1
|
Aulak KS, Mavarakis L, Tian L, Paul D, Comhair SA, Dweik RA, Tonelli AR. Characteristic disease defects in circulating endothelial cells isolated from patients with pulmonary arterial hypertension. PLoS One 2024; 19:e0312535. [PMID: 39466801 PMCID: PMC11516004 DOI: 10.1371/journal.pone.0312535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by elevated pulmonary arterial pressures that can lead to right heart failure and death. No cure exists for this disease, but therapeutic advancements have extended its median survival from 2 to 7 years. Mechanistic research in PAH has been limited by factors including that a) animal models do not fully recapitulate the disease or provide insights into its pathogenesis, and b) cellular material from PAH patients is primarily obtained from donor lungs during autopsy or transplantation, which reflect end-stage disease. Therefore, there is a need to identify tools that can elucidate the specific mechanisms of human disease in individual patients, a critical step to guide treatment decisions based on specific pathway abnormalities. Here we demonstrate a simple method to isolate and culture circulating endothelial cells (CECs) obtained at the time of right heart catheterization in PAH patients. We tested these CECs using transcriptomics and found that they have typical traits of PAH, including those involving key treatment pathways, i.e. nitric oxide, endothelin, prostacyclin and BMP/activin pathways. CECs show important gene expression changes in other central PAH disease pathways. In summary, we present a new cellular model for the ex-vivo mechanistic evaluation of critical PAH pathways that participate in the pathogenesis of the disease and may help personalized therapeutic decisions.
Collapse
Affiliation(s)
- Kulwant S. Aulak
- Department of Immunology and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Lori Mavarakis
- Department of Immunology and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Liping Tian
- Department of Immunology and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Deborah Paul
- Department of Pulmonary, Cleveland Clinic, Allergy and Critical Care Medicine, Respiratory Institute, Cleveland, Ohio, United States of America
| | - Suzy A. Comhair
- Department of Immunology and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Raed A. Dweik
- Department of Pulmonary, Cleveland Clinic, Allergy and Critical Care Medicine, Respiratory Institute, Cleveland, Ohio, United States of America
| | - Adriano R. Tonelli
- Department of Pulmonary, Cleveland Clinic, Allergy and Critical Care Medicine, Respiratory Institute, Cleveland, Ohio, United States of America
| |
Collapse
|
2
|
Chen J, Dang YM, Liu MC, Gao L, Guan T, Hu A, Xiong L, Lin H. AMPK induces PIAS3 mediated SUMOylation of E3 ubiquitin ligase Smurf1 impairing osteogenic differentiation and traumatic heterotopic ossification. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119771. [PMID: 38844181 DOI: 10.1016/j.bbamcr.2024.119771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/04/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
AMP-activated protein kinase (AMPK) is a typical sensor of intracellular energy metabolism. Our previous study revealed the role of activated AMPK in the suppression of osteogenic differentiation and traumatic heterotopic ossification, but the underlying mechanism remains poorly understood. The E3 ubiquitin ligase Smurf1 is a crucial regulator of osteogenic differentiation and bone formation. We report here that Smurf1 is primarily SUMOylated at a C-terminal lysine residue (K324), which enhances its activity, facilitating ALK2 proteolysis and subsequent bone morphogenetic protein (BMP) signaling pathway inhibition. Furthermore, SUMOylation of the SUMO E3 ligase PIAS3 and Smurf1 SUMOylation was suppressed during the osteogenic differentiation and traumatic heterotopic ossification. More importantly, we found that AMPK activation enhances the SUMOylation of Smurf1, which is mediated by PIAS3 and increases the association between PIAS3 and AMPK. Overall, our study revealed that Smurf1 can be SUMOylated by PIAS3, Furthermore, Smurf1 SUMOylation mediates osteogenic differentiation and traumatic heterotopic ossification through suppression of the BMP signaling pathway. This study revealed that promotion of Smurf1 SUMOylation by AMPK activation may be implicated in traumatic heterotopic ossification treatment.
