1
|
Schiavinato A, Marcous F, Zuk AV, Keene DR, Tufa SF, Mosquera LM, Zigrino P, Mauch C, Eckes B, Francois K, De Backer J, Hunzelmann N, Moinzadeh P, Krieg T, Callewaert B, Sengle G. New insights into the structural role of EMILINs within the human skin microenvironment. Sci Rep 2024; 14:30345. [PMID: 39639116 PMCID: PMC11621341 DOI: 10.1038/s41598-024-81509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Supramolecular extracellular matrix (ECM) networks play an essential role in skin architecture and function. Elastin microfibril interface-located proteins (EMILINs) comprise a family of three extracellular glycoproteins that serve as essential structural components of the elastin/fibrillin microfibril network, and exert crucial functions in cellular signaling. Little is known about the structural nature of EMILIN networks in skin. We therefore investigated the spatiotemporal localization of EMILIN-1, -2, -3 in human skin induced by aging, UV-exposure, fibrosis, and connective tissue disorder. Confocal immunofluorescence and immunogold electron microscopy analysis identified all EMILINs as components of elastic fibers and elastin-free oxytalan fibers inserted into the basement membrane (BM). Further, our ultrastructural analysis demonstrates cellular contacts of dermally localized EMILIN-1 positive fibers across the BM with the surface of basal keratinocytes. Analysis of skin biopsies and fibroblast cultures from fibrillin-1 deficient Marfan patients revealed that EMILINs require intact fibrillin-1 as deposition scaffold. In patients with scleroderma and the bleomycin-induced murine fibrosis model EMILIN-2 was upregulated. EMILIN-3 localizes to the tips of candelabra-like oxytalan fibers, and to specialized BMs engulfing hair follicles and sebaceous glands. Our data identify EMILINs as important markers to monitor rearrangements of the dermal ECM architecture induced by aging and pathological conditions.
Collapse
Affiliation(s)
- Alvise Schiavinato
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Fady Marcous
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Alexandra V Zuk
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Douglas R Keene
- Micro-Imaging Center, Shriners Children's, Portland, OR, 97239, USA
| | - Sara F Tufa
- Micro-Imaging Center, Shriners Children's, Portland, OR, 97239, USA
| | - Laura M Mosquera
- Center for Medical Genetics, Ghent University Hospital, 9000, Ghent, Belgium
- Department of Pediatrics, Division of Pediatric Cardiology, Ghent University Hospital, 9000, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000, Ghent, Belgium
| | - Paola Zigrino
- Department of Dermatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Cornelia Mauch
- Department of Dermatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Beate Eckes
- Translational Matrix Biology, Faculty of Medicine, University Hospital Cologne, 50931, Cologne, Germany
| | - Katrien Francois
- Department of Cardiovascular Surgery, Ghent University Hospital, 9000, Ghent, Belgium
| | - Julie De Backer
- Center for Medical Genetics, Ghent University Hospital, 9000, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000, Ghent, Belgium
- Department of Cardiology, Ghent University Hospital, 9000, Ghent, Belgium
| | - Nicolas Hunzelmann
- Department of Dermatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Pia Moinzadeh
- Department of Dermatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Thomas Krieg
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- Translational Matrix Biology, Faculty of Medicine, University Hospital Cologne, 50931, Cologne, Germany
- Cologne Excellence Cluster On Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, 9000, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000, Ghent, Belgium
| | - Gerhard Sengle
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany.
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.
- Cologne Center for Musculoskeletal Biomechanics (CCMB), 50931, Cologne, Germany.
