1
|
Cheng K, Lu J, Guo J, Wang R, Chen L, Wang X, Jiang Y, Li Y, Xu C, Kang Q, Qiaerxie G, Du P, Gao C, Yu Y, Yang Z, Wang W. Characterization of neutralizing chimeric heavy-chain antibodies against tetanus toxin. Hum Vaccin Immunother 2024; 20:2366641. [PMID: 38934499 PMCID: PMC11212558 DOI: 10.1080/21645515.2024.2366641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Tetanus toxin (TeNT) is one of the most toxic proteins. Neutralizing antibodies against TeNT are effective in prevention and treatment. In this study, 14 anti-tetanus nanobodies were obtained from a phage display nanobody library by immunizing a camel with the C-terminal receptor-binding domain of TeNT (TeNT-Hc) as the antigen. After fusion with the human Fc fragment, 11 chimeric heavy-chain antibodies demonstrated nanomolar binding toward TeNT-Hc. The results of toxin neutralization experiments showed that T83-7, T83-8, and T83-13 completely protected mice against 20 × the median lethal dose (LD50) at a low concentration. The neutralizing potency of T83-7, T83-8, and T83-13 against TeNT is 0.4 IU/mg, 0.4 IU/mg and 0.2 IU/mg, respectively. In the prophylactic setting, we found that 5 mg/kg of T83-13 provided the mice with full protection from tetanus, even when they were injected 14 days before exposure to 20 × LD50 TeNT. T83-7 and T83-8 were less effective, being fully protective only when challenged 7 or 10 days before exposure, respectively. In the therapeutic setting, 12 h after exposure to TeNT, 1 ~ 5 mg/kg of T83-7, and T83-8 could provide complete protection for mice against 5 × LD50 TeNT, while 1 mg/kg T83-13 could provide complete protection 24 h after exposure to 5 × LD50 TeNT. Our results suggested that these antibodies represent prophylactic and therapeutic activities against TeNT in a mouse model. The T83-7, T83-8, and T83-13 could form the basis for the subsequent development of drugs to treat TeNT toxicity.
Collapse
Affiliation(s)
- Kexuan Cheng
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Jiansheng Lu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Jiazheng Guo
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Rong Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Lei Chen
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Xi Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Yujia Jiang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Yating Li
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Changyan Xu
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Qinglin Kang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Gulisaina Qiaerxie
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Du
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Chen Gao
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Yunzhou Yu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Zhixin Yang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Wei Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Wei Y, Li G, Wang Z, Qian K, Zhang S, Zhang L, Lei C, Hu S. Development and characterization of a novel neutralizing scFv vectored immunoprophylaxis against botulinum toxin type A. J Drug Target 2024; 32:213-222. [PMID: 38164940 DOI: 10.1080/1061186x.2023.2301418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/18/2023] [Indexed: 01/03/2024]
Abstract
Botulinum toxin is a protein toxin secreted by Clostridium botulinum that is strongly neurotoxic. Due to its characteristics of being super toxic, quick acting, and difficult to prevent, the currently reported antiviral studies focusing on monoclonal antibodies have limited effectiveness. Therefore, for the sake of effectively prevention and treatment of botulism and to maintain country biosecurity as well as the health of the population, in this study, we intend to establish a single chain antibody (scFv) targeting the carboxyl terminal binding functional domain of the botulinum neurotoxin heavy chain (BONT/AHc) of botulinum neurotoxin type A, and explore the value of a new passive immune method in antiviral research which based on adeno-associated virus (AAV) mediated vector immunoprophylaxis (VIP) strategy. The scFv small-molecular single-chain antibody sequenced, designed, constructed, expressed and purified by hybridoma has high neutralising activity and affinity level, which can lay a good foundation for the modification and development of antibody engineering drugs. In vivo experiments, AAV-mediated scFv engineering drug has good anti-BONT/A toxin neutralisation ability, has advantages of simple operation, stable expression and good efficacy, and may be one of the effective treatment strategies for long-term prevention and protection of BONT/A botulinum neurotoxin.
Collapse
Affiliation(s)
- Yongpeng Wei
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
- Hepatic Surgery Department V, The Third Affiliated Hospital, Second Military Medical University, Shanghai, China
| | - Guangyao Li
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
- Department of Biomedical Engineering, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Zhuo Wang
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
- Hepatic Surgery Department V, The Third Affiliated Hospital, Second Military Medical University, Shanghai, China
| | - Kewen Qian
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
- Department of Biomedical Engineering, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Shuyi Zhang
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Lingling Zhang
- Department of Central Laboratory, Clinical Research Center of Changhai Hospital, Shanghai, China
| | - Changhai Lei
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Shi Hu
- Department of Biomedical Engineering, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
3
|
Machicoane M, Tonellato M, Zainotto M, Onillon P, Stazi M, Corso MD, Megighian A, Rossetto O, Le Doussal JM, Pirazzini M. Excitation-contraction coupling inhibitors potentiate the actions of botulinum neurotoxin type A at the neuromuscular junction. Br J Pharmacol 2024. [PMID: 39389783 DOI: 10.1111/bph.17367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND AND PURPOSE Botulinum neurotoxin type A1 (BoNT/A) is one of the most potent neurotoxins known. At the same time, it is also one of the safest therapeutic agents used for the treatment of several human disorders and in aesthetic medicine. Notwithstanding great effectiveness, strategies to accelerate the onset and prolong BoNT/A action would significantly ameliorate its pharmacological effects with beneficial outcomes for clinical use. EXPERIMENTAL APPROACH Here, we combined BoNT/A with two fast-acting inhibitors of excitation-contraction coupling inhibitors (ECCI), either the μ-conotoxin CnIIIC or dantrolene, and tested the effect of their co-injection on a model of hind-limb paralysis in rodents using behavioural, biochemical, imaging and electrophysiological assays. KEY RESULTS The BoNT/A-ECCI combinations accelerated the onset of muscle relaxation. Surprisingly, they also potentiated the peak effect and extended the duration of the three BoNT/A commercial preparations OnabotulinumtoxinA, AbobotulinumtoxinA and IncobotulinumtoxinA. ECCI co-injection increased the number of BoNT/A molecules entering motoneuron terminals, which induced a faster and greater cleavage of SNAP-25 during the onset and peak phases, and prolonged the attenuation of nerve-muscle neurotransmission during the recovery phase. We estimate that ECCI co-injection yields a threefold potentiation in BoNT/A pharmacological activity. CONCLUSIONS AND IMPLICATIONS Overall, our results show that the pharmacological activity of BoNT/A can be combined and synergized with other bioactive molecules and uncover a novel strategy to enhance the neuromuscular effects of BoNT/A without altering the neurotoxin moiety or intrinsic activity, thus maintaining its exceptional safety profile.
