1
|
Wang Y, Li G, Wang H, Qi Q, Wang X, Lu H. Targeted therapeutic strategies for Nectin-4 in breast cancer: Recent advances and future prospects. Breast 2024; 79:103838. [PMID: 39577073 PMCID: PMC11616553 DOI: 10.1016/j.breast.2024.103838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/31/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
Nectin-4 is a cell adhesion molecule which has gained more and more attention as a therapeutic target in cancer recently. Overexpression of Nectin-4 has been observed in various tumors, including breast cancer, and is associated with tumor progression. Enfortumab vedotin(EV)is an antibody-drug conjugate (ADC) targeting Nectin-4, which has been approved by FDA for the treatment of urothelial carcinoma. Notably, Nectin-4 was also investigated as a target for breast cancer in preclinical and clinical settings. Nectin-4-targeted approaches, such as ADCs, oncolytic viruses, photothermal therapy and immunotherapy, have shown promising results in early-phase clinical trials. These therapies offer novel strategies for delivering targeted treatments to Nectin-4-expressing cancer cells, enhancing treatment efficacy and minimizing off-target effects. In conclusion, this review aims to provide an overview of the latest advances in understanding the role of Nectin-4 in breast cancer and discuss the future development prospects of Nectin-4 targeted agents.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Guangliang Li
- Department of Medical Oncology (Breast Cancer), Zhejiang Cancer Hospital, Hangzhou, China
| | - Hanying Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Quan Qi
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| | - Haiqi Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Xie Y, Xiao D, Li D, Peng M, Peng W, Duan H, Yang X. Combined strategies with PARP inhibitors for the treatment of BRCA wide type cancer. Front Oncol 2024; 14:1441222. [PMID: 39156700 PMCID: PMC11327142 DOI: 10.3389/fonc.2024.1441222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
Genomic instability stands out as a pivotal hallmark of cancer, and PARP inhibitors (PARPi) emerging as a groundbreaking class of targeted therapy drugs meticulously crafted to inhibit the repair of DNA single-strand breaks(SSB) in tumor cells. Currently, PARPi have been approved for the treatment of ovarian cancer, pancreatic cancer, breast cancer, and prostate cancer characterized by homologous recombination(HR) repair deficiencies due to mutations in BRCA1/2 or other DNA repair associated genes and acquiring the designation of breakthrough therapy. Nonetheless, PARPi exhibit limited efficacy in the majority of HR-proficient BRCA1/2 wild-type cancers. At present, the synergistic approach of combining PARPi with agents that induce HR defects, or with chemotherapy and radiotherapy to induce substantial DNA damage, significantly enhances the efficacy of PARPi in BRCA wild-type or HR-proficient patients, supporting extension the use of PARPi in HR proficient patients. Therefore, we have summarized the effects and mechanisms of the combined use of drugs with PARPi, including the combination of PARPi with HR defect-inducing drugs such as ATRi, CHKi, HR indirectly inducing drugs like VEGFRi, CDKi, immune checkpoint inhibitors and drugs instigating DNA damage such as chemotherapy or radiotherapy. In addition, this review discusses several ongoing clinical trials aimed at analyzing the clinical application potential of these combined treatment strategies.
Collapse
Affiliation(s)
- Yijun Xie
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Di Xiao
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Duo Li
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Mei Peng
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Wei Peng
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Huaxin Duan
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoping Yang
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
3
|
Acharya SS, Kundu CN. Havoc in harmony: Unravelling the intricacies of angiogenesis orchestrated by the tumor microenvironment. Cancer Treat Rev 2024; 127:102749. [PMID: 38714074 DOI: 10.1016/j.ctrv.2024.102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/06/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024]
Abstract
Cancer cells merely exist in isolation; rather, they exist in an intricate microenvironment composed of blood vessels, signalling molecules, immune cells, stroma, fibroblasts, and the ECM. The TME provides a setting that is favourable for the successful growth and survivance of tumors. Angiogenesis is a multifaceted process that is essential for the growth, invasion, and metastasis of tumors. TME can be visualized as a "concert hall," where various cellular and non-cellular factors perform in a "symphony" to orchestrate tumor angiogenesis and create "Havoc" instead of "Harmony". In this review, we comprehensively summarized the involvement of TME in regulating tumor angiogenesis. Especially, we have focused on immune cells and their secreted factors, inflammatory cytokines and chemokines, and their role in altering the TME. We have also deciphered the crosstalk among various cell types that further aids the process of tumor angiogenesis. Additionally, we have highlighted the limitations of existing anti-angiogenic therapy and discussed various potential strategies that could be used to overcome these challenges and improve the efficacy of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Sushree Subhadra Acharya
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University (Institute of Eminence), Campus-11, Patia, Bhubaneswar, Odisha Pin-751024, India.
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University (Institute of Eminence), Campus-11, Patia, Bhubaneswar, Odisha Pin-751024, India.
| |
Collapse
|
4
|
Li K, Zhou Y, Zang M, Jin X, Li X. Therapeutic prospects of nectin-4 in cancer: applications and value. Front Oncol 2024; 14:1354543. [PMID: 38606099 PMCID: PMC11007101 DOI: 10.3389/fonc.2024.1354543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024] Open
Abstract
Nectin-4 is a Ca2+-independent immunoglobulin-like protein that exhibits significantly elevated expression in malignant tumors while maintaining extremely low levels in healthy adult tissues. In recent years, overexpression of Nectin-4 has been implicated in tumor occurrence and development of various cancers, including breast cancer, urothelial cancer, and lung cancer. In 2019, the Food and Drug Administration approved enfortumab vedotin, the first antibody-drug conjugate targeting Nectin-4, for the treatment of urothelial carcinoma. This has emphasized the value of Nectin-4 in tumor targeted therapy and promoted the implementation of more clinical trials of enfortumab vedotin. In addition, many new drugs targeting Nectin-4 for the treatment of malignant tumors have entered clinical trials, with the aim of exploring potential new indications. However, the exact mechanisms by which Nectin-4 affects tumorigenesis and progression are still unclear, and the emergence of drug resistance and treatment-related adverse reactions poses challenges. This article reviews the diagnostic potential, prognostic significance, and molecular role of Nectin-4 in tumors, with a focus on clinical trials in the field of Nectin-4-related tumor treatment and the development of new drugs targeting Nectin-4.
Collapse
Affiliation(s)
- Kaiyue Li
- Department of Nuclear Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yujing Zhou
- Department of Nuclear Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Maolin Zang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Jin
- Imaging Center, Jinan Third People’s Hospital, Jinan, Shandong, China
| | - Xin Li
- Department of Nuclear Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
5
|
Sinha S, Hembram KC, Chatterjee S. Targeting signaling pathways in cancer stem cells: A potential approach for developing novel anti-cancer therapeutics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:157-209. [PMID: 38663959 DOI: 10.1016/bs.ircmb.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Cancer stem cells (CSCs) have emerged as prime players in the intricate landscape of cancer development, progression, and resistance to traditional treatments. These unique cellular subpopulations own the remarkable capability of self-renewal and differentiation, giving rise to the diverse cellular makeup of tumors and fostering their recurrence following conventional therapies. In the quest for developing more effective cancer therapeutics, the focus has now shifted toward targeting the signaling pathways that govern CSCs behavior. This chapter underscores the significance of these signaling pathways in CSC biology and their potential as pivotal targets for the development of novel chemotherapy approaches. We delve into several key signaling pathways essential for maintaining the defining characteristics of CSCs, including the Wnt, Hedgehog, Notch, JAK-STAT, NF-κB pathways, among others, shedding light on their potential crosstalk. Furthermore, we highlight the latest advancements in CSC-targeted therapies, spanning from promising preclinical models to ongoing clinical trials. A comprehensive understanding of the intricate molecular aspects of CSC signaling pathways and their manipulation holds the prospective to revolutionize cancer treatment paradigms. This, in turn, could lead to more efficacious and personalized therapies with the ultimate goal of eradicating CSCs and enhancing overall patient outcomes. The exploration of CSC signaling pathways represents a key step towards a brighter future in the battle against cancer.