| |
Collapse
|
2
|
Zouboulis CC, Coenye T, He L, Kabashima K, Kobayashi T, Niemann C, Nomura T, Oláh A, Picardo M, Quist SR, Sasano H, Schneider MR, Törőcsik D, Wong SY. Sebaceous immunobiology - skin homeostasis, pathophysiology, coordination of innate immunity and inflammatory response and disease associations. Front Immunol 2022; 13:1029818. [PMID: 36439142 PMCID: PMC9686445 DOI: 10.3389/fimmu.2022.1029818] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/17/2022] [Indexed: 08/01/2023] Open
Abstract
This review presents several aspects of the innovative concept of sebaceous immunobiology, which summarizes the numerous activities of the sebaceous gland including its classical physiological and pathophysiological tasks, namely sebum production and the development of seborrhea and acne. Sebaceous lipids, which represent 90% of the skin surface lipids in adolescents and adults, are markedly involved in the skin barrier function and perifollicular and dermal innate immune processes, leading to inflammatory skin diseases. Innovative experimental techniques using stem cell and sebocyte models have clarified the roles of distinct stem cells in sebaceous gland physiology and sebocyte function control mechanisms. The sebaceous gland represents an integral part of the pilosebaceous unit and its status is connected to hair follicle morphogenesis. Interestingly, professional inflammatory cells contribute to sebocyte differentiation and homeostasis, whereas the regulation of sebaceous gland function by immune cells is antigen-independent. Inflammation is involved in the very earliest differentiation changes of the pilosebaceous unit in acne. Sebocytes behave as potent immune regulators, integrating into the innate immune responses of the skin. Expressing inflammatory mediators, sebocytes also contribute to the polarization of cutaneous T cells towards the Th17 phenotype. In addition, the immune response of the perifollicular infiltrate depends on factors produced by the sebaceous glands, mostly sebaceous lipids. Human sebocytes in vitro express functional pattern recognition receptors, which are likely to interact with bacteria in acne pathogenesis. Sex steroids, peroxisome proliferator-activated receptor ligands, neuropeptides, endocannabinoids and a selective apoptotic process contribute to a complex regulation of sebocyte-induced immunological reaction in numerous acquired and congenital skin diseases, including hair diseases and atopic dermatitis.
Collapse
Affiliation(s)
- Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuro Kobayashi
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Catherin Niemann
- Center for Molecular Medicine Cologne, CMMC Research Institute, University of Cologne, Cologne, Germany
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mauro Picardo
- San Gallicano Dermatologic Institute, IRCCS, Rome, Italy
| | - Sven R. Quist
- Department of Dermatology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Marlon R. Schneider
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Daniel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen and ELKH-DE Allergology Research Group, Debrecen, Hungary
| | - Sunny Y. Wong
- Departments of Dermatology and Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Association of sonic hedgehog signaling pathway genes IHH, BOC, RAB23a and MIR195-5p, MIR509-3-5p, MIR6738-3p with gastric cancer stage. Sci Rep 2021; 11:7471. [PMID: 33811245 PMCID: PMC8018955 DOI: 10.1038/s41598-021-86946-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is the leading cause of cancer-related mortality worldwide. Given the importance of gastric cancer in public health, identifying biomarkers associated with disease onset is an important part of precision medicine. The hedgehog signaling pathway is considered as one of the most significant widespread pathways of intracellular signaling in the early events of embryonic development. This pathway contributes also to the maintenance of pluripotency of cancer stem cells pluripotency. In this study, we analyzed the expression levels of sonic hedgehog (Shh) signaling pathway genes IHH, BOC, RAB23a and their regulatory miRNAs including MIR-195-5p, MIR-509-3-5p, MIR-6738-3p in gastric cancer patients. In addition, the impact of infection status on the expression level of those genes and their regulatory miRNAs was investigated. One hundred samples taken from 50 gastric cancer patients (50 tumoral tissues and their adjacent non-tumoral counterparts) were included in this study. There was a significant difference in all studied genes and miRNAs in tumoral tissues in comparison with their adjacent non-tumoral counterparts. The lower expression of IHH, BOC, RAB23, miR-195-5p, and miR-6738-3p was significantly associated with more advanced cancer stage. Additionally, IHH upregulation was significantly associated with CMV infection (P < 0.001). Also, receiver operating characteristic (ROC) curve analysis indicated that mir-195 was significantly related to several clinicopathological features including tumor stage, grade, age, gender, and infection status of gastric cancer and can be considered as a potential diagnostic biomarker for gastric cancer. This study confirms the important role of Shh signaling pathway genes in gastric cancer tumorigenesis and their potential as novel molecular biomarkers and therapeutic targets.