Collapse
Affiliation(s)
- Jie Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yan-Miao Dang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Meng-Chao Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Linqing Gao
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Tianshu Guan
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Anxin Hu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Lixia Xiong
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Hui Lin
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
3
|
Ye Q, Taleb SJ, Zhao J, Zhao Y. Emerging role of BMPs/BMPR2 signaling pathway in treatment for pulmonary fibrosis. Biomed Pharmacother 2024; 178:117178. [PMID: 39142248 PMCID: PMC11364484 DOI: 10.1016/j.biopha.2024.117178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Pulmonary fibrosis is a fatal and chronic lung disease that is characterized by accumulation of thickened scar in the lungs and impairment of gas exchange. The cases with unknown etiology are referred as idiopathic pulmonary fibrosis (IPF). There are currently no effective therapeutics to cure the disease; thus, the investigation of the pathogenesis of IPF is of great importance. Recent studies on bone morphogenic proteins (BMPs) and their receptors have indicated that reduction of BMP signaling in lungs may play a significant role in the development of lung fibrosis. BMPs are members of TGF-β superfamily, and they have been shown to play an anti-fibrotic role in combating TGF-β-mediated pathways. The impact of BMP receptors, in particular BMPR2, on pulmonary fibrosis is growing attraction to researchers. Previous studies on BMPR2 have often focused on pulmonary arterial hypertension (PAH). Given the strong clinical association between PAH and lung fibrosis, understanding BMPs/BMPR2-mediated signaling pathway is important for development of therapeutic strategies to treat IPF. In this review, we comprehensively review recent studies regarding the biological functions of BMPs and their receptors in lungs, especially focusing on their roles in the pathogenesis of pulmonary fibrosis and fibrosis resolution.
Collapse
Affiliation(s)
- Qinmao Ye
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States
| | - Sarah J Taleb
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States
| | - Jing Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States; Department of internal Medicine, the Ohio State University, Columbus, OH, United States
| | - Yutong Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States; Department of internal Medicine, the Ohio State University, Columbus, OH, United States.
| |
Collapse
|
4
|
Zhang HR, Wang YH, Xiao ZP, Yang G, Xu YR, Huang ZT, Wang WZ, He F. E3 ubiquitin ligases: key regulators of osteogenesis and potential therapeutic targets for bone disorders. Front Cell Dev Biol 2024; 12:1447093. [PMID: 39211390 PMCID: PMC11358089 DOI: 10.3389/fcell.2024.1447093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Ubiquitination is a crucial post-translational modification of proteins that mediates the degradation or functional regulation of specific proteins. This process participates in various biological processes such as cell growth, development, and signal transduction. E3 ubiquitin ligases play both positive and negative regulatory roles in osteogenesis and differentiation by ubiquitination-mediated degradation or stabilization of transcription factors, signaling molecules, and cytoskeletal proteins. These activities affect the proliferation, differentiation, survival, and bone formation of osteoblasts (OBs). In recent years, advances in genomics, transcriptomics, and proteomics have led to a deeper understanding of the classification, function, and mechanisms of action of E3 ubiquitin ligases. This understanding provides new insights and approaches for revealing the molecular regulatory mechanisms of bone formation and identifying therapeutic targets for bone metabolic diseases. This review discusses the research progress and significance of the positive and negative regulatory roles and mechanisms of E3 ubiquitin ligases in the process of osteogenic differentiation. Additionally, the review highlights the role of E3 ubiquitin ligases in bone-related diseases. A thorough understanding of the role and mechanisms of E3 ubiquitin ligases in osteogenic differentiation could provide promising therapeutic targets for bone tissue engineering based on stem cells.
