J, Wilson PB. Potential Adverse Public Health Effects Afforded by the Ingestion of Dietary Lipid Oxidation Product Toxins: Significance of Fried Food Sources. Nutrients 2020; 12:E974. [PMID: 32244669 PMCID: PMC7254282 DOI: 10.3390/nu12040974] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 12/22/2022] Open
Abstract
Exposure of polyunsaturated fatty acid (PUFA)-rich culinary oils (COs) to high temperature frying practices generates high concentrations of cytotoxic and genotoxic lipid oxidation products (LOPs) via oxygen-fueled, recycling peroxidative bursts. These toxins, including aldehydes and epoxy-fatty acids, readily penetrate into fried foods and hence are available for human consumption; therefore, they may pose substantial health hazards. Although previous reports have claimed health benefits offered by the use of PUFA-laden COs for frying purposes, these may be erroneous in view of their failure to consider the negating adverse public health threats presented by food-transferable LOPs therein. When absorbed from the gastrointestinal (GI) system into the systemic circulation, such LOPs may significantly contribute to enhanced risks of chronic non-communicable diseases (NCDs), e.g. cancer, along with cardiovascular and neurological diseases. Herein, we provide a comprehensive rationale relating to the public health threats posed by the dietary ingestion of LOPs in fried foods. We begin with an introduction to sequential lipid peroxidation processes, describing the noxious effects of LOP toxins generated therefrom. We continue to discuss GI system interactions, the metabolism and biotransformation of primary lipid hydroperoxide LOPs and their secondary products, and the toxicological properties of these agents, prior to providing a narrative on chemically-reactive, secondary aldehydic LOPs available for human ingestion. In view of a range of previous studies focused on their deleterious health effects in animal and cellular model systems, some emphasis is placed on the physiological fate of the more prevalent and toxic α,β-unsaturated aldehydes. We conclude with a description of targeted nutritional and interventional strategies, whilst highlighting the urgent and unmet clinical need for nutritional and epidemiological trials probing relationships between the incidence of NCDs, and the frequency and estimated quantities of dietary LOP intake.
Collapse
Affiliation(s)
- Martin Grootveld
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (B.C.P.); (J.L.); (P.B.W.)
| | | | | | | |
Collapse
|
14
|
Xia P, Zhang F, Yuan Y, Chen C, Huang Y, Li L, Wang E, Guo Q, Ye Z. ALDH 2 conferred neuroprotection on cerebral ischemic injury by alleviating mitochondria-related apoptosis through JNK/caspase-3 signing pathway. Int J Biol Sci 2020; 16:1303-1323. [PMID: 32210721 PMCID: PMC7085232 DOI: 10.7150/ijbs.38962] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/29/2019] [Indexed: 12/14/2022] Open
Abstract
Past studies have indicated that the dysregulation of Aldehyde dehydrogenase 2 (ALDH2) is related to the pathogenesis of acute stroke. However, the underlying mechanisms of ALDH2-mediated acute stroke are still not well understood. Thus, our study was designed to explore the influence of ALDH2 in acute stroke and determine whether its related mechanisms are involved in regulating mitochondria-associated apoptosis modulating JNK/caspase-3 pathway. In vitro analysis on the gain and loss of ALDH2 and JNK function were performed to explore its influence on OGD/R injury and relevant signaling pathways. Our findings suggested that ALDH2 expression was significantly down-regulated in rats suffering from acute stroke and also in primary cortical cultured neurons and PC12 cells upon OGD/R stimulation. ALDH2 overexpression markedly decreased infarct size and improved neurological outcomes. Furthermore, ALDH2 overexpression significantly suppressed stroke-induced mitochondria-associated apoptosis and inhibited p-JNK activation and p-JNK/caspase-3 complex formation. Similarly, in in vitro OGD/R models, ALDH2 reintroduction not only promoted cellular viability and moderated LDH release, but also inhibited mitochondria-related apoptosis. Moreover, JNK inhibition relieved OGD/R-induced cellular injury and apoptosis while JNK activation aggravated them. Furthermore, ALDH2 overexpression and JNK inhibition significantly reduced caspase-3 activation and transcription which was triggered by OGD/R damage. Caspase-3 activation and transcription also re-elevated during activation of JNK in ALDH2-reintroduced cells. Finally, ChIP assay revealed that p-JNK was bound to caspase-3 promoter. Collectively, ALDH2 overexpression led to a significant reduction in mitochondria-related apoptosis via JNK-mediated caspase-3 activation and transcription in both in vitro and in vivo cerebral ischemia models.