Collapse
Affiliation(s)
| | - Marika Tonellato
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marica Zainotto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Marco Stazi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Mattia Dal Corso
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Aram Megighian
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Institute of Neuroscience, Italian Research Council, University of Padova, Padova, Italy
- Interdepartmental Research Center of Myology CIR-Myo, University of Padova, Padova, Italy
| | | | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Interdepartmental Research Center of Myology CIR-Myo, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Koc D, Ibis K, Besarat P, Banoglu E, Kiris E. Tirbanibulin (KX2-391) analog KX2-361 inhibits botulinum neurotoxin serotype A mediated SNAP-25 cleavage in pre- and post-intoxication models in cells. Drug Dev Res 2024; 85:e22248. [PMID: 39166850 DOI: 10.1002/ddr.22248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/11/2024] [Accepted: 08/04/2024] [Indexed: 08/23/2024]
Abstract
Botulinum neurotoxins (BoNT) inhibit neuroexocytosis, leading to the potentially lethal disease botulism. BoNT serotype A is responsible for most human botulism cases, and there are no approved therapeutics to treat already intoxicated patients. A growing body of research has demonstrated that BoNT/A can escape into the central nervous system, and therefore, identification of BoNT/A inhibitors that can penetrate BBB and neutralize the toxin within intoxicated neurons would be important. We previously identified an FDA-approved, orally bioavailable compound, KX2-391 (Tirbanibulin) that inhibits BoNT/A in motor neuron assays. Recently, a structural analog of KX2-391, KX2-361, has been shown to exhibit good oral bioavailability and cross BBB with high efficiency in mouse experiments. Therefore, in this work, we evaluated the inhibitory effects of KX2-361 against BoNT/A. Toward this goal, we first evaluated the compound for its effects on cell viability in PC12 cells, via MTT assay, and in mouse embryonic stem cell (mESC)-derived motor neurons, with imaging-based assays. Following, we tested KX2-361 in mESC-derived motor neurons intoxicated with BoNT/A holotoxin, and the compound exhibited activity against the toxin in both pre- and post-intoxication conditions. Excitingly, KX2-361 also inhibited BoNT/A enzymatic component (light chain; LC) in PC12 cells transfected with BoNT/A LC. Furthermore, our molecular docking analyses suggested that KX2-361 can directly bind to BoNT/A LC. Medicinal chemistry approaches to develop structural analogs of KX2-361 to increase its efficacy against BoNT/A may provide a critical lead compound with BBB penetration capacity for drug development efforts against BoNT/A intoxication.
Collapse
Affiliation(s)
- Dilara Koc
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Kubra Ibis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Peri Besarat
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Erkan Kiris
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| |
Collapse
|
5
|
Yeo JC, Tay FP, Bennion R, Loss O, Maignel J, Pons L, Foster K, Beard M, Bard F. Botulinum toxin intoxication requires retrograde transport and membrane translocation at the ER in RenVM neurons. eLife 2024; 12:RP92806. [PMID: 39196607 DOI: 10.7554/elife.92806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Botulinum neurotoxin A (BoNT/A) is a highly potent proteolytic toxin specific for neurons with numerous clinical and cosmetic uses. After uptake at the synapse, the protein is proposed to translocate from synaptic vesicles to the cytosol through a self-formed channel. Surprisingly, we found that after intoxication proteolysis of a fluorescent reporter occurs in the neuron soma first and then centrifugally in neurites. To investigate the molecular mechanisms at play, we use a genome-wide siRNA screen in genetically engineered neurons and identify over three hundred genes. An organelle-specific split-mNG complementation indicates BoNT/A traffic from the synapse to the soma-localized Golgi in a retromer-dependent fashion. The toxin then moves to the ER and appears to require the Sec61 complex for retro-translocation to the cytosol. Our study identifies genes and trafficking processes hijacked by the toxin, revealing a new pathway mediating BoNT/A cellular toxicity.
Collapse
Affiliation(s)
- Jeremy C Yeo
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Felicia P Tay
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Rebecca Bennion
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, Equipe Leader Fondation ARC 2021, Marseille, France
| | - Omar Loss
- Ipsen Bioinnovation, London, United Kingdom
| | | | | | | | | | - Frederic Bard
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, Equipe Leader Fondation ARC 2021, Marseille, France
| |
Collapse
|
6
|
Xu X, Zhang L, He Y, Qi C, Li F. Progress in Research on the Role of the Thioredoxin System in Chemical Nerve Injury. TOXICS 2024; 12:510. [PMID: 39058162 PMCID: PMC11280602 DOI: 10.3390/toxics12070510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
(1) Background: Various factors, such as oxidative stress, mitochondrial dysfunction, tumors, inflammation, trauma, immune disorders, and neuronal toxicity, can cause nerve damage. Chemical nerve injury, which results from exposure to toxic chemicals, has garnered increasing research attention. The thioredoxin (Trx) system, comprising Trx, Trx reductase, nicotinamide adenine dinucleotide phosphate, and Trx-interacting protein (TXNIP; endogenous Trx inhibitor), helps maintain redox homeostasis in the central nervous system. The dysregulation of this system can cause dementia, cognitive impairment, nerve conduction disorders, movement disorders, and other neurological disorders. Thus, maintaining Trx system homeostasis is crucial for preventing or treating nerve damage. (2) Objective: In this review study, we explored factors influencing the homeostasis of the Trx system and the involvement of its homeostatic imbalance in chemical nerve injury. In addition, we investigated the therapeutic potential of the Trx system-targeting active substances against chemical nerve injury. (3) Conclusions: Chemicals such as morphine, metals, and methylglyoxal interfere with the activity of TXNIP, Trx, and Trx reductase, disrupting Trx system homeostasis by affecting the phosphatidylinositol-3-kinase/protein kinase B, extracellular signal-regulated kinase, and apoptotic signaling-regulated kinase 1/p38 mitogen-activated protein kinase pathways, thereby leading to neurological disorders. Active substances such as resveratrol and lysergic acid sulfide mitigate the symptoms of chemical nerve injury by regulating the Ras/Raf1/extracellular signal-regulated kinase pathway and the miR-146a-5p/TXNIP axis. This study may guide the development of Trx-targeting modulators for treating neurological disorders and chemical nerve injuries.