Collapse
Affiliation(s)
- Heng-Rui Zhang
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Yang-Hao Wang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhen-Ping Xiao
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
- Department of Pain and Rehabilitation, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Guang Yang
- Department of Trauma Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yun-Rong Xu
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Zai-Tian Huang
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Wei-Zhou Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fei He
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| |
Collapse
|
5
|
Ejikeme C, Safdar Z. Exploring the pathogenesis of pulmonary vascular disease. Front Med (Lausanne) 2024; 11:1402639. [PMID: 39050536 PMCID: PMC11267418 DOI: 10.3389/fmed.2024.1402639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Pulmonary hypertension (PH) is a complex cardiopulmonary disorder impacting the lung vasculature, resulting in increased pulmonary vascular resistance that leads to right ventricular dysfunction. Pulmonary hypertension comprises of 5 groups (PH group 1 to 5) where group 1 pulmonary arterial hypertension (PAH), results from alterations that directly affect the pulmonary arteries. Although PAH has a complex pathophysiology that is not completely understood, it is known to be a multifactorial disease that results from a combination of genetic, epigenetic and environmental factors, leading to a varied range of symptoms in PAH patients. PAH does not have a cure, its incidence and prevalence continue to increase every year, resulting in higher morbidity and mortality rates. In this review, we discuss the different pathologic mechanisms with a focus on epigenetic modifications and their roles in the development and progression of PAH. These modifications include DNA methylation, histone modifications, and microRNA dysregulation. Understanding these epigenetic modifications will improve our understanding of PAH and unveil novel therapeutic targets, thus steering research toward innovative treatment strategies.
Collapse
Affiliation(s)
| | - Zeenat Safdar
- Department of Pulmonary-Critical Care Medicine, Houston Methodist Lung Center, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
6
|
Zhang N, Yang P, Li Y, Ouyang Q, Hou F, Zhu G, Zhang B, Huang J, Jia J, Xu A. Serum Iron Overload Activates the SMAD Pathway and Hepcidin Expression of Hepatocytes via SMURF1. J Clin Transl Hepatol 2024; 12:227-235. [PMID: 38426189 PMCID: PMC10899870 DOI: 10.14218/jcth.2023.00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
Background and Aims Liver iron overload can induce hepatic expression of bone morphogenic protein (BMP) 6 and activate the BMP/SMAD pathway. However, serum iron overload can also activate SMAD but does not induce BMP6 expression. Therefore, the mechanisms through which serum iron overload activates the BMP/SMAD pathway remain unclear. This study aimed to clarify the role of SMURF1 in serum iron overload and the BMP/SMAD pathway. Methods A cell model of serum iron overload was established by treating hepatocytes with 2 mg/mL of holo-transferrin (Holo-Tf). A serum iron overload mouse model and a liver iron overload mouse model were established by intraperitoneally injecting 10 mg of Holo-Tf into C57BL/6 mice and administering a high-iron diet for 1 week followed by a low-iron diet for 2 days. Western blotting and real-time PCR were performed to evaluate the activation of the BMP/SMAD pathway and the expression of hepcidin. Results Holo-Tf augmented the sensitivity and responsiveness of hepatocytes to BMP6. The E3 ubiquitin-protein ligase SMURF1 mediated Holo-Tf-induced SMAD1/5 activation and hepcidin expression; specifically, SMURF1 expression dramatically decreased when the serum iron concentration was increased. Additionally, the expression of SMURF1 substrates, which are important molecules involved in the transduction of BMP/SMAD signaling, was significantly upregulated. Furthermore, in vivo analyses confirmed that SMURF1 specifically regulated the BMP/SMAD pathway during serum iron overload. Conclusions SMURF1 can specifically regulate the BMP/SMAD pathway by augmenting the responsiveness of hepatocytes to BMPs during serum iron overload.