Collapse
Affiliation(s)
- Pingping Xia
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410078, Hunan Province, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 410008, Hunan, P. R. China
| | - Fan Zhang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410078, Hunan Province, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 410008, Hunan, P. R. China
| | - Yajing Yuan
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Cheng Chen
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410078, Hunan Province, China
| | - Yan Huang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410078, Hunan Province, China
| | - Longyan Li
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410078, Hunan Province, China
| | - E Wang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410078, Hunan Province, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 410008, Hunan, P. R. China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410078, Hunan Province, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 410008, Hunan, P. R. China
| | - Zhi Ye
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410078, Hunan Province, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 410008, Hunan, P. R. China
| |
Collapse
|
15
|
Roy B, Palaniyandi SS. Aldehyde dehydrogenase 2 inhibition potentiates 4-hydroxy-2-nonenal induced decrease in angiogenesis of coronary endothelial cells. Cell Biochem Funct 2020; 38:290-299. [PMID: 31943249 DOI: 10.1002/cbf.3468] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/15/2019] [Accepted: 11/11/2019] [Indexed: 11/12/2022]
Abstract
Coronary endothelial cell (EC) dysfunction including defective angiogenesis is reported in cardiac diseases. 4-Hydroxynonenal (4HNE) is a lipid peroxidation product, which is increased in cardiac diseases and implicated in cellular toxicity. Aldehyde dehydrogenase (ALDH) 2 is a mitochondrial enzyme that metabolizes 4HNE and reduces 4HNE-mediated cytotoxicity. Thus, we hypothesize that ALDH2 inhibition potentiates 4HNE-mediated decrease in coronary EC angiogenesis in vitro. To test our hypothesis, first, we treated the cultured mouse coronary EC (MCEC) lines with 4HNE (25, 50, and 75 μM) for 2 and 4 hours. Next, we pharmacologically inhibited ALDH2 by disulfiram (DSF) (2.5 μM) before challenging the cells with 4HNE. In this study, we found that 4HNE attenuated tube formation which indicates decreased angiogenesis. Next, we found that 4HNE has significantly downregulated the expressions of vascular endothelial growth factor receptor (VEGFR) 2 (P < .05 for mRNA and P = .005 for protein), Sirtuin 1 (SIRT 1) (P < 0.0005 for mRNA), and Ets-related gene (ERG) (P < 0.0001 for mRNA and P < 0.005 for protein) in MCECs compared with control. ALDH 2 inhibition by DSF potentiated 4HNE-induced decrease in angiogenesis (P < 0.05 vs 4HNE at 2 h and P < 0.0005 vs 4HNE at 4 h) by decreasing the expressions of VEGFR2 (P < 0.005 for both mRNA and protein), SIRT 1 (P < 0.05), and ERG (P < 0.005) relative to 4HNE alone. Thus, we conclude that ALDH2 acts as a proangiogenic signaling molecule by alleviating the antiangiogenic effects of 4HNE in MCECs.