Collapse
|
4
|
Geueke A, Niemann C. Stem and progenitor cells in sebaceous gland development, homeostasis and pathologies. Exp Dermatol 2021; 30:588-597. [PMID: 33599012 DOI: 10.1111/exd.14303] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/04/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022]
Abstract
Sebaceous glands (SGs), typically associated with hair follicles, are critical for the homeostasis and function of mammalian skin. The main physiological function of SGs is the production and holocrine secretion of sebum to lubricate and protect the skin. Defective SGs have been linked to a variety of skin disorders, including acne, seborrheic dermatitis and formation of sebaceous tumors. Thus, a better understanding how SGs are formed and maintained is important to unravel the underlying molecular and cellular mechanisms of SG pathologies and to find better and effective therapies. Over the last two decades, research has come a long way from the initial identification of skin epithelial stem cells to the isolation and functional characterization of multiple stem cell pools as well as a better understanding of their unique and complex activities that drive skin homeostasis and operate in skin pathologies. Here, we discuss recent progress in unravelling cellular mechanisms underlying SG development, homeostasis and sebaceous tumor formation and assess the role of stem and progenitor cells in controlling SG physiology and disease processes. The development of elegant in vivo imaging as well as various in vitro and ex vivo stem cell and SG tissue models will advance mechanistic studies on SG function and allow drug screening and testing for efficient and successful targeting SG pathologies.
Collapse
Affiliation(s)
- Anna Geueke
- Center for Molecular Medicine Cologne, CMMC Research Institute, University of Cologne, Cologne, Germany
| | - Catherin Niemann
- Center for Molecular Medicine Cologne, CMMC Research Institute, University of Cologne, Cologne, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Mehlman C, Takam Kamga P, Costantini A, Julié C, Dumenil C, Dumoulin J, Ouaknine J, Giraud V, Chinet T, Emile JF, Giroux Leprieur E. Baseline Hedgehog Pathway Activation and Increase of Plasma Wnt1 Protein Are Associated with Resistance to Immune Checkpoint Inhibitors in Advanced Non-Small-Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13051107. [PMID: 33807552 PMCID: PMC7962040 DOI: 10.3390/cancers13051107] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/26/2022] Open
Abstract
Hedgehog (Hh) and Wingless-type (Wnt) pathways are associated with resistance to immune checkpoint inhibitors (ICIs) in preclinical studies. This study aimed to assess the association between expression and activation levels of Wnt and Sonic Hedgehog (Shh) pathways and resistance to ICIs in advanced NSCLC patients treated with ICI. Hh and Wnt pathways activation was assessed by immunohistochemistry (Gli1 and beta-catenin) on corresponding tumor tissues, and by plasma concentrations of Shh and Wnt (Wnt1, Wnt2 and Wnt3) at ICI introduction and at the first clinical evaluation. Sixty-three patients were included, with 36 patients (57.1%) with available tissue. Response rate was lower in Gli1+ NSCLC (20.0%) compared to Gli1 negative (Gli-) NSCLC (55.6%) (p = 0.015). Rate of primary resistance was 69.8%, vs. 31.2%, respectively (p = 0.04), and median progression-free survival (PFS) was 1.9 months (interquartile range (IQR) 1.2-5.7) vs. 6.1 months (1.6-26.0), respectively (p = 0.08). Median PFS and overall survival were shorter in case of increase of Wnt1 concentration during ICI treatment compared to other patients: 3.9 months vs. 11.2 months (p = 0.008), and 15.3 months vs. not reached (p = 0.003). In conclusion, baseline activation of Hh pathway and increase of Wnt1 concentrations during ICI treatment were associated with poor outcome in NSCLC patients treated with ICIs.
Collapse
Affiliation(s)
- Camille Mehlman
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.M.); (P.T.K.); (A.C.); (C.J.); (T.C.); (J.-F.E.)
| | - Paul Takam Kamga
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.M.); (P.T.K.); (A.C.); (C.J.); (T.C.); (J.-F.E.)
| | - Adrien Costantini
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.M.); (P.T.K.); (A.C.); (C.J.); (T.C.); (J.-F.E.)
