1
|
Hellevik AM, Mardoum P, Hahn J, Kölsch Y, D'Orazi FD, Suzuki SC, Godinho L, Lawrence O, Rieke F, Shekhar K, Sanes JR, Baier H, Baden T, Wong RO, Yoshimatsu T. Ancient origin of the rod bipolar cell pathway in the vertebrate retina. Nat Ecol Evol 2024; 8:1165-1179. [PMID: 38627529 DOI: 10.1038/s41559-024-02404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/20/2024] [Indexed: 04/30/2024]
Abstract
Vertebrates rely on rod photoreceptors for vision in low-light conditions. The specialized downstream circuit for rod signalling, called the primary rod pathway, is well characterized in mammals, but circuitry for rod signalling in non-mammals is largely unknown. Here we demonstrate that the mammalian primary rod pathway is conserved in zebrafish, which diverged from extant mammals ~400 million years ago. Using single-cell RNA sequencing, we identified two bipolar cell types in zebrafish that are related to mammalian rod bipolar cell (RBCs), the only bipolar type that directly carries rod signals from the outer to the inner retina in the primary rod pathway. By combining electrophysiology, histology and ultrastructural reconstruction of the zebrafish RBCs, we found that, similar to mammalian RBCs, both zebrafish RBC types connect with all rods in their dendritic territory and provide output largely onto amacrine cells. The wiring pattern of the amacrine cells postsynaptic to one RBC type is strikingly similar to that of mammalian RBCs and their amacrine partners, suggesting that the cell types and circuit design of the primary rod pathway emerged before the divergence of teleost fish and mammals. The second RBC type, which forms separate pathways, was either lost in mammals or emerged in fish.
Collapse
Affiliation(s)
- Ayana M Hellevik
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Philip Mardoum
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Joshua Hahn
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Vision Sciences Graduate Program; California Institute of Quantitative Biosciences (QB3), University of California Berkley, Berkeley, CA, USA
| | - Yvonne Kölsch
- Department Genes - Circuits - Behavior, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Florence D D'Orazi
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Sachihiro C Suzuki
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Leanne Godinho
- Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
| | - Owen Lawrence
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
- Vision Science Center, University of Washington, Seattle, WA, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Vision Sciences Graduate Program; California Institute of Quantitative Biosciences (QB3), University of California Berkley, Berkeley, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Herwig Baier
- Department Genes - Circuits - Behavior, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Tom Baden
- School of Life Sciences, University of Sussex, Brighton, UK
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Takeshi Yoshimatsu
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis School of Medicine, St Louis, MO, USA.
- BioRTC, Yobe State University, Damatsuru, Yobe, Nigeria.
| |
Collapse
|
2
|
Rapti G. Regulation of axon pathfinding by astroglia across genetic model organisms. Front Cell Neurosci 2023; 17:1241957. [PMID: 37941606 PMCID: PMC10628440 DOI: 10.3389/fncel.2023.1241957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/07/2023] [Indexed: 11/10/2023] Open
Abstract
Glia and neurons are intimately associated throughout bilaterian nervous systems, and were early proposed to interact for patterning circuit assembly. The investigations of circuit formation progressed from early hypotheses of intermediate guideposts and a "glia blueprint", to recent genetic and cell manipulations, and visualizations in vivo. An array of molecular factors are implicated in axon pathfinding but their number appears small relatively to circuit complexity. Comprehending this circuit complexity requires to identify unknown factors and dissect molecular topographies. Glia contribute to both aspects and certain studies provide molecular and functional insights into these contributions. Here, I survey glial roles in guiding axon navigation in vivo, emphasizing analogies, differences and open questions across major genetic models. I highlight studies pioneering the topic, and dissect recent findings that further advance our current molecular understanding. Circuits of the vertebrate forebrain, visual system and neural tube in zebrafish, mouse and chick, the Drosophila ventral cord and the C. elegans brain-like neuropil emerge as major contexts to study glial cell functions in axon navigation. I present astroglial cell types in these models, and their molecular and cellular interactions that drive axon guidance. I underline shared principles across models, conceptual or technical complications, and open questions that await investigation. Glia of the radial-astrocyte lineage, emerge as regulators of axon pathfinding, often employing common molecular factors across models. Yet this survey also highlights different involvements of glia in embryonic navigation or pioneer axon pathfinding, and unknowns in the molecular underpinnings of glial cell functions. Future cellular and molecular investigations should complete the comprehensive view of glial roles in circuit assembly.
Collapse
Affiliation(s)
- Georgia Rapti
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Rome, Italy
- Interdisciplinary Center of Neurosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
3
|
Hellevik AM, Mardoum P, Hahn J, Kölsch Y, D’Orazi FD, Suzuki SC, Godinho L, Lawrence O, Rieke F, Shekhar K, Sanes JR, Baier H, Baden T, Wong RO, Yoshimatsu T. Ancient origin of the rod bipolar cell pathway in the vertebrate retina. RESEARCH SQUARE 2023:rs.3.rs-3411693. [PMID: 37886445 PMCID: PMC10602083 DOI: 10.21203/rs.3.rs-3411693/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Vertebrates rely on rod photoreceptors for vision in low-light conditions. Mammals have a specialized downstream circuit for rod signaling called the primary rod pathway, which comprises specific cell types and wiring patterns that are thought to be unique to this lineage. Thus, it has been long assumed that the primary rod pathway evolved in mammals. Here, we challenge this view by demonstrating that the mammalian primary rod pathway is conserved in zebrafish, which diverged from extant mammals ~400 million years ago. Using single-cell RNA-sequencing, we identified two bipolar cell (BC) types in zebrafish that are related to mammalian rod BCs (RBCs) of the primary rod pathway. By combining electrophysiology, histology, and ultrastructural reconstruction of the zebrafish RBCs, we found that, like mammalian RBCs, both zebrafish RBC types connect with all rods in their dendritic territory, and provide output largely onto amacrine cells. The wiring pattern of the amacrine cells post-synaptic to one RBC type is strikingly similar to that of mammalian RBCs, suggesting that the cell types and circuit design of the primary rod pathway have emerged before the divergence of teleost fish and amniotes. The second RBC type, which forms separate pathways, is either lost in mammals or emerged in fish.