Collapse
Affiliation(s)
- Ning Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Gastroenterology, Beijing Shunyi Hospital, Beijing, China
| | - Pengyao Yang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanmeng Li
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qin Ouyang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fei Hou
- Department of Critical Liver Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guixin Zhu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bei Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jian Huang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Anjian Xu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Stempel M, Maier O, Mhlekude B, Drakesmith H, Brinkmann MM. Novel role of bone morphogenetic protein 9 in innate host responses to HCMV infection. EMBO Rep 2024; 25:1106-1129. [PMID: 38308064 PMCID: PMC10933439 DOI: 10.1038/s44319-024-00072-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 02/04/2024] Open
Abstract
Herpesviruses modulate immune control to secure lifelong infection. The mechanisms Human Cytomegalovirus (HCMV) employs in this regard can reveal unanticipated aspects of cellular signaling involved in antiviral immunity. Here, we describe a novel relationship between the TGF-β family cytokine BMP9 and HCMV infection. We identify a cross-talk between BMP9-induced and IFN receptor-mediated signaling, showing that BMP9 boosts the transcriptional response to and antiviral activity of IFNβ, thereby enhancing viral restriction. We also show that BMP9 is secreted by human fibroblasts upon HCMV infection. However, HCMV infection impairs BMP9-induced enhancement of the IFNβ response, indicating that this signaling role of BMP9 is actively targeted by HCMV. Indeed, transmembrane proteins US18 and US20, which downregulate type I BMP receptors, are necessary and sufficient to cause inhibition of BMP9-mediated boosting of the antiviral response to IFNβ. HCMV lacking US18 and US20 is more sensitive to IFNβ. Thus, HCMV has a mutually antagonistic relationship with BMP9, which extends the growing body of evidence that BMP signaling is an underappreciated modulator of innate immunity in response to viral infection.
Collapse
Affiliation(s)
- Markus Stempel
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Oliver Maier
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Baxolele Mhlekude
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Hal Drakesmith
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Melanie M Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany.
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| |
Collapse
|
8
|
Dong Y, Chen Y, Ma G, Cao H. The role of E3 ubiquitin ligases in bone homeostasis and related diseases. Acta Pharm Sin B 2023; 13:3963-3987. [PMID: 37799379 PMCID: PMC10547920 DOI: 10.1016/j.apsb.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 10/07/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) dedicates to degrade intracellular proteins to modulate demic homeostasis and functions of organisms. These enzymatic cascades mark and modifies target proteins diversly through covalently binding ubiquitin molecules. In the UPS, E3 ubiquitin ligases are the crucial constituents by the advantage of recognizing and presenting proteins to proteasomes for proteolysis. As the major regulators of protein homeostasis, E3 ligases are indispensable to proper cell manners in diverse systems, and they are well described in physiological bone growth and bone metabolism. Pathologically, classic bone-related diseases such as metabolic bone diseases, arthritis, bone neoplasms and bone metastasis of the tumor, etc., were also depicted in a UPS-dependent manner. Therefore, skeletal system is versatilely regulated by UPS and it is worthy to summarize the underlying mechanism. Furthermore, based on the current status of treatment, normal or pathological osteogenesis and tumorigenesis elaborated in this review highlight the clinical significance of UPS research. As a strategy possibly remedies the limitations of UPS treatment, emerging PROTAC was described comprehensively to illustrate its potential in clinical application. Altogether, the purpose of this review aims to provide more evidence for exploiting novel therapeutic strategies based on UPS for bone associated diseases.
Collapse
Affiliation(s)
| | | | - Guixing Ma
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Shenzhen 518055, China
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Shenzhen 518055, China
| |
Collapse
|
9
|
Wan JX, Wang YQ, Lan SN, Chen L, Feng MQ, Chen X. Research Progress in Function and Regulation of E3 Ubiquitin Ligase SMURF1. Curr Med Sci 2023; 43:855-868. [PMID: 37558865 DOI: 10.1007/s11596-023-2774-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/08/2023] [Indexed: 08/11/2023]
Abstract
Smad ubiquitylation regulatory factor 1 (Smurf1) is an important homologous member of E6-AP C-terminus type E3 ubiquitin ligase. Initially, Smurf1 was reportedly involved in the negative regulation of the bone morphogenesis protein (BMP) pathway. After further research, several studies have confirmed that Smurf1 is widely involved in various biological processes, such as bone homeostasis regulation, cell migration, apoptosis, and planar cell polarity. At the same time, recent studies have provided a deeper understanding of the regulatory mechanisms of Smurf1's expression, activity, and substrate selectivity. In our review, a brief summary of recent important biological functions and regulatory mechanisms of E3 ubiquitin ligase Smurf1 is proposed.