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France; (C.D.); (J.D.); (J.O.); (V.G.)
| | - Catherine Julié
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.M.); (P.T.K.); (A.C.); (C.J.); (T.C.); (J.-F.E.)
- Department of Pathology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France
| | - Coraline Dumenil
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France; (C.D.); (J.D.); (J.O.); (V.G.)
| | - Jennifer Dumoulin
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France; (C.D.); (J.D.); (J.O.); (V.G.)
| | - Julia Ouaknine
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France; (C.D.); (J.D.); (J.O.); (V.G.)
| | - Violaine Giraud
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France; (C.D.); (J.D.); (J.O.); (V.G.)
| | - Thierry Chinet
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.M.); (P.T.K.); (A.C.); (C.J.); (T.C.); (J.-F.E.)
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France; (C.D.); (J.D.); (J.O.); (V.G.)
| | - Jean-François Emile
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.M.); (P.T.K.); (A.C.); (C.J.); (T.C.); (J.-F.E.)
- Department of Pathology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France
| | - Etienne Giroux Leprieur
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.M.); (P.T.K.); (A.C.); (C.J.); (T.C.); (J.-F.E.)
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France; (C.D.); (J.D.); (J.O.); (V.G.)
- Correspondence: ; Tel.: +33-149-095-802; Fax: +33-149-095-806
| |
Collapse
|
6
|
Abstract
There has been a drastic increase in the incidence of nonmelanoma (NMSC), including squamous, basal cell, and melanoma skin cancers worldwide. Most cases of skin cancer can be treated effectively with surgery; fewer than 10% of cases are advanced and may require additional therapies. A better understanding of the biology of skin cancer will help contribute to better prognostic information and identification of possible new therapeutic targets. Herein, the authors review the biology and pathogenesis of both NMSC and melanoma, focusing on critical cell signaling pathways mediating the disease and current therapeutic strategies targeted to underlying genetic pathways.
Collapse
|
7
|
Clayton RW, Langan EA, Ansell DM, de Vos IJHM, Göbel K, Schneider MR, Picardo M, Lim X, van Steensel MAM, Paus R. Neuroendocrinology and neurobiology of sebaceous glands. Biol Rev Camb Philos Soc 2020; 95:592-624. [PMID: 31970855 DOI: 10.1111/brv.12579] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
The nervous system communicates with peripheral tissues through nerve fibres and the systemic release of hypothalamic and pituitary neurohormones. Communication between the nervous system and the largest human organ, skin, has traditionally received little attention. In particular, the neuro-regulation of sebaceous glands (SGs), a major skin appendage, is rarely considered. Yet, it is clear that the SG is under stringent pituitary control, and forms a fascinating, clinically relevant peripheral target organ in which to study the neuroendocrine and neural regulation of epithelia. Sebum, the major secretory product of the SG, is composed of a complex mixture of lipids resulting from the holocrine secretion of specialised epithelial cells (sebocytes). It is indicative of a role of the neuroendocrine system in SG function that excess circulating levels of growth hormone, thyroxine or prolactin result in increased sebum production (seborrhoea). Conversely, growth hormone deficiency, hypothyroidism, and adrenal insufficiency result in reduced sebum production and dry skin. Furthermore, the androgen sensitivity of SGs appears to be under neuroendocrine control, as hypophysectomy (removal of the pituitary) renders SGs largely insensitive to stimulation by testosterone, which is crucial for maintaining SG homeostasis. However, several neurohormones, such as adrenocorticotropic hormone and α-melanocyte-stimulating hormone, can stimulate sebum production independently of either the testes or the adrenal glands, further underscoring the importance of neuroendocrine control in SG biology. Moreover, sebocytes synthesise several neurohormones and express their receptors, suggestive of the presence of neuro-autocrine mechanisms of sebocyte modulation. Aside from the neuroendocrine system, it is conceivable that secretion of neuropeptides and neurotransmitters from cutaneous nerve endings may also act on sebocytes or their progenitors, given that the skin is richly innervated. However, to date, the neural controls of SG development and function remain poorly investigated and incompletely understood. Botulinum toxin-mediated or facial paresis-associated reduction of human sebum secretion suggests that cutaneous nerve-derived substances modulate lipid and inflammatory cytokine synthesis by sebocytes, possibly implicating the nervous system in acne pathogenesis. Additionally, evidence suggests that cutaneous denervation in mice alters the expression of key regulators of SG homeostasis. In this review, we examine the current evidence regarding neuroendocrine and neurobiological regulation of human SG function in physiology and pathology. We further call attention to this line of research as an instructive model for probing and therapeutically manipulating the mechanistic links between the nervous system and mammalian skin.