Collapse
Affiliation(s)
- Ayana M Hellevik
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Philip Mardoum
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Joshua Hahn
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Vision Sciences Graduate Program; California Institute of Quantitative Biosciences (QB3), University of California Berkley, Berkeley, CA 94720, USA
| | - Yvonne Kölsch
- Department of Molecular & Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Max Planck Institute for Biological Intelligence, Department Genes – Circuits – Behavior, 82152 Martinsried, Germany
| | - Florence D D’Orazi
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Sachihiro C. Suzuki
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Leanne Godinho
- Institute of Neuronal Cell Biology, Technische Universität München, 80802 Munich, Germany
| | - Owen Lawrence
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
- Vision Science Center, University of Washington, Seattle, WA 98195, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Vision Sciences Graduate Program; California Institute of Quantitative Biosciences (QB3), University of California Berkley, Berkeley, CA 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Joshua R Sanes
- Department of Molecular & Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Herwig Baier
- Max Planck Institute for Biological Intelligence, Department Genes – Circuits – Behavior, 82152 Martinsried, Germany
| | - Tom Baden
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, 72076, Germany
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Takeshi Yoshimatsu
- Department of Ophthalmology & Visual Sciences, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
- BioRTC, Yobe State University, Damatsuru, Yobe 620101, Nigeria
| |
Collapse
|
4
|
Hellevik AM, Mardoum P, Hahn J, Kölsch Y, D’Orazi FD, Suzuki SC, Godinho L, Lawrence O, Rieke F, Shekhar K, Sanes JR, Baier H, Baden T, Wong RO, Yoshimatsu T. Ancient origin of the rod bipolar cell pathway in the vertebrate retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557433. [PMID: 37771914 PMCID: PMC10525478 DOI: 10.1101/2023.09.12.557433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Vertebrates rely on rod photoreceptors for vision in low-light conditions1. Mammals have a specialized downstream circuit for rod signaling called the primary rod pathway, which comprises specific cell types and wiring patterns that are thought to be unique to this lineage2-6. Thus, it has been long assumed that the primary rod pathway evolved in mammals3,5-7. Here, we challenge this view by demonstrating that the mammalian primary rod pathway is conserved in zebrafish, which diverged from extant mammals ~400 million years ago. Using single-cell RNA-sequencing, we identified two bipolar cell (BC) types in zebrafish that are related to mammalian rod BCs (RBCs) of the primary rod pathway. By combining electrophysiology, histology, and ultrastructural reconstruction of the zebrafish RBCs, we found that, like mammalian RBCs8, both zebrafish RBC types connect with all rods and red-cones in their dendritic territory, and provide output largely onto amacrine cells. The wiring pattern of the amacrine cells post-synaptic to one RBC type is strikingly similar to that of mammalian RBCs. This suggests that the cell types and circuit design of the primary rod pathway may have emerged before the divergence of teleost fish and amniotes (mammals, bird, reptiles). The second RBC type in zebrafish, which forms separate pathways from the first RBC type, is either lost in mammals or emerged in fish to serve yet unknown roles.
Collapse
Affiliation(s)
- Ayana M Hellevik
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Philip Mardoum
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Joshua Hahn
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Vision Sciences Graduate Program; California Institute of Quantitative Biosciences (QB3), University of California Berkley, Berkeley, CA 94720, USA
| | - Yvonne Kölsch
- Department of Molecular & Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Max Planck Institute for Biological Intelligence, Department Genes – Circuits – Behavior, 82152 Martinsried, Germany
| | - Florence D D’Orazi
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Sachihiro C. Suzuki
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Leanne Godinho
- Institute of Neuronal Cell Biology, Technische Universität München, 80802 Munich, Germany
| | - Owen Lawrence
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
- Vision Science Center, University of Washington, Seattle, WA 98195, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Vision Sciences Graduate Program; California Institute of Quantitative Biosciences (QB3), University of California Berkley, Berkeley, CA 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Joshua R Sanes
- Department of Molecular & Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Herwig Baier
- Max Planck Institute for Biological Intelligence, Department Genes – Circuits – Behavior, 82152 Martinsried, Germany
| | - Tom Baden
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, 72076, Germany
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Takeshi Yoshimatsu
- Department of Ophthalmology & Visual Sciences, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
- BioRTC, Yobe State University, Damatsuru, Yobe 620101, Nigeria
| |
Collapse
|
5
|
Nerli E, Kretzschmar J, Bianucci T, Rocha‐Martins M, Zechner C, Norden C. Deterministic and probabilistic fate decisions co-exist in a single retinal lineage. EMBO J 2023; 42:e112657. [PMID: 37184124 PMCID: PMC10350840 DOI: 10.15252/embj.2022112657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023] Open
Abstract
Correct nervous system development depends on the timely differentiation of progenitor cells into neurons. While the output of progenitor differentiation is well investigated at the population and clonal level, how stereotypic or variable fate decisions are during development is still more elusive. To fill this gap, we here follow the fate outcome of single neurogenic progenitors in the zebrafish retina over time using live imaging. We find that neurogenic progenitor divisions produce two daughter cells, one of deterministic and one of probabilistic fate. Interference with the deterministic branch of the lineage affects lineage progression. In contrast, interference with fate probabilities of the probabilistic branch results in a broader range of fate possibilities than in wild-type and involves the production of any neuronal cell type even at non-canonical developmental stages. Combining the interference data with stochastic modelling of fate probabilities revealed that a simple gene regulatory network is able to predict the observed fate decision probabilities during wild-type development. These findings unveil unexpected lineage flexibility that could ensure robust development of the retina and other tissues.
Collapse
Affiliation(s)
- Elisa Nerli
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | | | - Tommaso Bianucci
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
- Physics of Life, Cluster of ExcellenceTU DresdenDresdenGermany
| | - Mauricio Rocha‐Martins
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Christoph Zechner
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
- Physics of Life, Cluster of ExcellenceTU DresdenDresdenGermany
| | - Caren Norden
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| |
Collapse
|
6
|
Grigoryan EN. Self-Organization of the Retina during Eye Development, Retinal Regeneration In Vivo, and in Retinal 3D Organoids In Vitro. Biomedicines 2022; 10:1458. [PMID: 35740479 PMCID: PMC9221005 DOI: 10.3390/biomedicines10061458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022] Open
Abstract
Self-organization is a process that ensures histogenesis of the eye retina. This highly intricate phenomenon is not sufficiently studied due to its biological complexity and genetic heterogeneity. The review aims to summarize the existing central theories and ideas for a better understanding of retinal self-organization, as well as to address various practical problems of retinal biomedicine. The phenomenon of self-organization is discussed in the spatiotemporal context and illustrated by key findings during vertebrate retina development in vivo and retinal regeneration in amphibians in situ. Described also are histotypic 3D structures obtained from the disaggregated retinal progenitor cells of birds and retinal 3D organoids derived from the mouse and human pluripotent stem cells. The review highlights integral parts of retinal development in these conditions. On the cellular level, these include competence, differentiation, proliferation, apoptosis, cooperative movements, and migration. On the physical level, the focus is on the mechanical properties of cell- and cell layer-derived forces and on the molecular level on factors responsible for gene regulation, such as transcription factors, signaling molecules, and epigenetic changes. Finally, the self-organization phenomenon is discussed as a basis for the production of retinal organoids, a promising model for a wide range of basic scientific and medical applications.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
7
|
Kryshtalskyj MT, Devenyi RG, Roy M. Bilateral Panuveitis Associated with Morvan Syndrome: A Case Report and Review of the Literature. Ocul Immunol Inflamm 2022; 31:851-855. [PMID: 35404744 DOI: 10.1080/09273948.2022.2054823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE Morvan syndrome (MoS) is a neurologic disorder belonging to a spectrum of autoimmune encephalitis, Contactin-associated protein-like 2 (Caspr2) antibody syndrome. We report a case of bilateral panuveitis associated with MoS. METHODS Case report and review of the literature. RESULTS A 57-year-old male with Morvan syndrome presented with painless vision loss and floaters. Initial visual acuities were 20/50 and 20/60. Hallmarks of this uveitis included persistently active vitritis, and nonhemorrhagic retinitis with nonperfusion and neovascularization. Uveitis consistently flared with attempted immunosuppressive tapers. Vision deteriorated to count fingers (2 ft) OU over 2.5 years despite corticosteroids, mycophenolate mofetil, intravenous immunoglobulin, adalimumab, and rituximab. Explanations for reduced final visual acuity included macular atrophy, disruption of retinal architecture, epiretinal membrane, vitritis, and cataract. CONCLUSIONS This case constitutes the first report of uveitis associated with MoS and Caspr2 antibody syndrome, raising the question of autoimmunity targeting the retinal inner and/or outer plexiform layers.