Collapse
Affiliation(s)
- Xinwei Xu
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (X.X.); (L.Z.); (Y.H.)
| | - Lan Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (X.X.); (L.Z.); (Y.H.)
| | - Yuyun He
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (X.X.); (L.Z.); (Y.H.)
| | - Cong Qi
- Department of Pharmacy, Jurong People’s Hospital, Jurong 212400, China;
| | - Fang Li
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (X.X.); (L.Z.); (Y.H.)
| |
Collapse
|
7
|
Park SG, Lee HB, Kang S. Development of plug-and-deliverable intracellular protein delivery platforms based on botulinum neurotoxin. Int J Biol Macromol 2024; 261:129622. [PMID: 38266854 DOI: 10.1016/j.ijbiomac.2024.129622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Intracellular protein delivery systems have great potential in the fields of therapeutics development and biomedical research. However, targeted delivery, passing through the cell membrane without damaging the cells, and escaping from endosomal entrapment of endocytosed molecular cargos are major challenges of the system. Here, we present a novel intracellular protein delivery system based on modularly engineered botulinum neurotoxin type A (BoNT/A). LHNA domain, consisting of light chain and endosomal escape machinery of BoNT/A, was genetically fused with SpyCatcher (SC) and EGFR targeting affibody (EGFRAfb) to create SC-LHNA-EGFRAfb, a target-specific and protein cargo-switchable BoNT/A-based intracellular protein delivery platform. SC-LHNA-EGFRAfb was purely purified in large quantities, efficiently ligated with multiple ST-fused protein cargos individually, generating a variety of protein cargo-containing intracellular delivery complexes, and successfully delivered ligated protein cargos into the cytosol of target cells via receptor-mediated endocytosis, followed by endosomal escape and subsequent cytosolic delivery. SC-LHNA-EGFRAfb enhanced intracellular delivery efficiency of protein toxin, gelonin, by approximately 100-fold, highlighting the crucial roles of EGFRAfb and LHNA domain as a targeting ligand and an endosomal escape machinery, respectively, in the delivery process. The BoNT-based plug-and-deliverable intracellular protein delivery system has the potential to expand its applications in protein therapeutics and manipulating cellular processes.
Collapse
Affiliation(s)
- Seong Guk Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyun Bin Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
8
|
Leka O, Wu Y, Zanetti G, Furler S, Reinberg T, Marinho J, Schaefer JV, Plückthun A, Li X, Pirazzini M, Kammerer RA. A DARPin promotes faster onset of botulinum neurotoxin A1 action. Nat Commun 2023; 14:8317. [PMID: 38110403 PMCID: PMC10728214 DOI: 10.1038/s41467-023-44102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 11/30/2023] [Indexed: 12/20/2023] Open
Abstract
In this study, we characterize Designed Ankyrin Repeat Proteins (DARPins) as investigative tools to probe botulinum neurotoxin A1 (BoNT/A1) structure and function. We identify DARPin-F5 that completely blocks SNAP25 substrate cleavage by BoNT/A1 in vitro. X-ray crystallography reveals that DARPin-F5 inhibits BoNT/A1 activity by interacting with a substrate-binding region between the α- and β-exosite. This DARPin does not block substrate cleavage of BoNT/A3, indicating that DARPin-F5 is a subtype-specific inhibitor. BoNT/A1 Glu-171 plays a critical role in the interaction with DARPin-F5 and its mutation to Asp, the residue found in BoNT/A3, results in a loss of inhibition of substrate cleavage. In contrast to the in vitro results, DARPin-F5 promotes faster substrate cleavage of BoNT/A1 in primary neurons and muscle tissue by increasing toxin translocation. Our findings could have important implications for the application of BoNT/A1 in therapeutic areas requiring faster onset of toxin action combined with long persistence.
Collapse
Affiliation(s)
- Oneda Leka
- Laboratory of Biomolecular Research, Division of Biology, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Yufan Wu
- Laboratory of Biomolecular Research, Division of Biology, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Giulia Zanetti
- Department of Biomedical Sciences, University of Padova, 35121, Padova, Italy
| | - Sven Furler
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Thomas Reinberg
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Joana Marinho
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Jonas V Schaefer
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Xiaodan Li
- Laboratory of Biomolecular Research, Division of Biology, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, 35121, Padova, Italy
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Division of Biology, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland.
| |
Collapse
|
9
|
Intiso D, Centra AM, Gravina M, Chiaramonte A, Bartolo M, Di Rienzo F. Botulinum Toxin-A High-Dosage Effect on Functional Outcome and Spasticity-Related Pain in Subjects with Stroke. Toxins (Basel) 2023; 15:509. [PMID: 37624266 PMCID: PMC10467116 DOI: 10.3390/toxins15080509] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Stroke patients can develop spasticity and spasticity-related pain (SRP). These disorders are frequent and can contribute to functional limitations and disabling conditions. Many reports have suggested that higher doses than initially recommended of BTX-A can be used effectively and safely, especially in the case of severe spasticity; however, whether the treatment produces any benefit on the functional outcome and SRP is unclear. Studies published between January 1989 and December 2022 were retrieved from MEDLINE/PubMed, Embase, and Cochrane Central Register. Only obabotulinumtoxinA (obaBTX-A), onabotulinumtoxinA, (onaBTX-A), and incobotulinumtoxinA (incoBTX-A) were considered. The term "high dosage" indicates ≥600 U. Nine studies met the inclusion criteria. Globally, 460 subjects were treated with BTX-A high dose, and 301 suffered from stroke. Studies had variable method designs, sample sizes, and aims. Only five (55.5%) reported data about the functional outcome after BTX-A injection. Functional measures were also variable, and the improvement was observed predominantly in the disability assessment scale (DAS). SRP pain was quantified by visual analog scale (VAS) and only three studies reported the BTX-A effect. There is no scientific evidence that this therapeutic strategy unequivocally improves the functionality of the limbs. Although no clear-cut evidence emerges, certain patients with spasticity might obtain goal-oriented improvement from high-dose BTX-A. Likewise, data are insufficient to recommend high BTX dosage in SRP.