Collapse
Affiliation(s)
- Saptarshi Sinha
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | - Subhajit Chatterjee
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, United States.
| |
Collapse
|
6
|
Sinha S, Paul S, Acharya SS, Das C, Dash SR, Bhal S, Pradhan R, Das B, Kundu CN. Combination of Resveratrol and PARP inhibitor Olaparib efficiently deregulates homologous recombination repair pathway in breast cancer cells through inhibition of TIP60-mediated chromatin relaxation. Med Oncol 2024; 41:49. [PMID: 38184505 DOI: 10.1007/s12032-023-02279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/30/2023] [Indexed: 01/08/2024]
Abstract
Recently, we reported that a combination of a natural, bioactive compound Resveratrol (RES) and a PARP inhibitor Olaparib (OLA) deregulated the homologous recombination (HR) pathway, and enhanced apoptosis in BRCA1-wild-type, HR-proficient breast cancer cells. Upon DNA damage, chromatin relaxation takes place, which allows the DNA repair proteins to access the DNA lesion. But whether chromatin remodeling has any role in RES + OLA-mediated HR inhibition is not known. By using in vitro and ex vivo model systems of breast cancer, we have investigated whether RES + OLA inhibits chromatin relaxation and thereby blocks the HR pathway. It was found that RES + OLA inhibited PARP1 activity, terminated PARP1-BRCA1 interaction, and deregulated the HR pathway only in the chromatin fraction of MCF-7 cells. DR-GFP reporter plasmid-based HR assay demonstrated marked reduction in HR efficiency in I-SceI endonuclease-transfected cells treated with OLA. RES + OLA efficiently trapped PARP1 at the DNA damage site in the chromatin of MCF-7 cells. Unaltered expressions of HR proteins were found in the chromatin of PARP1-silenced MCF-7 cells, which confirmed that RES + OLA-mediated DNA damage response was PARP1-dependent. Histone Acetyltransferase (HAT) activity and histone H4 acetylation assays showed reduction in HAT activity and H4 acetylation in RES + OLA-treated chromatin fraction of cells. Western blot analysis showed that the HAT enzyme TIP60, P400 and acetylated H4 were downregulated after RES + OLA exposure. In the co-immunoprecipitation assay, it was observed that RES + OLA caused abolition of PARP1-TIP60-BRCA1 interaction, which suggested the PARP1-dependent TIP60-BRCA1 association. Unaltered expressions of PAR, BRCA1, P400, and acetylated H4 in the chromatin of TIP60-silenced MCF-7 cells further confirmed the role of TIP60 in PARP1-mediated HR activation in the chromatin. Similar results were obtained in ex vivo patient-derived primary breast cancer cells. Thus, the present study revealed that RES + OLA treatment inhibited PARP1 activity in the chromatin, and blocked TIP60-mediated chromatin relaxation, which, in turn, affected PARP1-dependent TIP60-BRCA1 association, resulting in deregulation of HR pathway in breast cancer cells.
Collapse
Affiliation(s)
- Saptarshi Sinha
- Cancer Biology Division, KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Subarno Paul
- Cancer Biology Division, KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Sushree Subhadra Acharya
- Cancer Biology Division, KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Chinmay Das
- Cancer Biology Division, KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Somya Ranjan Dash
- Cancer Biology Division, KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Subhasmita Bhal
- Cancer Biology Division, KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Rajalaxmi Pradhan
- Cancer Biology Division, KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Biswajit Das
- Cancer Biology Division, KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
7
|
Bagheri M, Zandieh MA, Daryab M, Samaei SS, Gholami S, Rahmanian P, Dezfulian S, Eary M, Rezaee A, Rajabi R, Khorrami R, Salimimoghadam S, Hu P, Rashidi M, Ardakan AK, Ertas YN, Hushmandi K. Nanostructures for site-specific delivery of oxaliplatin cancer therapy: Versatile nanoplatforms in synergistic cancer therapy. Transl Oncol 2024; 39:101838. [PMID: 38016356 DOI: 10.1016/j.tranon.2023.101838] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023] Open
Abstract
As a clinically approved treatment strategy, chemotherapy-mediated tumor suppression has been compromised, and in spite of introducing various kinds of anticancer drugs, cancer eradication with chemotherapy is still impossible. Chemotherapy drugs have been beneficial in improving the prognosis of cancer patients, but after resistance emerged, their potential disappeared. Oxaliplatin (OXA) efficacy in tumor suppression has been compromised by resistance. Due to the dysregulation of pathways and mechanisms in OXA resistance, it is suggested to develop novel strategies for overcoming drug resistance. The targeted delivery of OXA by nanostructures is described here. The targeted delivery of OXA in cancer can be mediated by polymeric, metal, lipid and carbon nanostructures. The advantageous of these nanocarriers is that they enhance the accumulation of OXA in tumor and promote its cytotoxicity. Moreover, (nano)platforms mediate the co-delivery of OXA with drugs and genes in synergistic cancer therapy, overcoming OXA resistance and improving insights in cancer patient treatment in the future. Moreover, smart nanostructures, including pH-, redox-, light-, and thermo-sensitive nanostructures, have been designed for OXA delivery and cancer therapy. The application of nanoparticle-mediated phototherapy can increase OXA's potential in cancer suppression. All of these subjects and their clinical implications are discussed in the current review.
Collapse
Affiliation(s)
- Mohsen Bagheri
- Radiology Resident, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mahshid Daryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Setareh Samaei
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Babol Branch, Islamic Azad University, Babol, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sadaf Dezfulian
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahsa Eary
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Peng Hu
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Alireza Khodaei Ardakan
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
8
|
Zhao C, Zhou X, Cao Z, Ye L, Cao Y, Pan J. Curcumin and analogues against head and neck cancer: From drug delivery to molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154986. [PMID: 37506572 DOI: 10.1016/j.phymed.2023.154986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/05/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is one of the most life-threatening diseases which also causes economic burden worldwide. To overcome the limitations of traditional therapies, investigation into alternative adjuvant treatments is crucial. PURPOSE Curcumin, a turmeric-derived compound, demonstrates significant therapeutic potential in diverse diseases, including cancer. Furthermore, research focuses on curcumin analogues and novel drug delivery systems, offering approaches for improved efficacy. This review aims to provide a comprehensive overview of curcumin's current findings, emphasizing its mechanisms of anti-HNSCC effects and potential for clinical application. METHOD An electronic search of Web of Science, MEDLINE, and Embase was conducted to identify literature about the application of curcumin or analogues in HNSCC. Titles and abstracts were screened to identify potentially eligible studies. Full-text articles will be obtained and independently evaluated by two authors to make the decision of inclusion in the review. RESULTS Curcumin's clinical application is hindered by poor bioavailability, prompting the exploration of methods to enhance it, such as curcumin analogues and novel drug delivery systems. Curcumin could exhibit anti-cancer effects by targeting cancer cells and modulating the tumor microenvironment in HNSCC. Mechanisms of action include cell cycle arrest, apoptosis promotion, reactive oxygen species induction, endoplasmic reticulum stress, inhibition of epithelial-mesenchymal transition, attenuation of extracellular matrix degradation, and modulation of tumor metabolism in HNSCC cells. Curcumin also targets various components of the tumor microenvironment, including cancer-associated fibroblasts, innate and adaptive immunity, and lymphovascular niches. Furthermore, curcumin enhances the anti-cancer effects of other drugs as adjunctive therapy. Two clinical trials report its potential clinical applications in treating HNSCC. CONCLUSION Curcumin has demonstrated therapeutic potential in HNSCC through in vitro and in vivo studies. Its effectiveness is attributed to its ability to modulate cancer cells and interact with the intricate tumor microenvironment. The development of curcumin analogues and novel drug delivery systems has shown promise in improving its bioavailability, thereby expanding its clinical applications. Further research and exploration in this area hold great potential for harnessing the full therapeutic benefits of curcumin in HNSCC treatment.