Collapse
Affiliation(s)
- Ji-Xi Wan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Qi Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Si-Na Lan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liu Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming-Qian Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
10
|
Job F, Mai C, Villavicencio-Lorini P, Herfurth J, Neuhaus H, Hoffmann K, Pfirrmann T, Hollemann T. OTUD3: A Lys6 and Lys63 specific deubiquitinase in early vertebrate development. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194901. [PMID: 36503125 DOI: 10.1016/j.bbagrm.2022.194901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Ubiquitination and deubiquitylation regulate essential cellular processes and involve hundreds of sequentially acting enzymes, many of which are barely understood. OTUD3 is an evolutionarily highly conserved deubiquitinase involved in many aspects of cellular homeostasis. However, its biochemical properties and physiological role during development are poorly understood. Here, we report on the expression of OTUD3 in human tissue samples where it appears prominently in those of neuronal origin. In cells, OTUD3 is present in the cytoplasm where it can bind to microtubules. Interestingly, we found that OTUD3 cleaves preferentially at K6 and K63, i.e., poly-ubiquitin linkages that are not primarily involved in protein degradation. We employed Xenopus embryos to study the consequences of suppressing otud3 function during early neural development. We found that Otud3 deficiency led to impaired formation of cranial and particularly of cranial neural crest-derived structures as well as movement defects. Thus, OTUD3 appears as a neuronally enriched deubiquitinase that is involved in the proper development of the neural system.
Collapse
Affiliation(s)
- Florian Job
- Martin-Luther-University Halle-Wittenberg, Institute for Physiological Chemistry, 06114 Halle, Germany; Martin-Luther-University Halle-Wittenberg, Institute of Human Genetics, 06114 Halle, Germany
| | - Carolin Mai
- Martin-Luther-University Halle-Wittenberg, Institute for Physiological Chemistry, 06114 Halle, Germany
| | | | - Juliane Herfurth
- Martin-Luther-University Halle-Wittenberg, Institute for Physiological Chemistry, 06114 Halle, Germany
| | - Herbert Neuhaus
- Martin-Luther-University Halle-Wittenberg, Institute for Physiological Chemistry, 06114 Halle, Germany
| | - Katrin Hoffmann
- Martin-Luther-University Halle-Wittenberg, Institute of Human Genetics, 06114 Halle, Germany
| | - Thorsten Pfirrmann
- Martin-Luther-University Halle-Wittenberg, Institute for Physiological Chemistry, 06114 Halle, Germany; Department of Medicine, Health and Medical University, 14471 Potsdam, Germany
| | - Thomas Hollemann
- Martin-Luther-University Halle-Wittenberg, Institute for Physiological Chemistry, 06114 Halle, Germany.
