1
|
Valdes P, Caldwell AB, Liu Q, Fitzgerald MQ, Ramachandran S, Karch CM, Galasko DR, Yuan SH, Wagner SL, Subramaniam S. Integrative multiomics reveals common endotypes across PSEN1, PSEN2, and APP mutations in familial Alzheimer's disease. Alzheimers Res Ther 2025; 17:5. [PMID: 39754192 PMCID: PMC11699654 DOI: 10.1186/s13195-024-01659-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND PSEN1, PSEN2, and APP mutations cause Alzheimer's disease (AD) with an early age at onset (AAO) and progressive cognitive decline. PSEN1 mutations are more common and generally have an earlier AAO; however, certain PSEN1 mutations cause a later AAO, similar to those observed in PSEN2 and APP. METHODS We examined whether common disease endotypes exist across these mutations with a later AAO (~ 55 years) using hiPSC-derived neurons from familial Alzheimer's disease (FAD) patients harboring mutations in PSEN1A79V, PSEN2N141I, and APPV717I and mechanistically characterized by integrating RNA-seq and ATAC-seq. RESULTS We identified common disease endotypes, such as dedifferentiation, dysregulation of synaptic signaling, repression of mitochondrial function and metabolism, and inflammation. We ascertained the master transcriptional regulators associated with these endotypes, including REST, ASCL1, and ZIC family members (activation), and NRF1 (repression). CONCLUSIONS FAD mutations share common regulatory changes within endotypes with varying severity, resulting in reversion to a less-differentiated state. The regulatory mechanisms described offer potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Phoebe Valdes
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Bioengineering Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Andrew B Caldwell
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Qing Liu
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Present Address: Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael Q Fitzgerald
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Bioengineering Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Douglas R Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Shauna H Yuan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Present Address: N. Bud Grossman Center for Memory Research and Care, Department of Neurology, University of Minnesota, GRECC, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Steven L Wagner
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
- VA San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Yan K, Zhang C, Kang J, Montenegro P, Shen J. Cortical neurodegeneration caused by Psen1 mutations is independent of Aβ. Proc Natl Acad Sci U S A 2024; 121:e2409343121. [PMID: 39136994 PMCID: PMC11348310 DOI: 10.1073/pnas.2409343121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Mutations in the PSEN genes are the major cause of familial Alzheimer's disease, and presenilin (PS) is the catalytic subunit of γ-secretase, which cleaves type I transmembrane proteins, including the amyloid precursor protein (APP) to release Aβ peptides. While PS plays an essential role in the protection of neuronal survival, PSEN mutations also increase the ratio of Aβ42/Aβ40. Thus, it remains unresolved whether PSEN mutations cause AD via a loss of its essential function or increases of Aβ42/Aβ40. Here, we test whether the knockin (KI) allele of Psen1 L435F, the most severe FAD mutation located closest to the active site of γ-secretase, causes age-dependent cortical neurodegeneration independent of Aβ by crossing various Psen mutant mice to the App-null background. We report that removing Aβ completely through APP deficiency has no impact on the age-dependent neurodegeneration in Psen mutant mice, as shown by the absence of effects on the reduced cortical volume and decreases of cortical neurons at the ages of 12 and 18 mo. The L435F KI allele increases Aβ42/Aβ40 in the cerebral cortex while decreasing de novo production and steady-state levels of Aβ42 and Aβ40 in the presence of APP. Furthermore, APP deficiency does not alleviate elevated apoptotic cell death in the cerebral cortex of Psen mutant mice at the ages of 2, 12, and 18 mo, nor does it affect the progressive microgliosis in these mice. Our findings demonstrate that Psen1 mutations cause age-dependent neurodegeneration independent of Aβ, providing further support for a loss-of-function pathogenic mechanism underlying PSEN mutations.
Collapse
Affiliation(s)
- Kuo Yan
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Chen Zhang
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Jongkyun Kang
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Paola Montenegro
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Jie Shen
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
- Program in Neuroscience, Harvard Medical School, Boston, MA02115
| |
Collapse
|
3
|
Ghatak S, Diedrich JK, Talantova M, Bhadra N, Scott H, Sharma M, Albertolle M, Schork NJ, Yates JR, Lipton SA. Single-Cell Patch-Clamp/Proteomics of Human Alzheimer's Disease iPSC-Derived Excitatory Neurons Versus Isogenic Wild-Type Controls Suggests Novel Causation and Therapeutic Targets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400545. [PMID: 38773714 PMCID: PMC11304297 DOI: 10.1002/advs.202400545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/03/2024] [Indexed: 05/24/2024]
Abstract
Standard single-cell (sc) proteomics of disease states inferred from multicellular organs or organoids cannot currently be related to single-cell physiology. Here, a scPatch-Clamp/Proteomics platform is developed on single neurons generated from hiPSCs bearing an Alzheimer's disease (AD) genetic mutation and compares them to isogenic wild-type controls. This approach provides both current and voltage electrophysiological data plus detailed proteomics information on single-cells. With this new method, the authors are able to observe hyperelectrical activity in the AD hiPSC-neurons, similar to that observed in the human AD brain, and correlate it to ≈1400 proteins detected at the single neuron level. Using linear regression and mediation analyses to explore the relationship between the abundance of individual proteins and the neuron's mutational and electrophysiological status, this approach yields new information on therapeutic targets in excitatory neurons not attainable by traditional methods. This combined patch-proteomics technique creates a new proteogenetic-therapeutic strategy to correlate genotypic alterations to physiology with protein expression in single-cells.
Collapse
Affiliation(s)
- Swagata Ghatak
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Present address:
School of Biological SciencesNational Institute of Science Education and Research (NISER)‐Bhubaneswar, an OCC of Homi Bhabha National InstituteJataniOdisha752050India
| | - Jolene K. Diedrich
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Maria Talantova
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Nivedita Bhadra
- Quantitative Medicine and Systems BiologyThe Translational Genomics Research InstitutePhoenixAZ85004USA
| | - Henry Scott
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Meetal Sharma
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Matthew Albertolle
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Present address:
Drug Metabolism and Pharmacokinetics DepartmentTakeda Development Center AmericasSan DiegoCA92121USA
| | - Nicholas J. Schork
- Quantitative Medicine and Systems BiologyThe Translational Genomics Research InstitutePhoenixAZ85004USA
| | - John R. Yates
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Stuart A. Lipton
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Department of NeurosciencesSchool of MedicineUniversity of California, San DiegoLa JollaCA92093USA
| |
Collapse
|
4
|
Gao J, Gunasekar S, Xia ZJ, Shalin K, Jiang C, Chen H, Lee D, Lee S, Pisal ND, Luo JN, Griciuc A, Karp JM, Tanzi R, Joshi N. Gene therapy for CNS disorders: modalities, delivery and translational challenges. Nat Rev Neurosci 2024; 25:553-572. [PMID: 38898231 DOI: 10.1038/s41583-024-00829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Gene therapy is emerging as a powerful tool to modulate abnormal gene expression, a hallmark of most CNS disorders. The transformative potentials of recently approved gene therapies for the treatment of spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS) and active cerebral adrenoleukodystrophy are encouraging further development of this approach. However, most attempts to translate gene therapy to the clinic have failed to make it to market. There is an urgent need not only to tailor the genes that are targeted to the pathology of interest but to also address delivery challenges and thereby maximize the utility of genetic tools. In this Review, we provide an overview of gene therapy modalities for CNS diseases, emphasizing the interconnectedness of different delivery strategies and routes of administration. Important gaps in understanding that could accelerate the clinical translatability of CNS genetic interventions are addressed, and we present lessons learned from failed clinical trials that may guide the future development of gene therapies for the treatment and management of CNS disorders.
Collapse
Affiliation(s)
- Jingjing Gao
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA.
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA.
| | - Swetharajan Gunasekar
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ziting Judy Xia
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Kiruba Shalin
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Christopher Jiang
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Hao Chen
- Marine College, Shandong University, Weihai, China
| | - Dongtak Lee
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sohyung Lee
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nishkal D Pisal
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - James N Luo
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Ana Griciuc
- Harvard Medical School, Boston, MA, USA.
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Jeffrey M Karp
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Rudolph Tanzi
- Harvard Medical School, Boston, MA, USA.
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Nitin Joshi
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Li M, Guan M, Lin J, Zhu K, Zhu J, Guo M, Li Y, Chen Y, Chen Y, Zou Y, Wu D, Xu J, Yi W, Fan Y, Ma S, Chen Y, Xu J, Yang L, Dai J, Ye T, Lu Z, Chen Y. Early blood immune molecular alterations in cynomolgus monkeys with a PSEN1 mutation causing familial Alzheimer's disease. Alzheimers Dement 2024; 20:5492-5510. [PMID: 38973166 PMCID: PMC11350033 DOI: 10.1002/alz.14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION More robust non-human primate models of Alzheimer's disease (AD) will provide new opportunities to better understand the pathogenesis and progression of AD. METHODS We designed a CRISPR/Cas9 system to achieve precise genomic deletion of exon 9 in cynomolgus monkeys using two guide RNAs targeting the 3' and 5' intron sequences of PSEN1 exon 9. We performed biochemical, transcriptome, proteome, and biomarker analyses to characterize the cellular and molecular dysregulations of this non-human primate model. RESULTS We observed early changes of AD-related pathological proteins (cerebrospinal fluid Aβ42 and phosphorylated tau) in PSEN1 mutant (ie, PSEN1-ΔE9) monkeys. Blood transcriptome and proteome profiling revealed early changes in inflammatory and immune molecules in juvenile PSEN1-ΔE9 cynomolgus monkeys. DISCUSSION PSEN1 mutant cynomolgus monkeys recapitulate AD-related pathological protein changes, and reveal early alterations in blood immune signaling. Thus, this model might mimic AD-associated pathogenesis and has potential utility for developing early diagnostic and therapeutic interventions. HIGHLIGHTS A dual-guide CRISPR/Cas9 system successfully mimics AD PSEN1-ΔE9 mutation by genomic excision of exon 9. PSEN1 mutant cynomolgus monkey-derived fibroblasts exhibit disrupted PSEN1 endoproteolysis and increased Aβ secretion. Blood transcriptome and proteome profiling implicate early inflammatory and immune molecular dysregulation in juvenile PSEN1 mutant cynomolgus monkeys. Cerebrospinal fluid from juvenile PSEN1 mutant monkeys recapitulates early changes of AD-related pathological proteins (increased Aβ42 and phosphorylated tau).