Collapse
Affiliation(s)
- Bipradas Roy
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Suresh Selvaraj Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan.,Department of Physiology, Wayne State University, Detroit, Michigan
| |
Collapse
|
16
|
Xie X, Urabe G, Marcho L, Stratton M, Guo LW, Kent CK. ALDH1A3 Regulations of Matricellular Proteins Promote Vascular Smooth Muscle Cell Proliferation. iScience 2019; 19:872-882. [PMID: 31513972 PMCID: PMC6739626 DOI: 10.1016/j.isci.2019.08.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/09/2019] [Accepted: 08/21/2019] [Indexed: 01/24/2023] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation promotes intimal hyperplasia (IH) in occluding vascular diseases. Here we identified a positive role of ALDH1A3 (an aldehyde dehydrogenase) in this pro-IH process. The expression of ALDH1A3, but not that of 18 other isoforms of the ALDH family, was substantially increased in cytokine-stimulated VSMCs. PDGF(BB) stimulated VSMC total ALDH activity and proliferation, whereas ALDH1A3 silencing abolished this effect. ALDH1A3 silencing also diminished the expression of two matricellular proteins (TNC1 and ESM1), revealing a previously unrecognized ALDH1A3 function. Loss-of-function experiments demonstrated that TNC1 and ESM1 mediated ALDH1A3's pro-proliferative function via activation of AKT/mTOR and/or MEK/ERK pathways. Furthermore, ALDH inhibition with disulfiram blocked VSMC proliferation/migration in vitro and decreased TNC1 and ESM1 and IH in angioplasty-injured rat carotid arteries. Thus, ALDH1A3 promotes VSMC proliferation at least partially through TNC1/ESM1 upregulation; dampening excessive ALDH1A3 activity represents a potential approach to IH mitigation. The ALDH1A3 isoform promotes vascular smooth muscle cell proliferation ALDH1A3's function is mediated by its upregulation of TNC1 and ESM1 The pan-ALDH inhibitor drug disulfiram mitigates intimal hyperplasia
Collapse
Affiliation(s)
- Xiujie Xie
- Department of Surgery, College of Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Go Urabe
- Department of Surgery, College of Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA; Department of Physiology & Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Lynn Marcho
- Department of Surgery, College of Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA; Department of Physiology & Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew Stratton
- Department of Physiology & Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Lian-Wang Guo
- Department of Surgery, College of Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA; Department of Physiology & Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Craig K Kent
- Department of Surgery, College of Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
17
|
Qian X, Zhu M, Qian W, Song J. Vitamin D attenuates myocardial ischemia–reperfusion injury by inhibiting inflammation via suppressing the RhoA/ROCK/NF‐ĸB pathway. Biotechnol Appl Biochem 2019; 66:850-857. [PMID: 31245891 DOI: 10.1002/bab.1797] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 05/09/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Xuesong Qian
- Department of Cardiology The Affiliated Zhangjiagang Hospital of Soochow University Suzhou China
| | - Minghui Zhu
- Department of Cardiology The Affiliated Zhangjiagang Hospital of Soochow University Suzhou China
| | - Weichun Qian
- Department of Cardiology Nanjing First Hospital Nanjing Medical University Nanjing China
| | - Jiaxian Song
- Department of Cardiology The Affiliated Zhangjiagang Hospital of Soochow University Suzhou China
| |
Collapse
|
18
|
Guan W, Liu Y, Liu Y, Wang Q, Ye HL, Cheng YG, Kuang HX, Jiang XC, Yang BY. Proteomics Research on the Protective Effect of Mangiferin on H9C2 Cell Injury Induced by H 2O 2. Molecules 2019; 24:molecules24101911. [PMID: 31109015 PMCID: PMC6572523 DOI: 10.3390/molecules24101911] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is one of the leading causes of morbidity and mortality worldwide. Mangiferin is a natural glucosylxanthone with antioxidant and anti-inflammatory properties, which has been confirmed to protect cardiac cells from myocardial infarction and myocardial ischemia reperfusion injury (MIRI); however, the underlying mechanism is still unclear. As oxidative stress is a major pathogenesis of MIRI, an H9C2 cell injury induced by hydrogen peroxide (H2O2) was established to simulate MIRI in vitro. Herein, the protective effect of mangiferin against MIRI was evaluated and the isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics was applied to explore the underlying molecular mechanism. In this research, mangiferin markedly ameliorated the oxidative imbalance by increasing the antioxidative capacity of the H9C2 cell. Moreover, proteomics analysis revealed that mangiferin pretreatment brought twenty differently-expressed proteins back to normal, most of which were related to glucose and fatty acid metabolism. Glycolysis, citrate cycle, and fatty acid degradation pathways were highlighted by Kyoto Encyclopedia of Gene and Genomes (KEGG) analysis. Western blot validation of six cardiac metabolism-related proteins were consistent with the proteomics analysis. Taken together, mangiferin protected the cardiomyocytes from MIRI by enhancing the antioxidant capacity and increasing the activities of glycolysis, citrate cycle, and fatty acid degradation pathways.