| |
Collapse
|
11
|
Jiang B, Zhao X, Chen W, Diao W, Ding M, Qin H, Li B, Cao W, Chen W, Fu Y, He K, Gao J, Chen M, Lin T, Deng Y, Yan C, Guo H. Lysosomal protein transmembrane 5 promotes lung-specific metastasis by regulating BMPR1A lysosomal degradation. Nat Commun 2022; 13:4141. [PMID: 35842443 PMCID: PMC9288479 DOI: 10.1038/s41467-022-31783-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Organotropism during cancer metastasis occurs frequently but the underlying mechanism remains poorly understood. Here, we show that lysosomal protein transmembrane 5 (LAPTM5) promotes lung-specific metastasis in renal cancer. LAPTM5 sustains self-renewal and cancer stem cell-like traits of renal cancer cells by blocking the function of lung-derived bone morphogenetic proteins (BMPs). Mechanistic investigations showed that LAPTM5 recruits WWP2, which binds to the BMP receptor BMPR1A and mediates its lysosomal sorting, ubiquitination and ultimate degradation. BMPR1A expression was restored by the lysosomal inhibitor chloroquine. LAPTM5 expression could also serve as an independent predictor of lung metastasis in renal cancer. Lastly, elevation of LAPTM5 expression in lung metastases is a common phenomenon in multiple cancer types. Our results reveal a molecular mechanism underlying lung-specific metastasis and identify LAPTM5 as a potential therapeutic target for cancers with lung metastasis. The mechanisms that confer lung-specific metastasis in renal cell carcinomas (RCC) remain to be detailed. Here the authors show that LAPTM5 contributes to lung-specific metastasis of RCCs by suppressing BMP signalling and thus, enhancing self-renewal and cancer stem cell-like traits of RCCs.
Collapse
Affiliation(s)
- Bo Jiang
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Xiaozhi Zhao
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Wei Chen
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Wenli Diao
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Meng Ding
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Haixiang Qin
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Binghua Li
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Wenmin Cao
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Wei Chen
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Yao Fu
- Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Kuiqiang He
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Jie Gao
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Mengxia Chen
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Tingsheng Lin
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Yongming Deng
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
12
|
Boehm M, Tian X, Ali MK, Mao Y, Ichimura K, Zhao M, Kuramoto K, Dannewitz Prosseda S, Fajardo G, Dufva MJ, Qin X, Kheyfets VO, Bernstein D, Reddy S, Metzger RJ, Zamanian RT, Haddad F, Spiekerkoetter E. Improving Right Ventricular Function by Increasing BMP Signaling with FK506. Am J Respir Cell Mol Biol 2021; 65:272-287. [PMID: 33938785 PMCID: PMC8485990 DOI: 10.1165/rcmb.2020-0528oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/20/2021] [Indexed: 11/24/2022] Open
Abstract
Right ventricular (RV) function is the predominant determinant of survival in patients with pulmonary arterial hypertension (PAH). In preclinical models, pharmacological activation of BMP (bone morphogenetic protein) signaling with FK506 (tacrolimus) improved RV function by decreasing RV afterload. FK506 therapy further stabilized three patients with end-stage PAH. Whether FK506 has direct effects on the pressure-overloaded right ventricle is yet unknown. We hypothesized that increasing cardiac BMP signaling with FK506 improves RV structure and function in a model of fixed RV afterload after pulmonary artery banding (PAB). Direct cardiac effects of FK506 on the microvasculature and RV fibrosis were studied after surgical PAB in wild-type and heterozygous Bmpr2 mutant mice. RV function and strain were assessed longitudinally via cardiac magnetic resonance imaging during continuous FK506 infusion. Genetic lineage tracing of endothelial cells (ECs) was performed to assess the contribution of ECs to fibrosis. Molecular mechanistic studies were performed in human cardiac fibroblasts and ECs. In mice, low BMP signaling in the right ventricle exaggerated PAB-induced RV fibrosis. FK506 therapy restored cardiac BMP signaling, reduced RV fibrosis in a BMP-dependent manner independent from its immunosuppressive effect, preserved RV capillarization, and improved RV function and strain over the time course of disease. Endothelial mesenchymal transition was a rare event and did not significantly contribute to cardiac fibrosis after PAB. Mechanistically, FK506 required ALK1 in human cardiac fibroblasts as a BMPR2 co-receptor to reduce TGFβ1-induced proliferation and collagen production. Our study demonstrates that increasing cardiac BMP signaling with FK506 improves RV structure and function independent from its previously described beneficial effects on pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Mario Boehm