Collapse
Affiliation(s)
- Mengqi Li
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Mingfeng Guan
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research Institute, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- SIAT‐HKUST Joint Laboratory for Brain ScienceChinese Academy of SciencesShenzhenChina
| | - Jianbang Lin
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen Key Laboratory for Molecular Biology of Neural DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kaichuan Zhu
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen Key Laboratory for Molecular Biology of Neural DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Jiayi Zhu
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research Institute, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Ming Guo
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen Key Laboratory for Molecular Biology of Neural DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Yinhu Li
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- SIAT‐HKUST Joint Laboratory for Brain ScienceChinese Academy of SciencesShenzhenChina
| | - Yefei Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen Key Laboratory for Molecular Biology of Neural DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Yijing Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- SIAT‐HKUST Joint Laboratory for Brain ScienceChinese Academy of SciencesShenzhenChina
| | - Ying Zou
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Daiqiang Wu
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Junxin Xu
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen Key Laboratory for Molecular Biology of Neural DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Wanying Yi
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research Institute, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Yingying Fan
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- SIAT‐HKUST Joint Laboratory for Brain ScienceChinese Academy of SciencesShenzhenChina
| | - Shuangshuang Ma
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research Institute, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Yuewen Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research Institute, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- SIAT‐HKUST Joint Laboratory for Brain ScienceChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jun Xu
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Lixin Yang
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen Key Laboratory for Molecular Biology of Neural DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ji Dai
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen Key Laboratory for Molecular Biology of Neural DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Tao Ye
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research Institute, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- SIAT‐HKUST Joint Laboratory for Brain ScienceChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhonghua Lu
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen Key Laboratory for Molecular Biology of Neural DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
- The Key Laboratory of Biomedical Imaging Science and SystemChinese Academy of SciencesShenzhenChina
| | - Yu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research Institute, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- SIAT‐HKUST Joint Laboratory for Brain ScienceChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
6
|
Genoyer E, Wilson J, Ames JM, Stokes C, Moreno D, Etzyon N, Oberst A, Gale M. Exposure of negative-sense viral RNA in the cytoplasm initiates innate immunity to West Nile virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597966. [PMID: 38895355 PMCID: PMC11185705 DOI: 10.1101/2024.06.07.597966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
For many RNA viruses, immunity is triggered when RIG-I-like receptors (RLRs) detect viral RNA. However, only a minority of infected cells undergo innate immune activation. By examining these "first responder" cells during West Nile virus infection, we found that specific accumulation of anti- genomic negative-sense viral RNA (-vRNA) underlies innate immune activation and that RIG-I preferentially interacts with -vRNA. However, flaviviruses sequester -vRNA into membrane-bound replication compartments away from cytosolic sensors. We found that single-stranded -vRNA accumulates outside of replication compartments in "first responder" cells, rendering it accessible to RLRs. Exposure of this -vRNA occurs at late timepoints of infection, is linked to viral assembly, and depends on the expression of viral structural proteins. These findings reveal that while most infected cells replicate high levels of vRNA, release of -vRNA from replication compartments during assembly occurs at low frequency and is critical for initiation of innate immunity during flavivirus infection.
Collapse
|
7
|
Kang J, Zhang C, Wang Y, Peng J, Berger B, Perrimon N, Shen J. Lipophorin receptors genetically modulate neurodegeneration caused by reduction of Psn expression in the aging Drosophila brain. Genetics 2024; 226:iyad202. [PMID: 37996068 PMCID: PMC10763532 DOI: 10.1093/genetics/iyad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023] Open
Abstract
Mutations in the Presenilin (PSEN) genes are the most common cause of early-onset familial Alzheimer's disease (FAD). Studies in cell culture, in vitro biochemical systems, and knockin mice showed that PSEN mutations are loss-of-function mutations, impairing γ-secretase activity. Mouse genetic analysis highlighted the importance of Presenilin (PS) in learning and memory, synaptic plasticity and neurotransmitter release, and neuronal survival, and Drosophila studies further demonstrated an evolutionarily conserved role of PS in neuronal survival during aging. However, molecular pathways that interact with PS in neuronal survival remain unclear. To identify genetic modifiers that modulate PS-dependent neuronal survival, we developed a new DrosophilaPsn model that exhibits age-dependent neurodegeneration and increases of apoptosis. Following a bioinformatic analysis, we tested top ranked candidate genes by selective knockdown (KD) of each gene in neurons using two independent RNAi lines in Psn KD models. Interestingly, 4 of the 9 genes enhancing neurodegeneration in Psn KD flies are involved in lipid transport and metabolism. Specifically, neuron-specific KD of lipophorin receptors, lpr1 and lpr2, dramatically worsens neurodegeneration in Psn KD flies, and overexpression of lpr1 or lpr2 does not alleviate Psn KD-induced neurodegeneration. Furthermore, lpr1 or lpr2 KD alone also leads to neurodegeneration, increased apoptosis, climbing defects, and shortened lifespan. Lastly, heterozygotic deletions of lpr1 and lpr2 or homozygotic deletions of lpr1 or lpr2 similarly lead to age-dependent neurodegeneration and further exacerbate neurodegeneration in Psn KD flies. These findings show that LpRs modulate Psn-dependent neuronal survival and are critically important for neuronal integrity in the aging brain.
Collapse
Affiliation(s)
- Jongkyun Kang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chen Zhang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yuhao Wang
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jian Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Jie Shen
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Sun X, Zhang W. Alzheimer's Disease from Modeling to Mechanism Research. ADVANCES IN NEUROBIOLOGY 2024; 41:153-170. [PMID: 39589714 DOI: 10.1007/978-3-031-69188-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
As our population continues to age, the search for effective therapeutic strategies to combat neurodegenerative diseases, particularly Alzheimer's disease (AD), has become more pressing than ever. For over a decade, researchers have focused on the amyloid cascade hypothesis in their pursuit of new drugs for AD. However, with numerous drugs targeting this hypothesis failing in clinical trials, it is clear that AD's pathogenesis is complex, and each individual may display significant heterogeneity. Consequently, treatment has shifted to focus on multiple targets and early AD detection. Furthermore, there is an urgent need to develop new models that address the shortcomings of current rodent models, which have species differences. The organoid model, a newly developed model, appears to be the future direction, but it must overcome some system immaturity problems.
Collapse
Affiliation(s)
- Xiaoyan Sun
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Beijing, China.
- China National Center for Bioinformation, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Rodriguez-Jimenez FJ, Ureña-Peralta J, Jendelova P, Erceg S. Alzheimer's disease and synapse Loss: What can we learn from induced pluripotent stem Cells? J Adv Res 2023; 54:105-118. [PMID: 36646419 DOI: 10.1016/j.jare.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/21/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Synaptic dysfunction is a major contributor to Alzheimeŕs disease (AD) pathogenesis in addition to the formation of neuritic β-amyloid plaques and neurofibrillary tangles of hyperphosphorylated Tau protein. However, how these features contribute to synaptic dysfunction and axonal loss remains unclear. While years of considerable effort have been devoted to gaining an improved understanding of this devastating disease, the unavailability of patient-derived tissues, considerable genetic heterogeneity, and lack of animal models that faithfully recapitulate human AD have hampered the development of effective treatment options. Ongoing progress in human induced pluripotent stem cell (hiPSC) technology has permitted the derivation of patient- and disease-specific stem cells with unlimited self-renewal capacity. These cells can differentiate into AD-affected cell types, which support studies of disease mechanisms, drug discovery, and the development of cell replacement therapies in traditional and advanced cell culture models. AIM OF REVIEW To summarize current hiPSC-based AD models, highlighting the associated achievements and challenges with a primary focus on neuron and synapse loss. KEY SCIENTIFIC CONCEPTS OF REVIEW We aim to identify how hiPSC models can contribute to understanding AD-associated synaptic dysfunction and axonal loss. hiPSC-derived neural cells, astrocytes, and microglia, as well as more sophisticated cellular organoids, may represent reliable models to investigate AD and identify early markers of AD-associated neural degeneration.
Collapse
Affiliation(s)
- Francisco Javier Rodriguez-Jimenez
- Stem Cell Therapies in Neurodegenerative Diseases Lab., Centro de Investigación Principe Felipe (CIPF), c/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| | - Juan Ureña-Peralta
- Stem Cell Therapies in Neurodegenerative Diseases Lab., Centro de Investigación Principe Felipe (CIPF), c/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| | - Pavla Jendelova
- Institute of Experimental Medicine, Department of Neuroregeneration, Czech Academy of Science, Prague, Czech Republic.
| | - Slaven Erceg
- Stem Cell Therapies in Neurodegenerative Diseases Lab., Centro de Investigación Principe Felipe (CIPF), c/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Institute of Experimental Medicine, Department of Neuroregeneration, Czech Academy of Science, Prague, Czech Republic; National Stem Cell Bank-Valencia Node, Centro de Investigacion Principe Felipe, c/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| |
Collapse
|
10
|
Montenegro P, Chen P, Kang J, Lee SH, Leone S, Shen J. Human Presenilin-1 delivered by AAV9 rescues impaired γ-secretase activity, memory deficits, and neurodegeneration in Psen mutant mice. Proc Natl Acad Sci U S A 2023; 120:e2306714120. [PMID: 37816062 PMCID: PMC10589670 DOI: 10.1073/pnas.2306714120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
Mutations in the Presenilin (PSEN1 and PSEN2) genes are the major cause of early-onset familial Alzheimer's disease (FAD). Presenilin (PS) is the catalytic subunit of the γ-secretase complex, which cleaves type I transmembrane proteins, such as Notch and the amyloid precursor protein (APP), and plays an evolutionarily conserved role in the protection of neuronal survival during aging. FAD PSEN1 mutations exhibit impaired γ-secretase activity in cell culture, in vitro, and knockin (KI) mouse brains, and the L435F mutation is the most severe in reducing γ-secretase activity and is located closest to the active site of γ-secretase. Here, we report that introduction of the codon-optimized wild-type human PSEN1 cDNA by adeno-associated virus 9 (AAV9) results in broadly distributed, sustained, low to moderate levels of human PS1 (hPS1) expression and rescues impaired γ-secretase activity in the cerebral cortex of Psen mutant mice either lacking PS or expressing the Psen1 L435F KI allele, as evaluated by endogenous γ-secretase substrates of APP and recombinant γ-secretase products of Notch intracellular domain and Aβ peptides. Furthermore, introduction of hPS1 by AAV9 alleviates impairments of synaptic plasticity and learning and memory in Psen mutant mice. Importantly, AAV9 delivery of hPS1 ameliorates neurodegeneration in the cerebral cortex of aged Psen mutant mice, as shown by the reversal of age-dependent loss of cortical neurons and elevated microgliosis and astrogliosis. These results together show that moderate hPS1 expression by AAV9 is sufficient to rescue impaired γ-secretase activity, synaptic and memory deficits, and neurodegeneration caused by Psen mutations in mouse models.
Collapse
Affiliation(s)
- Paola Montenegro
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA02115
| | - Phoenix Chen
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA02115
| | - Jongkyun Kang
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA02115
| | - Sang Hun Lee
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA02115
| | - Sofia Leone
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA02115
| | - Jie Shen
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA02115
- Program in Neuroscience, Harvard Medical School, Boston, MA02115
| |
Collapse
|
11
|
Fukuda H, Mizuguchi T, Doi H, Kameyama S, Kunii M, Joki H, Takahashi T, Komiya H, Sasaki M, Miyaji Y, Ohori S, Koshimizu E, Uchiyama Y, Tsuchida N, Fujita A, Hamanaka K, Misawa K, Miyatake S, Tanaka F, Matsumoto N. Long-read sequencing revealing intragenic deletions in exome-negative spastic paraplegias. J Hum Genet 2023; 68:689-697. [PMID: 37308565 DOI: 10.1038/s10038-023-01170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/01/2023] [Accepted: 06/04/2023] [Indexed: 06/14/2023]
Abstract
Hereditary spastic paraplegias (HSPs) are a heterogeneous group of neurodegenerative disorders characterized by progressive spasticity and weakness in the lower extremities. To date, a total of 88 types of SPG are known. To diagnose HSP, multiple technologies, including microarray, direct sequencing, multiplex ligation-dependent probe amplification, and short-read next-generation sequencing, are often chosen based on the frequency of HSP subtypes. Exome sequencing (ES) is commonly used. We used ES to analyze ten cases of HSP from eight families. We identified pathogenic variants in three cases (from three different families); however, we were unable to determine the cause of the other seven cases using ES. We therefore applied long-read sequencing to the seven undetermined HSP cases (from five families). We detected intragenic deletions within the SPAST gene in four families, and a deletion within PSEN1 in the remaining family. The size of the deletion ranged from 4.7 to 12.5 kb and involved 1-7 exons. All deletions were entirely included in one long read. We retrospectively performed an ES-based copy number variation analysis focusing on pathogenic deletions, but were not able to accurately detect these deletions. This study demonstrated the efficiency of long-read sequencing in detecting intragenic pathogenic deletions in ES-negative HSP patients.