Collapse
Affiliation(s)
- Michael T. Kryshtalskyj
- Section of Ophthalmology, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robert G. Devenyi
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Mili Roy
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Ahmed M, Kojima Y, Masai I. Strip1 regulates retinal ganglion cell survival by suppressing Jun-mediated apoptosis to promote retinal neural circuit formation. eLife 2022; 11:74650. [PMID: 35314028 PMCID: PMC8940179 DOI: 10.7554/elife.74650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
In the vertebrate retina, an interplay between retinal ganglion cells (RGCs), amacrine (AC), and bipolar (BP) cells establishes a synaptic layer called the inner plexiform layer (IPL). This circuit conveys signals from photoreceptors to visual centers in the brain. However, the molecular mechanisms involved in its development remain poorly understood. Striatin-interacting protein 1 (Strip1) is a core component of the striatin-interacting phosphatases and kinases (STRIPAK) complex, and it has shown emerging roles in embryonic morphogenesis. Here, we uncover the importance of Strip1 in inner retina development. Using zebrafish, we show that loss of Strip1 causes defects in IPL formation. In strip1 mutants, RGCs undergo dramatic cell death shortly after birth. AC and BP cells subsequently invade the degenerating RGC layer, leading to a disorganized IPL. Mechanistically, zebrafish Strip1 interacts with its STRIPAK partner, Striatin 3 (Strn3), and both show overlapping functions in RGC survival. Furthermore, loss of Strip1 or Strn3 leads to activation of the proapoptotic marker, Jun, within RGCs, and Jun knockdown rescues RGC survival in strip1 mutants. In addition to its function in RGC maintenance, Strip1 is required for RGC dendritic patterning, which likely contributes to proper IPL formation. Taken together, we propose that a series of Strip1-mediated regulatory events coordinates inner retinal circuit formation by maintaining RGCs during development, which ensures proper positioning and neurite patterning of inner retinal neurons. The back of the eye is lined with an intricate tissue known as the retina, which consists of carefully stacked neurons connecting to each other in well-defined ‘synaptic’ layers. Near the surface, photoreceptors cells detect changes in light levels, before passing this information through the inner plexiform layer to retinal ganglion cells (or RGCs) below. These neurons will then relay the visual signals to the brain. Despite the importance of this inner retinal circuit, little is known about how it is created as an organism develops. As a response, Ahmed et al. sought to identify which genes are essential to establish the inner retinal circuit, and how their absence affects retinal structure. To do this, they introduced random errors in the genetic code of zebrafish and visualised the resulting retinal circuits in these fast-growing, translucent fish. Initial screening studies found fish with mutations in a gene encoding a protein called Strip1 had irregular layering of the inner retina. Further imaging experiments to pinpoint the individual neurons affected showed that in zebrafish without Strip1, RGCs died in the first few days of development. Consequently, other neurons moved into the RGC layer to replace the lost cells, leading to layering defects. Ahmed et al. concluded that Strip1 promotes RGC survival and thereby coordinates proper positioning of neurons in the inner retina. In summary, these findings help to understand how the inner retina is wired; they could also shed light on the way other layered structures are established in the nervous system. Moreover, this study paves the way for future research investigating Strip1 as a potential therapeutic target to slow down the death of RGCs in conditions such as glaucoma.
Collapse
Affiliation(s)
- Mai Ahmed
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University
| | - Yutaka Kojima
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University
| | - Ichiro Masai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University
| |
Collapse
|
9
|
Tworig JM, Feller MB. Müller Glia in Retinal Development: From Specification to Circuit Integration. Front Neural Circuits 2022; 15:815923. [PMID: 35185477 PMCID: PMC8856507 DOI: 10.3389/fncir.2021.815923] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/23/2021] [Indexed: 01/21/2023] Open
Abstract
Müller glia of the retina share many features with astroglia located throughout the brain including maintenance of homeostasis, modulation of neurotransmitter spillover, and robust response to injury. Here we present the molecular factors and signaling events that govern Müller glial specification, patterning, and differentiation. Next, we discuss the various roles of Müller glia in retinal development, which include maintaining retinal organization and integrity as well as promoting neuronal survival, synaptogenesis, and phagocytosis of debris. Finally, we review the mechanisms by which Müller glia integrate into retinal circuits and actively participate in neuronal signaling during development.
Collapse
Affiliation(s)
- Joshua M. Tworig
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- *Correspondence: Joshua M. Tworig,
| | - Marla B. Feller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
10
|
Zebrafish Models of Autosomal Recessive Ataxias. Cells 2021; 10:cells10040836. [PMID: 33917666 PMCID: PMC8068028 DOI: 10.3390/cells10040836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Autosomal recessive ataxias are much less well studied than autosomal dominant ataxias and there are no clearly defined systems to classify them. Autosomal recessive ataxias, which are characterized by neuronal and multisystemic features, have significant overlapping symptoms with other complex multisystemic recessive disorders. The generation of animal models of neurodegenerative disorders increases our knowledge of their cellular and molecular mechanisms and helps in the search for new therapies. Among animal models, the zebrafish, which shares 70% of its genome with humans, offer the advantages of being small in size and demonstrating rapid development, making them optimal for high throughput drug and genetic screening. Furthermore, embryo and larval transparency allows to visualize cellular processes and central nervous system development in vivo. In this review, we discuss the contributions of zebrafish models to the study of autosomal recessive ataxias characteristic phenotypes, behavior, and gene function, in addition to commenting on possible treatments found in these models. Most of the zebrafish models generated to date recapitulate the main features of recessive ataxias.
Collapse
|
11
|
Rangel Olguin AG, Rochon PL, Krishnaswamy A. New Optical Tools to Study Neural Circuit Assembly in the Retina. Front Neural Circuits 2020; 14:44. [PMID: 32848633 PMCID: PMC7424070 DOI: 10.3389/fncir.2020.00044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022] Open
Abstract
During development, neurons navigate a tangled thicket of thousands of axons and dendrites to synapse with just a few specific targets. This phenomenon termed wiring specificity, is critical to the assembly of neural circuits and the way neurons manage this feat is only now becoming clear. Recent studies in the mouse retina are shedding new insight into this process. They show that specific wiring arises through a series of stages that include: directed axonal and dendritic growth, the formation of neuropil layers, positioning of such layers, and matching of co-laminar synaptic partners. Each stage appears to be directed by a distinct family of recognition molecules, suggesting that the combinatorial expression of such family members might act as a blueprint for retinal connectivity. By reviewing the evidence in support of each stage, and by considering their underlying molecular mechanisms, we attempt to synthesize these results into a wiring model which generates testable predictions for future studies. Finally, we conclude by highlighting new optical methods that could be used to address such predictions and gain further insight into this fundamental process.