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Vera Moulton Wall Center for Pulmonary Vascular Disease
- Cardio-Pulmonary Institute, Justus-Liebig-University Giessen, German Center for Lung Research (DZL), Giessen, Germany
| | - Xuefei Tian
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Vera Moulton Wall Center for Pulmonary Vascular Disease
| | - Md Khadem Ali
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Vera Moulton Wall Center for Pulmonary Vascular Disease
| | - Yuqiang Mao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Vera Moulton Wall Center for Pulmonary Vascular Disease
| | - Kenzo Ichimura
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Vera Moulton Wall Center for Pulmonary Vascular Disease
| | - Mingming Zhao
- Division of Cardiology, Department of Pediatrics
- Cardiovascular Institute, and
| | - Kazuya Kuramoto
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Vera Moulton Wall Center for Pulmonary Vascular Disease
| | - Svenja Dannewitz Prosseda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Vera Moulton Wall Center for Pulmonary Vascular Disease
| | - Giovanni Fajardo
- Division of Cardiology, Department of Pediatrics
- Cardiovascular Institute, and
| | - Melanie J. Dufva
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado; and
- Department of Pediatrics, Section of Cardiology, Children’s Hospital Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Xulei Qin
- Cardiovascular Institute, and
- Department of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Vitaly O. Kheyfets
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado; and
- Department of Pediatrics, Section of Cardiology, Children’s Hospital Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Daniel Bernstein
- Division of Cardiology, Department of Pediatrics
- Cardiovascular Institute, and
| | - Sushma Reddy
- Division of Cardiology, Department of Pediatrics
- Cardiovascular Institute, and
| | - Ross J. Metzger
- Vera Moulton Wall Center for Pulmonary Vascular Disease
- Division of Cardiology, Department of Pediatrics
- Cardiovascular Institute, and
| | - Roham T. Zamanian
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Vera Moulton Wall Center for Pulmonary Vascular Disease
- Cardiovascular Institute, and
| | - Francois Haddad
- Cardiovascular Institute, and
- Department of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Edda Spiekerkoetter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Vera Moulton Wall Center for Pulmonary Vascular Disease
- Cardiovascular Institute, and
| |
Collapse
|
13
|
Halloran D, Durbano HW, Nohe A. Bone Morphogenetic Protein-2 in Development and Bone Homeostasis. J Dev Biol 2020; 8:E19. [PMID: 32933207 PMCID: PMC7557435 DOI: 10.3390/jdb8030019] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the Transforming Growth Factor-Beta (TGF-β) superfamily. These proteins are essential to many developmental processes, including cardiogenesis, neurogenesis, and osteogenesis. Specifically, within the BMP family, Bone Morphogenetic Protein-2 (BMP-2) was the first BMP to be characterized and has been well-studied. BMP-2 has important roles during embryonic development, as well as bone remodeling and homeostasis in adulthood. Some of its specific functions include digit formation and activating osteogenic genes, such as Runt-Related Transcription Factor 2 (RUNX2). Because of its diverse functions and osteogenic potential, the Food and Drug Administration (FDA) approved usage of recombinant human BMP-2 (rhBMP-2) during spinal fusion surgery, tibial shaft repair, and maxillary sinus reconstructive surgery. However, shortly after initial injections of rhBMP-2, several adverse complications were reported, and alternative therapeutics have been developed to limit these side-effects. As the clinical application of BMP-2 is largely implicated in bone, we focus primarily on its role in bone. However, we also describe briefly the role of BMP-2 in development. We then focus on the structure of BMP-2, its activation and regulation signaling pathways, BMP-2 clinical applications, and limitations of using BMP-2 as a therapeutic. Further, this review explores other potential treatments that may be useful in treating bone disorders.