Collapse
Affiliation(s)
- Richard W Clayton
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore
| | - Ewan A Langan
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Department of Dermatology, Allergology und Venereology, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| | - David M Ansell
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, U.K
| | - Ivo J H M de Vos
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore
| | - Klaus Göbel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore.,Department of Dermatology, Cologne Excellence Cluster on Stress Responses in Aging Associated Diseases (CECAD), and Centre for Molecular Medicine Cologne, The University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany
| | - Marlon R Schneider
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, Berlin, 10589, Germany
| | - Mauro Picardo
- Cutaneous Physiopathology and Integrated Centre of Metabolomics Research, San Gallicano Dermatological Institute IRCCS, Via Elio Chianesi 53, Rome, 00144, Italy
| | - Xinhong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Maurice A M van Steensel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Ralf Paus
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Dr. Phllip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB 2023A, Miami, FL, 33136, U.S.A.,Monasterium Laboratory, Mendelstraße 17, Münster, 48149, Germany
| |
Collapse
|
8
|
Clayton R, Göbel K, Niessen C, Paus R, Steensel M, Lim X. Homeostasis of the sebaceous gland and mechanisms of acne pathogenesis. Br J Dermatol 2019; 181:677-690. [DOI: 10.1111/bjd.17981] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2019] [Indexed: 12/13/2022]
Affiliation(s)
- R.W. Clayton
- Skin Research Institute of Singapore Agency for Science, Technology and Research (A*STAR) Singapore
- Centre for Dermatology Research University of Manchester, and NIHR Manchester Biomedical Research Centre Manchester U.K
| | - K. Göbel
- Skin Research Institute of Singapore Agency for Science, Technology and Research (A*STAR) Singapore
- Department of Dermatology Cologne Excellence Cluster on Stress Responses in Aging Associated Diseases (CECAD), and Centre for Molecular Medicine Cologne The University of Cologne Germany
| | - C.M. Niessen
- Department of Dermatology Cologne Excellence Cluster on Stress Responses in Aging Associated Diseases (CECAD), and Centre for Molecular Medicine Cologne The University of Cologne Germany
| | - R. Paus
- Centre for Dermatology Research University of Manchester, and NIHR Manchester Biomedical Research Centre Manchester U.K
- Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL U.S.A
| | - M.A.M. Steensel
- Skin Research Institute of Singapore Agency for Science, Technology and Research (A*STAR) Singapore
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore
| | - X. Lim
- Skin Research Institute of Singapore Agency for Science, Technology and Research (A*STAR) Singapore
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore
| |
Collapse
|
9
|
Corallo D, Schiavinato A, Bizzotto D, Milanetto M, Guljelmovic M, Keene DR, Sengle G, Braghetta P, Bonaldo P. EMILIN3, an extracellular matrix molecule with restricted distribution in skin. Exp Dermatol 2017; 26:435-438. [DOI: 10.1111/exd.13254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Diana Corallo
- Department of Molecular Medicine; University of Padova; Padova Italy
| | | | - Dario Bizzotto
- Department of Molecular Medicine; University of Padova; Padova Italy
| | - Martina Milanetto
- Department of Molecular Medicine; University of Padova; Padova Italy
| | | | | | - Gerhard Sengle