Collapse
Affiliation(s)
- Wei Guan
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Yan Liu
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Yuan Liu
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Qi Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150036, China.
| | - Hong-Liang Ye
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Yan-Gang Cheng
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Xi-Cheng Jiang
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Bing-You Yang
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
19
|
Munukutla S, Pan G, Palaniyandi SS. Aldehyde Dehydrogenase (ALDH) 2 in Diabetic Heart Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1193:155-174. [PMID: 31368103 DOI: 10.1007/978-981-13-6260-6_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A major pathophysiological mechanism behind the development of diabetic heart diseases is oxidative stress mediated by toxic reactive aldehydes such as 4-hydroxynonenal (4HNE). Aldehyde dehydrogenase (ALDH) 2 is a mitochondrial enzyme that has been found to detoxify these deleterious aldehydes and thereby mitigate cardiac damage. Furthermore, its protective role in cellular signaling reverses aberrations caused by hyperglycemia, thereby protecting cardiac function. This chapter assesses the role of ALDH2 in diabetic heart diseases by examining preclinical studies where ALDH2 activity is perturbed in both decreased and increased directions. In doing so, issues in improving ALDH2 activity in select human populations are elucidated, and further research directions are discussed.
Collapse
Affiliation(s)
- Srikar Munukutla
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Guodong Pan
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Suresh S Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA.
- Department of Physiology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
20
|
Pan G, Deshpande M, Pang H, Palaniyandi SS. Precision medicine approach: Empagliflozin for diabetic cardiomyopathy in mice with aldehyde dehydrogenase (ALDH) 2 * 2 mutation, a specific genetic mutation in millions of East Asians. Eur J Pharmacol 2018; 839:76-81. [PMID: 30240795 DOI: 10.1016/j.ejphar.2018.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/17/2023]
Abstract
A vast majority of type-2 diabetic patients (~65%) die of cardiovascular complications including heart failure (HF). In diabetic hearts, levels of 4-hydroxy-2-nonenal (4HNE), a reactive aldehyde that is produced upon lipid peroxidation, were increased. We also demonstrated that in diabetic hearts, there is a decrease in the activity of aldehyde dehydrogenase (ALDH) 2, a primary detoxifying enzyme present in cardiac mitochondria. A single point mutation at E487K of ALDH2 in East Asians known as ALDH2 * 2 intrinsically lowers ALDH2 activity. We hypothesize that Empagliflozin (EMP), a sodium-glucose cotransporter (SGLT) 2 inhibitor, can ameliorate diabetic cardiomyopathy by decreasing hyperglycemia-mediated 4HNE protein adducts in ALDH2 * 2 mutant mice which serve as a precision medicine tool as they mimic ALDH2 * 2 carriers. We induced type-2 diabetes in 11-14 month-old male and female ALDH2 * 2 mice through a high-fat diet. Chow-fed ALDH2 * 2 mice served as controls. At the end of 4 months, we treated the diabetic ALDH2 * 2 mice with EMP (3 mg/kg/d) or its vehicle (Veh). After 2 months of EMP treatment, cardiac function was assessed by conscious echocardiography after treadmill exercise stress. EMP improved the cardiac function and running distance and duration significantly compared to Veh-treated ALDH2 * 2 diabetic mice. These beneficial effects can be attributed to the EMP-mediated decrease in cardiac mitochondrial 4HNE adducts and increase in the levels of phospho AKT, AKT, phospho Akt substrate of 160 kDa (pAS160), AS160 and GLUT-4 in the skeletal muscle tissue of the ALDH2*2 mutant diabetic mice, respectively. Finally, our data implicate EMP can ameliorate diabetic cardiomyopathy in diabetic ALDH2 * 2 mutant patients.