Collapse
Affiliation(s)
- Domenico Intiso
- Unit of Neuro-Rehabilitation Unit and Rehabilitation Medicine, IRCCS ‘Casa Sollievo della Sofferenza’, Viale dei Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy; (A.M.C.); (M.G.); (A.C.); (F.D.R.)
| | - Antonello Marco Centra
- Unit of Neuro-Rehabilitation Unit and Rehabilitation Medicine, IRCCS ‘Casa Sollievo della Sofferenza’, Viale dei Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy; (A.M.C.); (M.G.); (A.C.); (F.D.R.)
| | - Michele Gravina
- Unit of Neuro-Rehabilitation Unit and Rehabilitation Medicine, IRCCS ‘Casa Sollievo della Sofferenza’, Viale dei Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy; (A.M.C.); (M.G.); (A.C.); (F.D.R.)
| | - Angelo Chiaramonte
- Unit of Neuro-Rehabilitation Unit and Rehabilitation Medicine, IRCCS ‘Casa Sollievo della Sofferenza’, Viale dei Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy; (A.M.C.); (M.G.); (A.C.); (F.D.R.)
| | - Michelangelo Bartolo
- Department of Rehabilitation, Neurorehabilitation Unit, HABILITA Zingonia, Ciserano, 24040 Bergamo, Italy;
| | - Filomena Di Rienzo
- Unit of Neuro-Rehabilitation Unit and Rehabilitation Medicine, IRCCS ‘Casa Sollievo della Sofferenza’, Viale dei Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy; (A.M.C.); (M.G.); (A.C.); (F.D.R.)
| |
Collapse
|
10
|
Ambrin G, Cai S, Singh BR. Critical analysis in the advancement of cell-based assays for botulinum neurotoxin. Crit Rev Microbiol 2023; 49:1-17. [PMID: 35212259 DOI: 10.1080/1040841x.2022.2035315] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The study on botulinum neurotoxins (BoNTs) has rapidly evolved for their structure and functions as opposed to them being poisons or cures. Since their discoveries, the scientific community has come a long way in understanding BoNTs' structure and biological activity. Given its current application as a tool for understanding neurocellular activity and as a drug against over 800 neurological disorders, relevant and sensitive assays have become critical for biochemical, physiological, and pharmacological studies. The natural entry of the toxin being ingestion, it has also become important to examine its mechanism while crossing the epithelial cell barrier. Several techniques and methodologies have been developed, for its entry, pharmacokinetics, and biological activity for identification, and drug efficacy both in vivo and in vitro conditions. However, each of them presents its own challenges. The cell-based assay is a platform that exceeds the sensitivity of mouse bioassay while encompassing all the steps of intoxication including cell binding, transcytosis, endocytosis, translocation and proteolytic activity. In this article we review in detail both the neuronal and nonneuronal based cellular interaction of BoNT involving its transportation, and interaction with the targeted cells, and intracellular activities.
Collapse
Affiliation(s)
- Ghuncha Ambrin
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts, Dartmouth, MA, USA.,Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, MA, USA
| | - Shuowei Cai
- Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, MA, USA
| | - Bal Ram Singh
- Institute of Advanced Sciences, Botulinum Research Center, Dartmouth, MA, USA
| |
Collapse
|
11
|
A Comprehensive Structural Analysis of Clostridium botulinum Neurotoxin A Cell-Binding Domain from Different Subtypes. Toxins (Basel) 2023; 15:toxins15020092. [PMID: 36828407 PMCID: PMC9966434 DOI: 10.3390/toxins15020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) cause flaccid neuromuscular paralysis by cleaving one of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex proteins. BoNTs display high affinity and specificity for neuromuscular junctions, making them one of the most potent neurotoxins known to date. There are seven serologically distinct BoNTs (serotypes BoNT/A to BoNT/G) which can be further divided into subtypes (e.g., BoNT/A1, BoNT/A2…) based on small changes in their amino acid sequence. Of these, BoNT/A1 and BoNT/B1 have been utilised to treat various diseases associated with spasticity and hypersecretion. There are potentially many more BoNT variants with differing toxicological profiles that may display other therapeutic benefits. This review is focused on the structural analysis of the cell-binding domain from BoNT/A1 to BoNT/A6 subtypes (HC/A1 to HC/A6), including features such as a ganglioside binding site (GBS), a dynamic loop, a synaptic vesicle glycoprotein 2 (SV2) binding site, a possible Lys-Cys/Cys-Cys bridge, and a hinge motion between the HCN and HCC subdomains. Characterising structural features across subtypes provides a better understanding of how the cell-binding domain functions and may aid the development of novel therapeutics.
Collapse
|
12
|
Peñuelas M, Guerrero-Vadillo M, Valdezate S, Zamora MJ, Leon-Gomez I, Flores-Cuéllar Á, Carrasco G, Díaz-García O, Varela C. Botulism in Spain: Epidemiology and Outcomes of Antitoxin Treatment, 1997-2019. Toxins (Basel) 2022; 15:2. [PMID: 36668823 PMCID: PMC9863742 DOI: 10.3390/toxins15010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Botulism is a low incidence but potentially fatal infectious disease caused by neurotoxins produced mainly by Clostridium botulinum. There are different routes of acquisition, food-borne and infant/intestinal being the most frequent presentation, and antitoxin is the treatment of choice in all cases. In Spain, botulism is under surveillance, and case reporting is mandatory. METHODS This retrospective study attempts to provide a more complete picture of the epidemiology of botulism in Spain from 1997 to 2019 and an assessment of the treatment, including the relationship between a delay in antitoxin administration and the length of hospitalization using the Cox proportional hazards test and Kruskal-Wallis test, and an approach to the frequency of adverse events, issues for which no previous national data have been published. RESULTS Eight of the 44 outbreaks were associated with contaminated commercial foods involving ≤7 cases/outbreak; preserved vegetables were the main source of infection, followed by fish products; early antitoxin administration significantly reduces the hospital stay, and adverse reactions to the antitoxin affect around 3% of treated cases.