Collapse
|
12
|
Rulands S, Iglesias-Gonzalez AB, Boije H. Deterministic fate assignment of Müller glia cells in the zebrafish retina suggests a clonal backbone during development. Eur J Neurosci 2019; 48:3597-3605. [PMID: 30408243 PMCID: PMC6588021 DOI: 10.1111/ejn.14257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/26/2018] [Indexed: 11/28/2022]
Abstract
The optic cup houses multipotent retinal progenitor cells that proliferate and differentiate to form the mature retina, containing five main types of neurons and a single glial cell type, the Müller cell. Progenitors of the zebrafish optic cup generate clones that vary regarding the number and types of neurons, a process we previously showed could be described by stochastic models. Here, we present data indicating that each retinal progenitor cell, in the 24 hrs post‐fertilization optic cup, is predestined to form a single Müller cell. This striking fate assignment of Müller cells reveals a dual nature of retinal lineages where stochastic mechanisms produce variable numbers of neurons while there is a strong deterministic component governing the formation of glia cells. A possible mechanism for this stereotypic fate assignment could be the maintenance of a clonal backbone during retina development, which would be similar to invertebrate and rodent cortical neurogenesis.
Collapse
Affiliation(s)
- Steffen Rulands
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany
| | | | - Henrik Boije
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
13
|
Kinoshita N, Huang AJY, McHugh TJ, Suzuki SC, Masai I, Kim IH, Soderling SH, Miyawaki A, Shimogori T. Genetically Encoded Fluorescent Indicator GRAPHIC Delineates Intercellular Connections. iScience 2019; 15:28-38. [PMID: 31026667 PMCID: PMC6482341 DOI: 10.1016/j.isci.2019.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/05/2019] [Accepted: 04/06/2019] [Indexed: 12/19/2022] Open
Abstract
Intercellular contacts are essential for precise organ morphogenesis, function, and maintenance; however, spatiotemporal information of cell-cell contacts or adhesions remains elusive in many systems. We developed a genetically encoded fluorescent indicator for intercellular contacts with optimized intercellular GFP reconstitution using glycosylphosphatidylinositol (GPI) anchor, GRAPHIC (GPI anchored reconstitution-activated proteins highlight intercellular connections), which can be used for an expanded number of cell types. We observed a robust GFP signal specifically at the interface between cultured cells, without disrupting natural cell contact. Application of GRAPHIC to the fish retina specifically delineated cone-bipolar connection sites. Moreover, we showed that GRAPHIC can be used in the mouse central nervous system to delineate synaptic sites in the thalamocortical circuit. Finally, we generated GRAPHIC color variants, enabling detection of multiple convergent contacts simultaneously in cell culture system. We demonstrated that GRAPHIC has high sensitivity and versatility, which will facilitate the analysis of the complex multicellular connections without previous limitations. Development of GRAPHIC to visualize intercellular contact site GPI anchor and different split site provides stronger fluorescent signal GRAPHIC can be used to delineate synaptic site in mouse CNS and zebrafish retina GRAPHIC color variants for multi–contact site visualization
Collapse
Affiliation(s)
- Nagatoki Kinoshita
- Molecular Mechanisms of Brain Development, Center for Brain Science (CBS), RIKEN, Saitama, Japan; Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), Tokyo, Japan
| | | | - Thomas J McHugh
- Circuit and Behavioral Physiology, CBS, RIKEN, Saitama, Japan
| | - Sachihiro C Suzuki
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Ichiro Masai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Il Hwan Kim
- Department of Cell Biology, Duke University Medical School, Durham, NC, USA
| | - Scott H Soderling
- Department of Cell Biology, Duke University Medical School, Durham, NC, USA
| | - Atsushi Miyawaki
- Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), Tokyo, Japan; Cell Function Dynamics, CBS, RIKEN, Saitama, Japan
| | - Tomomi Shimogori
- Molecular Mechanisms of Brain Development, Center for Brain Science (CBS), RIKEN, Saitama, Japan.
| |
Collapse
|
14
|
Ghinia MG, Novelli E, Sajgo S, Badea TC, Strettoi E. Brn3a and Brn3b knockout mice display unvaried retinal fine structure despite major morphological and numerical alterations of ganglion cells. J Comp Neurol 2019; 527:187-211. [PMID: 27391320 PMCID: PMC5219957 DOI: 10.1002/cne.24072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/07/2016] [Accepted: 06/30/2016] [Indexed: 01/21/2023]
Abstract
Ganglion cells (GCs), the retinal output neurons, receive synaptic inputs from bipolar and amacrine cells in the inner plexiform layer (IPL) and send information to the brain nuclei via the optic nerve. Although GCs constitute less than 1% of the total retinal cells, they occur in numerous types and are the first neurons formed during retinal development. Using Brn3a and Brn3b mutant mice in which the alkaline phosphatase gene was knocked-in (Badea et al. [Neuron] 2009;61:852-864; Badea and Nathans [Vision Res] 2011;51:269-279), we studied the general effects after gene removal on the retinal neuropil together with the consequences of lack of development of large numbers of GCs onto the remaining retinal neurons of the same class. We analyzed the morphology, number, and general architecture of various neuronal types presynaptic to GCs, searching for changes secondary to the decrement in the number of their postsynaptic partners, as well as the morphology and distribution of retinal astrocytes, for their strong topographical relation to GCs. We found that, despite GC losses, retinal organization in Brn3 null mice is remarkably similar to that of wild-type controls. J. Comp. Neurol. 527:187-211, 2019. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Miruna Georgiana Ghinia
- Neuroscience Institute of the Italian National Research Council, Pisa Research Campus, 56124 Pisa, Italy
- Retinal CIrcuit Development & Genetics Unit, Neurobiology–Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892
- Babeş Bolyai University, 400084 Cluj Napoca, Romania
| | - Elena Novelli
- Neuroscience Institute of the Italian National Research Council, Pisa Research Campus, 56124 Pisa, Italy
| | - Szilard Sajgo
- Retinal CIrcuit Development & Genetics Unit, Neurobiology–Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Tudor Constantin Badea
- Retinal CIrcuit Development & Genetics Unit, Neurobiology–Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Enrica Strettoi
- Neuroscience Institute of the Italian National Research Council, Pisa Research Campus, 56124 Pisa, Italy
| |
Collapse
|
15
|
Eldred MK, Muresan L, Harris WA. Disaggregation and Reaggregation of Zebrafish Retinal Cells for the Analysis of Neuronal Layering. Methods Mol Biol 2019; 1576:255-271. [PMID: 28710687 DOI: 10.1007/7651_2017_46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The reaggregation of dissociated cells to form organotypic structures provides an in vitro system for the analysis of the cellular interactions and molecular mechanisms involved in the formation of tissue architecture. The retina, an outgrowth of the forebrain, is a precisely layered neural tissue, yet the mechanisms underlying layer formation are largely unexplored. Here we describe the protocol to dissociate, re-aggregate, and culture zebrafish retinal cells from a transgenic, Spectrum of Fates, line where all main cell types are labelled with a combination of fluorescent proteins driven by fate-specific promoters. These cells re-aggregate and self-organize in just 48 h in minimal culture conditions. We also describe how the patterning in these aggregates can be analyzed using isocontour profiling to compare whether different conditions affect their self-organization.