Collapse
Affiliation(s)
- Guodong Pan
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, United States
| | - Mandar Deshpande
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, United States
| | - Haiyan Pang
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, United States
| | - Suresh Selvaraj Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, United States; Department of Physiology, Wayne State University, Detroit, MI 48202, United States.
| |
Collapse
|
21
|
Panisello-Roselló A, Lopez A, Folch-Puy E, Carbonell T, Rolo A, Palmeira C, Adam R, Net M, Roselló-Catafau J. Role of aldehyde dehydrogenase 2 in ischemia reperfusion injury: An update. World J Gastroenterol 2018; 24:2984-2994. [PMID: 30038465 PMCID: PMC6054945 DOI: 10.3748/wjg.v24.i27.2984] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/28/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is best known for its critical detoxifying role in liver alcohol metabolism. However, ALDH2 dysfunction is also involved in a wide range of human pathophysiological situations and is associated with complications such as cardiovascular diseases, diabetes mellitus, neurodegenerative diseases and aging. A growing body of research has shown that ALDH2 provides important protection against oxidative stress and the subsequent loading of toxic aldehydes such as 4-hydroxy-2-nonenal and adducts that occur in human diseases, including ischemia reperfusion injury (IRI). There is increasing evidence of its role in IRI pathophysiology in organs such as heart, brain, small intestine and kidney; however, surprisingly few studies have been carried out in the liver, where ALDH2 is found in abundance. This study reviews the role of ALDH2 in modulating the pathways involved in the pathophysiology of IRI associated with oxidative stress, autophagy and apoptosis. Special emphasis is placed on the role of ALDH2 in different organs, on therapeutic “preconditioning” strategies, and on the use of ALDH2 agonists such as Alda-1, which may become a useful therapeutic tool for preventing the deleterious effects of IRI in organ transplantation.
Collapse
Affiliation(s)
- Arnau Panisello-Roselló
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-CSIC, Barcelona 08036, Spain
| | - Alexandre Lopez
- Centre Hepatobiliare, AP-HP Hôpital Paul Brousse, Villejuif 75008, France
| | - Emma Folch-Puy
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-CSIC, Barcelona 08036, Spain
| | - Teresa Carbonell
- Department of Physiology, Faculty of Biology, Universitat de Barcelona, Barcelona 08036, Spain
| | - Anabela Rolo
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | - Carlos Palmeira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | - René Adam
- Centre Hepatobiliare, AP-HP Hôpital Paul Brousse, Villejuif 75008, France
| | - Marc Net
- Institute Georges Lopez, Lissieu 69380, France
| | - Joan Roselló-Catafau
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-CSIC, Barcelona 08036, Spain
| |
Collapse
|
22
|
Activation of aldehyde dehydrogenase 2 slows down the progression of atherosclerosis via attenuation of ER stress and apoptosis in smooth muscle cells. Acta Pharmacol Sin 2018; 39:48-58. [PMID: 28858301 DOI: 10.1038/aps.2017.81] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 05/19/2017] [Indexed: 12/13/2022] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is a key mitochondrial enzyme in the metabolism of aldehydes and may have beneficial cardiovascular effects for conditions such as cardiac hypertrophy, heart failure, myocardial I/R injury, reperfusion, arrhythmia, coronary heart disease and atherosclerosis. In this study we investigated the role of ALDH2 in the progression of atherosclerosis and the underlying mechanisms, with a focus on endoplasmic reticulum (ER) stress. A clinical