- Center for Biochemistry; Medical Faculty, University of Cologne; Cologne Germany
- Center for Molecular Medicine Cologne (CMMC); University of Cologne; Cologne Germany
| | - Paola Braghetta
- Department of Molecular Medicine; University of Padova; Padova Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine; University of Padova; Padova Italy
- CRIBI Biotechnology Center; University of Padova; Padova Italy
| |
Collapse
|
10
|
Goyal A, Linskey KR, Kay J, Duncan LM, Nazarian RM. Differential Expression of Hedgehog and Snail in Cutaneous Fibrosing Disorders: Implications for Targeted Inhibition. Am J Clin Pathol 2016; 146:709-717. [PMID: 28077400 DOI: 10.1093/ajcp/aqw192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES To examine Hedgehog signaling in cutaneous fibrosing disorders for which effective approved therapies are lacking, expand our knowledge of pathophysiology, and explore the rationale for targeted inhibition. METHODS Stain intensity and percentage of cells staining for Sonic hedgehog (Shh), Indian hedgehog (Ihh), Patched (Ptch), glycogen synthase kinase 3 β (GSK3-β), β-catenin, and Snail were evaluated in human skin biopsy specimens of keloid, hypertrophic scar (Hscar), scleroderma, nephrogenic systemic fibrosis (NSF), scar, and normal skin using a tissue microarray. RESULTS Ihh, but not Shh, was detected in a significantly larger proportion of cells for all case types. Ptch, GSK3-β, and β-catenin showed a gradient of expression: highest in NSF and keloid; moderate in normal skin, scar, and Hscar; and lowest in scleroderma. Snail expression was binary: low in normal skin but high in all fibrosing conditions studied. CONCLUSIONS Differential overexpression of Hedgehog and Snail in cutaneous fibrosing disorders demonstrates a role for targeted inhibition. Ptch, GSK3-β, and β-catenin can help differentiate scleroderma from NSF in histologically subtle cases. Differences in expression between keloid and hypertrophic scar support the concept that they are pathophysiologically distinct disorders. Our findings implicate Snail as a target for the prevention of fibrogenesis or fibrosis progression and may offer a means to assess response to therapy.
Collapse
Affiliation(s)
- Amrita Goyal
- From the Dermatopathology Unit, Pathology Service, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Katy R Linskey
- From the Dermatopathology Unit, Pathology Service, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Jonathan Kay
- Division of Rheumatology, Department of Medicine, UMass Memorial Medical Center and University of Massachusetts Medical School, Worcester
| | - Lyn M Duncan
- From the Dermatopathology Unit, Pathology Service, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Rosalynn M Nazarian
- From the Dermatopathology Unit, Pathology Service, Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
11
|
|
12
|
Piérard-Franchimont C, Hermanns-Lê T, Paquet P, Herfs M, Delvenne P, Piérard GE. Hedgehog- and mTOR-targeted therapies for advanced basal cell carcinomas. Future Oncol 2015; 11:2997-3002. [PMID: 26437034 DOI: 10.2217/fon.15.181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Basal cell carcinomas (BCCs) are the most frequent human cancer. Over 90% of all BCCs have a mutation in PTCH1 or smoothened, two conducting proteins of the Hedgehog pathway. They rarely progress deeply and metastasize; however, if they do, these advanced basal cell carcinoma become amenable to treatment by inhibiting the Hedgehog and the P13K-mTOR pathways. Such innovative drugs include vismodegib, cyclopamine, itraconazole, everolimus and a few other agents that are in early clinical development.