Collapse
Affiliation(s)
- Hiromi Fukuda
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan.
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Shinichi Kameyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
- Department of Pathology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Misako Kunii
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Hideto Joki
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
- Department of Neurology, National Hospital Organization Yokohama Medical Center, Yokohama, Kanagawa, 245-8575, Japan
| | - Tatsuya Takahashi
- Department of Neurology, National Hospital Organization Yokohama Medical Center, Yokohama, Kanagawa, 245-8575, Japan
| | - Hiroyasu Komiya
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Mei Sasaki
- Department of Neurology, Yokohama Minami Kyosai Hospital, Yokohama, 236-0037, Japan
| | - Yosuke Miyaji
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Sachiko Ohori
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, 236-0004, Japan
- Department of Genetics, Kitasato University Hospital, Sagamihara, 252-0375, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, 236-0004, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, 236-0004, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Kazuharu Misawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
- RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, 236-0004, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan.
| |
Collapse
|
12
|
Kong F, Wu T, Dai J, Zhai Z, Cai J, Zhu Z, Xu Y, Sun T. Glucagon-like peptide 1 (GLP-1) receptor agonists in experimental Alzheimer's disease models: a systematic review and meta-analysis of preclinical studies. Front Pharmacol 2023; 14:1205207. [PMID: 37771725 PMCID: PMC10525376 DOI: 10.3389/fphar.2023.1205207] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative disease of the nervous system. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs), a drug used to treat type 2 diabetes, have been shown to have neuroprotective effects. This systematic review and meta-analysis evaluated the effects and potential mechanisms of GLP-1 RAs in AD animal models. 26 studies were included by searching relevant studies from seven databases according to a predefined search strategy and inclusion criteria. Methodological quality was assessed using SYRCLE's risk of bias tool, and statistical analysis was performed using ReviewManger 5.3. The results showed that, in terms of behavioral tests, GLP-1 RAs could improve the learning and memory abilities of AD rodents; in terms of pathology, GLP-1 RAs could reduce Aβ deposition and phosphorylated tau levels in the brains of AD rodents. The therapeutic potential of GLP-1 RAs in AD involves a range of mechanisms that work synergistically to enhance the alleviation of various pathological manifestations associated with the condition. A total of five clinical trials were retrieved from ClinicalTrials.gov. More large-scale and high-quality preclinical trials should be conducted to more accurately assess the therapeutic effects of GLP-1 RAs on AD.
Collapse
Affiliation(s)
- Fanjing Kong
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianyu Wu
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingyi Dai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenwei Zhai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Cai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhishan Zhu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Sun
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Banerjee R, Gunawardena S. Glycogen synthase kinase 3β (GSK3β) and presenilin (PS) are key regulators of kinesin-1-mediated cargo motility within axons. Front Cell Dev Biol 2023; 11:1202307. [PMID: 37363727 PMCID: PMC10288942 DOI: 10.3389/fcell.2023.1202307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
It has been a quarter century since the discovery that molecular motors are phosphorylated, but fundamental questions still remain as to how specific kinases contribute to particular motor functions, particularly in vivo, and to what extent these processes have been evolutionarily conserved. Such questions remain largely unanswered because there is no cohesive strategy to unravel the likely complex spatial and temporal mechanisms that control motility in vivo. Since diverse cargoes are transported simultaneously within cells and along narrow long neurons to maintain intracellular processes and cell viability, and disruptions in these processes can lead to cancer and neurodegeneration, there is a critical need to better understand how kinases regulate molecular motors. Here, we review our current understanding of how phosphorylation can control kinesin-1 motility and provide evidence for a novel regulatory mechanism that is governed by a specific kinase, glycogen synthase kinase 3β (GSK3β), and a scaffolding protein presenilin (PS).
Collapse
Affiliation(s)
- Rupkatha Banerjee
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, United States
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
14
|
Avramouli A, Krokidis MG, Exarchos TP, Vlamos P. Protein Structure Prediction for Disease-Related Insertions/Deletions in Presenilin 1 Gene. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1423:31-40. [PMID: 37525031 DOI: 10.1007/978-3-031-31978-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
More than 450 mutations, some of which have unknown toxicity, have been reported in the presenilin 1 gene, which is the most common cause of Alzheimer's disease (AD) with an early onset. PSEN1 mutations are thought to be responsible for approximately 80% of cases of monogenic AD, which are characterized by complete penetrance and an early age of onset. It is still unknown exactly how mutations in the presenilin 1 gene can cause dementia and neurodegeneration; however, both conditions have been linked to these changes. In this chapter, well-known computational analysis servers and accessible databases such as Uniprot, iTASSER, and PDBeFold are examined for their ability to predict the functional domains of mutant proteins and quantify the effect that these mutations have on the three-dimensional structure of the protein.
Collapse
Affiliation(s)
- Antigoni Avramouli
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, Corfu, Greece
| | - Marios G Krokidis
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, Corfu, Greece
| | - Themis P Exarchos
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, Corfu, Greece
| | - Panagiotis Vlamos
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, Corfu, Greece.
| |
Collapse
|
15
|
Giallongo S, Lo Re O, Resnick I, Raffaele M, Vinciguerra M. Gene Editing and Human iPSCs in Cardiovascular and Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:275-298. [DOI: 10.1007/978-981-19-5642-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
16
|
Young JE, Goldstein LSB. Human-Induced Pluripotent Stem Cell (hiPSC)-Derived Neurons and Glia for the Elucidation of Pathogenic Mechanisms in Alzheimer's Disease. Methods Mol Biol 2023; 2561:105-133. [PMID: 36399267 DOI: 10.1007/978-1-0716-2655-9_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder and a mechanistically complex disease. For the last decade, human models of AD using induced pluripotent stem cells (iPSCs) have emerged as a powerful way to understand disease pathogenesis in relevant human cell types. In this review, we summarize the state of the field and how this technology can apply to studies of both familial and sporadic studies of AD. We discuss patient-derived iPSCs, genome editing, differentiation of neural cell types, and three-dimensional organoids, and speculate on the future of this type of work for increasing our understanding of, and improving therapeutic development for, this devastating disease.
Collapse
Affiliation(s)
- Jessica E Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA. .,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| | - Lawrence S B Goldstein
- Department of Cellular and Molecular Medicine, Department of Neurosciences, UC San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| |
Collapse
|
17
|
Kepp KP, Sensi SL, Johnsen KB, Barrio JR, Høilund-Carlsen PF, Neve RL, Alavi A, Herrup K, Perry G, Robakis NK, Vissel B, Espay AJ. The Anti-Amyloid Monoclonal Antibody Lecanemab: 16 Cautionary Notes. J Alzheimers Dis 2023; 94:497-507. [PMID: 37334596 DOI: 10.3233/jad-230099] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
After the CLARITY-AD clinical trial results of lecanemab were interpreted as positive, and supporting the amyloid hypothesis, the drug received accelerated Food and Drug Administration approval. However, we argue that benefits of lecanemab treatment are uncertain and may yield net harm for some patients, and that the data do not support the amyloid hypothesis. We note potential biases from inclusion, unblinding, dropouts, and other issues. Given substantial adverse effects and subgroup heterogeneity, we conclude that lecanemab's efficacy is not clinically meaningful, consistent with numerous analyses suggesting that amyloid-β and its derivatives are not the main causative agents of Alzheimer's disease dementia.
Collapse
Affiliation(s)
- Kasper P Kepp
- Department of Chemistry, Section of Biophysical and Biomedicinal Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stefano L Sensi
- Center for Advanced Studies and Technology - CAST, and Institute for Advanced Biotechnology (ITAB), University G. d'Annunzio of Chieti-Pescara, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Kasper B Johnsen
- Department of Health Science and Technology, Neurobiology Research and Drug Delivery Group, Aalborg University, Aalborg, Denmark
| | - Jorge R Barrio
- Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, CA, USA
| | - Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Rachael L Neve
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA USA
| | - Karl Herrup
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Nikolaos K Robakis
- Icahn School of Medicine at Mount Sinai Medical Center, New York, NY, USA
| | - Bryce Vissel
- St Vincent's Hospital Centre for Applied Medical Research, St Vincent's Hospital, Darlinghurst, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Alberto J Espay
- Department of Neurology, James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
18
|
Jäntti H, Oksanen M, Kettunen P, Manta S, Mouledous L, Koivisto H, Ruuth J, Trontti K, Dhungana H, Keuters M, Weert I, Koskuvi M, Hovatta I, Linden AM, Rampon C, Malm T, Tanila H, Koistinaho J, Rolova T. Human PSEN1 Mutant Glia Improve Spatial Learning and Memory in Aged Mice. Cells 2022; 11:cells11244116. [PMID: 36552881 PMCID: PMC9776487 DOI: 10.3390/cells11244116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The PSEN1 ΔE9 mutation causes a familial form of Alzheimer's disease (AD) by shifting the processing of amyloid precursor protein (APP) towards the generation of highly amyloidogenic Aβ42 peptide. We have previously shown that the PSEN1 ΔE9 mutation in human-induced pluripotent stem cell (iPSC)-derived astrocytes increases Aβ42 production and impairs cellular responses. Here, we injected PSEN1 ΔE9 mutant astrosphere-derived glial progenitors into newborn mice and investigated mouse behavior at the ages of 8, 12, and 16 months. While we did not find significant behavioral changes in younger mice, spatial learning and memory were paradoxically improved in 16-month-old PSEN1 ΔE9 glia-transplanted male mice as compared to age-matched isogenic control-transplanted animals. Memory improvement was associated with lower levels of soluble, but not insoluble, human Aβ42 in the mouse brain. We also found a decreased engraftment of PSEN1 ΔE9 mutant cells in the cingulate cortex and significant transcriptional changes in both human and mouse genes in the hippocampus, including the extracellular matrix-related genes. Overall, the presence of PSEN1 ΔE9 mutant glia exerted a more beneficial effect on aged mouse brain than the isogenic control human cells likely as a combination of several factors.