Collapse
Affiliation(s)
- Chengzhi Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China
| | - Xueer Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China
| | - Zhiwei Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China
| | - Li Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China.
| | - Jian Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China.
| |
Collapse
|
9
|
Li Y, Liu Y, Zhang D, Chen J, Yang G, Tang P, Yang C, Liu J, Zhang J, Ouyang L. Discovery, Synthesis, and Evaluation of Novel Dual Inhibitors of a Vascular Endothelial Growth Factor Receptor and Poly(ADP-Ribose) Polymerase for BRCA Wild-Type Breast Cancer Therapy. J Med Chem 2023; 66:12069-12100. [PMID: 37616488 DOI: 10.1021/acs.jmedchem.3c00640] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors have been approved for the treatment of breast cancer (BC) with breast cancer susceptibility (BRCA) gene mutation. Leveraging new synthetic lethal interactions may be an effective way to broaden the indication of PARP inhibitors for BC patients with wild-type BRCA. Vascular endothelial growth factor receptor (VEGFR)-mediated suppression of angiogenesis has been reported to improve the sensitivity of wild-type BRCA cells to PARP inhibitors through synthetic lethality. Herein, we reported the conjugation of a PARP inhibitor with a VEGFR inhibitor pharmacophore to construct dual VEGFR and PARP inhibitors. The most potent compound 14b is identified to exert promising activities against VEGFR and PARP in the nanomolar range and possesses significant in vitro and in vivo antitumor and antimetastasis features. It also presented a favorable pharmacokinetic characteristics in rats with an oral bioavailability of 60.1%. Collectively, 14b may be a promising therapeutic agent of BRCA wild-type BC.
Collapse
Affiliation(s)
- Yang Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yun Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Juncheng Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gaoxia Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pan Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengcan Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jifa Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China
| |
Collapse
|
10
|
Singh S, Paul S, Brás NF, Kundu CN, Karthikeyan C, Moorthy NSHN. Design, synthesis, and anticancer activity of some novel 1H-benzo[d]imidazole-5-carboxamide derivatives as fatty acid synthase inhibitors. Bioorg Chem 2023; 138:106658. [PMID: 37331170 DOI: 10.1016/j.bioorg.2023.106658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Multiple malignancies exhibit aberrant FASN expression, associated with enhanced de novo lipogenesis to meet the metabolic demands of rapidly proliferating tumour cells. Furthermore, elevated FASN expression has been linked to tumour aggressiveness and poor prognosis in a variety of malignant tumours, making FASN is an attractive target for anticancer drug discovery. Herein, we report the de novo design and synthesis of (2-(2-hydroxyphenyl)-1H-benzo[d]imidazol-5-yl)(piperazin-1-yl)methanone derivatives as novel FASN inhibitors with potential therapeutic applications in breast and colorectal cancers. Twelve (2-(2-hydroxyphenyl)-1H-benzo[d]imidazol-5-yl)(piperazin-1-yl)methanone derivatives (CTL) were synthesized and evaluated for FASN inhibition and cytotoxicity against colon cancer (HCT-116, Caco-2 cell lines), breast cancer (MCF-7 cell line) and normal cell line (HEK-293). Compounds CTL-06 and CTL-12 were chosen as the most promising lead molecules based on FASN inhibition and selective cytotoxicity profiles against colon and breast cancer cell lines. Compounds CTL-06 and CTL-12 demonstrate promising FASN inhibitory activity at IC50 of 3 ± 0.25 µM and 2.5 ± 0.25 µM when compared to the FASN inhibitor orlistat, which has an IC50 of 13.5 ± 1.0 µM. Mechanistic investigations on HCT-116 revealed that CTL-06 and CTL-12 treatment led to cell cycle arrest in Sub-G1/S phase along with apoptosis induction. Western blot studies indicated that CTL-06 and CTL-12 inhibited FASN expression in a dose-dependent manner. CTL-06 and CTL-12 treatment of HCT-116 cells enhanced caspase-9 expression in a dose-dependent manner, while upregulating proapoptotic marker Bax and downregulating antiapoptotic Bcl-xL. Molecular docking experiments of CTL-06 and CTL-12 with FASN enzyme revealed the mode of binding of these analogues in the KR domain of the enzyme.
Collapse
Affiliation(s)
- Shailendra Singh
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak, (MP) 484887, India.
| | - Subarno Paul
- School of Biotechnology, KIIT deemed to be University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India.
| | - Natércia F Brás
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Chanakya N Kundu
- School of Biotechnology, KIIT deemed to be University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India.
| | - Chandrabose Karthikeyan
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak, (MP) 484887, India.
| | - N S Hari Narayana Moorthy
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak, (MP) 484887, India.
| |
Collapse
|
11
|
Nayak D, Paul S, Das C, Bhal S, Kundu CN. Quinacrine and Curcumin in combination decreased the breast cancer angiogenesis by modulating ABCG2 via VEGF A. J Cell Commun Signal 2023; 17:609-626. [PMID: 36326988 PMCID: PMC10409692 DOI: 10.1007/s12079-022-00692-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/17/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer stem cells (CSCs) cause drug resistance in cancer due to its extensive drug efflux, DNA repair and self-renewal capability. ATP binding cassette subfamily G member 2 (ABCG2) efflux pump afford protection to CSCs in tumors, shielding them from the adverse effects of chemotherapy. Although the role of ABCG2 in cancer progression, invasiveness, recurrence are known but its role in metastasis and angiogenesis are not clear. Here, using in vitro (CSCs enriched side population [SP] cells), ex vivo (patient derived primary cells), in ovo (fertilized egg embryo) and in vivo (patient derived primary tissue mediated xenograft (PDX)) system, we have systematically studied the role of ABCG2 in angiogenesis and the regulation of the process by Curcumin (Cur) and Quinacrine (QC). Cur + QC inhibited the proliferation, invasion, migration and expression of representative markers of metastasis and angiogenesis. Following hypoxia, ABCG2 enriched cells released angiogenic factor vascular endothelial growth factor A (VEGF A) and induced the angiogenesis via PI3K-Akt-eNOS cascade. Cur + QC inhibited the ABCG2 expression and thus reduced the angiogenesis. Interestingly, overexpression of ABCG2 in SP cells and incubation of purified ABCG2 protein in media induced the angiogenesis but knockdown of ABCG2 decreased the vascularization. In agreement with in vitro results, ex vivo data showed similar phenomena. An induction of vascularization was noticed in PDX mice but reduction of vascularization was also observed after treatment of Cur + QC. Thus, data suggested that in hypoxia, ABCG2 enhances the production of angiogenesis factor VEGF A which in turn induced angiogenesis and Cur + QC inhibited the process by inhibiting ABCG2 in breast cancer.
Collapse
Affiliation(s)
- Deepika Nayak
- Cancer Biology Division, KIIT School of Biotechnology, KIIT, Deemed to be University, Campus-11, 751024, Patia, Bhubaneswar, Odisha, India
| | - Subarno Paul
- Cancer Biology Division, KIIT School of Biotechnology, KIIT, Deemed to be University, Campus-11, 751024, Patia, Bhubaneswar, Odisha, India
| | - Chinmay Das
- Cancer Biology Division, KIIT School of Biotechnology, KIIT, Deemed to be University, Campus-11, 751024, Patia, Bhubaneswar, Odisha, India
| | - Subhasmita Bhal
- Cancer Biology Division, KIIT School of Biotechnology, KIIT, Deemed to be University, Campus-11, 751024, Patia, Bhubaneswar, Odisha, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, KIIT School of Biotechnology, KIIT, Deemed to be University, Campus-11, 751024, Patia, Bhubaneswar, Odisha, India.
| |
Collapse
|
12
|
Silva JPN, Pinto B, Monteiro L, Silva PMA, Bousbaa H. Combination Therapy as a Promising Way to Fight Oral Cancer. Pharmaceutics 2023; 15:1653. [PMID: 37376101 PMCID: PMC10301495 DOI: 10.3390/pharmaceutics15061653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Oral cancer is a highly aggressive tumor with invasive properties that can lead to metastasis and high mortality rates. Conventional treatment strategies, such as surgery, chemotherapy, and radiation therapy, alone or in combination, are associated with significant side effects. Currently, combination therapy has become the standard practice for the treatment of locally advanced oral cancer, emerging as an effective approach in improving outcomes. In this review, we present an in-depth analysis of the current advancements in combination therapies for oral cancer. The review explores the current therapeutic options and highlights the limitations of monotherapy approaches. It then focuses on combinatorial approaches that target microtubules, as well as various signaling pathway components implicated in oral cancer progression, namely, DNA repair players, the epidermal growth factor receptor, cyclin-dependent kinases, epigenetic readers, and immune checkpoint proteins. The review discusses the rationale behind combining different agents and examines the preclinical and clinical evidence supporting the effectiveness of these combinations, emphasizing their ability to enhance treatment response and overcome drug resistance. Challenges and limitations associated with combination therapy are discussed, including potential toxicity and the need for personalized treatment approaches. A future perspective is also provided to highlight the existing challenges and possible resolutions toward the clinical translation of current oral cancer therapies.