Collapse
Affiliation(s)
- Megan K Eldred
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, UK.
| | - Leila Muresan
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, UK
| | - William A Harris
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, UK
| |
Collapse
|
16
|
Angueyra JM, Kindt KS. Leveraging Zebrafish to Study Retinal Degenerations. Front Cell Dev Biol 2018; 6:110. [PMID: 30283779 PMCID: PMC6156122 DOI: 10.3389/fcell.2018.00110] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022] Open
Abstract
Retinal degenerations are a heterogeneous group of diseases characterized by death of photoreceptors and progressive loss of vision. Retinal degenerations are a major cause of blindness in developed countries (Bourne et al., 2017; De Bode, 2017) and currently have no cure. In this review, we will briefly review the latest advances in therapies for retinal degenerations, highlighting the current barriers to study and develop therapies that promote photoreceptor regeneration in mammals. In light of these barriers, we present zebrafish as a powerful model to study photoreceptor regeneration and their integration into retinal circuits after regeneration. We outline why zebrafish is well suited for these analyses and summarize the powerful tools available in zebrafish that could be used to further uncover the mechanisms underlying photoreceptor regeneration and rewiring. In particular, we highlight that it is critical to understand how rewiring occurs after regeneration and how it differs from development. Insights derived from photoreceptor regeneration and rewiring in zebrafish may provide leverage to develop therapeutic targets to treat retinal degenerations.
Collapse
Affiliation(s)
- Juan M. Angueyra
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Katie S. Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
17
|
Campbell LJ, Hyde DR. Opportunities for CRISPR/Cas9 Gene Editing in Retinal Regeneration Research. Front Cell Dev Biol 2017; 5:99. [PMID: 29218308 PMCID: PMC5703712 DOI: 10.3389/fcell.2017.00099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/06/2017] [Indexed: 01/22/2023] Open
Abstract
While retinal degeneration and disease results in permanent damage and vision loss in humans, the severely damaged zebrafish retina has a high capacity to regenerate lost neurons and restore visual behaviors. Advancements in understanding the molecular and cellular basis of this regeneration response give hope that strategies and therapeutics may be developed to restore sight to blind and visually-impaired individuals. Our current understanding has been facilitated by the amenability of zebrafish to molecular tools, imaging techniques, and forward and reverse genetic approaches. Accordingly, the zebrafish research community has developed a diverse array of research tools for use in developing and adult animals, including toolkits for facilitating the generation of transgenic animals, systems for inducible, cell-specific transgene expression, and the creation of knockout alleles for nearly every protein coding gene. As CRISPR/Cas9 genome editing has begun to revolutionize molecular biology research, the zebrafish community has responded in stride by developing CRISPR/Cas9 techniques for the zebrafish as well as incorporating CRISPR/Cas9 into available toolsets. The application of CRISPR/Cas9 to retinal regeneration research will undoubtedly bring us closer to understanding the mechanisms underlying retinal repair and vision restoration in the zebrafish, as well as developing therapeutic approaches that will restore vision to blind and visually-impaired individuals. This review focuses on how CRISPR/Cas9 has been integrated into zebrafish research toolsets and how this new tool will revolutionize the field of retinal regeneration research.
Collapse
Affiliation(s)
- Leah J Campbell
- Department of Biological Sciences, Center for Zebrafish Research and Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, United States
| | - David R Hyde
- Department of Biological Sciences, Center for Zebrafish Research and Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
18
|
MacDonald RB, Charlton-Perkins M, Harris WA. Mechanisms of Müller glial cell morphogenesis. Curr Opin Neurobiol 2017; 47:31-37. [PMID: 28850820 DOI: 10.1016/j.conb.2017.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/11/2017] [Indexed: 02/07/2023]
Abstract
Müller Glia (MG), the radial glia cells of the retina, have spectacular morphologies subserving their enormous functional complexity. As early as 1892, the great neuroanatomist Santiago Ramon y Cajal studied the morphological development of MG, defining several steps in their morphogenesis [1,2]. However, the molecular cues controlling these developmental steps remain poorly understood. As MG have roles to play in every cellular and plexiform layer, this review discusses our current understanding on how MG morphology may be linked to their function, including the developmental mechanisms involved in MG patterning and morphogenesis. Uncovering the mechanisms governing glial morphogenesis, using transcriptomics and imaging, may provide shed new light on the pathophysiology and treatment of human neurological disorders.
Collapse
Affiliation(s)
- Ryan B MacDonald
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Mark Charlton-Perkins
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - William A Harris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
19
|
Zhang C, Kolodkin AL, Wong RO, James RE. Establishing Wiring Specificity in Visual System Circuits: From the Retina to the Brain. Annu Rev Neurosci 2017; 40:395-424. [PMID: 28460185 DOI: 10.1146/annurev-neuro-072116-031607] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The retina is a tremendously complex image processor, containing numerous cell types that form microcircuits encoding different aspects of the visual scene. Each microcircuit exhibits a distinct pattern of synaptic connectivity. The developmental mechanisms responsible for this patterning are just beginning to be revealed. Furthermore, signals processed by different retinal circuits are relayed to specific, often distinct, brain regions. Thus, much work has focused on understanding the mechanisms that wire retinal axonal projections to their appropriate central targets. Here, we highlight recently discovered cellular and molecular mechanisms that together shape stereotypic wiring patterns along the visual pathway, from within the retina to the brain. Although some mechanisms are common across circuits, others play unconventional and circuit-specific roles. Indeed, the highly organized connectivity of the visual system has greatly facilitated the discovery of novel mechanisms that establish precise synaptic connections within the nervous system.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biological Structure, University of Washington, Seattle, Washington 98195; ,
| | - Alex L Kolodkin
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, Washington 98195; ,
| | - Rebecca E James
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
| |
Collapse
|
20
|
Engerer P, Suzuki SC, Yoshimatsu T, Chapouton P, Obeng N, Odermatt B, Williams PR, Misgeld T, Godinho L. Uncoupling of neurogenesis and differentiation during retinal development. EMBO J 2017; 36:1134-1146. [PMID: 28258061 PMCID: PMC5412767 DOI: 10.15252/embj.201694230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 11/29/2022] Open
Abstract
Conventionally, neuronal development is regarded to follow a stereotypic sequence of neurogenesis, migration, and differentiation. We demonstrate that this notion is not a general principle of neuronal development by documenting the timing of mitosis in relation to multiple differentiation events for bipolar cells (BCs) in the zebrafish retina using in vivo imaging. We found that BC progenitors undergo terminal neurogenic divisions while in markedly disparate stages of neuronal differentiation. Remarkably, the differentiation state of individual BC progenitors at mitosis is not arbitrary but matches the differentiation state of post‐mitotic BCs in their surround. By experimentally shifting the relative timing of progenitor division and differentiation, we provide evidence that neurogenesis and differentiation can occur independently of each other. We propose that the uncoupling of neurogenesis and differentiation could provide neurogenic programs with flexibility, while allowing for synchronous neuronal development within a continuously expanding cell pool.