Collapse
Affiliation(s)
- Claudine Piérard-Franchimont
- Laboratory of Skin Bioengineering & Imaging (LABIC), Department of Clinical Sciences, University of Liège, Belgium.,Department of Dermatopathology, Unilab Lg, Liège University Hospital, Liège, Belgium
| | - Trinh Hermanns-Lê
- Department of Dermatopathology, Unilab Lg, Liège University Hospital, Liège, Belgium
| | - Philippe Paquet
- Department of Dermatopathology, Unilab Lg, Liège University Hospital, Liège, Belgium
| | - Michael Herfs
- Laboratory of Experimental Pathology, Liège University Hospital, Liège, Belgium
| | - Philippe Delvenne
- Department of Dermatopathology, Unilab Lg, Liège University Hospital, Liège, Belgium.,Laboratory of Experimental Pathology, Liège University Hospital, Liège, Belgium.,Departments of Pathology, Unilab Lg, Liège University Hospital, Liège, Belgium
| | - Gérald E Piérard
- Laboratory of Skin Bioengineering & Imaging (LABIC), Department of Clinical Sciences, University of Liège, Belgium
| |
Collapse
|
13
|
Gustafson TL, Kitchell BE, Biller B. Hedgehog signaling is activated in canine transitional cell carcinoma and contributes to cell proliferation and survival. Vet Comp Oncol 2015; 15:174-183. [PMID: 25864514 DOI: 10.1111/vco.12149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/11/2015] [Accepted: 03/04/2015] [Indexed: 01/11/2023]
Abstract
Transitional cell carcinoma (TCC) is the most commonly diagnosed tumor of the canine urinary system. Hedgehog (HH) signaling represents one possible novel therapeutic target, based on its recently identified central role in human urothelial carcinoma. The purpose of this study was to determine if HH mediators are expressed in canine TCC and the effect of inhibition of this pathway on cell growth and survival. HH pathway mediators were found to be expressed in five canine TCC cell lines. Indian HH was expressed in tumor cells in five canine bladder tumor tissues, but not in normal canine bladder tissue. Inhibition of HH signaling with cyclopamine and GANT61 led to significantly decreased cell proliferation but had a smaller effect on apoptosis. These results support future investigation of inhibitors of HH signaling in the treatment of canine TCC.
Collapse
Affiliation(s)
- T L Gustafson
- Colorado State University, Animal Cancer Center, Fort Collins, CO, USA
| | - B E Kitchell
- VCA Veterinary Care Animal Hospital and Referral Center, Oncology, Albuquerque, NM, USA
| | - B Biller
- Colorado State University, CVMBS-VTH, Animal Cancer Center, Fort Collins, CO, USA
| |
Collapse
|
14
|
Frances D, Sharma N, Pofahl R, Maneck M, Behrendt K, Reuter K, Krieg T, Klein CA, Haase I, Niemann C. A role for Rac1 activity in malignant progression of sebaceous skin tumors. Oncogene 2015; 34:5505-12. [DOI: 10.1038/onc.2014.471] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/28/2014] [Accepted: 12/19/2014] [Indexed: 11/09/2022]
|
15
|
Athar M, Li C, Kim AL, Spiegelman VS, Bickers DR. Sonic hedgehog signaling in Basal cell nevus syndrome. Cancer Res 2014; 74:4967-75. [PMID: 25172843 DOI: 10.1158/0008-5472.can-14-1666] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The hedgehog (Hh) signaling pathway is considered to be a major signal transduction pathway during embryonic development, but it usually shuts down after birth. Aberrant Sonic hedgehog (Shh) activation during adulthood leads to neoplastic growth. Basal cell carcinoma (BCC) of the skin is driven by this pathway. Here, we summarize information related to the pathogenesis of this neoplasm, discuss pathways that crosstalk with Shh signaling, and the importance of the primary cilium in this neoplastic process. The identification of the basic/translational components of Shh signaling has led to the discovery of potential mechanism-driven druggable targets and subsequent clinical trials have confirmed their remarkable efficacy in treating BCCs, particularly in patients with nevoid BCC syndrome (NBCCS), an autosomal dominant disorder in which patients inherit a germline mutation in the tumor-suppressor gene Patched (Ptch). Patients with NBCCS develop dozens to hundreds of BCCs due to derepression of the downstream G-protein-coupled receptor Smoothened (SMO). Ptch mutations permit transposition of SMO to the primary cilium followed by enhanced expression of transcription factors Glis that drive cell proliferation and tumor growth. Clinical trials with the SMO inhibitor, vismodegib, showed remarkable efficacy in patients with NBCCS, which finally led to its FDA approval in 2012.
Collapse
Affiliation(s)
- Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama.
| | - Changzhao Li
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Arianna L Kim
- Columbia University Medical Center, Irving Cancer Research Center, New York, New York
| | | | - David R Bickers
- Columbia University Medical Center, Irving Cancer Research Center, New York, New York
| |
Collapse
|