Collapse
Affiliation(s)
| | | | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (D.H.); (H.W.D.)
| |
Collapse
|
14
|
NeMoyer R, Mondal A, Vora M, Langenfeld E, Glover D, Scott M, Lairson L, Rongo C, Augeri DJ, Peng Y, Jabbour SK, Langenfeld J. Targeting bone morphogenetic protein receptor 2 sensitizes lung cancer cells to TRAIL by increasing cytosolic Smac/DIABLO and the downregulation of X-linked inhibitor of apoptosis protein. Cell Commun Signal 2019; 17:150. [PMID: 31744505 PMCID: PMC6862756 DOI: 10.1186/s12964-019-0469-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/22/2019] [Indexed: 01/01/2023] Open
Affiliation(s)
- Rachel NeMoyer
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, The State University of New Jersey, New Brunswick, NJ, 08903, USA
| | - Arindam Mondal
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, The State University of New Jersey, New Brunswick, NJ, 08903, USA
| | - Mehul Vora
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Elaine Langenfeld
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, The State University of New Jersey, New Brunswick, NJ, 08903, USA
| | - Danea Glover
- RBHS Rutgers Biomedical and Health Sciences, Rutgers University, Piscataway, NJ, 08854, USA
| | - Michael Scott
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, The State University of New Jersey, New Brunswick, NJ, 08903, USA
| | | | - Christopher Rongo
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
| | - David J Augeri
- Ernest Mario School of Pharmacy, Rutgers Translational Science, Rutgers University, Piscataway, NJ, 08854, USA
| | - Youyi Peng
- Biomedical Informatics Shared Resources, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - John Langenfeld
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, The State University of New Jersey, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
15
|
Loureiro CA, Santos JD, Matos AM, Jordan P, Matos P, Farinha CM, Pinto FR. Network Biology Identifies Novel Regulators of CFTR Trafficking and Membrane Stability. Front Pharmacol 2019; 10:619. [PMID: 31231217 PMCID: PMC6559121 DOI: 10.3389/fphar.2019.00619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/15/2019] [Indexed: 12/31/2022] Open
Abstract
In cystic fibrosis, the most common disease-causing mutation is F508del, which causes not only intracellular retention and degradation of CFTR, but also defective channel gating and decreased membrane stability of the small amount that reaches the plasma membrane (PM). Thus, pharmacological correction of mutant CFTR requires targeting of multiple cellular defects in order to achieve clinical benefit. Although small-molecule compounds have been identified and commercialized that can correct its folding or gating, an efficient retention of F508del CFTR at the PM has not yet been explored pharmacologically despite being recognized as a crucial factor for improving functional rescue of chloride transport. In ongoing efforts to determine the CFTR interactome at the PM, we used three complementary approaches: targeting proteins binding to tyrosine-phosphorylated CFTR, protein complexes involved in cAMP-mediated CFTR stabilization at the PM, and proteins selectively interacting at the PM with rescued F508del-CFTR but not wt-CFTR. Using co-immunoprecipitation or peptide–pull down strategies, we identified around 400 candidate proteins through sequencing of complex protein mixtures using the nano-LC Triple TOF MS technique. Key candidate proteins were validated for their robust interaction with CFTR-containing protein complexes and for their ability to modulate the amount of CFTR expressed at the cell surface of bronchial epithelial cells. Here, we describe how we explored the abovementioned experimental datasets to build a protein interaction network with the aim of identifying novel pharmacological targets to rescue CFTR function in cystic fibrosis (CF) patients. We identified and validated novel candidate proteins that were essential components of the network but not detected in previous proteomic analyses.
Collapse
Affiliation(s)
- Cláudia Almeida Loureiro
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.,Department of Human Genetics, National Health Institute "Dr. Ricardo Jorge," Lisbon, Portugal
| | - João D Santos
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.,Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Ana Margarida Matos
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.,Department of Human Genetics, National Health Institute "Dr. Ricardo Jorge," Lisbon, Portugal
| | - Peter Jordan
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.,Department of Human Genetics, National Health Institute "Dr. Ricardo Jorge," Lisbon, Portugal
| | - Paulo Matos
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.,Department of Human Genetics, National Health Institute "Dr. Ricardo Jorge," Lisbon, Portugal
| | - Carlos M Farinha
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.,Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Francisco R Pinto
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.,Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|