Collapse
Affiliation(s)
- João P. N. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Bárbara Pinto
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Luís Monteiro
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Patrícia M. A. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Hassan Bousbaa
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| |
Collapse
|
13
|
Das B, Dash SR, Patel H, Sinha S, Bhal S, Paul S, Das C, Pradhan R, Ahmed I, Goutam K, Kundu CN. Quinacrine inhibits HIF-1α/VEGF-A mediated angiogenesis by disrupting the interaction between cMET and ABCG2 in patient-derived breast cancer stem cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 117:154914. [PMID: 37321076 DOI: 10.1016/j.phymed.2023.154914] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/15/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Breast cancer stem cells (BCSCs) have a critical role in progression of breast cancer by inducing angiogenesis. Several therapeutic strategies have been designed for the treatment of breast cancer by specifically preventing angiogenesis. But there is a dearth of study regarding the treatment procedure which can specifically target and kill the BCSCs and cause lesser harm to healthy cells of the body. A plant-based bioactive compound Quinacrine (QC) specifically kills cancer stem cells (CSCs) without harming healthy cells and also inhibits cancer angiogenesis but the detailed mechanistic study of its anti-CSCs and anti-angiogenic activity is yet to explore. HYPOTHESIS Earlier report showed that both cMET and ABCG2 play an essential role in cancer angiogenesis. Both are present on the cell surface of CSCs and share an identical ATP-binding domain. Interestingly, QC a plant based and bioactive compound which was found to inhibit the function of CSCs marker cMET and ABCG2. These relevant evidence led us to hypothesize that cMET and ABCG2 may interact with each other and induce the production of angiogenic factors, resulting in activation of cancer angiogenesis and QC might disrupt the interaction between them to stop this phenomena. METHODS Co-immunoprecipitation assay, immunofluorescence assay, and western blotting were performed by using ex vivo patient-derived breast cancer-stem-cells (PDBCSCs) and human umbilical vein endothelial cells (HUVECs). In silico study was carried out to check the interaction between cMET and ABCG2 in presence or absence of QC. Tube formation assay using HUVECs and in ovo Chorioallantoic membrane (CAM) assay using chick fertilized eggs were performed to monitor angiogenesis. In vivo patient-derived xenograft (PDX) mice model was used to validate in silico and ex vivo results. RESULTS Data revealed that in a hypoxic tumor microenvironment (TME), cMET and ABCG2 interact with each other and upregulate HIF-1α/VEGF-A axis to induce breast cancer angiogenesis. In silico and ex vivo study showed that QC disrupted the interaction between cMET and ABCG2 to inhibit the angiogenic response in endothelial cells by reducing the secretion of VEGF-A from PDBCSCs within the TME. Knockdown of cMET, ABCG2 or both, significantly downregulated the expression of HIF-1α and reduced the secretion of pro-angiogenic factor VEGF-A in the TME of PDBCSCs. Additionally, when PDBCSCs were treated with QC, similar experimental results were obtained. CONCLUSION In silico, in ovo, ex vivo and in vivo data confirmed that QC inhibited the HIF-1α/VEGF-A mediated angiogenesis in breast cancer by disrupting the interaction between cMET and ABCG2.
Collapse
Affiliation(s)
- Biswajit Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| | - Somya Ranjan Dash
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| | - Harun Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule 425405, India
| | - Saptarshi Sinha
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| | - Subhasmita Bhal
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| | - Subarno Paul
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| | - Chinmay Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| | - Rajalaxmi Pradhan
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| | - Iqrar Ahmed
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule 425405, India
| | - Kunal Goutam
- Department of Surgical Oncology, Acharya Harihar Regional Cancer Centre, Cuttack, Odisha 753007, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
14
|
Das B, Sethy C, Chatterjee S, Dash SR, Sinha S, Paul S, Goutam K, Kundu CN. Quinacrine inhibits cMET-mediated metastasis and angiogenesis in breast cancer stem cells. J Cell Commun Signal 2023:10.1007/s12079-023-00756-9. [PMID: 37162635 DOI: 10.1007/s12079-023-00756-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/24/2023] [Indexed: 05/11/2023] Open
Abstract
A trans-membrane receptor tyrosine kinase, cMET, belonging to the MET proto-oncogene family, is responsible for cancer metastasis and angiogenesis. But not much is known about the role of cMET in growth and progression of cancer stem cells (CSCs). Earlier studies have shown that Quinacrine (QC), a bioactive agent, has anti-CSCs activity. Here, the role of QC in deregulation of cMET-mediated metastasis and angiogenesis has been systematically evaluated in vitro in highly metastatic breast CSCs (mBCSCs), ex vivo in patient-derived breast cancer stem cells (PDBCSCs) and in vivo in xenograft mice model systems. Cell proliferation, migration, invasion and representative metastasis markers were upregulated in cMET-overexpressed cells and QC exposure inhibited these processes in both mBCSCs and PDBCSCs. Interestingly, metastasis was significantly inhibited by QC in cMET-overexpressed cells but comparatively lesser significant alteration of the process was noted in cMET-silenced cells. Increase in vascularization (in in ovo CAM assay), and cell-cell tube formation (in HUVECs), and enhanced MMP9 and MMP2 enzymatic activities (in gelatin zymography) were noted after cMET overexpression but these processes got reversed after cMET knockdown or QC treatment in cMET-overexpressed cells. QC inhibited angiogenesis significantly in cMET-overexpressed cells, but lesser significant change was observed in cMET-silenced cells. Reduction in tumor volume and decreased expression of metastatic and angiogenic markers were also noted in xenograft mice after QC treatment. Furthermore, QC inhibited cMET activity by dephosphorylation of its tyrosine residues (Y1234 and Y1356) and downregulation of its downstream cascade. Thus, QC inhibited the cMET-mediated metastasis and angiogenesis in in vitro, in ovo, in vivo and ex vivo model systems. Ligand (HGF) binding leads to receptor dimerization and phosphorylation of tyrosine kinase domain of cMET. This activates the cMET signaling cascade. The representative downstream metastasis and angiogenesis-related proteins get upregulated and induce the metastasis and angiogenesis process. But after the QC treatment, cMET get dephosphorylated and inactivated. As a result, the downstream signaling proteins of cMET along with the other representative metastatic and angiogenic factors get downregulated. These lead to inhibition of cMET-mediated metastasis and angiogenesis. (Created with BioRender.com).