study was performed in 248 patients with coronary heart disease. The patients were divided into two groups according to their ALDH2 genotype. Baseline clinical characteristics and coronary angiography were recorded, and the coronary artery Gensini score was calculated. Serum levels of 4-hydroxy-2-nonenal (4-HNE) were detected. The clinical study revealed that the mutant ALDH2 genotype was an independent risk factor for coronary heart disease. ALDH2 gene polymorphism is closely associated with atherosclerosis and the severity of coronary artery stenosis. Serum levels of 4-HNE were significantly higher in patients with the mutant ALDH2 genotype than in patients with the wild-type ALDH2 genotype. As an in vitro model of atherosclerosis, rat smooth muscle cells (SMCs) were treated with oxygenized low-density lipoprotein (ox-LDL), which significantly elevated the levels of ER markers glucose-regulated protein78 (GRP78), protein kinase R-like ER kinase (PERK), phosphorylated eukaryotic translation initiation factor α subunit (p-eIF2α), activating transcription factor-4 (ATF-4), CEBP homologous protein (CHOP) and 4-HNE in the cells. All the ox-LDL-induced responses were significantly attenuated in the presence of Alda-1 (an ALDH2 activating agent), and accentuated in the presence of daidzin (an ALDH2 inhibitor). Furthermore, pretreatment with ALDH2 activator Alda-1 significantly decreased ox-LDL-induced apoptosis. Similarly, overexpression of ALDH2 protected SMCs against ox-LDL-induced ER stress as well as ER stress-induced apoptosis. These findings suggest that ALDH2 may slow the progression of atherosclerosis via the attenuation of ER stress and apoptosis in smooth muscle cells.
Collapse
|
23
|
Elrayess MA, Almuraikhy S, Kafienah W, Al-Menhali A, Al-Khelaifi F, Bashah M, Zarkovic K, Zarkovic N, Waeg G, Alsayrafi M, Jaganjac M. 4-hydroxynonenal causes impairment of human subcutaneous adipogenesis and induction of adipocyte insulin resistance. Free Radic Biol Med 2017; 104:129-137. [PMID: 28088621 DOI: 10.1016/j.freeradbiomed.2017.01.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/26/2016] [Accepted: 01/09/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Increased adipose production of 4-hydroxynonenal (4-HNE), a bioreactive aldehyde, directly correlates with obesity and insulin resistance. The aim of this study was to elucidate the impact of 4-HNE in mediating adipocyte differentiation and function in two metabolically distinct obese groups; the insulin sensitive (IS) and the insulin resistant (IR). METHODS Subcutaneous (SC) adipose tissues were obtained from eighteen clinically well characterized obese premenopausal women undergoing weight reduction surgery. Cellular distribution of 4-HNE in the form of protein adducts was determined by immunohistochemistry in addition to its effect on oxidative stress, cell growth, adipogenic capacity and insulin signaling in preadipocytes derived from the IS and IR participants. RESULTS 4-HNE was detected in the SC adipose tissue in different cell types with the highest level detected in adipocytes and blood vessels. Short and long-term in vitro treatment of SC preadipocytes with 4-HNE caused inhibition of their growth and increased production of reactive oxygen species (ROS) and antioxidant enzymes. Repeated 4-HNE treatment led to a greater reduction in the adipogenic capacity of preadipocytes from IS subjects compared to IR and caused dephosphorylation of IRS-1 and p70S6K while activating GSK3α/β and BAD, triggering an IR phenotype. CONCLUSION These data suggest that 4-HNE-induced oxidative stress plays a role in the regulation of preadipocyte growth, differentiation and insulin signaling and may therefore contribute to adipose tissue metabolic dysfunction associated with insulin resistance.