Collapse
Affiliation(s)
- Henna Jäntti
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Broad Institute, Cambridge, MA 02142, USA
| | - Minna Oksanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Pinja Kettunen
- Neuroscience Center, HILIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Stella Manta
- Centre de Recherches sur la Cognition Animale (CRCA), Université de Toulouse, CNRS, UPS, CEDEX 09, 31062 Toulouse, France
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Lionel Mouledous
- Centre de Recherches sur la Cognition Animale (CRCA), Université de Toulouse, CNRS, UPS, CEDEX 09, 31062 Toulouse, France
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Hennariikka Koivisto
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Johanna Ruuth
- Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Kalevi Trontti
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Department of Psychology and Logopedics, University of Helsinki, 00014 Helsinki, Finland
| | - Hiramani Dhungana
- Neuroscience Center, HILIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Meike Keuters
- Neuroscience Center, HILIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Isabelle Weert
- Neuroscience Center, HILIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Marja Koskuvi
- Neuroscience Center, HILIFE, University of Helsinki, 00014 Helsinki, Finland
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Solna, Sweden
| | - Iiris Hovatta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Department of Psychology and Logopedics, University of Helsinki, 00014 Helsinki, Finland
| | - Anni-Maija Linden
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Université de Toulouse, CNRS, UPS, CEDEX 09, 31062 Toulouse, France
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Heikki Tanila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jari Koistinaho
- Neuroscience Center, HILIFE, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: (J.K.); (T.R.)
| | - Taisia Rolova
- Neuroscience Center, HILIFE, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: (J.K.); (T.R.)
| |
Collapse
|
19
|
Jordà‐Siquier T, Petrel M, Kouskoff V, Smailovic U, Cordelières F, Frykman S, Müller U, Mulle C, Barthet G. APP accumulates with presynaptic proteins around amyloid plaques: A role for presynaptic mechanisms in Alzheimer's disease? Alzheimers Dement 2022; 18:2099-2116. [PMID: 35076178 PMCID: PMC9786597 DOI: 10.1002/alz.12546] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/21/2021] [Accepted: 10/25/2021] [Indexed: 01/31/2023]
Abstract
In Alzheimer's disease (AD), the distribution of the amyloid precursor protein (APP) and its fragments other than amyloid beta, has not been fully characterized. Here, we investigate the distribution of APP and its fragments in human AD brain samples and in mouse models of AD in reference to its proteases, synaptic proteins, and histopathological features characteristic of the AD brain, by combining an extensive set of histological and analytical tools. We report that the prominent somatic distribution of APP observed in control patients remarkably vanishes in human AD patients to the benefit of dense accumulations of extra-somatic APP, which surround dense-core amyloid plaques enriched in APP-Nter. These features are accentuated in patients with familial forms of the disease. Importantly, APP accumulations are enriched in phosphorylated tau and presynaptic proteins whereas they are depleted of post-synaptic proteins suggesting that the extra-somatic accumulations of APP are of presynaptic origin. Ultrastructural analyses unveil that APP concentrates in autophagosomes and in multivesicular bodies together with presynaptic vesicle proteins. Altogether, alteration of APP distribution and its accumulation together with presynaptic proteins around dense-core amyloid plaques is a key histopathological feature in AD, lending support to the notion that presynaptic failure is a strong physiopathological component of AD.
Collapse
Affiliation(s)
- Tomàs Jordà‐Siquier
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Melina Petrel
- University Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4BordeauxFrance
| | - Vladimir Kouskoff
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Una Smailovic
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetSolnaSweden
| | - Fabrice Cordelières
- University Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4BordeauxFrance
| | - Susanne Frykman
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetSolnaSweden
| | - Ulrike Müller
- Institute for Pharmacy and Molecular BiotechnologyHeidelbergGermany
| | - Christophe Mulle
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Gaël Barthet
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| |
Collapse
|
20
|
Genetics, Functions, and Clinical Impact of Presenilin-1 (PSEN1) Gene. Int J Mol Sci 2022; 23:ijms231810970. [PMID: 36142879 PMCID: PMC9504248 DOI: 10.3390/ijms231810970] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/29/2022] Open
Abstract
Presenilin-1 (PSEN1) has been verified as an important causative factor for early onset Alzheimer's disease (EOAD). PSEN1 is a part of γ-secretase, and in addition to amyloid precursor protein (APP) cleavage, it can also affect other processes, such as Notch signaling, β-cadherin processing, and calcium metabolism. Several motifs and residues have been identified in PSEN1, which may play a significant role in γ-secretase mechanisms, such as the WNF, GxGD, and PALP motifs. More than 300 mutations have been described in PSEN1; however, the clinical phenotypes related to these mutations may be diverse. In addition to classical EOAD, patients with PSEN1 mutations regularly present with atypical phenotypic symptoms, such as spasticity, seizures, and visual impairment. In vivo and in vitro studies were performed to verify the effect of PSEN1 mutations on EOAD. The pathogenic nature of PSEN1 mutations can be categorized according to the ACMG-AMP guidelines; however, some mutations could not be categorized because they were detected only in a single case, and their presence could not be confirmed in family members. Genetic modifiers, therefore, may play a critical role in the age of disease onset and clinical phenotypes of PSEN1 mutations. This review introduces the role of PSEN1 in γ-secretase, the clinical phenotypes related to its mutations, and possible significant residues of the protein.
Collapse
|
21
|
Chong CM, Tan Y, Tong J, Ke M, Zhang K, Yan L, Cen X, Lu JH, Chen G, Su H, Qin D. Presenilin-1 F105C mutation leads to tau accumulation in human neurons via the Akt/mTORC1 signaling pathway. Cell Biosci 2022; 12:131. [PMID: 35965317 PMCID: PMC9375916 DOI: 10.1186/s13578-022-00874-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/07/2022] [Indexed: 11/25/2022] Open
Abstract
Background The mammalian target of rapamycin (mTOR) plays a critical role in controlling cellular homeostasis, and its dysregulation has been implicated in Alzheimer’s disease (AD). Presenilin-1 (PS1) mutations account for the most common causes of familial Alzheimer’s disease (FAD); however, whether PS1 mutation causes mTOR dysregulation in human neurons remains a key unresolved issue. Methods We generated heterozygotes and homozygotes of PS1 F105C knock-in mutation in human induced pluripotent stem cells (iPSCs) via CRISPR/Cas9/piggyback-based gene editing and differentiated them into human neurons. Secreted Aβ and tau accumulation were determined by ELISA assay, immunofluorescence staining, and western blotting analysis. mTOR signaling was evaluated by western blotting analysis, immunofluorescence staining, and co-immunoprecipitation. Autophagy/lysosome activities were determined by LC3-based assay, LysoTracker Red staining, and DQ-Red BSA staining. Results Through comparison among these isogenic neurons, PS1 F105C mutant neurons exhibited elevated Aβ and tau accumulation. In addition, we found that the response of mTORC1 to starvation decreases in PS1 F105C mutant neurons. The Akt/mTORC1/p70S6K signaling pathway remained active upon EBSS starvation, leading to the co-localization of the vast majority of mTOR with lysosomes. Consistently, PS1 F105C neurons displayed a significant decline in starvation-induced autophagy. Notably, Torin1, a mTOR inhibitor, could efficiently reduce prominent tau pathology that occurred in PS1 F105C neurons. Conclusion We demonstrate that Chinese PS1 F105C mutation causes dysregulation of mTORC1 signaling, contributing to tau accumulation in human neurons. This study on inherited FAD PS1 mutation provides unprecedented insights into our understanding of the molecular mechanisms of AD. It supports that pharmaceutical blocking of mTOR is a promising therapeutic strategy for the treatment of AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00874-8.
Collapse
|
22
|
Konstantinidis E, Molisak A, Perrin F, Streubel-Gallasch L, Fayad S, Kim DY, Petri K, Aryee MJ, Aguilar X, György B, Giedraitis V, Joung JK, Pattanayak V, Essand M, Erlandsson A, Berezovska O, Ingelsson M. CRISPR-Cas9 treatment partially restores amyloid-β 42/40 in human fibroblasts with the Alzheimer's disease PSEN 1 M146L mutation. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:450-461. [PMID: 35505961 PMCID: PMC9043867 DOI: 10.1016/j.omtn.2022.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/27/2022] [Indexed: 11/29/2022]
Abstract
Presenilin 1 (PS1) is a central component of γ-secretase, an enzymatic complex involved in the generation of the amyloid-β (Aβ) peptide that deposits as plaques in the Alzheimer's disease (AD) brain. The M146L mutation in the PS1 gene (PSEN1) leads to an autosomal dominant form of early-onset AD by promoting a relative increase in the generation of the more aggregation-prone Aβ42. This change is evident not only in the brain but also in peripheral cells of mutation carriers. In this study we used the CRISPR-Cas9 system from Streptococcus pyogenes to selectively disrupt the PSEN1 M146L allele in human fibroblasts. A disruption of more than 50% of mutant alleles was observed in all CRISPR-Cas9-treated samples, resulting in reduced extracellular Aβ42/40 ratios. Fluorescence resonance energy transfer-based conformation and western blot analyses indicated that CRISPR-Cas9 treatment also affects the overall PS1 conformation and reduces PS1 levels. Moreover, our guide RNA did not lead to any detectable editing at the highest-ranking candidate off-target sites identified by ONE-seq and CIRCLE-seq. Overall, our data support the effectiveness of CRISPR-Cas9 in selectively targeting the PSEN1 M146L allele and counteracting the AD-associated phenotype. We believe that this system could be developed into a therapeutic strategy for patients with this and other dominant mutations leading to early-onset AD.
Collapse
Affiliation(s)
- Evangelos Konstantinidis
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Agnieszka Molisak
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Florian Perrin
- Department of Neurology, Massachusetts General Hospital, Memory Disorders Unit, Harvard Medical School, Charlestown, MA, USA
| | - Linn Streubel-Gallasch
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Sarah Fayad
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Daniel Y. Kim
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Karl Petri
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Martin J. Aryee
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ximena Aguilar
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Bence György
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - J. Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Vikram Pattanayak
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anna Erlandsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Oksana Berezovska
- Department of Neurology, Massachusetts General Hospital, Memory Disorders Unit, Harvard Medical School, Charlestown, MA, USA
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine and Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Mishra S, Kinoshita C, Axtman AD, Young JE. Evaluation of a Selective Chemical Probe Validates That CK2 Mediates Neuroinflammation in a Human Induced Pluripotent Stem Cell-Derived Microglial Model. Front Mol Neurosci 2022; 15:824956. [PMID: 35774866 PMCID: PMC9239073 DOI: 10.3389/fnmol.2022.824956] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/20/2022] [Indexed: 01/11/2023] Open
Abstract
Novel treatments for neurodegenerative disorders are in high demand. It is imperative that new protein targets be identified to address this need. Characterization and validation of nascent targets can be accomplished very effectively using highly specific and potent chemical probes. Human induced pluripotent stem cells (hiPSCs) provide a relevant platform for testing new compounds in disease relevant cell types. However, many recent studies utilizing this platform have focused on neuronal cells. In this study, we used hiPSC-derived microglia-like cells (MGLs) to perform side-by-side testing of a selective chemical probe, SGC-CK2-1, compared with an advanced clinical candidate, CX-4945, both targeting casein kinase 2 (CK2), one of the first kinases shown to be dysregulated in Alzheimer's disease (AD). CK2 can mediate neuroinflammation in AD, however, its role in microglia, the innate immune cells of the central nervous system (CNS), has not been defined. We analyzed available RNA-seq data to determine the microglial expression of kinases inhibited by SGC-CK2-1 and CX-4945 with a reported role in mediating inflammation in glial cells. As proof-of-concept for using hiPSC-MGLs as a potential screening platform, we used both wild-type (WT) MGLs and MGLs harboring a mutation in presenilin-1 (PSEN1), which is causative for early-onset, familial AD (FAD). We stimulated these MGLs with pro-inflammatory lipopolysaccharides (LPS) derived from E. coli and observed strong inhibition of the expression and secretion of proinflammatory cytokines by simultaneous treatment with SGC-CK2-1. A direct comparison shows that SGC-CK2-1 was more effective at suppression of proinflammatory cytokines than CX-4945. Together, these results validate a selective chemical probe, SGC-CK2-1, in human microglia as a tool to reduce neuroinflammation.
Collapse
Affiliation(s)
- Swati Mishra
- Department of Laboratory Medicine and Pathology, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Chizuru Kinoshita
- Department of Laboratory Medicine and Pathology, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Alison D. Axtman
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jessica E. Young
- Department of Laboratory Medicine and Pathology, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
24
|
Utility of iPSC-Derived Cells for Disease Modeling, Drug Development, and Cell Therapy. Cells 2022; 11:cells11111853. [PMID: 35681550 PMCID: PMC9180434 DOI: 10.3390/cells11111853] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
The advent of induced pluripotent stem cells (iPSCs) has advanced our understanding of the molecular mechanisms of human disease, drug discovery, and regenerative medicine. As such, the use of iPSCs in drug development and validation has shown a sharp increase in the past 15 years. Furthermore, many labs have been successful in reproducing many disease phenotypes, often difficult or impossible to capture, in commonly used cell lines or animal models. However, there still remain limitations such as the variability between iPSC lines as well as their maturity. Here, we aim to discuss the strategies in generating iPSC-derived cardiomyocytes and neurons for use in disease modeling, drug development and their use in cell therapy.