Collapse
Affiliation(s)
- Marina Peñuelas
- Escuela Internacional de Doctorado, Universidad Nacional de Educación a Distancia (UNED), Calle de Bravo Murillo, 38, 28015 Madrid, Spain
- Department of Communicable Diseases, National Centre of Epidemiology, Instituto de Salud Carlos III, C/Monforte de Lemos 5, Pabellón 12, 28029 Madrid, Spain
| | - María Guerrero-Vadillo
- Department of Communicable Diseases, National Centre of Epidemiology, Instituto de Salud Carlos III, C/Monforte de Lemos 5, Pabellón 12, 28029 Madrid, Spain
| | - Sylvia Valdezate
- Laboratorio de Referencia e Investigación en Taxonomía, Bacteriología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Pozuelo-Majadahonda Km 2.2, 28220 Madrid, Spain
| | - María Jesús Zamora
- Servicio de Microbiología Alimentaria, Centro Nacional de Alimentación, Agencia Española de Seguridad Alimentaria y Nutrición, Ctra. Pozuelo a Majadahonda Km 5.1, 28220 Madrid, Spain
| | - Inmaculada Leon-Gomez
- Department of Communicable Diseases, National Centre of Epidemiology, Instituto de Salud Carlos III, C/Monforte de Lemos 5, Pabellón 12, 28029 Madrid, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Ángeles Flores-Cuéllar
- Medicines for Human Use Department, Agencia Española de Medicamentos y Productos Sanitarios (AEMPS), C/Campezo 1, Edificio 8, 28022 Madrid, Spain
| | - Gema Carrasco
- Laboratorio de Referencia e Investigación en Taxonomía, Bacteriología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Pozuelo-Majadahonda Km 2.2, 28220 Madrid, Spain
| | - Oliva Díaz-García
- Department of Communicable Diseases, National Centre of Epidemiology, Instituto de Salud Carlos III, C/Monforte de Lemos 5, Pabellón 12, 28029 Madrid, Spain
| | - Carmen Varela
- Department of Communicable Diseases, National Centre of Epidemiology, Instituto de Salud Carlos III, C/Monforte de Lemos 5, Pabellón 12, 28029 Madrid, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|
13
|
Byun J, Kwak S, Kwon JH, Shin M, Lee DK, Rhee CH, Kang WH, Oh JW, Cruz DJM. Comparative Pharmacodynamics of Three Different Botulinum Toxin Type A Preparations following Repeated Intramuscular Administration in Mice. Toxins (Basel) 2022; 14:toxins14060365. [PMID: 35737026 PMCID: PMC9227525 DOI: 10.3390/toxins14060365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
Botulinum neurotoxin type A (BoNT/A) causes muscle paralysis by blocking cholinergic signaling at neuromuscular junctions and is widely used to temporarily correct spasticity-related disorders and deformities. The paralytic effects of BoNT/A are time-limited and require repeated injections at regular intervals to achieve long-term therapeutic benefits. Differences in the level and duration of effectivity among various BoNT/A products can be attributed to their unique manufacturing processes, formulation, and noninterchangeable potency units. Herein, we compared the pharmacodynamics of three BoNT/A formulations, i.e., Botox® (onabotulinumtoxinA), Xeomin® (incobotulinumtoxinA), and Coretox®, following repeated intramuscular (IM) injections in mice. Three IM injections of BoNT/A formulations (12 U/kg per dose), 12-weeks apart, were administered at the right gastrocnemius. Local paresis and chemodenervation efficacy were evaluated over 36 weeks using the digit abduction score (DAS) and compound muscle action potential (CMAP), respectively. One week after administration, all three BoNT/A formulations induced peak DAS and maximal reduction of CMAP amplitudes. Among the three BoNT/A formulations, only Coretox® afforded a significant increase in paretic effects and chemodenervation with a prolonged duration of action after repeated injections. These findings suggest that Coretox® may offer a better overall therapeutic performance in clinical settings.
Collapse
Affiliation(s)
- Jaeyoon Byun
- Medytox Gwanggyo R&D Center, 114 Central town-ro, Yeongtong-gu, Suwon-si 16506, Korea; (J.B.); (S.K.); (J.-H.K.); (M.S.); (D.-K.L.); (W.-h.K.)
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Seongsung Kwak
- Medytox Gwanggyo R&D Center, 114 Central town-ro, Yeongtong-gu, Suwon-si 16506, Korea; (J.B.); (S.K.); (J.-H.K.); (M.S.); (D.-K.L.); (W.-h.K.)
| | - Jin-Hee Kwon
- Medytox Gwanggyo R&D Center, 114 Central town-ro, Yeongtong-gu, Suwon-si 16506, Korea; (J.B.); (S.K.); (J.-H.K.); (M.S.); (D.-K.L.); (W.-h.K.)
| | - Minhee Shin
- Medytox Gwanggyo R&D Center, 114 Central town-ro, Yeongtong-gu, Suwon-si 16506, Korea; (J.B.); (S.K.); (J.-H.K.); (M.S.); (D.-K.L.); (W.-h.K.)
| | - Dong-Kyu Lee
- Medytox Gwanggyo R&D Center, 114 Central town-ro, Yeongtong-gu, Suwon-si 16506, Korea; (J.B.); (S.K.); (J.-H.K.); (M.S.); (D.-K.L.); (W.-h.K.)
| | - Chang-Hoon Rhee
- Medytox Osong R&D Center, 102 Osongsaengmyeong 4-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28161, Korea;
| | - Won-ho Kang
- Medytox Gwanggyo R&D Center, 114 Central town-ro, Yeongtong-gu, Suwon-si 16506, Korea; (J.B.); (S.K.); (J.-H.K.); (M.S.); (D.-K.L.); (W.-h.K.)
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
- Correspondence: (J.-W.O.); (D.J.M.C.); Tel.: +82-2-2049-6271 (J.-W.O.); +82-31-8065-8254 (D.J.M.C.)
| | - Deu John M. Cruz
- Medytox Gwanggyo R&D Center, 114 Central town-ro, Yeongtong-gu, Suwon-si 16506, Korea; (J.B.); (S.K.); (J.-H.K.); (M.S.); (D.-K.L.); (W.-h.K.)
- Correspondence: (J.-W.O.); (D.J.M.C.); Tel.: +82-2-2049-6271 (J.-W.O.); +82-31-8065-8254 (D.J.M.C.)
| |
Collapse
|
14
|
Gregory KS, Mahadeva TB, Liu SM, Acharya KR. Structural Features of Clostridium botulinum Neurotoxin Subtype A2 Cell Binding Domain. Toxins (Basel) 2022; 14:toxins14050356. [PMID: 35622602 PMCID: PMC9146395 DOI: 10.3390/toxins14050356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022] Open
Abstract
Botulinum neurotoxins (BoNT) are a group of clostridial toxins that cause the potentially fatal neuroparalytic disease botulism. Although highly toxic, BoNTs are utilized as therapeutics to treat a range of neuromuscular conditions. Several serotypes (BoNT/A-/G, /X) have been identified with vastly differing toxicological profiles. Each serotype can be further sub-categorised into subtypes due to subtle variations in their protein sequence. These minor changes have been attributed to differences in both the duration of action and potency for BoNT/A subtypes. BoNTs are composed of three domains—a cell-binding domain, a translocation domain, and a catalytic domain. In this paper, we present the crystal structures of the botulinum neurotoxin A2 cell binding domain, both alone and in complex with its receptor ganglioside GD1a at 1.63 and 2.10 Å, respectively. The analysis of these structures reveals a potential redox-dependent Lys-O-Cys bridge close to the ganglioside binding site and a hinge motion between the HCN and HCC subdomains. Furthermore, we make a detailed comparison with the previously reported HC/A2:SV2C structure for a comprehensive structural analysis of HC/A2 receptor binding.
Collapse
Affiliation(s)
- Kyle S. Gregory
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (T.B.M.)
| | - Tejaswini B. Mahadeva
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (T.B.M.)
| | - Sai Man Liu
- Protein Sciences Department, Ipsen Bioinnovation Limited, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK;
| | - K. Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (T.B.M.)