Collapse
Affiliation(s)
| | - Shamma Almuraikhy
- Anti Doping Lab Qatar, Sports City, Doha, Qatar; School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Wael Kafienah
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | | | - Moataz Bashah
- Bariatric and Metabolic Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Kamelija Zarkovic
- Department of Pathology, Medical Faculty University of Zagreb, Clinical Hospital Centre Zagreb, Zagreb, Croatia
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Department of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Georg Waeg
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | | |
Collapse
|
24
|
Li M, Zhang P, Wei HJ, Li MH, Zou W, Li X, Gu HF, Tang XQ. Hydrogen Sulfide Ameliorates Homocysteine-Induced Cognitive Dysfunction by Inhibition of Reactive Aldehydes Involving Upregulation of ALDH2. Int J Neuropsychopharmacol 2016; 20:305-315. [PMID: 27988490 PMCID: PMC5409037 DOI: 10.1093/ijnp/pyw103] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/02/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Homocysteine, a risk factor for Alzheimer's disease, induces cognitive dysfunction. Reactive aldehydes play an important role in cognitive dysfunction. Aldehyde-dehydrogenase 2 detoxifies reactive aldehydes. Hydrogen sulfide, a novel neuromodulator, has neuroprotective effects and regulates learning and memory. Our previous work confirmed that the disturbance of hydrogen sulfide synthesis is invovled in homocysteine-induced defects in learning and memory. Therefore, the present work was to explore whether hydrogen sulfide ameliorates homocysteine-generated cognitive dysfunction and to investigate whether its underlying mechanism is related to attenuating accumulation of reactive aldehydes by upregulation of aldehyde-dehydrogenase 2. METHODS The cognitive function of rats was assessed by the Morris water maze test and the novel object recognition test. The levels of malondialdehyde, 4-hydroxynonenal, and glutathione as well as the activity of aldehyde-dehydrogenase 2 were determined by enzyme linked immunosorbent assay; the expression of aldehyde-dehydrogenase 2 was detected by western blot. RESULTS The behavior experiments, Morris water maze test and novel objects recognition test, showed that homocysteine induced deficiency in learning and memory in rats, and this deficiency was reversed by treatment of NaHS (a donor of hydrogen sulfide). We demonstrated that NaHS inhibited homocysteine-induced increases in generations of MDA and 4-HNE in the hippocampus of rats and that hydrogen sulfide reversed homocysteine-induced decreases in the level of glutathione as well as the activity and expression of aldehyde-dehydrogenase 2 in the hippocampus of rats. CONCLUSION Hydrogen sulfide ameliorates homocysteine-induced impairment in cognitive function by decreasing accumulation of reactive aldehydes as a result of upregulations of glutathione and aldehyde-dehydrogenase 2.
Collapse
Affiliation(s)
- Min Li
- Department of Neurology, Nanhua Affiliated Hospital (Ms Li, Mr Zhang, Ms Li, Mr Zou, and Dr Tang), and
| | - Ping Zhang
- Department of Neurology, Nanhua Affiliated Hospital (Ms Li, Mr Zhang, Ms Li, Mr Zou, and Dr Tang), and
| | - Hai-jun Wei
- Institute of Neuroscience, Medical College (Mr Wei, Dr Gu, and Dr Tang),,University of South China, Hengyang, Hunan, PR China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Mr Wei and Dr Tang)
| | - Man-Hong Li
- Department of Neurology, Nanhua Affiliated Hospital (Ms Li, Mr Zhang, Ms Li, Mr Zou, and Dr Tang), and
| | - Wei Zou
- Department of Neurology, Nanhua Affiliated Hospital (Ms Li, Mr Zhang, Ms Li, Mr Zou, and Dr Tang), and
| | - Xiang Li
- Department of Anesthesiology, First Affiliated Hospital, University of South China, Hengyang, Hunan, PR China (Mr Li)
| | - Hong-Feng Gu
- Institute of Neuroscience, Medical College (Mr Wei, Dr Gu, and Dr Tang)
| | - Xiao-Qing Tang
- Department of Neurology, Nanhua Affiliated Hospital (Ms Li, Mr Zhang, Ms Li, Mr Zou, and Dr Tang), and,Institute of Neuroscience, Medical College (Mr Wei, Dr Gu, and Dr Tang),,University of South China, Hengyang, Hunan, PR China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Mr Wei and Dr Tang)
| |
Collapse
|
25
|