Collapse
|
25
|
Skobeleva KV, Ryazantseva МA, Kaznacheyeva ЕV. Increased Calcium Influx through L-Type Calcium Channels in Hippocampal Neurons with Exogenous Expression of Presenilin-1 ΔE9 Mutant. Bull Exp Biol Med 2022; 172:785-788. [PMID: 35503587 DOI: 10.1007/s10517-022-05478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 10/18/2022]
Abstract
Mutations in the PSEN1 gene encoding presenilin-1 (PS1) protein are the most common cause of familial Alzheimer's disease. One of these, deletion of exon 9, results in the production of shortened PS1 protein (PS1ΔE9). Neuronal hyperexcitability and hyperactivation of L-type calcium channels were observed in cellular and animal models of familial Alzheimer's disease. However, the effect of PS1ΔE9 on L-type calcium channels has not been studied before. We demonstrate enhanced calcium entry through L-type calcium channels in hippocampal mouse neurons with exogenous expression of PS1ΔE9. Additionally, we show that the same effect of the exogenous PS1ΔE9 can be observed in cells with predominant expression of L-type calcium channels subunit Cav1.2. Further research is required to unravel molecular mechanisms underlying hyperactivation L-type calcium channels caused by PS1ΔE9 expression.
Collapse
Affiliation(s)
- K V Skobeleva
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.
| | | | - Е V Kaznacheyeva
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
26
|
Greenough MA, Lane DJR, Balez R, Anastacio HTD, Zeng Z, Ganio K, McDevitt CA, Acevedo K, Belaidi AA, Koistinaho J, Ooi L, Ayton S, Bush AI. Selective ferroptosis vulnerability due to familial Alzheimer’s disease presenilin mutations. Cell Death Differ 2022; 29:2123-2136. [PMID: 35449212 PMCID: PMC9613996 DOI: 10.1038/s41418-022-01003-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 12/24/2022] Open
Abstract
AbstractMutations in presenilin 1 and 2 (PS1 and PS2) cause autosomal dominant familial Alzheimer’s disease (FAD). Ferroptosis has been implicated as a mechanism of neurodegeneration in AD since neocortical iron burden predicts Alzheimer’s disease (AD) progression. We found that loss of the presenilins dramatically sensitizes multiple cell types to ferroptosis, but not apoptosis. FAD causal mutations of presenilins similarly sensitizes cells to ferroptosis. The presenilins promote the expression of GPX4, the selenoprotein checkpoint enzyme that blocks ferroptosis by quenching the membrane propagation of lethal hydroperoxyl radicals. Presenilin γ-secretase activity cleaves Notch-1 to signal LRP8 expression, which then controls GPX4 expression by regulating the supply of selenium into the cell since LRP8 is the uptake receptor for selenoprotein P. Selenium uptake is thus disrupted by presenilin FAD mutations, suppressing GPX4 expression. Therefore, presenilin mutations may promote neurodegeneration by derepressing ferroptosis, which has implications for disease-modifying therapeutics.
Collapse
|
27
|
Cell models for Down syndrome-Alzheimer’s disease research. Neuronal Signal 2022; 6:NS20210054. [PMID: 35449591 PMCID: PMC8996251 DOI: 10.1042/ns20210054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
Down syndrome (DS) is the most common chromosomal abnormality and leads to intellectual disability, increased risk of cardiac defects, and an altered immune response. Individuals with DS have an extra full or partial copy of chromosome 21 (trisomy 21) and are more likely to develop early-onset Alzheimer’s disease (AD) than the general population. Changes in expression of human chromosome 21 (Hsa21)-encoded genes, such as amyloid precursor protein (APP), play an important role in the pathogenesis of AD in DS (DS-AD). However, the mechanisms of DS-AD remain poorly understood. To date, several mouse models with an extra copy of genes syntenic to Hsa21 have been developed to characterise DS-AD-related phenotypes. Nonetheless, due to genetic and physiological differences between mouse and human, mouse models cannot faithfully recapitulate all features of DS-AD. Cells differentiated from human-induced pluripotent stem cells (iPSCs), isolated from individuals with genetic diseases, can be used to model disease-related cellular and molecular pathologies, including DS. In this review, we will discuss the limitations of mouse models of DS and how these can be addressed using recent advancements in modelling DS using human iPSCs and iPSC-mouse chimeras, and potential applications of iPSCs in preclinical studies for DS-AD.
Collapse
|
28
|
Okano H, Morimoto S. iPSC-based disease modeling and drug discovery in cardinal neurodegenerative disorders. Cell Stem Cell 2022; 29:189-208. [PMID: 35120619 DOI: 10.1016/j.stem.2022.01.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It has been 15 years since the birth of human induced pluripotent stem cell (iPSC) technology in 2007, and the scope of its application has been expanding. In addition to the development of cell therapies using iPSC-derived cells, pathological analyses using disease-specific iPSCs and clinical trials to confirm the safety and efficacy of drugs developed using iPSCs are progressing. With the innovation of related technologies, iPSC applications are about to enter a new stage. This review outlines advances in iPSC modeling and therapeutic development for cardinal neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease.
Collapse
Affiliation(s)
- Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako-shi, Saitama 351-0198, Japan.
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
29
|
Barak M, Fedorova V, Pospisilova V, Raska J, Vochyanova S, Sedmik J, Hribkova H, Klimova H, Vanova T, Bohaciakova D. Human iPSC-Derived Neural Models for Studying Alzheimer's Disease: from Neural Stem Cells to Cerebral Organoids. Stem Cell Rev Rep 2022; 18:792-820. [PMID: 35107767 PMCID: PMC8930932 DOI: 10.1007/s12015-021-10254-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 12/05/2022]
Abstract
During the past two decades, induced pluripotent stem cells (iPSCs) have been widely used to study mechanisms of human neural development, disease modeling, and drug discovery in vitro. Especially in the field of Alzheimer’s disease (AD), where this treatment is lacking, tremendous effort has been put into the investigation of molecular mechanisms behind this disease using induced pluripotent stem cell-based models. Numerous of these studies have found either novel regulatory mechanisms that could be exploited to develop relevant drugs for AD treatment or have already tested small molecules on in vitro cultures, directly demonstrating their effect on amelioration of AD-associated pathology. This review thus summarizes currently used differentiation strategies of induced pluripotent stem cells towards neuronal and glial cell types and cerebral organoids and their utilization in modeling AD and potential drug discovery.
Collapse
Affiliation(s)
- Martin Barak
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Veronika Fedorova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Veronika Pospisilova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Jan Raska
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Simona Vochyanova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Jiri Sedmik
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
- International Clinical Research Center, St. Anne's Faculty Hospital Brno, Brno, Czech Republic
| | - Hana Hribkova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Hana Klimova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Tereza Vanova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
- International Clinical Research Center, St. Anne's Faculty Hospital Brno, Brno, Czech Republic
| | - Dasa Bohaciakova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's Faculty Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
30
|
Patient-Specific iPSCs-Based Models of Neurodegenerative Diseases: Focus on Aberrant Calcium Signaling. Int J Mol Sci 2022; 23:ijms23020624. [PMID: 35054808 PMCID: PMC8776084 DOI: 10.3390/ijms23020624] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
The development of cell reprogramming technologies became a breakthrough in the creation of new models of human diseases, including neurodegenerative pathologies. The iPSCs-based models allow for the studying of both hereditary and sporadic cases of pathologies and produce deep insight into the molecular mechanisms underlying neurodegeneration. The use of the cells most vulnerable to a particular pathology makes it possible to identify specific pathological mechanisms and greatly facilitates the task of selecting the most effective drugs. To date, a large number of studies on patient-specific models of neurodegenerative diseases has been accumulated. In this review, we focused on the alterations of such a ubiquitous and important intracellular regulatory pathway as calcium signaling. Here, we reviewed and analyzed the data obtained from iPSCs-based models of different neurodegenerative disorders that demonstrated aberrant calcium signaling.
Collapse
|
31
|
Ghatak S, Dolatabadi N, Gao R, Wu Y, Scott H, Trudler D, Sultan A, Ambasudhan R, Nakamura T, Masliah E, Talantova M, Voytek B, Lipton SA. NitroSynapsin ameliorates hypersynchronous neural network activity in Alzheimer hiPSC models. Mol Psychiatry 2021; 26:5751-5765. [PMID: 32467645 PMCID: PMC7704704 DOI: 10.1038/s41380-020-0776-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022]
Abstract
Beginning at early stages, human Alzheimer's disease (AD) brains manifest hyperexcitability, contributing to subsequent extensive synapse loss, which has been linked to cognitive dysfunction. No current therapy for AD is disease-modifying. Part of the problem with AD drug discovery is that transgenic mouse models have been poor predictors of potential human treatment. While it is undoubtedly important to test drugs in these animal models, additional evidence for drug efficacy in a human context might improve our chances of success. Accordingly, in order to test drugs in a human context, we have developed a platform of physiological assays using patch-clamp electrophysiology, calcium imaging, and multielectrode array (MEA) experiments on human (h)iPSC-derived 2D cortical neuronal cultures and 3D cerebral organoids. We compare hiPSCs bearing familial AD mutations vs. their wild-type (WT) isogenic controls in order to characterize the aberrant electrical activity in such a human context. Here, we show that these AD neuronal cultures and organoids manifest increased spontaneous action potentials, slow oscillatory events (~1 Hz), and hypersynchronous network activity. Importantly, the dual-allosteric NMDAR antagonist NitroSynapsin, but not the FDA-approved drug memantine, abrogated this hyperactivity. We propose a novel model of synaptic plasticity in which aberrant neural networks are rebalanced by NitroSynapsin. We propose that hiPSC models may be useful for screening drugs to treat hyperexcitability and related synaptic damage in AD.