- Correspondence: ; Tel.: +44-(0)1225-386238
| |
Collapse
|
15
|
Pirazzini M, Montecucco C, Rossetto O. Toxicology and pharmacology of botulinum and tetanus neurotoxins: an update. Arch Toxicol 2022; 96:1521-1539. [PMID: 35333944 PMCID: PMC9095541 DOI: 10.1007/s00204-022-03271-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/28/2022] [Indexed: 12/27/2022]
Abstract
Tetanus and botulinum neurotoxins cause the neuroparalytic syndromes of tetanus and botulism, respectively, by delivering inside different types of neurons, metalloproteases specifically cleaving the SNARE proteins that are essential for the release of neurotransmitters. Research on their mechanism of action is intensively carried out in order to devise improved therapies based on antibodies and chemical drugs. Recently, major results have been obtained with human monoclonal antibodies and with single chain antibodies that have allowed one to neutralize the metalloprotease activity of botulinum neurotoxin type A1 inside neurons. In addition, a method has been devised to induce a rapid molecular evolution of the metalloprotease domain of botulinum neurotoxin followed by selection driven to re-target the metalloprotease activity versus novel targets with respect to the SNARE proteins. At the same time, an intense and wide spectrum clinical research on novel therapeutics based on botulinum neurotoxins is carried out, which are also reviewed here.
Collapse
Affiliation(s)
- Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.,Centro Interdipartimentale di Ricerca di Miologia, CIR-Myo, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy. .,Institute of Neuroscience, National Research Council, Via Ugo Bassi 58/B, 35131, Padova, Italy.
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.,Centro Interdipartimentale di Ricerca di Miologia, CIR-Myo, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy.,Institute of Neuroscience, National Research Council, Via Ugo Bassi 58/B, 35131, Padova, Italy
| |
Collapse
|
16
|
Takikawa K, Nishimune H. Similarity and Diversity of Presynaptic Molecules at Neuromuscular Junctions and Central Synapses. Biomolecules 2022; 12:biom12020179. [PMID: 35204679 PMCID: PMC8961632 DOI: 10.3390/biom12020179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
Synaptic transmission is essential for controlling motor functions and maintaining brain functions such as walking, breathing, cognition, learning, and memory. Neurotransmitter release is regulated by presynaptic molecules assembled in active zones of presynaptic terminals. The size of presynaptic terminals varies, but the size of a single active zone and the types of presynaptic molecules are highly conserved among neuromuscular junctions (NMJs) and central synapses. Three parameters play an important role in the determination of neurotransmitter release properties at NMJs and central excitatory/inhibitory synapses: the number of presynaptic molecular clusters, the protein families of the presynaptic molecules, and the distance between presynaptic molecules and voltage-gated calcium channels. In addition, dysfunction of presynaptic molecules causes clinical symptoms such as motor and cognitive decline in patients with various neurological disorders and during aging. This review focuses on the molecular mechanisms responsible for the functional similarities and differences between excitatory and inhibitory synapses in the peripheral and central nervous systems, and summarizes recent findings regarding presynaptic molecules assembled in the active zone. Furthermore, we discuss the relationship between functional alterations of presynaptic molecules and dysfunction of NMJs or central synapses in diseases and during aging.
Collapse
Affiliation(s)
- Kenji Takikawa
- Laboratory of Neurobiology of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan;
| | - Hiroshi Nishimune
- Laboratory of Neurobiology of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan;
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo 183-8538, Japan
- Correspondence: ; Tel.: +81-3-3964-3241
| |
Collapse
|
17
|
Extensive Genome Exploration of Clostridium botulinum Group III Field Strains. Microorganisms 2021; 9:microorganisms9112347. [PMID: 34835472 PMCID: PMC8624178 DOI: 10.3390/microorganisms9112347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
In animals, botulism is commonly sustained by botulinum neurotoxin C, D or their mosaic variants, which are produced by anaerobic bacteria included in Clostridium botulinum group III. In this study, a WGS has been applied to a large collection of C. botulinum group III field strains in order to expand the knowledge on these BoNT-producing Clostridia and to evaluate the potentiality of this method for epidemiological investigations. Sixty field strains were submitted to WGS, and the results were analyzed with respect to epidemiological information and compared to published sequences. The strains were isolated from biological or environmental samples collected in animal botulism outbreaks which occurred in Italy from 2007 to 2016. The new sequenced strains belonged to subspecific groups, some of which were already defined, while others were newly characterized, peculiar to Italian strains and contained genomic features not yet observed. This included, in particular, two new flicC types (VI and VII) and new plasmids which widen the known plasmidome of the species. The extensive genome exploration shown in this study improves the C. botulinum and related species classification scheme, enriching it with new strains of rare genotypes and permitting the highest grade of discrimination among strains for forensic and epidemiological applications.
Collapse
|
18
|
Zanetti G, Mattarei A, Lista F, Rossetto O, Montecucco C, Pirazzini M. Novel Small Molecule Inhibitors That Prevent the Neuroparalysis of Tetanus Neurotoxin. Pharmaceuticals (Basel) 2021; 14:ph14111134. [PMID: 34832916 PMCID: PMC8618345 DOI: 10.3390/ph14111134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 01/22/2023] Open
Abstract
Tetanus neurotoxin (TeNT) is a protein exotoxin produced by Clostridium tetani that causes the deadly spastic neuroparalysis of tetanus. It consists of a metalloprotease light chain and of a heavy chain linked via a disulphide bond. TeNT binds to the neuromuscular junction (NMJ) and it is retro-axonally transported into vesicular compartments to the spinal cord, where it is released and taken up by inhibitory interneuron. Therein, the catalytic subunit is translocated into the cytoplasm where it cleaves its target protein VAMP-1/2 with consequent blockage of the release of inhibitory neurotransmitters. Vaccination with formaldehyde inactivated TeNT prevents the disease, but tetanus is still present in countries where vaccination coverage is partial. Here, we show that small molecule inhibitors interfering with TeNT trafficking or with the reduction of the interchain disulphide bond block the activity of the toxin in neuronal cultures and attenuate tetanus symptoms in vivo. These findings are relevant for the development of therapeutics against tetanus based on the inhibition of toxin molecules that are being retro-transported to or are already within the spinal cord and are, thus, not accessible to anti-TeNT immunoglobulins.
Collapse
Affiliation(s)
- Giulia Zanetti
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (G.Z.); (O.R.)
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Florigio Lista
- Scientific Department, Army Medical Center, Via Santo Stefano Rotondo 4, 00184 Rome, Italy;
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (G.Z.); (O.R.)