Collapse
Affiliation(s)
- Biswajit Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Chinmayee Sethy
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Subhajit Chatterjee
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Somya Ranjan Dash
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Saptarshi Sinha
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Subarno Paul
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Kunal Goutam
- Department of Surgical Oncology, Acharya Harihar Regional Cancer Centre, Cuttack, Odisha, 753007, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
15
|
Yi XF, Gao RL, Sun L, Wu ZX, Zhang SL, Huang LT, Han CB, Ma JT. Dual antitumor immunomodulatory effects of PARP inhibitor on the tumor microenvironment: A counterbalance between anti-tumor and pro-tumor. Biomed Pharmacother 2023; 163:114770. [PMID: 37105074 DOI: 10.1016/j.biopha.2023.114770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/10/2023] [Accepted: 04/22/2023] [Indexed: 04/29/2023] Open
Abstract
Poly (ADP-ribose)-polymerases (PARPs) play an essential role in the maintenance of genome integrity, DNA repair, and apoptosis. PARP inhibitors (PARPi) exert antitumor effects via synthetic lethality and PARP trapping. PARPi impact the antitumor immune response by modulating the tumor microenvironment, and their effect has dual properties of promoting and inhibiting the antitumor immune response. PARPi promote M1 macrophage polarization, antigen presentation by dendritic cells, infiltration of B and T cells and their killing capacity and inhibit tumor angiogenesis. PARPi can also inhibit the activation and function of immune cells by upregulating PD-L1. In this review, we summarize the dual immunomodulatory effects and possible underlying mechanisms of PARPi, providing a basis for the design of combination regimens for clinical treatment and the identification of populations who may benefit from these therapies.
Collapse
Affiliation(s)
- Xiao-Fang Yi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ruo-Lin Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhi-Xuan Wu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shu-Ling Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cheng-Bo Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Jie-Tao Ma
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
16
|
Dash SR, Das B, Das C, Sinha S, Paul S, Pradhan R, Kundu CN. Near-infrared enhances antiangiogenic potentiality of quinacrine-gold hybrid nanoparticles in breast cancer stem cells via deregulation of HSP-70/TGF-β. Nanomedicine (Lond) 2023; 18:19-33. [PMID: 36916388 DOI: 10.2217/nnm-2022-0243] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
Aim: This study aimed to explore the antiangiogenic mechanism of quinacrine-gold hybrid nanoparticle (QAuNP) and near-infrared (NIR) radiation in patient-derived primary breast cancer stem cells. Materials & methods: Various cell-based in ovo angiogenesis and in vivo patient-derived xenograft mouse systems were used as models for the study. Results: The experimental results showed that QAuNP + NIR treatment deregulated the HSP-70/TGF-β physical interaction in primary breast cancer stem cells. Reduced TGF-β secretion in the tumor microenvironment inhibited angiogenesis activation in endothelial cells by deregulating the TGF-β-mediated PI3K/AKT/mTOR cascade. Conclusion: This study revealed that QAuNP + NIR irradiation downregulated HSP-70 expression, inhibited the HSP-70/TGF-β interaction, reduced the secretion of TGF-β in the tumor microenvironment and ultimately inhibited TGF-β-mediated angiogenesis.
Collapse
Affiliation(s)
- Somya Ranjan Dash
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Biswajit Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Chinmay Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Saptarshi Sinha
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Subarno Paul
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Rajalaxmi Pradhan
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| |
Collapse
|
17
|
Nectin-4: a Tumor Cell Target and Status of Inhibitor Development. Curr Oncol Rep 2023; 25:181-188. [PMID: 36696077 DOI: 10.1007/s11912-023-01360-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2022] [Indexed: 01/26/2023]
Abstract
PURPOSE OF REVIEW This study aims to gather the current state of the literature about anti-Nectin-4 innovative associations in solid tumors and to investigate underlying resistance mechanisms. RECENT FINDINGS Antibody-drug conjugate (ADC) targeting Nectin-4 efficacy gained attention and offers a promising association with other antineoplastic drugs especially in urothelial carcinoma. The heterogeneity of Nectin-4 expression across the molecular subtypes was highlighted especially in urothelial cancers. A unique study using preclinical models demonstrated an upregulation of P-gp expression, which may explain the anti-Nectin-4 resistance mechanisms. Further studies are urgently needed to understand anti-Nectin-4 sensitivity and resistance phenomenon. The growing therapeutic associations of enfortumab vedotin offer optimistic opportunities in management and treatment of wide range of solid tumors including rare aggressive malignancies.
Collapse
|
18
|
El-Saadony MT, Yang T, Korma SA, Sitohy M, Abd El-Mageed TA, Selim S, Al Jaouni SK, Salem HM, Mahmmod Y, Soliman SM, Mo’men SAA, Mosa WFA, El-Wafai NA, Abou-Aly HE, Sitohy B, Abd El-Hack ME, El-Tarabily KA, Saad AM. Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review. Front Nutr 2023; 9:1040259. [PMID: 36712505 PMCID: PMC9881416 DOI: 10.3389/fnut.2022.1040259] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/09/2022] [Indexed: 01/11/2023] Open
Abstract
The yellow polyphenolic pigment known as curcumin, originating from the rhizome of the turmeric plant Curcuma longa L., has been utilized for ages in ancient medicine, as well as in cooking and food coloring. Recently, the biological activities of turmeric and curcumin have been thoroughly investigated. The studies mainly focused on their antioxidant, antitumor, anti-inflammatory, neuroprotective, hepatoprotective, and cardioprotective impacts. This review seeks to provide an in-depth, detailed discussion of curcumin usage within the food processing industries and its effect on health support and disease prevention. Curcumin's bioavailability, bio-efficacy, and bio-safety characteristics, as well as its side effects and quality standards, are also discussed. Finally, curcumin's multifaceted uses, food appeal enhancement, agro-industrial techniques counteracting its instability and low bioavailability, nanotechnology and focused drug delivery systems to increase its bioavailability, and prospective clinical use tactics are all discussed.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mahmoud Sitohy
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Taia A. Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Yasser Mahmmod
- Department of Veterinary Sciences, Faculty of Health Sciences, Higher Colleges of Technology, Al Ain, United Arab Emirates
| | - Soliman M. Soliman
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Shaimaa A. A. Mo’men
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Walid F. A. Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
| | - Nahed A. El-Wafai
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Hamed E. Abou-Aly
- Department of Agricultural Microbiology, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Basel Sitohy
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Mohamed E. Abd El-Hack
- Department of Poultry Diseases, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
19
|
Kobecki J, Gajdzis P, Mazur G, Chabowski M. Nectins and Nectin-like Molecules in Colorectal Cancer: Role in Diagnostics, Prognostic Values, and Emerging Treatment Options: A Literature Review. Diagnostics (Basel) 2022; 12:3076. [PMID: 36553083 PMCID: PMC9777592 DOI: 10.3390/diagnostics12123076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
In 2020, colorectal cancer was the third most common type of cancer worldwide with a clearly visible increase in the number of cases each year. With relatively high mortality rates and an uncertain prognosis, colorectal cancer is a serious health problem. There is an urgent need to investigate its specific mechanism of carcinogenesis and progression in order to develop new strategies of action against this cancer. Nectins and Nectin-like molecules are cell adhesion molecules that take part in a plethora of essential processes in healthy tissues as well as mediating substantial actions for tumor initiation and evolution. Our understanding of their role and a viable application of this in anti-cancer therapy has rapidly improved in recent years. This review summarizes the current data on the role nectins and Nectin-like molecules play in colorectal cancer.