Collapse
Affiliation(s)
- Swagata Ghatak
- Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA
| | - Nima Dolatabadi
- Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA
| | - Richard Gao
- Cognitive Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yin Wu
- Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Henry Scott
- Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Dorit Trudler
- Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA
| | - Abdullah Sultan
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA
| | - Rajesh Ambasudhan
- Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA
| | - Tomohiro Nakamura
- Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Eliezer Masliah
- Department of Pathology, University of California, San Diego, La Jolla, CA, 92093, USA.,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.,National Institute on Aging, NIH, Bethesda, MD, 20892, USA
| | - Maria Talantova
- Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA
| | - Bradley Voytek
- Cognitive Science, University of California, San Diego, La Jolla, CA, 92093, USA.,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.,Kavli Institute of Brain and Mind and Halicioglu Data Science Institute, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Stuart A Lipton
- Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA. .,Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA. .,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
32
|
Han J, Park H, Maharana C, Gwon AR, Park J, Baek SH, Bae HG, Cho Y, Kim HK, Sul JH, Lee J, Kim E, Kim J, Cho Y, Park S, Palomera LF, Arumugam TV, Mattson MP, Jo DG. Alzheimer's disease-causing presenilin-1 mutations have deleterious effects on mitochondrial function. Am J Cancer Res 2021; 11:8855-8873. [PMID: 34522215 PMCID: PMC8419044 DOI: 10.7150/thno.59776] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial dysfunction and oxidative stress are frequently observed in the early stages of Alzheimer's disease (AD). Studies have shown that presenilin-1 (PS1), the catalytic subunit of γ-secretase whose mutation is linked to familial AD (FAD), localizes to the mitochondrial membrane and regulates its homeostasis. Thus, we investigated how five PS1 mutations (A431E, E280A, H163R, M146V, and Δexon9) observed in FAD affect mitochondrial functions. Methods: We used H4 glioblastoma cell lines genetically engineered to inducibly express either the wild-type PS1 or one of the five PS1 mutants in order to examine mitochondrial morphology, dynamics, membrane potential, ATP production, mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), oxidative stress, and bioenergetics. Furthermore, we used brains of PS1M146V knock-in mice, 3xTg-AD mice, and human AD patients in order to investigate the role of PS1 in regulating MAMs formation. Results: Each PS1 mutant exhibited slightly different mitochondrial dysfunction. Δexon9 mutant induced mitochondrial fragmentation while A431E, E280A, H163R, and M146V mutants increased MAMs formation. A431E, E280A, M146V, and Δexon9 mutants also induced mitochondrial ROS production. A431E mutant impaired both complex I and peroxidase activity while M146V mutant only impaired peroxidase activity. All PS1 mutants compromised mitochondrial membrane potential and cellular ATP levels were reduced by A431E, M146V, and Δexon9 mutants. Through comparative profiling of hippocampal gene expression in PS1M146V knock-in mice, we found that PS1M146V upregulates Atlastin 2 (ATL2) expression level, which increases ER-mitochondria contacts. Down-regulation of ATL2 after PS1 mutant induction rescued abnormally elevated ER-mitochondria interactions back to the normal level. Moreover, ATL2 expression levels were significantly elevated in the brains of 3xTg-AD mice and AD patients. Conclusions: Overall, our findings suggest that each of the five FAD-linked PS1 mutations has a deleterious effect on mitochondrial functions in a variety of ways. The adverse effects of PS1 mutations on mitochondria may contribute to MAMs formation and oxidative stress resulting in an accelerated age of disease onset in people harboring mutant PS1.
Collapse
|
33
|
Mertens J, Herdy JR, Traxler L, Schafer ST, Schlachetzki JCM, Böhnke L, Reid DA, Lee H, Zangwill D, Fernandes DP, Agarwal RK, Lucciola R, Zhou-Yang L, Karbacher L, Edenhofer F, Stern S, Horvath S, Paquola ACM, Glass CK, Yuan SH, Ku M, Szücs A, Goldstein LSB, Galasko D, Gage FH. Age-dependent instability of mature neuronal fate in induced neurons from Alzheimer's patients. Cell Stem Cell 2021; 28:1533-1548.e6. [PMID: 33910058 PMCID: PMC8423435 DOI: 10.1016/j.stem.2021.04.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/17/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Sporadic Alzheimer's disease (AD) exclusively affects elderly people. Using direct conversion of AD patient fibroblasts into induced neurons (iNs), we generated an age-equivalent neuronal model. AD patient-derived iNs exhibit strong neuronal transcriptome signatures characterized by downregulation of mature neuronal properties and upregulation of immature and progenitor-like signaling pathways. Mapping iNs to longitudinal neuronal differentiation trajectory data demonstrated that AD iNs reflect a hypo-mature neuronal identity characterized by markers of stress, cell cycle, and de-differentiation. Epigenetic landscape profiling revealed an underlying aberrant neuronal state that shares similarities with malignant transformation and age-dependent epigenetic erosion. To probe for the involvement of aging, we generated rejuvenated iPSC-derived neurons that showed no significant disease-related transcriptome signatures, a feature that is consistent with epigenetic clock and brain ontogenesis mapping, which indicate that fibroblast-derived iNs more closely reflect old adult brain stages. Our findings identify AD-related neuronal changes as age-dependent cellular programs that impair neuronal identity.
Collapse
Affiliation(s)
- Jerome Mertens
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA; Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol, Austria.
| | - Joseph R Herdy
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA; Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol, Austria; Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Larissa Traxler
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA; Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol, Austria
| | - Simon T Schafer
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Lena Böhnke
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA; Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol, Austria
| | - Dylan A Reid
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Hyungjun Lee
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Dina Zangwill
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Diana P Fernandes
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ravi K Agarwal
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Raffaella Lucciola
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lucia Zhou-Yang
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol, Austria
| | - Lukas Karbacher
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol, Austria
| | - Frank Edenhofer
- Department of Genomics, Stem Cells & Regenerative Medicine, Institute of Molecular Biology, CMBI, Institute of Molecular Biology and CMBI, Leopold-Franzens-University Innsbruck, Tyrol, Austria
| | - Shani Stern
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA; Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Steve Horvath
- Department of Human Genetics, Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Apua C M Paquola
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA; Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Shauna H Yuan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; University of Minnesota, Twin Cities, Department of Neurology, Minneapolis, MN, USA
| | - Manching Ku
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Attila Szücs
- Neuronal Cell Biology Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Lawrence S B Goldstein
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
34
|
Trudler D, Ghatak S, Lipton SA. Emerging hiPSC Models for Drug Discovery in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:8196. [PMID: 34360966 PMCID: PMC8347370 DOI: 10.3390/ijms22158196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases affect millions of people worldwide and are characterized by the chronic and progressive deterioration of neural function. Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), represent a huge social and economic burden due to increasing prevalence in our aging society, severity of symptoms, and lack of effective disease-modifying therapies. This lack of effective treatments is partly due to a lack of reliable models. Modeling neurodegenerative diseases is difficult because of poor access to human samples (restricted in general to postmortem tissue) and limited knowledge of disease mechanisms in a human context. Animal models play an instrumental role in understanding these diseases but fail to comprehensively represent the full extent of disease due to critical differences between humans and other mammals. The advent of human-induced pluripotent stem cell (hiPSC) technology presents an advantageous system that complements animal models of neurodegenerative diseases. Coupled with advances in gene-editing technologies, hiPSC-derived neural cells from patients and healthy donors now allow disease modeling using human samples that can be used for drug discovery.
Collapse
Affiliation(s)
- Dorit Trudler
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (D.T.); (S.G.)
| | - Swagata Ghatak
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (D.T.); (S.G.)
| | - Stuart A. Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (D.T.); (S.G.)
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
35
|
Elsworthy RJ, King MC, Grainger A, Fisher E, Crowe JA, Alqattan S, Ludlam A, Hill DEJ, Aldred S. Amyloid-β precursor protein processing and oxidative stress are altered in human iPSC-derived neuron and astrocyte co-cultures carrying presenillin-1 gene mutations following spontaneous differentiation. Mol Cell Neurosci 2021; 114:103631. [PMID: 34022327 DOI: 10.1016/j.mcn.2021.103631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Presenilin-1 (PSEN1) gene mutations are the most common cause of familial Alzheimer's disease (fAD) and are known to interfere with activity of the membrane imbedded γ-secretase complex. PSEN1 mutations have been shown to shift Amyloid-β precursor protein (AβPP) processing toward amyloid-β (Aβ) 1-42 production. However, less is known about whether PSEN1 mutations may alter the activity of enzymes such as ADAM10, involved with non-amyloidogenic AβPP processing, and markers of oxidative stress. MATERIALS AND METHODS Control and PSEN1 mutation (L286V and R278I) Human Neural Stem Cells were spontaneously differentiated into neuron and astrocyte co-cultures. Cell lysates and culture media were collected and stored at -80 °C until further analysis. ADAM10 protein expression, the ratio of AβPP forms and Aβ1-42/40 were assessed. In addition, cellular redox status was quantified. RESULTS The ratio of AβPP isoforms (130:110kDa) was significantly reduced in neuron and astrocyte co-cultures carrying PSEN1 gene mutations compared to control, and mature ADAM10 expression was lower in these cells. sAβPP-α was also significantly reduced in L286V mutation, but not in the R278I mutation cells. Both Aβ1-40 and Aβ1-42 were increased in conditioned cell media from L286V cells, however, this was not matched in R278I cells. The Aβ1-42:40 ratio was significantly elevated in R278I cells. Markers of protein carbonylation and lipid peroxidation were altered in both l286V and R278I mutations. Antioxidant status was significantly lower in R278I cells compared to control cells. CONCLUSIONS This data provides evidence that the PSEN1 mutations L286V and R278I significantly alter protein expression associated with AβPP processing and cellular redox status. In addition, this study highlights the potential for iPSC-derived neuron and astrocyte co-cultures to be used as an early human model of fAD.
Collapse
Affiliation(s)
- Richard J Elsworthy
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK; Centre for Human Brain Health (CHBH), University of Birmingham, Edgbaston, Birmingham, UK
| | - Marianne C King
- Aston Research Centre for Healthy Ageing (ARCHA), School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Alastair Grainger
- Aston Research Centre for Healthy Ageing (ARCHA), School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Emily Fisher
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - James A Crowe
- Aston Research Centre for Healthy Ageing (ARCHA), School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Sarah Alqattan
- Aston Research Centre for Healthy Ageing (ARCHA), School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Adele Ludlam
- Aston Research Centre for Healthy Ageing (ARCHA), School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Dr Eric J Hill
- Aston Research Centre for Healthy Ageing (ARCHA), School of Life and Health Sciences, Aston University, Birmingham, UK.
| | - Sarah Aldred
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK; Centre for Human Brain Health (CHBH), University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
36
|
Goto-Silva L, Martins M, Murillo JR, Souza LRQ, Vitória G, Oliveira JT, Nascimento JM, Loiola EC, Nogueira FCS, Domont GB, Guimarães MZP, Tovar-Moll F, Rehen SK, Junqueira M. Quantitative profiling of axonal guidance proteins during the differentiation of human neurospheres. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140656. [PMID: 33857633 DOI: 10.1016/j.bbapap.2021.140656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022]
Abstract
Axon guidance is required for the establishment of brain circuits. Whether much of the molecular basis of axon guidance is known from animal models, the molecular machinery coordinating axon growth and pathfinding in humans remains to be elucidated. The use of induced pluripotent stem cells (iPSC) from human donors has revolutionized in vitro studies of the human brain. iPSC can be differentiated into neuronal stem cells which can be used to generate neural tissue-like cultures, known as neurospheres, that reproduce, in many aspects, the cell types and molecules present in the brain. Here, we analyzed quantitative changes in the proteome of neurospheres during differentiation. Relative quantification was performed at early time points during differentiation using iTRAQ-based labeling and LC-MS/MS analysis. We identified 6438 proteins, from which 433 were downregulated and 479 were upregulated during differentiation. We show that human neurospheres have a molecular profile that correlates to the fetal brain. During differentiation, upregulated pathways are related to neuronal development and differentiation, cell adhesion, and axonal guidance whereas cell proliferation pathways were downregulated. We developed a functional assay to check for neurite outgrowth in neurospheres and confirmed that neurite outgrowth potential is increased after 10 days of differentiation and is enhanced by increasing cyclic AMP levels. The proteins identified here represent a resource to monitor neurosphere differentiation and coupled to the neurite outgrowth assay can be used to functionally explore neurological disorders using human neurospheres as a model.