- Italian Research Council, Institute of Neuroscience, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy
- CIR-Myo, Centro Interdipartimentale di Ricerca di Miologia, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (G.Z.); (O.R.)
- Italian Research Council, Institute of Neuroscience, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy
- Correspondence: (C.M.); (M.P.)
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (G.Z.); (O.R.)
- CIR-Myo, Centro Interdipartimentale di Ricerca di Miologia, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
- Correspondence: (C.M.); (M.P.)
| |
Collapse
|
19
|
Hutton ML, Pehlivanoglu H, Vidor CJ, James ML, Thomson MJ, Lyras D. Repurposing auranofin as a Clostridioides difficile therapeutic. J Antimicrob Chemother 2021; 75:409-417. [PMID: 31642901 DOI: 10.1093/jac/dkz430] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Clostridioides difficile (previously Clostridium difficile) is the leading cause of nosocomial, antibiotic-associated diarrhoea worldwide. Currently, the gold standard of treatment for C. difficile infection (CDI) is vancomycin or metronidazole, although these antibiotics also perturb the protective resident microbiota, often resulting in disease relapse. Thus, an urgent need remains for the development of new treatment strategies. Auranofin is an FDA-approved oral antirheumatic drug that was previously shown to inhibit C. difficile vegetative cell growth, toxin production and spore production in vitro. OBJECTIVES To determine the efficacy of auranofin as a CDI therapeutic by examining the effect of treatment on toxin and spore production in vitro and in vivo, and on disease outcomes in mice. METHODS C. difficile cultures were treated with auranofin and examined for effects on sporulation and toxin production by sporulation assay and ELISA, respectively. Mice were pretreated with auranofin prior to infection with C. difficile and monitored for physiological conditions, survival and gut damage compared with control animals. Faeces from mice were analysed to determine whether auranofin reduces sporulation and toxin production in vivo. RESULTS Auranofin significantly reduces sporulation and toxin production under in vitro conditions and in infected mice in vivo. Mice treated with auranofin lost less weight, displayed a significant increase in survival rates and had significantly less toxin-mediated damage in their colon and caecum compared with control mice. CONCLUSIONS Auranofin shows promise as a prospective therapeutic option for C. difficile infections.
Collapse
Affiliation(s)
- Melanie L Hutton
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Havva Pehlivanoglu
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Callum J Vidor
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Meagan L James
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Melanie J Thomson
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria, 3216, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
20
|
Zuverink M, Barbieri JT. Resolving the Molecular Steps in Clostridial Neurotoxin Light Chain Translocation. JOURNAL OF EXPERIMENTAL NEUROLOGY 2021; 1:123-134. [PMID: 33615314 PMCID: PMC7894615 DOI: 10.33696/neurol.1.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The clostridial neurotoxins (CNTs), botulinum toxin and tetanus toxin, are the most toxic proteins for humans. Neurotoxicity is based upon the specificity of the CNTs for neural host receptors and substrates. CNTs are organized into three domains, a Light Chain (LC) that is a metalloprotease and a Heavy Chain (HC) that has two domains, an N-terminal LC translocation domain (HCN) and a C-terminal receptor binding domain (HCC). While catalysis and receptor binding functions of the CNTs have been developed, our understanding of LC translocation is limited. This is due to the intrinsic complexity of the translocation process and limited tools to assess the step-by-step events in LC translocation. Recently, we developed a novel, cell-based TT-reporter to measure LC translocation as the translocation of a β-lactamase reporter across a vesicle membrane in neurons. Using this approach, we identified a role for a cis-Loop, located within the HCN, in LC translocation. In this commentary, we describe our current understanding of how CNTs mediate LC translocation and place the role of the cis-Loop in the LC translocation process relative to other independent functions that have been implicated in LC translocation. Understanding the basis for LC translocation will enhance the use of CNTs in vaccine development and as human therapies.
Collapse
Affiliation(s)
- Madison Zuverink
- Dalhousie University, Department of Biochemistry and Molecular Biology, Halifax, Nova Scotia, Canada
| | - Joseph T Barbieri
- Medical College of Wisconsin, 8701 Watertown Plank Road, BSB2 Rm. 2830, Microbiology and Immunology, Milwaukee, WI 53226, USA
| |
Collapse
|
21
|
McNutt PM, Vazquez-Cintron EJ, Tenezaca L, Ondeck CA, Kelly KE, Mangkhalakhili M, Machamer JB, Angeles CA, Glotfelty EJ, Cika J, Benjumea CH, Whitfield JT, Band PA, Shoemaker CB, Ichtchenko K. Neuronal delivery of antibodies has therapeutic effects in animal models of botulism. Sci Transl Med 2021; 13:eabd7789. [PMID: 33408188 PMCID: PMC8176400 DOI: 10.1126/scitranslmed.abd7789] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/20/2020] [Indexed: 11/02/2022]
Abstract
Botulism is caused by a potent neurotoxin that blocks neuromuscular transmission, resulting in death by asphyxiation. Currently, the therapeutic options are limited and there is no antidote. Here, we harness the structural and trafficking properties of an atoxic derivative of botulinum neurotoxin (BoNT) to transport a function-blocking single-domain antibody into the neuronal cytosol where it can inhibit BoNT serotype A (BoNT/A1) molecular toxicity. Post-symptomatic treatment relieved toxic signs of botulism and rescued mice, guinea pigs, and nonhuman primates after lethal BoNT/A1 challenge. These data demonstrate that atoxic BoNT derivatives can be harnessed to deliver therapeutic protein moieties to the neuronal cytoplasm where they bind and neutralize intracellular targets in experimental models. The generalizability of this platform might enable delivery of antibodies and other protein-based therapeutics to previously inaccessible intraneuronal targets.