Collapse
Affiliation(s)
- Peter Engerer
- Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
| | - Sachihiro C Suzuki
- Department of Biological Structure, University of Washington, Seattle, Washington, USA
| | - Takeshi Yoshimatsu
- Department of Biological Structure, University of Washington, Seattle, Washington, USA
| | - Prisca Chapouton
- Sensory Biology and Organogenesis, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nancy Obeng
- Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
| | - Benjamin Odermatt
- Anatomisches Institut, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Philip R Williams
- Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany .,Center of Integrated Protein Science (CIPSM), Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Leanne Godinho
- Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
| |
Collapse
|
21
|
Eldred MK, Charlton-Perkins M, Muresan L, Harris WA. Self-organising aggregates of zebrafish retinal cells for investigating mechanisms of neural lamination. Development 2017; 144:1097-1106. [PMID: 28174240 PMCID: PMC5358108 DOI: 10.1242/dev.142760] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/17/2017] [Indexed: 02/04/2023]
Abstract
To investigate the cell-cell interactions necessary for the formation of retinal layers, we cultured dissociated zebrafish retinal progenitors in agarose microwells. Within these wells, the cells re-aggregated within hours, forming tight retinal organoids. Using a Spectrum of Fates zebrafish line, in which all different types of retinal neurons show distinct fluorescent spectra, we found that by 48 h in culture, the retinal organoids acquire a distinct spatial organisation, i.e. they became coarsely but clearly laminated. Retinal pigment epithelium cells were in the centre, photoreceptors and bipolar cells were next most central and amacrine cells and retinal ganglion cells were on the outside. Image analysis allowed us to derive quantitative measures of lamination, which we then used to find that Müller glia, but not RPE cells, are essential for this process.
Collapse
Affiliation(s)
- Megan K Eldred
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge CB2 3DY, UK
| | - Mark Charlton-Perkins
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge CB2 3DY, UK
| | - Leila Muresan
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge CB2 3DY, UK
| | - William A Harris
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge CB2 3DY, UK
| |
Collapse
|
22
|
Abstract
The larval zebrafish (Danio rerio) is an excellent vertebrate model for in vivo imaging of biological phenomena at subcellular, cellular and systems levels. However, the optical accessibility of highly pigmented tissues, like the eyes, is limited even in this animal model. Typical strategies to improve the transparency of zebrafish larvae require the use of either highly toxic chemical compounds (e.g. 1-phenyl-2-thiourea, PTU) or pigmentation mutant strains (e.g. casper mutant). To date none of these strategies produce normally behaving larvae that are transparent in both the body and the eyes. Here we present crystal, an optically clear zebrafish mutant obtained by combining different viable mutations affecting skin pigmentation. Compared to the previously described combinatorial mutant casper, the crystal mutant lacks pigmentation also in the retinal pigment epithelium, therefore enabling optical access to the eyes. Unlike PTU-treated animals, crystal larvae are able to perform visually guided behaviours, such as the optomotor response, as efficiently as wild type larvae. To validate the in vivo application of crystal larvae, we performed whole-brain light-sheet imaging and two-photon calcium imaging of neural activity in the retina. In conclusion, this novel combinatorial pigmentation mutant represents an ideal vertebrate tool for completely unobstructed structural and functional in vivo investigations of biological processes, particularly when imaging tissues inside or between the eyes.
Collapse
|
23
|
Abstract
The larval zebrafish (Danio rerio) is an excellent vertebrate model for in vivo imaging of biological phenomena at subcellular, cellular and systems levels. However, the optical accessibility of highly pigmented tissues, like the eyes, is limited even in this animal model. Typical strategies to improve the transparency of zebrafish larvae require the use of either highly toxic chemical compounds (e.g. 1-phenyl-2-thiourea, PTU) or pigmentation mutant strains (e.g. casper mutant). To date none of these strategies produce normally behaving larvae that are transparent in both the body and the eyes. Here we present crystal, an optically clear zebrafish mutant obtained by combining different viable mutations affecting skin pigmentation. Compared to the previously described combinatorial mutant casper, the crystal mutant lacks pigmentation also in the retinal pigment epithelium, therefore enabling optical access to the eyes. Unlike PTU-treated animals, crystal larvae are able to perform visually guided behaviours, such as the optomotor response, as efficiently as wild type larvae. To validate the in vivo application of crystal larvae, we performed whole-brain light-sheet imaging and two-photon calcium imaging of neural activity in the retina. In conclusion, this novel combinatorial pigmentation mutant represents an ideal vertebrate tool for completely unobstructed structural and functional in vivo investigations of biological processes, particularly when imaging tissues inside or between the eyes.
Collapse
|
24
|
|
25
|
MacDonald RB, Randlett O, Oswald J, Yoshimatsu T, Franze K, Harris WA. Müller glia provide essential tensile strength to the developing retina. J Cell Biol 2015; 210:1075-83. [PMID: 26416961 PMCID: PMC4586739 DOI: 10.1083/jcb.201503115] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
When the formation of Müller glia is inhibited in the zebrafish retina, a major consequence is that the retina begins to rip apart due to a loss of the mechanical resilience that these glial cells provide to the neural tissue. To investigate the cellular basis of tissue integrity in a vertebrate central nervous system (CNS) tissue, we eliminated Müller glial cells (MG) from the zebrafish retina. For well over a century, glial cells have been ascribed a mechanical role in the support of neural tissues, yet this idea has not been specifically tested in vivo. We report here that retinas devoid of MG rip apart, a defect known as retinoschisis. Using atomic force microscopy, we show that retinas without MG have decreased resistance to tensile stress and are softer than controls. Laser ablation of MG processes showed that these cells are under tension in the tissue. Thus, we propose that MG act like springs that hold the neural retina together, finally confirming an active mechanical role of glial cells in the CNS.