Collapse
Affiliation(s)
- Livia Goto-Silva
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30 - Botafogo, Rio de Janeiro, RJ 22281-100, Brazil
| | - Michele Martins
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149 - bloco A 5° andar - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909, Brazil
| | - Jimmy Rodriguez Murillo
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149 - bloco A 5° andar - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909, Brazil
| | - Leticia R Q Souza
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30 - Botafogo, Rio de Janeiro, RJ 22281-100, Brazil
| | - Gabriela Vitória
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30 - Botafogo, Rio de Janeiro, RJ 22281-100, Brazil
| | - Júlia T Oliveira
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30 - Botafogo, Rio de Janeiro, RJ 22281-100, Brazil
| | - Juliana M Nascimento
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30 - Botafogo, Rio de Janeiro, RJ 22281-100, Brazil; Department of Biosciences, Institute Science and Society, Federal University of São Paulo (Unifesp), Rua Silva Jardim, 136, Santos, SP 11015-020, Brazil
| | - Erick Correia Loiola
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30 - Botafogo, Rio de Janeiro, RJ 22281-100, Brazil
| | - Fabio C S Nogueira
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149 - bloco A 5° andar - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909, Brazil
| | - Gilberto B Domont
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149 - bloco A 5° andar - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909, Brazil
| | - Marília Zaluar P Guimarães
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30 - Botafogo, Rio de Janeiro, RJ 22281-100, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rua Manoel Frota Moreira - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Fernanda Tovar-Moll
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30 - Botafogo, Rio de Janeiro, RJ 22281-100, Brazil
| | - Stevens Kastrup Rehen
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30 - Botafogo, Rio de Janeiro, RJ 22281-100, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rua Manoel Frota Moreira - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil.
| | - Magno Junqueira
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149 - bloco A 5° andar - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909, Brazil.
| |
Collapse
|
37
|
CRISPR-activated patient fibroblasts for modeling of familial Alzheimer's disease. Neurosci Res 2021; 172:7-12. [PMID: 33819561 DOI: 10.1016/j.neures.2021.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
Analyzing an appropriate disease model system is important to conduct disease research. Analyzing cells obtained from patient tissues could not only help elucidate the pathological mechanisms and to develop novel therapy but also lead to personalized medicine in the future. However, it is generally difficult to collect and culture neuronal cells from patients suffering from neurodegenerative disorders. Skin fibroblasts are easier to collect than neurons but may not show the expected pathology when disease-relevant genes are not sufficiently expressed. In this article, I describe an in vitro model system that enables the facile analysis of neurological disease mechanisms in patient fibroblast cultures by CRISPR transcriptional activation of endogenous disease-relevant genes. This system introduces an additional platform to analyze neurodegenerative disorders.
Collapse
|
38
|
Frankowski H, Yeboah F, Berry BJ, Kinoshita C, Lee M, Evitts K, Davis J, Kinoshita Y, Morrison RS, Young JE. Knock-Down of HDAC2 in Human Induced Pluripotent Stem Cell Derived Neurons Improves Neuronal Mitochondrial Dynamics, Neuronal Maturation and Reduces Amyloid Beta Peptides. Int J Mol Sci 2021; 22:ijms22052526. [PMID: 33802405 PMCID: PMC7959288 DOI: 10.3390/ijms22052526] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylase 2 (HDAC2) is a major HDAC protein in the adult brain and has been shown to regulate many neuronal genes. The aberrant expression of HDAC2 and subsequent dysregulation of neuronal gene expression is implicated in neurodegeneration and brain aging. Human induced pluripotent stem cell-derived neurons (hiPSC-Ns) are widely used models for studying neurodegenerative disease mechanisms, but the role of HDAC2 in hiPSC-N differentiation and maturation has not been explored. In this study, we show that levels of HDAC2 progressively decrease as hiPSCs are differentiated towards neurons. This suppression of HDAC2 inversely corresponds to an increase in neuron-specific isoforms of Endophilin-B1, a multifunctional protein involved in mitochondrial dynamics. Expression of neuron-specific isoforms of Endophilin-B1 is accompanied by concomitant expression of a neuron-specific alternative splicing factor, SRRM4. Manipulation of HDAC2 and Endophilin-B1 using lentiviral approaches shows that the knock-down of HDAC2 or the overexpression of a neuron-specific Endophilin-B1 isoform promotes mitochondrial elongation and protects against cytotoxic stress in hiPSC-Ns, while HDAC2 knock-down specifically influences genes regulating mitochondrial dynamics and synaptogenesis. Furthermore, HDAC2 knock-down promotes enhanced mitochondrial respiration and reduces levels of neurotoxic amyloid beta peptides. Collectively, our study demonstrates a role for HDAC2 in hiPSC-neuronal differentiation, highlights neuron-specific isoforms of Endophilin-B1 as a marker of differentiating hiPSC-Ns and demonstrates that HDAC2 regulates key neuronal and mitochondrial pathways in hiPSC-Ns.
Collapse
Affiliation(s)
- Harald Frankowski
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (H.F.); (F.Y.); (B.J.B.); (C.K.); (M.L.); (K.E.); (J.D.); (Y.K.)
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Fred Yeboah
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (H.F.); (F.Y.); (B.J.B.); (C.K.); (M.L.); (K.E.); (J.D.); (Y.K.)
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
| | - Bonnie J. Berry
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (H.F.); (F.Y.); (B.J.B.); (C.K.); (M.L.); (K.E.); (J.D.); (Y.K.)
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Chizuru Kinoshita
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (H.F.); (F.Y.); (B.J.B.); (C.K.); (M.L.); (K.E.); (J.D.); (Y.K.)
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Michelle Lee
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (H.F.); (F.Y.); (B.J.B.); (C.K.); (M.L.); (K.E.); (J.D.); (Y.K.)
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Kira Evitts
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (H.F.); (F.Y.); (B.J.B.); (C.K.); (M.L.); (K.E.); (J.D.); (Y.K.)
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Joshua Davis
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (H.F.); (F.Y.); (B.J.B.); (C.K.); (M.L.); (K.E.); (J.D.); (Y.K.)
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Yoshito Kinoshita
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (H.F.); (F.Y.); (B.J.B.); (C.K.); (M.L.); (K.E.); (J.D.); (Y.K.)
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Richard S. Morrison
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA;
| | - Jessica E. Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (H.F.); (F.Y.); (B.J.B.); (C.K.); (M.L.); (K.E.); (J.D.); (Y.K.)
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Correspondence:
| |
Collapse
|
39
|
Flexible and Accurate Substrate Processing with Distinct Presenilin/γ-Secretases in Human Cortical Neurons. eNeuro 2021; 8:ENEURO.0500-20.2021. [PMID: 33608391 PMCID: PMC7932187 DOI: 10.1523/eneuro.0500-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 01/10/2023] Open
Abstract
Mutations in the presenilin genes (PS1, PS2) have been linked to the majority of familial Alzheimer’s disease (AD). Although great efforts have been made to investigate pathogenic PS mutations, which ultimately cause an increase in the toxic form of β-amyloid (Aβ), the intrinsic physiological functions of PS in human neurons remain to be determined. In this study, to investigate the physiological roles of PS in human neurons, we generated PS1 conditional knock-out (KO) induced pluripotent stem cells (iPSCs), in which PS1 can be selectively abrogated under Cre transduction with or without additional PS2 KO. We showed that iPSC-derived neural progenitor cells (NPCs) do not confer a maintenance ability in the absence of both PS1 and PS2, showing the essential role of PS in Notch signaling. We then generated PS-null human cortical neurons, where PS1 was intact until full neuronal differentiation occurred. Aβ40 production was reduced exclusively in human PS1/PS2-null neurons along with a concomitant accumulation of amyloid β precursor protein (APP)-C-terminal fragments CTFs, whereas Aβ42 was decreased in neurons devoid of PS2. Unlike previous studies in mice, in which APP cleavage is largely attributable to PS1, γ-secretase activity seemed to be comparable between PS1 and PS2. In contrast, cleavage of another substrate, N-cadherin, was impaired only in neurons devoid of PS1. Moreover, PS2/γ-secretase exists largely in late endosomes/lysosomes, as measured by specific antibody against the γ-secretase complex, in which Aβ42 species are supposedly produced. Using this novel stem cell-based platform, we assessed important physiological PS1/PS2 functions in mature human neurons, the dysfunction of which could underlie AD pathogenesis.
Collapse
|
40
|
Arber C, Alatza A, Leckey CA, Paterson RW, Zetterberg H, Wray S. Mass spectrometry analysis of tau and amyloid-beta in iPSC-derived models of Alzheimer's disease and dementia. J Neurochem 2021; 159:305-317. [PMID: 33539581 PMCID: PMC8613538 DOI: 10.1111/jnc.15315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Induced pluripotent stem cell (iPSC) technology enables the generation of human neurons in vitro, which contain the precise genome of the cell donor, therefore permitting the generation of disease models from individuals with a disease-associated genotype of interest. This approach has been extensively used to model inherited forms of Alzheimer's disease and frontotemporal dementia. The combination of iPSC-derived neuronal models with targeted mass spectrometry analysis has provided unprecedented insights into the regulation of specific proteins in human neuronal physiology and pathology. For example enabling investigations into tau and APP/Aβ, specifically: protein isoform expression, relative levels of cleavage fragments, aggregated species and functionally critical post-translational modifications. The use of mass spectrometry has enabled a determination of how closely iPSC-derived models recapitulate disease profiles observed in the human brain. This review will highlight the progress to date in studies using iPSCs and mass spectrometry to model Alzheimer's disease and dementia. We go on to convey our optimism, as studies in the near future will make use of this precedent, together with novel techniques such as genome editing and stable isotope labelling, to provide real progress towards an in depth understanding of early neurodegenerative processes and development of novel therapeutic agents.
Collapse
Affiliation(s)
- Charles Arber
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Argyro Alatza
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Claire A Leckey
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.,Translational Mass Spectrometry Research Group, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Ross W Paterson
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Selina Wray
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
41
|
Amponsah AE, Guo R, Kong D, Feng B, He J, Zhang W, Liu X, Du X, Ma Z, Liu B, Ma J, Cui H. Patient-derived iPSCs, a reliable in vitro model for the investigation of Alzheimer's disease. Rev Neurosci 2021; 32:379-402. [PMID: 33550785 DOI: 10.1515/revneuro-2020-0065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/07/2020] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and a common cause of dementia among elderly individuals. The disease is characterized by progressive cognitive decline, accumulation of senile amyloid plaques and neurofibrillary tangles, oxidative stress, and inflammation. Human-derived cell models of AD are scarce, and over the years, non-human-derived models have been developed to recapitulate clinical AD, investigate the disease's pathogenesis and develop therapies for the disease. Several pharmacological compounds have been developed for AD based on findings from non-human-derived cell models; however, these pharmacological compounds have failed at different phases of clinical trials. This necessitates the application of human-derived cell models, such as induced pluripotent stem cells (iPSCs) in their optimized form in AD mechanistic studies and preclinical drug testing. This review provides an overview of AD and iPSCs. The AD-relevant phenotypes of iPSC-derived AD brain cells and the usefulness of iPSCs in AD are highlighted. Finally, the various recommendations that have been made to enhance iPSC/AD modelling are discussed.
Collapse
Affiliation(s)
- Asiamah Ernest Amponsah
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Ruiyun Guo
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Desheng Kong
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Baofeng Feng
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Jingjing He
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Wei Zhang
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Xin Liu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Xiaofeng Du
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Zhenhuan Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Boxin Liu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Jun Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China.,Human Anatomy Department, Hebei Medical University, Shijiazhuang, Hebei Province050017, China
| | - Huixian Cui
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China.,Human Anatomy Department, Hebei Medical University, Shijiazhuang, Hebei Province050017, China
| |
Collapse
|
42
|
Cenini G, Hebisch M, Iefremova V, Flitsch LJ, Breitkreuz Y, Tanzi RE, Kim DY, Peitz M, Brüstle O. Dissecting Alzheimer's disease pathogenesis in human 2D and 3D models. Mol Cell Neurosci 2021; 110:103568. [DOI: 10.1016/j.mcn.2020.103568] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
|
43
|
Ayton S, Bush AI. β-amyloid: The known unknowns. Ageing Res Rev 2021; 65:101212. [PMID: 33188924 DOI: 10.1016/j.arr.2020.101212] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) stands out as a major disease without any form of preventative or disease modifying therapy. This is not for lack of trying. 33 phase 3 clinical trials of drugs targeting amyloid beta (Aβ) have failed to slow cognitive decline in AD. The field is at a cross-roads about whether to continue anti-Aβ therapy or more actively pursue alternative targets. With the burden of this disease to patients, families, and healthcare budgets growing yearly, the need for disease modifying AD therapies has become one of the highest priorities in all of medicine. While pathology, genetic and biochemical data offer a popular narrative for the causative role of Aβ, there are alternative explanations, and dissenting findings that, now more than ever, warrant thorough reanalysis. This review questions the major assumptions about Aβ on which therapies for AD were premised, and invites renewed interrogation into AD pathogenesis.