Munukutla S, Pan G, Deshpande M, Thandavarayan RA, Krishnamurthy P, Palaniyandi SS. Alcohol Toxicity in Diabetes and Its Complications: A Double Trouble? Alcohol Clin Exp Res 2016; 40:686-97. [PMID: 27013182 DOI: 10.1111/acer.13008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/11/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND Eight percent of the U.S. population has been diagnosed with diabetes mellitus (DM), while another large percentage has gone undiagnosed. As the epidemiology of this disease constitutes a larger percentage of the American population, another factor presents a dangerous dilemma that can exacerbate the hazardous effects imposed by DM. Excessive alcohol consumption concerns the health of more than 50% of all adults. When this heavy-alcohol-drinking population overlaps with DM and its complications, the effects can be dangerous. In this review, we term it as "double trouble." METHODS We provide evidence of alcohol-induced exacerbation of organ damage in diabetic conditions. In certain cases, we have explained how diabetes and alcohol induce similar pathological effects. RESULTS Known exacerbated complications include those related to heart diseases, liver damage, kidney dysfunction, as well as retinal and neurological impairment. Often, pathophysiological damage concludes with end-stage disorders and even mortality. The metabolic, cell signaling, and pathophysiological changes associated with "double trouble" would lead to the identification of novel therapeutic targets. CONCLUSIONS This review summarizes the epidemiology, diagnosis, pathophysiology, metabolic, and cell signaling alterations and finally brushes upon issues and strategies to manage the "double trouble."
Collapse
Affiliation(s)
- Srikar Munukutla
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - Guodong Pan
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - Mandar Deshpande
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - Rajarajan A Thandavarayan
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, Texas
| | - Prasanna Krishnamurthy
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, Texas
| | - Suresh S Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan.,Department of Physiology, Wayne State University, Detroit, Michigan
| |
Collapse
|
26
|
Pan G, Deshpande M, Thandavarayan RA, Palaniyandi SS. ALDH2 Inhibition Potentiates High Glucose Stress-Induced Injury in Cultured Cardiomyocytes. J Diabetes Res 2016; 2016:1390861. [PMID: 27882330 PMCID: PMC5110883 DOI: 10.1155/2016/1390861] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/26/2016] [Accepted: 08/22/2016] [Indexed: 01/27/2023] Open
Abstract
Aldehyde dehydrogenase (ALDH) gene superfamily consists of 19 isozymes. They are present in various organs and involved in metabolizing aldehydes that are biologically generated. For instance, ALDH2, a cardiac mitochondrial ALDH isozyme, is known to detoxify 4-hydroxy-2-nonenal, a reactive aldehyde produced upon lipid peroxidation in diabetic conditions. We hypothesized that inhibition of ALDH leads to the accumulation of unmetabolized 4HNE and consequently exacerbates injury in cells subjected to high glucose stress. H9C2 cardiomyocyte cell lines were pretreated with 10 μM disulfiram (DSF), an inhibitor of ALDH2 or vehicle (DMSO) for 2 hours, and then subjected to high glucose stress {33 mM D-glucose (HG) or 33 mM D-mannitol as an osmotic control (Ctrl)} for 24 hrs. The decrease in ALDH2 activity with DSF pretreatment was higher in HG group when compared to Ctrl group. Increased 4HNE adduct formation with DSF pretreatment was higher in HG group compared to Ctrl group. Pretreatment with DSF leads to potentiated HG-induced cell death in cultured H9C2 cardiomyocytes by lowering mitochondrial membrane potential. Our results indicate that ALDH2 activity is important in preventing high glucose induced cellular dysfunction.
Collapse
Affiliation(s)
- Guodong Pan
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, USA
| | - Mandar Deshpande
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, USA
| | - Rajarajan A. Thandavarayan
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Suresh Selvaraj Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit, MI 48202, USA
- *Suresh Selvaraj Palaniyandi:
| |
Collapse
|