Collapse
Affiliation(s)
- Ryan B MacDonald
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, England, UK
| | - Owen Randlett
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, England, UK
| | - Julia Oswald
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, England, UK
| | - Takeshi Yoshimatsu
- Department of Biological Structure, University of Washington, Seattle, WA 98195
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, England, UK
| | - William A Harris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, England, UK
| |
Collapse
|
26
|
Boije H, Rulands S, Dudczig S, Simons BD, Harris WA. The Independent Probabilistic Firing of Transcription Factors: A Paradigm for Clonal Variability in the Zebrafish Retina. Dev Cell 2015; 34:532-43. [PMID: 26343455 PMCID: PMC4572358 DOI: 10.1016/j.devcel.2015.08.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 06/29/2015] [Accepted: 08/13/2015] [Indexed: 01/31/2023]
Abstract
Early retinal progenitor cells (RPCs) in vertebrates produce lineages that vary greatly both in terms of cell number and fate composition, yet how this variability is achieved remains unknown. One possibility is that these RPCs are individually distinct and that each gives rise to a unique lineage. Another is that stochastic mechanisms play upon the determinative machinery of equipotent early RPCs to drive clonal variability. Here we show that a simple model, based on the independent firing of key fate-influencing transcription factors, can quantitatively account for the intrinsic clonal variance in the zebrafish retina and predict the distributions of neuronal cell types in clones where one or more of these fates are made unavailable. A simple quantitative model can explain clonal variability in the retina This model is based on the firing probabilities of key transcription factors These probabilities are shown to be largely independent of each other The environment has only a minor effect on these probabilities
Collapse
Affiliation(s)
- Henrik Boije
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge CB2 3DY, UK; Department of Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Steffen Rulands
- Department of Physics, Cambridge University, Cambridge CB3 0HE, UK
| | - Stefanie Dudczig
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge CB2 3DY, UK
| | | | - William A Harris
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge CB2 3DY, UK.
| |
Collapse
|
27
|
Rosa JM, Bos R, Sack GS, Fortuny C, Agarwal A, Bergles DE, Flannery JG, Feller MB. Neuron-glia signaling in developing retina mediated by neurotransmitter spillover. eLife 2015; 4. [PMID: 26274565 PMCID: PMC4566075 DOI: 10.7554/elife.09590] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 08/13/2015] [Indexed: 12/21/2022] Open
Abstract
Neuron-glia interactions play a critical role in the maturation of neural circuits; however, little is known about the pathways that mediate their communication in the developing CNS. We investigated neuron-glia signaling in the developing retina, where we demonstrate that retinal waves reliably induce calcium transients in Müller glial cells (MCs). During cholinergic waves, MC calcium transients were blocked by muscarinic acetylcholine receptor antagonists, whereas during glutamatergic waves, MC calcium transients were inhibited by ionotropic glutamate receptor antagonists, indicating that the responsiveness of MCs changes to match the neurotransmitter used to support retinal waves. Using an optical glutamate sensor we show that the decline in MC calcium transients is caused by a reduction in the amount of glutamate reaching MCs. Together, these studies indicate that neurons and MCs exhibit correlated activity during a critical period of retinal maturation that is enabled by neurotransmitter spillover from retinal synapses.
Collapse
Affiliation(s)
- Juliana M Rosa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Rémi Bos
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Georgeann S Sack
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Cécile Fortuny
- Vision Science Graduate Program, University of California, Berkeley, Berkeley, United States
| | - Amit Agarwal
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, United States
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, United States
| | - John G Flannery
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
28
|
Chow RW, Almeida AD, Randlett O, Norden C, Harris WA. Inhibitory neuron migration and IPL formation in the developing zebrafish retina. Development 2015; 142:2665-77. [PMID: 26116662 PMCID: PMC4529032 DOI: 10.1242/dev.122473] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 06/11/2015] [Indexed: 12/22/2022]
Abstract
The mature vertebrate retina is a highly ordered neuronal network of cell bodies and synaptic neuropils arranged in distinct layers. Little, however, is known about the emergence of this spatial arrangement. Here, we investigate how the three main types of retinal inhibitory neuron (RIN) – horizontal cells (HCs), inner nuclear layer amacrine cells (iACs) and displaced amacrine cells (dACs) – reach their specific laminar positions during development. Using in vivo time-lapse imaging of zebrafish retinas, we show that RINs undergo distinct phases of migration. The first phase, common to all RINs, is bipolar migration directed towards the apicobasal centre of the retina. All RINs then transition to a less directionally persistent multipolar phase of migration. Finally, HCs, iACs and dACs each undergo cell type-specific migration. In contrast to current hypotheses, we find that most dACs send processes into the forming inner plexiform layer (IPL) before migrating through it and inverting their polarity. By imaging and quantifying the dynamics of HCs, iACs and dACs from birth to final position, this study thus provides evidence for distinct and new migration patterns during retinal lamination and insights into the initiation of IPL formation. Highlighted article: The quantification of cellular behaviour in real time provides new insights into interneuron migration and inner plexiform layer formation during the lamination of the zebrafish retina.
Collapse
Affiliation(s)
- Renee W Chow
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Alexandra D Almeida
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Owen Randlett
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Caren Norden
- MPI of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany
| | - William A Harris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| |
Collapse
|
29
|
DSCAM promotes refinement in the mouse retina through cell death and restriction of exploring dendrites. J Neurosci 2015; 35:5640-54. [PMID: 25855178 DOI: 10.1523/jneurosci.2202-14.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In this study we develop and use a gain-of-function mouse allele of the Down syndrome cell adhesion molecule (Dscam) to complement loss-of-function models. We assay the role of Dscam in promoting cell death, spacing, and laminar targeting of neurons in the developing mouse retina. We find that ectopic or overexpression of Dscam is sufficient to drive cell death. Gain-of-function studies indicate that Dscam is not sufficient to increase spatial organization, prevent cell-to-cell pairing, or promote active avoidance in the mouse retina, despite the similarity of the Dscam loss-of-function phenotype in the mouse retina to phenotypes observed in Drosophila Dscam1 mutants. Both gain- and loss-of-function studies support a role for Dscam in targeting neurites; DSCAM is necessary for precise dendrite lamination, and is sufficient to retarget neurites of outer retinal cells after ectopic expression. We further demonstrate that DSCAM guides dendrite targeting in type 2 dopaminergic amacrine cells, by restricting the stratum in which exploring retinal dendrites stabilize, in a Dscam dosage-dependent manner. Based on these results we propose a single model to account for the numerous Dscam gain- and loss-of-function phenotypes reported in the mouse retina whereby DSCAM eliminates inappropriately placed cells and connections.
Collapse
|
30
|
Wang YJ, Park JT, Parsons MJ, Leach SD. Fate mapping of ptf1a-expressing cells during pancreatic organogenesis and regeneration in zebrafish. Dev Dyn 2015; 244:724-35. [PMID: 25773748 DOI: 10.1002/dvdy.24271] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/22/2015] [Accepted: 03/01/2015] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Pancreas development in zebrafish shares many features with mammals, including the participation of epithelial progenitor cells expressing pancreas transcription factor 1a (ptf1a). However, to date it has remained unclear whether, as in mammals, ptf1a-expressing zebrafish pancreatic progenitors are able to contribute to multiple exocrine and endocrine lineages. To delineate the lineage potential of ptf1a-expressing cells, we generated ptf1a:creER(T2) transgenic fish and performed genetic-inducible lineage tracing in developmental, regenerating, and ptf1a-deficient zebrafish pancreas. RESULTS In addition to their contribution to the acinar cell lineage, ptf1a-expressing cells give rise to both pancreatic Notch-responsive-cells (PNCs) as well as small numbers of endocrine cells during pancreatic development. In fish with ptf1a haploinsufficiency, a higher proportion of ptf1a lineage-labeled cells are traced into the PNC and endocrine compartments. Further reduction of ptf1a gene dosage converts pancreatic progenitor cells to gall bladder and other non-pancreatic cell fates. CONCLUSIONS Our results confirm the presence of multipotent ptf1a-expressing progenitor cells in developing zebrafish pancreas, with reduced ptf1a dosage promoting greater contributions towards non-acinar lineages. As in mammals, loss of ptf1a results in conversion of nascent pancreatic progenitor cells to non-pancreatic cell fates, underscoring the central role of ptf1a in foregut tissue specification.