Collapse
Affiliation(s)
- Scott Ayton
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3052, Australia.
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
44
|
D’Souza GX, Rose SE, Knupp A, Nicholson DA, Keene CD, Young JE. The application of in vitro-derived human neurons in neurodegenerative disease modeling. J Neurosci Res 2021; 99:124-140. [PMID: 32170790 PMCID: PMC7487003 DOI: 10.1002/jnr.24615] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 02/02/2023]
Abstract
The development of safe and effective treatments for age-associated neurodegenerative disorders is an on-going challenge faced by the scientific field. Key to the development of such therapies is the appropriate selection of modeling systems in which to investigate disease mechanisms and to test candidate interventions. There are unique challenges in the development of representative laboratory models of neurodegenerative diseases, including the complexity of the human brain, the cumulative and variable contributions of genetic and environmental factors over the course of a lifetime, inability to culture human primary neurons, and critical central nervous system differences between small animal models and humans. While traditional rodent models have advanced our understanding of neurodegenerative disease mechanisms, key divergences such as the species-specific genetic background can limit the application of animal models in many cases. Here we review in vitro human neuronal systems that employ stem cell and reprogramming technology and their application to a range of neurodegenerative diseases. Specifically, we compare human-induced pluripotent stem cell-derived neurons to directly converted, or transdifferentiated, induced neurons, as both model systems can take advantage of patient-derived human tissue to produce neurons in culture. We present recent technical developments using these two modeling systems, as well as current limitations to these systems, with the aim of advancing investigation of neuropathogenic mechanisms using these models.
Collapse
Affiliation(s)
- Gary X. D’Souza
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Shannon E. Rose
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Allison Knupp
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Daniel A. Nicholson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - C. Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Jessica E. Young
- Department of Pathology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine (ISCRM), University of Washington, Seattle, WA, USA
| |
Collapse
|
45
|
Caldwell AB, Liu Q, Schroth GP, Galasko DR, Yuan SH, Wagner SL, Subramaniam S. Dedifferentiation and neuronal repression define familial Alzheimer's disease. SCIENCE ADVANCES 2020; 6:6/46/eaba5933. [PMID: 33188013 PMCID: PMC7673760 DOI: 10.1126/sciadv.aba5933] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/23/2020] [Indexed: 05/05/2023]
Abstract
Identifying the systems-level mechanisms that lead to Alzheimer's disease, an unmet need, is an essential step toward the development of therapeutics. In this work, we report that the key disease-causative mechanisms, including dedifferentiation and repression of neuronal identity, are triggered by changes in chromatin topology. Here, we generated human induced pluripotent stem cell (hiPSC)-derived neurons from donor patients with early-onset familial Alzheimer's disease (EOFAD) and used a multiomics approach to mechanistically characterize the modulation of disease-associated gene regulatory programs. We demonstrate that EOFAD neurons dedifferentiate to a precursor-like state with signatures of ectoderm and nonectoderm lineages. RNA-seq, ATAC-seq, and ChIP-seq analysis reveals that transcriptional alterations in the cellular state are orchestrated by changes in histone methylation and chromatin topology. Furthermore, we demonstrate that these mechanisms are observed in EOFAD-patient brains, validating our hiPSC-derived neuron models. The mechanistic endotypes of Alzheimer's disease uncovered here offer key insights for therapeutic interventions.
Collapse
Affiliation(s)
- Andrew B Caldwell
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Qing Liu
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | | | - Douglas R Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Shauna H Yuan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Steven L Wagner
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, La Jolla, CA, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
46
|
Woodruff G, Phillips N, Carromeu C, Guicherit O, White A, Johnson M, Zanella F, Anson B, Lovenberg T, Bonaventure P, Harrington AW. Screening for modulators of neural network activity in 3D human iPSC-derived cortical spheroids. PLoS One 2020; 15:e0240991. [PMID: 33091047 PMCID: PMC7581002 DOI: 10.1371/journal.pone.0240991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 10/06/2020] [Indexed: 11/30/2022] Open
Abstract
Human induced Pluripotent Stem Cells (iPSCs) are a powerful tool to dissect the biology of complex human cell types such as those of the central nervous system (CNS). However, robust, high-throughput platforms for reliably measuring activity in human iPSC-derived neuronal cultures are lacking. Here, we assessed 3D cultures of cortical neurons and astrocytes displaying spontaneous, rhythmic, and highly synchronized neural activity that can be visualized as calcium oscillations on standard high-throughput fluorescent readers as a platform for CNS-based discovery efforts. Spontaneous activity and spheroid structure were highly consistent from well-to-well, reference compounds such as TTX, 4-AP, AP5, and NBQX, had expected effects on neural spontaneous activity, demonstrating the presence of functionally integrated neuronal circuitry. Neurospheroid biology was challenged by screening the LOPAC®1280 library, a collection of 1280 pharmacologically active small molecules. The primary screen identified 111 compounds (8.7%) that modulated neural network activity across a wide range of neural and cellular processes and 16 of 17 compounds chosen for follow-up confirmed the primary screen results. Together, these data demonstrate the suitability and utility of human iPSC-derived neurospheroids as a screening platform for CNS-based drug discovery.
Collapse
Affiliation(s)
- Grace Woodruff
- Neuroscience Discovery, Janssen Research and Development, LLC., San Diego, California, United States of America
| | - Naomi Phillips
- Neuroscience Discovery, Janssen Research and Development, LLC., San Diego, California, United States of America
| | | | - Oivin Guicherit
- StemoniX, Inc, Maple Grove, Minnesota, United States of America
| | - Alistair White
- StemoniX, Inc, Maple Grove, Minnesota, United States of America
| | - McCay Johnson
- StemoniX, Inc, Maple Grove, Minnesota, United States of America
| | - Fabian Zanella
- StemoniX, Inc, Maple Grove, Minnesota, United States of America
| | - Blake Anson
- StemoniX, Inc, Maple Grove, Minnesota, United States of America
| | - Timothy Lovenberg
- Neuroscience Discovery, Janssen Research and Development, LLC., San Diego, California, United States of America
| | - Pascal Bonaventure
- Neuroscience Discovery, Janssen Research and Development, LLC., San Diego, California, United States of America
| | - Anthony W. Harrington
- Neuroscience Discovery, Janssen Research and Development, LLC., San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
47
|
The cellular machinery of post-endocytic APP trafficking in Alzheimer's disease: A future target for therapeutic intervention? PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 177:109-122. [PMID: 33453937 DOI: 10.1016/bs.pmbts.2020.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent data establish multiple defects in endocytic functions as early events initiating various neurodegenerative disorders, including Alzheimer's disease (AD). The genetic landscape resulting from genome-wide association studies (GWAS) reveals changes in post-endocytic trafficking of amyloid precursor protein (APP) in neurons leading to an increase in amyloidogenic processing, deficits in amyloid beta (Aβ) clearance, increases in intracellular Aβ, and other endosomal pathogenic phenotypes. Multiple genetic factors regulate each segment of endosomal and post-endosomal trafficking. Intriguingly, several studies indicate endosomal dysfunctions preceding Aβ pathology and tau phosphorylation. In this chapter we highlight the role of various GWAS-identified endosomal and post-endosomal gene products in initiating AD pathologies. We also summarize the functions of various genetic modifiers of post-endocytic trafficking of APP that may work as targets for therapeutic intervention in AD.
Collapse
|
48
|
Liu XY, Yang LP, Zhao L. Stem cell therapy for Alzheimer's disease. World J Stem Cells 2020; 12:787-802. [PMID: 32952859 PMCID: PMC7477654 DOI: 10.4252/wjsc.v12.i8.787] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and cognitive impairment. It is caused by synaptic failure and excessive accumulation of misfolded proteins. To date, almost all advanced clinical trials on specific AD-related pathways have failed mostly due to a large number of neurons lost in the brain of patients with AD. Also, currently available drug candidates intervene too late. Stem cells have improved characteristics of self-renewal, proliferation, differentiation, and recombination with the advent of stem cell technology and the transformation of these cells into different types of central nervous system neurons and glial cells. Stem cell treatment has been successful in AD animal models. Recent preclinical studies on stem cell therapy for AD have proved to be promising. Cell replacement therapies, such as human embryonic stem cells or induced pluripotent stem cell-derived neural cells, have the potential to treat patients with AD, and human clinical trials are ongoing in this regard. However, many steps still need to be taken before stem cell therapy becomes a clinically feasible treatment for human AD and related diseases. This paper reviews the pathophysiology of AD and the application prospects of related stem cells based on cell type.
Collapse
Affiliation(s)
- Xin-Yu Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Lin-Po Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
49
|
Stepanichev M. Gene Editing and Alzheimer's Disease: Is There Light at the End of the Tunnel? Front Genome Ed 2020; 2:4. [PMID: 34713213 PMCID: PMC8525398 DOI: 10.3389/fgeed.2020.00004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/04/2020] [Indexed: 12/26/2022] Open
Abstract
Alzheimer's disease continues to be a fatal, incurable neurodegenerative disease, despite many years of efforts to find approaches to its treatment. Here we review recent studies on Alzheimer's disease as a target for gene therapy and specifically, gene editing technology. We also review the opportunities and limitations of modern methods of gene therapy based on the CRISPR editing system. The opportunities of using this approach for modeling, including cellular and animal models, studying on pathogenesis and disease correction mechanisms, as well as limitations for its therapeutic use are discussed.
Collapse
Affiliation(s)
- Mikhail Stepanichev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
50
|
Polychronidou E, Avramouli A, Vlamos P. Alzheimer's Disease: The Role of Mutations in Protein Folding. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1195:227-236. [PMID: 32468481 DOI: 10.1007/978-3-030-32633-3_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Misfolded proteins result when a protein follows the wrong folding pathway. Accumulation of misfolded proteins can cause disorders, known as amyloid diseases. Unfortunately, some of them are very common. The most prevalent one is Alzheimer's disease. Alzheimer's disease is a neurodegenerative disorder and the commonest form of dementia. The current study aims to assess the impact of somatic mutations in PSEN1 gene. The said mutations are the most common cause of familial Alzheimer's disease. As protein functionality can be affected by mutations, the study of possible alterations in the tertiary structure of proteins may reveal new insights related to the relationship between mutations and protein functions. To examine the effect of mutations, the primary structures and their related mutations were retrieved from public databases. Each structure (mutated and unmutated) was predicted based on effective structure prediction methodologies. A benchmarking of the structural predictive tools was accomplished. Comparative analyses of mutated and unmutated proteins were performed based on classic bioinformatics methods (TM-Score, RMSD, etc.) as well as on established shape-based descriptors retrieved from object recognition methodologies. Unsupervised methodologies were applied to the structures, in order to identify groups of mutation with similar mutational impact. Our results provide an essential knowledge toward protein's functionality in structure-based drug design.
Collapse
|