Collapse
Affiliation(s)
- Jakub Kobecki
- Department of Surgery, 4th Military Teaching Hospital, 5 Weigla Street, 50-981 Wroclaw, Poland
- Division of Anaesthesiological and Surgical Nursing, Department of Nursing and Obstetrics, Faculty of Health Science, Wroclaw Medical University, 5 Bartla Street, 51-618 Wroclaw, Poland
| | - Paweł Gajdzis
- Department of Pathomorphology, 4th Military Teaching Hospital, 5 Weigla Street, 50-981 Wroclaw, Poland
- Department of Clinical Pathology, Wroclaw Medical University, 213 Borowska Street, 50-556 Wroclaw, Poland
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska Street, 50-556 Wroclaw, Poland
| | - Mariusz Chabowski
- Department of Surgery, 4th Military Teaching Hospital, 5 Weigla Street, 50-981 Wroclaw, Poland
- Division of Anaesthesiological and Surgical Nursing, Department of Nursing and Obstetrics, Faculty of Health Science, Wroclaw Medical University, 5 Bartla Street, 51-618 Wroclaw, Poland
| |
Collapse
|
20
|
Ahmad F, Lakshmi PTV, Arunachalam A. An in silico comparative study of curcumin and 2-deoxyuridine nucleoside derivatives: Reveals the role of angiogenin in ER stress-induced apoptosis signaling. Chem Biol Drug Des 2022; 101:1048-1081. [PMID: 36412086 DOI: 10.1111/cbdd.14184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 09/06/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Angiogenin (ANG) protein plays a crucial role in angiogenesis, neovascularization, and cancer metastasis in NSCLC (non-small cell lung cancer) via non-coding tiRNA. It protects the cell under ER (endoplasmic reticulum) stress-induced apoptosis through the translational reprogramming process. Although B82 (Curcumin derivatives) induces ER stress-induced apoptosis, its mechanism of action was not studied. Therefore, it was hypothesized that the ribonucleolytic activity of ANG may be regulated by B82, resulting in modulated ER stress signaling for apoptosis. Hence, we designed and proposed a synthesis scheme for RNA-based anti-angiogenic derivatives of 2-deoxyuridine nucleoside forming peptide bond with amino acids like serine (Ser-3) and para-hydroxy-phenyl glycine (Normtyr-1) and compared B82 with them to know the binding affinity with ANG, anti-angiogenic potential, and its probable mechanism of anti-RNase activity through MD simulation study. Therefore, using Gromos96 43a1 and 43a2 force fields, MD simulation was performed to investigate binding affinity, ligand-induced molecular surface area change, conformational change, and dynamics of catalytic site residues to predict ligand binding to ANG in this study. The obtained binding free energy (∆Gbind ) result showed the total average ∆Gbind as -113.480 ± 1.682 (Normtyr-1) > -53.038 ± 33.069 (B82) > -27.909 ± 16.438 (Ser-3) kJ/mole specify role of B82 in regulating ER stress signaling induced apoptosis through ANG ribonucleolytic activity inhibition, suitability of 43a2 force fields and methodology in ligand screening. It shows the crucial role of Leu115 and His13 residue involvement in total ∆Gbind contribution. Hence, based on the MD result, novel conformation of catalytic residues, and ∆Gbind , a promising combination candidate could be proposed for metastatic NSCLC therapy.
Collapse
Affiliation(s)
- Faizan Ahmad
- Department of Bioinformatics, Pondicherry University, Pondicherry, India
| | | | - Annamalai Arunachalam
- PG and Research Department of Botany Arignar Anna Government Arts College Villupuram Tamil Nadu India
| |
Collapse
|
21
|
Sinha S, Chatterjee S, Paul S, Das B, Dash SR, Das C, Kundu CN. Olaparib enhances the Resveratrol-mediated apoptosis in breast cancer cells by inhibiting the homologous recombination repair pathway. Exp Cell Res 2022; 420:113338. [PMID: 36075449 DOI: 10.1016/j.yexcr.2022.113338] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/15/2022]
Abstract
Although sensitization of BRCA-mutated, homologous recombination (HR)-deficient breast cancer cells through PARP inhibitor is widely studied, not much is known about the treatment of BRCA-wild-type, HR-proficient breast cancer. Here, we aim to investigate whether a bioactive compound, Resveratrol (RES), can induce DNA double-strand breaks in HR-proficient breast cancer cells and Olaparib (OLA), a PARP inhibitor, can enhance the RES-mediated apoptosis by deregulating the HR repair pathway. The detailed mechanism of anti-cancer action of RES + OLA combination in breast cancer has been evaluated using in vitro, ex vivo, and in vivo preclinical model systems. OLA increased RES-mediated DNA damage, downregulated the HR pathway proteins, caused a late S/G2 cell cycle arrest, enhanced apoptosis and cell death in RES pre-treated breast cancer cells at much lower concentrations than their individual treatments. Direct measurement of HR pathway activity using a GFP plasmid-based assay demonstrated reduced HR efficiency in I-SceI endonuclease-transfected cells treated with OLA. Moreover, RES + OLA treatment also caused significant reduction in PARP1-mediated PARylation and efficiently trapped PARP1 at the DNA damage site. Upon RES treatment, PARylated PARP1 was found to interact with BRCA1, which then activated other HR pathway proteins. But after addition of OLA in RES pre-treated cells, PARP1 could not interact with BRCA1 due to inhibition of PARylation. This resulted in deregulation of HR pathway. To further confirm the role of BRCA1 in PARP1-mediated HR pathway activation, BRCA1 was knocked down that caused complete inhibition of HR pathway activity, and further enhanced apoptosis after RES + OLA treatment in BRCA1-silenced cells. In agreement with in vitro data, similar experimental results were obtained in ex vivo patient-derived breast cancer cells and in vivo xenograft mice. Thus, RES + OLA combination treatment enhanced breast cancer cell death by causing excessive DNA damage and also simultaneously inhibiting the HR pathway.
Collapse
Affiliation(s)
- Saptarshi Sinha
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Subhajit Chatterjee
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Subarno Paul
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Biswajit Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Somya Ranjan Dash
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Chinmay Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|
22
|
Lei H, He A, Jiang Y, Ruan M, Han N. Targeting DNA damage response as a potential therapeutic strategy for head and neck squamous cell carcinoma. Front Oncol 2022; 12:1031944. [PMID: 36338767 PMCID: PMC9634729 DOI: 10.3389/fonc.2022.1031944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/05/2022] [Indexed: 12/20/2023] Open
Abstract
Cells experience both endogenous and exogenous DNA damage daily. To maintain genome integrity and suppress tumorigenesis, individuals have evolutionarily acquired a series of repair functions, termed DNA damage response (DDR), to repair DNA damage and ensure the accurate transmission of genetic information. Defects in DNA damage repair pathways may lead to various diseases, including tumors. Accumulating evidence suggests that alterations in DDR-related genes, such as somatic or germline mutations, single nucleotide polymorphisms (SNPs), and promoter methylation, are closely related to the occurrence, development, and treatment of head and neck squamous cell carcinoma (HNSCC). Despite recent advances in surgery combined with radiotherapy, chemotherapy, or immunotherapy, there has been no substantial improvement in the survival rate of patients with HNSCC. Therefore, targeting DNA repair pathways may be a promising treatment for HNSCC. In this review, we summarized the sources of DNA damage and DNA damage repair pathways. Further, the role of DNA damage repair pathways in the development of HNSCC and the application of small molecule inhibitors targeting these pathways in the treatment of HNSCC were focused.
Collapse
Affiliation(s)
- Huimin Lei
- School of Stomatology, Weifang Medical University, Weifang, China
| | - Ading He
- School of Stomatology, Weifang Medical University, Weifang, China
| | - Yingying Jiang
- School of Stomatology, Weifang Medical University, Weifang, China
| | - Min Ruan
- School of Stomatology, Weifang Medical University, Weifang, China
- Department of Oral Maxillofacio-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Nannan Han
- School of Stomatology, Weifang Medical University, Weifang, China
- Department of Oral Maxillofacio-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Paul S, Sinha S, Kundu CN. Targeting cancer stem cells in the tumor microenvironment: An emerging role of PARP inhibitors. Pharmacol Res 2022; 184:106425. [PMID: 36075511 DOI: 10.1016/j.phrs.2022.106425] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022]
Abstract
Cancer stem cells (CSCs) constitute a small population of cancer cells in the tumor microenvironment (TME), which are responsible for metastasis, angiogenesis, drug resistance, and cancer relapse. Understanding the key signatures and resistance mechanisms of CSCs may help in the development of novel chemotherapeutic strategies to specifically target CSCs in the TME. PARP inhibitors (PARPi) are known to enhance the chemosensitivity of cancer cells to other chemotherapeutic agents by inhibiting the DNA repair pathways and chromatin modulation. But their effects on CSCs are still unknown. Few studies have reported that PARPi can stall replication fork progression in CSCs. PARPi also have the potential to overcome chemoresistance in CSCs and anti-angiogenic potentiality as well. Previous reports have suggested that epigenetic drugs can synergistically ameliorate the anti-cancer activities of PARPi through epigenetic modulations. In this review, we have systematically discussed the effects of PARPi on different DNA repair pathways with respect to CSCs and also how CSCs can be targeted either as monotherapy or as a part of combination therapy. We have also talked about how PARPi can help in reversal of chemoresistance of CSCs and the role of PARPi in epigenetic modifications to hinder cancer progression. We have also elaborated on the aspects of research that need to be investigated for development of successful therapeutic interventions using PARPi to specifically target CSCs in the TME.