Collapse
Affiliation(s)
- Yue J Wang
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joon T Park
- The Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael J Parsons
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steven D Leach
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
31
|
Hoon M, Okawa H, Della Santina L, Wong ROL. Functional architecture of the retina: development and disease. Prog Retin Eye Res 2014; 42:44-84. [PMID: 24984227 DOI: 10.1016/j.preteyeres.2014.06.003] [Citation(s) in RCA: 359] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/08/2014] [Accepted: 06/22/2014] [Indexed: 12/22/2022]
Abstract
Structure and function are highly correlated in the vertebrate retina, a sensory tissue that is organized into cell layers with microcircuits working in parallel and together to encode visual information. All vertebrate retinas share a fundamental plan, comprising five major neuronal cell classes with cell body distributions and connectivity arranged in stereotypic patterns. Conserved features in retinal design have enabled detailed analysis and comparisons of structure, connectivity and function across species. Each species, however, can adopt structural and/or functional retinal specializations, implementing variations to the basic design in order to satisfy unique requirements in visual function. Recent advances in molecular tools, imaging and electrophysiological approaches have greatly facilitated identification of the cellular and molecular mechanisms that establish the fundamental organization of the retina and the specializations of its microcircuits during development. Here, we review advances in our understanding of how these mechanisms act to shape structure and function at the single cell level, to coordinate the assembly of cell populations, and to define their specific circuitry. We also highlight how structure is rearranged and function is disrupted in disease, and discuss current approaches to re-establish the intricate functional architecture of the retina.
Collapse
Affiliation(s)
- Mrinalini Hoon
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Haruhisa Okawa
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Luca Della Santina
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
32
|
Almeida AD, Boije H, Chow RW, He J, Tham J, Suzuki SC, Harris WA. Spectrum of Fates: a new approach to the study of the developing zebrafish retina. Development 2014; 141:1971-80. [PMID: 24718991 PMCID: PMC3994774 DOI: 10.1242/dev.104760] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The ability to image cells live and in situ as they proliferate and differentiate has proved to be an invaluable asset to biologists investigating developmental processes. Here, we describe a Spectrum of Fates approach that allows the identification of all the major neuronal subtypes in the zebrafish retina simultaneously. Spectrum of Fates is based on the combinatorial expression of differently coloured fluorescent proteins driven by the promoters of transcription factors that are expressed in overlapping subsets of retinal neurons. Here, we show how a Spectrum of Fates approach can be used to assess various aspects of neural development, such as developmental waves of differentiation, neuropil development, lineage tracing and hierarchies of fates in the developing zebrafish retina.
Collapse
Affiliation(s)
- Alexandra D Almeida
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY , UK
| | | | | | | | | | | | | |
Collapse
|
33
|
Weber I, Ramos A, Strzyz P, Leung L, Young S, Norden C. Mitotic Position and Morphology of Committed Precursor Cells in the Zebrafish Retina Adapt to Architectural Changes upon Tissue Maturation. Cell Rep 2014; 7:386-397. [DOI: 10.1016/j.celrep.2014.03.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 01/13/2014] [Accepted: 03/05/2014] [Indexed: 11/25/2022] Open
|
34
|
Baier H. Synaptic laminae in the visual system: molecular mechanisms forming layers of perception. Annu Rev Cell Dev Biol 2013; 29:385-416. [PMID: 24099086 DOI: 10.1146/annurev-cellbio-101011-155748] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Synaptic connections between neurons form the basis for perception and behavior. Synapses are often clustered in space, forming stereotyped layers. In the retina and optic tectum, multiple such synaptic laminae are stacked on top of each other, giving rise to stratified neuropil regions in which each layer combines synapses responsive to a particular sensory feature. Recently, several cellular and molecular mechanisms that underlie the development of multilaminar arrays of synapses have been discovered. These mechanisms include neurite guidance and cell-cell recognition. Molecules of the Slit, Semaphorin, Netrin, and Hedgehog families, binding to their matching receptors, bring axons and dendrites into spatial register. These guidance cues may diffuse over short distances or bind to sheets of extracellular matrix, thus conditioning the local extracellular milieu, or are presented on the surface of cells bordering the future neuropil. In addition, mutual recognition of axons and dendrites through adhesion molecules with immunoglobulin domains ensures cell type-specific connections within a given layer. Thus, an elaborate genetic program assembles the parallel processing channels that underlie visual perception.
Collapse
Affiliation(s)
- Herwig Baier
- Genes - Circuits - Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried near Munich, Germany;
| |
Collapse
|
35
|
Antinucci P, Nikolaou N, Meyer MP, Hindges R. Teneurin-3 specifies morphological and functional connectivity of retinal ganglion cells in the vertebrate visual system. Cell Rep 2013; 5:582-92. [PMID: 24183672 PMCID: PMC3898612 DOI: 10.1016/j.celrep.2013.09.045] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/05/2013] [Accepted: 09/30/2013] [Indexed: 11/08/2022] Open
Abstract
A striking feature of the CNS is the precise wiring of its neuronal connections. During vertebrate visual system development, different subtypes of retinal ganglion cells (RGCs) form specific connections with their corresponding synaptic partners. However, the underlying molecular mechanisms remain to be fully elucidated. Here, we report that the cell-adhesive transmembrane protein Teneurin-3 (Tenm3) is required by zebrafish RGCs for acquisition of their correct morphological and functional connectivity in vivo. Teneurin-3 is expressed by RGCs and their presynaptic amacrine and postsynaptic tectal cell targets. Knockdown of Teneurin-3 leads to RGC dendrite stratification defects within the inner plexiform layer, as well as mistargeting of dendritic processes into outer portions of the retina. Moreover, a subset of RGC axons exhibits tectal laminar arborization errors. Finally, functional analysis of RGCs targeting the tectum reveals a selective deficit in the development of orientation selectivity after Teneurin-3 knockdown. These results suggest that Teneurin-3 plays an instructive role in the functional wiring of the vertebrate visual system. Teneurin-3 is expressed by RGCs, amacrine cells, and tectal neurons Teneurin-3 is required by RGC dendrites for correct IPL stratification A subset of RGC axons show laminar arborization defects upon Teneurin-3 knockdown Orientation-, but not direction-selective, RGCs are impaired in Teneurin-3 morphants
Collapse
Affiliation(s)
- Paride Antinucci
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, UK
| | | | | | | |
Collapse
|