Collapse
Affiliation(s)
- Subarno Paul
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| | - Saptarshi Sinha
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
24
|
Chatterjee S, Dhal AK, Paul S, Sinha S, Das B, Dash SR, Kundu CN. Combination of talazoparib and olaparib enhanced the curcumin-mediated apoptosis in oral cancer cells by PARP-1 trapping. J Cancer Res Clin Oncol 2022; 148:3521-3535. [PMID: 35962813 DOI: 10.1007/s00432-022-04269-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE Inhibition of Poly (ADP-ribose) Polymerases (PARP) results in the blocking of DNA repair cascades that eventually leads to apoptosis and cancer cell death. PARP inhibitors (PARPi) exhibit their actions either by inhibiting PARP-induced PARylation and/or by trapping PARP at the DNA damage site. But, the mechanism of PARPi-mediated induction of cellular toxicity via PARP-trapping is largely unknown. METHODS The cellular toxicity of PARPi [Talazoparib (BMN) and/or Olaparib (Ola)] was investigated in oral cancer cells and the underlying mechanism was studied by using in vitro, in silico, and in vivo preclinical model systems. RESULTS The experimental data suggested that induction of DNA damage is imperative for the optimal effectiveness of PARPi. Curcumin (Cur) exhibited maximum DNA damaging capacity in comparison to Resveratrol and 5-Flurouracil. Combination of BMN + Ola induced cell death in Cur pre-treated cells at much lower concentrations than their individual treatments. BMN + Ola treatment deregulated the BER cascade, potentiated PARP-trapping, caused cell cycle arrest and apoptosis in Cur pre-treated cells in a much more effective manner than their individual treatments. In silico data indicated the involvement of different amino acid residues which might play important roles in enhancing the BMN + Ola-mediated PARP-trapping. Moreover, in vivo mice xenograft data also suggested the BMN + Ola-mediated enhancement of apoptotic potentiality of Cur. CONCLUSION Thus, induction of DNA damage was found to be essential for optimal functioning of PARPi and BMN + Ola combination treatment enhanced the apoptotic potentiality of Cur in cancer cells by enhancing the PARP-trapping activity via modulation of BER cascade.
Collapse
Affiliation(s)
- Subhajit Chatterjee
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Ajit Kumar Dhal
- Bioinformatics Lab, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Subarno Paul
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Saptarshi Sinha
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Biswajit Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Somya Ranjan Dash
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|
25
|
Du T, Zhang Z, Zhou J, Sheng L, Yao H, Ji M, Xu B, Chen X. A Novel PARP Inhibitor YHP-836 For the Treatment of BRCA-Deficiency Cancers. Front Pharmacol 2022; 13:865085. [PMID: 35910366 PMCID: PMC9326368 DOI: 10.3389/fphar.2022.865085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
PARP inhibitors have clinically demonstrated good antitumor activity in patients with BRCA mutations. Here, we described YHP-836, a novel PARP inhibitor, YHP-836 demonstrated excellent inhibitory activity for both PARP1 and PARP2 enzymes. It also allosterically regulated PARP1 and PARP2 via DNA trapping. YHP-836 showed cytotoxicity in tumor cell lines with BRCA mutations and induced cell cycle arrest in the G2/M phase. YHP-836 also sensitized tumor cells to chemotherapy agents in vitro. Oral administration of YHP-836 elicited remarkable antitumor activity either as a single agent or in combination with chemotherapy agents in vivo. These results indicated that YHP-836 is a well-defined PARP inhibitor.
Collapse
Affiliation(s)
- Tingting Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihui Zhang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Sheng
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiping Yao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Ji
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Ming Ji, ; Bailing Xu, ; Xiaoguang Chen,
| | - Bailing Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Ming Ji, ; Bailing Xu, ; Xiaoguang Chen,
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Ming Ji, ; Bailing Xu, ; Xiaoguang Chen,
| |
Collapse
|
26
|
Hashimoto H, Tanaka Y, Murata M, Ito T. Nectin-4: a Novel Therapeutic Target for Skin Cancers. Curr Treat Options Oncol 2022; 23:578-593. [PMID: 35312963 DOI: 10.1007/s11864-022-00940-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/19/2022]
Abstract
OPINION STATEMENT Nectin-4 is a tumor-associated antigen that is highly expressed on various cancer cells, and it has been further proposed to have roles in tumor development and propagation ranging from cellular proliferation to motility and invasion. Nectin-4 blockade reduces tumor proliferation and induces apoptosis in several malignancies. Nectin-4 has been used as a potential target in antibody-drug conjugate (ADC) development. Enfortumab vedotin, an ADC against Nectin-4, has demonstrated efficacy against solid tumor malignancies. Enfortumab vedotin has received US Food and Drug Administration approval for treating urothelial cancer. Furthermore, the efficacy of ADCs against Nectin-4 against solid tumors other than urothelial cancer has been demonstrated in preclinical studies, and clinical trials examining the effects of enfortumab vedotin are ongoing. Recently, Nectin-4 was reported to be highly expressed in several skin cancers, including malignant melanoma, cutaneous squamous cell carcinoma, and extramammary Paget's disease, and involved in tumor progression and survival in retrospective studies. Nectin-4-targeted therapies and ADCs against Nectin-4 could therefore be novel therapeutic options for skin cancers. This review highlights current knowledge on Nectin-4 in malignant tumors, the efficacy of enfortumab vedotin in clinical trials, and the prospects of Nectin-4-targeted agents against skin cancers.
Collapse
Affiliation(s)
- Hiroki Hashimoto
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Yuka Tanaka
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Maho Murata
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
27
|
Bouleftour W, Guillot A, Magné N. The Anti-Nectin 4: A Promising Tumor Cells Target. A Systematic Review. Mol Cancer Ther 2022; 21:493-501. [PMID: 35131876 DOI: 10.1158/1535-7163.mct-21-0846] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/17/2021] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
The nectin cell adhesion protein 4 (Nectin-4) is overexpressed in multiple human malignancies. Such aberrant expression is correlated with cancer progression and poor prognostic. Nectin-4 has emerged as a potential biomarker and promising targeted therapy. This review aimed to gather the current state of the literature about Nectin-4 relevance in preclinical tumor models and to summarize its clinical relevance regarding cancer. A systematic assessment of literature articles was performed by searching in PUBMED (MEDLINE) from the database inception to May 2021, following PRISMA guidelines. Preclinical models unanimously demonstrated membrane and cytoplasmic location of the Nectin-4. Furthermore, Nectin-4 was overexpressed whatever the location of the solid tumors. Interestingly, a heterogeneity of Nectin-4 expression has been highlighted in bladder urothelial carcinoma. High serum Nectin-4 level was correlated with treatment efficiency and disease progression. Finally, generated Anti-drug-Conjugated targeting Nectin-4 induced cell death in multiple tumor cell lines. Nectin-4 emerge as a promising target for anti-cancer drugs development because of its central role in tumorigenesis, and lymphangiogenesis. Enfortumab vedotin targeting Nectin-4 demonstrated encouraging results and should be extended to other types of solid tumors.
Collapse
Affiliation(s)
- Wafa Bouleftour
- Medical oncology department, Institut de cancérologie de la loire
| | | | | |
Collapse
|
28
|
Dash SR, Chatterjee S, Sinha S, Das B, Paul S, Pradhan R, Sethy C, Panda R, Tripathy J, Kundu CN. NIR irradiation enhances the apoptotic potentiality of quinacrine-gold hybrid nanoparticles by modulation of HSP-70 in oral cancer stem cells. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 40:102502. [PMID: 34843984 DOI: 10.1016/j.nano.2021.102502] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/20/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
Cancer stem cells (CSCs) are the tumor cell subpopulations that can self-renew, differentiate, initiate and maintain tumor growth. CSCs are frequently drug-resistant, resulting in tumor recurrence, metastasis, and angiogenesis. Herein, using in vitro oral squamous cell carcinoma (OSCC) CSCs and in vivo xenograft mice model, we have systematically studied the apoptotic potentiality of quinacrine-gold hybrid nanoparticle (QAuNP) and its underlying mechanism after NIR irradiation. QAuNP + NIR caused DNA damage and induced apoptosis in SCC-9-CSCs by deregulating mitochondrial membrane potential (ΔΨm) and activation of ROS. Upregulation of CASPASE-3 and DR-5/DR-4 and reduction of heat shock protein (HSP-70) up to 5-fold were also noticed upon the treatment. The increased expression of DR-5 and CASPASE-3 and decreased expression of HSP-70, CD-44 and Ki-67 were also noted in the xenograft mice treated with QAuNP + NIR + TRAIL. Thus, data suggest that the combined treatment enhances apoptosis in OSCC-CSCs by modulating HSP-70 in the DISC.
Collapse
Affiliation(s)
- Somya Ranjan Dash
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Subhajit Chatterjee
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Saptarshi Sinha
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Biswajit Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Subarno Paul
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Rajalaxmi Pradhan
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Chinmayee Sethy
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Rupayana Panda
- School of Applied Sciences (Chemistry), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Jasaswini Tripathy
- School of Applied Sciences (Chemistry), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India.
| |
Collapse
|
29
|
Guo X, Chen M, Cao L, Hu Y, Li X, Zhang Q, Ren Y, Wu X, Meng Z, Xu K. Cancer-Associated Fibroblasts Promote Migration and Invasion of Non-Small Cell Lung Cancer Cells via miR-101-3p Mediated VEGFA Secretion and AKT/eNOS Pathway. Front Cell Dev Biol 2022; 9:764151. [PMID: 34977016 PMCID: PMC8716726 DOI: 10.3389/fcell.2021.764151] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are major component of tumor microenvironment (TME), which plays crucial roles in tumor growth, invasion and metastasis; however, the underling mechanism is not fully elucidated. Despite many studies are focused on the tumor promoting effect of CAFs-derived cytokines, the upstream regulators of cytokine release in CAFs is largely unknown. Here we found that miR-101-3p was downregulated in primary lung cancer-associated CAFs compared to normal fibroblasts (NFs). Ectopic overexpression of miR-101-3p suppressed CAFs activation, and abrogated the promoting effect of CAFs on migration and invasion of non-small cell lung cancer cells (NSCLC), through attenuating CAFs’ effect on epithelial mesenchymal transition (EMT) process, metastasis-related genes (MMP9, TWIST1) and AKT/endothelial nitric oxide synthase (eNOS) signaling pathway. Further study indicated that vascular endothelial growth factor A (VEGFA) was a novel target of miR-101-3p, and CAFs-derived VEGFA mediated the effect of miR-101-3p on migration and invasion of lung cancer cells, demonstrated by using recombinant VEGFA and VEGFA neutralizing antibody. Interestingly, the analysis of the Cancer Genome Atlas (TCGA) database revealed that lung cancer tissues expressed lower level of miR-101-3p than non-cancerous tissues, and low/medium-expression of miR-101-3p was associated with poor overall survival (OS) rate. Moreover, the mouse xenograft experiment also showed that CAFs accelerated tumor growth whereas miR-101-3p diminished CAFs’ effect. These findings revealed a novel mechanism that CAFs facilitated lung cancer metastasis potential via miR-101-3p/VEGFA/AKT signaling pathway, suggesting miR-101-3p as a potential candidate for metastasis therapy.
Collapse
Affiliation(s)
- Xueru Guo
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengmeng Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Limin Cao
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yiming Hu
- Department of Toxic Laboratory, Tianjin Medical University General Hospital, Tianjin, China
| | - Xueqin Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qicheng Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yinghui Ren
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiang Wu
- Core Facility Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
30
|
Chatterjee S, Sinha S, Kundu CN. Nectin cell adhesion molecule-4 (NECTIN-4): A potential target for cancer therapy. Eur J Pharmacol 2021; 911:174516. [PMID: 34547246 DOI: 10.1016/j.ejphar.2021.174516] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/30/2022]
Abstract
NECTIN-4 [a poliovirus receptor-related-4 (pvrl-4) encoded protein] is a Ca2+ independent immunoglobulin-like protein. Along with other Nectins (Nectin-1, -2 and -3), it is primarily involved in cell-cell adhesion. In contrast to other Nectins, Nectin-4 is specifically enriched in the embryonic and placental tissues but its expression significantly declines in adult life. In recent years, it has been found that Nectin-4 is especially overexpressed and served as a tumor associated inducer in various malignant tumors including breast, lung, colorectal, pancreatic, ovarian cancers etc. Over-expression of Nectin-4 is associated with various aspects of tumor progression like proliferation, angiogenesis, epithelial to mesenchymal transition, metastasis, DNA repair, tumor relapse, poor prognosis in several types of cancer. This review systematically highlights the implications of Nectin-4 in every possible aspect of cancer and the molecular mechanism of Nectin-4 mediated cancer progression. We have further emphasized on the therapeutic strategies that are being proposed to specifically target Nectin-4.
Collapse
Affiliation(s)
- Subhajit Chatterjee
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Saptarshi Sinha
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|
31
|
Sethy C, Goutam K, Das B, Dash SR, Kundu CN. Nectin-4 promotes lymphangiogenesis and lymphatic metastasis in breast cancer by regulating CXCR4-LYVE-1 axis. Vascul Pharmacol 2021; 140:106865. [PMID: 33945869 DOI: 10.1016/j.vph.2021.106865] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022]
Abstract
Tumor-induced lymphangiogenesis promotes tumor progression by generating new lymphatic vessels that helps in tumor dissemination to regional lymph nodes and distant sites. Recently, the role of Nectin-4 in cancer metastasis and angiogenesis has been studied, but its role in lymphangiogenesis is unknown. Here, we systematically delineated the role of Nectin-4 in lymphangiogenesis and its regulation in invasive duct carcinoma (IDC). Nectin-4 expression positively correlated with occurrence risk factors associated with breast cancer (alcohol, smoke, lifestyle habit, etc), CXCR4 expression, and LYVE-1-lymphatic vessel density (LVD). LVD was significantly higher in axillary lymph node (ALN) than primary tumor. Depleting Nectin-4, VEGF-C or both attenuated the important lymphangiogenic marker LYVE-1 expression, tube formation, and migration of ALN derived primary cells. Nectin-4 stimulated the expressions of CXCR4 and CXCL12 under hypoxic conditions in ALN derived primary cells. Further, Nectin-4 augmented expressions of lymphatic metastatic markers (e.g. eNOS, TGF-β, CD-105) and MMPs. Induced expressions of Nectin-4 along with other representative metastatic markers were noted in lymph and blood circulating tumor cells (LCTCs and BCTCs) of local and distant metastatic samples. Thus, Nectin-4 displayed a predominant role in promoting tumor-induced lymphangiogenesis and lymphatic metastasis by modulating CXCR4/CXCL12-LYVE-1- axis.
Collapse
Affiliation(s)
- Chinmayee Sethy
- Cancer Biology Division, KIIT School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| | - Kunal Goutam
- Department of Surgical Oncology, Acharya Harihar Regional Cancer Centre, Cuttack, Odisha 753007, India
| | - Biswajit Das
- Cancer Biology Division, KIIT School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| | - Somya Ranjan Dash
- Cancer Biology Division, KIIT School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, KIIT School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|