Collapse
Affiliation(s)
- Patrick M McNutt
- Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Edwin J Vazquez-Cintron
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- CytoDel Inc., New York, NY 10016, USA
- City College of City University of New York, NY 10031, USA
| | - Luis Tenezaca
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- CytoDel Inc., New York, NY 10016, USA
| | - Celinia A Ondeck
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Kyle E Kelly
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Mark Mangkhalakhili
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - James B Machamer
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Christopher A Angeles
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Elliot J Glotfelty
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Jaclyn Cika
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Cesar H Benjumea
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Philip A Band
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- CytoDel Inc., New York, NY 10016, USA
- Department of Orthopaedic Surgery, New York University Langone Orthopedic Hospital, New York, NY 10016, USA
| | - Charles B Shoemaker
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA 01536, USA
| | - Konstantin Ichtchenko
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
22
|
Miyashita SI, Zhang J, Zhang S, Shoemaker CB, Dong M. Delivery of single-domain antibodies into neurons using a chimeric toxin-based platform is therapeutic in mouse models of botulism. Sci Transl Med 2021; 13:eaaz4197. [PMID: 33408184 DOI: 10.1126/scitranslmed.aaz4197] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 05/01/2020] [Indexed: 12/15/2022]
Abstract
Efficient penetration of cell membranes and specific targeting of a cell type represent major challenges for developing therapeutics toward intracellular targets. One example facing these hurdles is to develop post-exposure treatment for botulinum neurotoxins (BoNTs), a group of bacterial toxins (BoNT/A to BoNT/G) that are major potential bioterrorism agents. BoNTs enter motor neurons, block neurotransmitter release, and cause a paralytic disease botulism. Members of BoNTs such as BoNT/A exhibit extremely long half-life within neurons, resulting in persistent paralysis for months, yet there are no therapeutics that can inhibit BoNTs once they enter neurons. Here, we developed a chimeric toxin-based delivery platform by fusing the receptor-binding domain of a BoNT, which targets neurons, with the membrane translocation domain and inactivated protease domain of the recently discovered BoNT-like toxin BoNT/X, which can deliver cargoes across endosomal membranes into the cytosol. A therapeutic protein was then created by fusing a single-domain antibody (nanobody) against BoNT/A with the delivery platform. In vitro characterization demonstrated that nanobodies were delivered into cultured neurons and neutralized BoNT/A in neurons. Administration of this protein in mice shortened duration of local muscle paralysis, restoring muscle function within hours, and rescued mice from systemic toxicity of lethal doses of BoNT/A. Fusion of two nanobodies, one against BoNT/A and the other against BoNT/B, created a multivalent therapeutic protein able to neutralize both BoNT/A and BoNT/B in mice. These studies provide an effective post-exposure treatment for botulism and establish a platform for intracellular delivery of therapeutics targeting cytosolic proteins and processes.
Collapse
Affiliation(s)
- Shin-Ichiro Miyashita
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jie Zhang
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sicai Zhang
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Charles B Shoemaker
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA 01536, USA
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA.
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
23
|
The 25 kDa H CN Domain of Clostridial Neurotoxins Is Indispensable for Their Neurotoxicity. Toxins (Basel) 2020; 12:toxins12120743. [PMID: 33255952 PMCID: PMC7760224 DOI: 10.3390/toxins12120743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
The extraordinarily potent clostridial neurotoxins (CNTs) comprise tetanus neurotoxin (TeNT) and the seven established botulinum neurotoxin serotypes (BoNT/A-G). They are composed of four structurally independent domains: the roles of the catalytically active light chain, the translocation domain HN, and the C-terminal receptor binding domain HCC are largely resolved, but that of the HCN domain sandwiched between HN and HCC has remained unclear. Here, mutants of BoNT/A, BoNT/B, and TeNT were generated by deleting their HCN domains or swapping HCN domains between each other. Both deletion and replacement of TeNT HCN domain by HCNA and HCNB reduced the biological activity similarly, by ~95%, whereas BoNT/A and B deletion mutants displayed >500-fold reduced activity in the mouse phrenic nerve hemidiaphragm assay. Swapping HCN domains between BoNT/A and B hardly impaired their biological activity, but substitution with HCNT did. Binding assays revealed that in the absence of HCN, not all receptor binding sites are equally well accessible. In conclusion, the presence of HCN is vital for CNTs to exert their neurotoxicity. Although structurally similar, the HCN domain of TeNT cannot equally substitute those of BoNT and vice versa, leaving the possibility that HCNT plays a different role in the intoxication mechanism of TeNT.
Collapse
|
24
|
Winner BM, Bodt SML, McNutt PM. Special Delivery: Potential Mechanisms of Botulinum Neurotoxin Uptake and Trafficking within Motor Nerve Terminals. Int J Mol Sci 2020; 21:ijms21228715. [PMID: 33218099 PMCID: PMC7698961 DOI: 10.3390/ijms21228715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are highly potent, neuroparalytic protein toxins that block the release of acetylcholine from motor neurons and autonomic synapses. The unparalleled toxicity of BoNTs results from the highly specific and localized cleavage of presynaptic proteins required for nerve transmission. Currently, the only pharmacotherapy for botulism is prophylaxis with antitoxin, which becomes progressively less effective as symptoms develop. Treatment for symptomatic botulism is limited to supportive care and artificial ventilation until respiratory function spontaneously recovers, which can take weeks or longer. Mechanistic insights into intracellular toxin behavior have progressed significantly since it was shown that toxins exploit synaptic endocytosis for entry into the nerve terminal, but fundamental questions about host-toxin interactions remain unanswered. Chief among these are mechanisms by which BoNT is internalized into neurons and trafficked to sites of molecular toxicity. Elucidating how receptor-bound toxin is internalized and conditions under which the toxin light chain engages with target SNARE proteins is critical for understanding the dynamics of intoxication and identifying novel therapeutics. Here, we discuss the implications of newly discovered modes of synaptic vesicle recycling on BoNT uptake and intraneuronal trafficking.
Collapse
Affiliation(s)
- Brittany M. Winner
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD 21047, USA;
| | - Skylar M. L. Bodt
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Patrick M. McNutt
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC 27101, USA
- Correspondence:
| |
Collapse
|
25
|
Abstract
How protein toxins translocate their catalytic domain across a cell membrane is the least understood step in toxin action. This study utilized a reporter, β-lactamase, that was genetically fused to full-length, nontoxic tetanus toxin (βlac-TT) in discovery-based live-cell assays to study LC translocation. Directed mutagenesis identified a role for K768 in LC translocation. K768 was located between α15 and α16 (termed the cis-loop). Cellular assays showed that K768 did not interfere with other toxin functions, including cell binding, intracellular trafficking, and pore formation. The equivalent K768 is conserved among the clostridial neurotoxin family of proteins as a conserved structural motif. The cis-loop appears to contribute to LC translocation. The clostridial neurotoxins (CNTs) comprise tetanus toxin (TT) and botulinum neurotoxin (BoNT [BT]) serotypes (A to G and X) and several recently identified CNT-like proteins, including BT/En and the mosquito BoNT-like toxin Pmp1. CNTs are produced as single proteins cleaved to a light chain (LC) and a heavy chain (HC) connected by an interchain disulfide bond. LC is a zinc metalloprotease (cleaving soluble N-ethylmaleimide-sensitive factor attachment protein receptors [SNAREs]), while HC contains an N-terminal translocation domain (HCN) and a C-terminal receptor binding domain (HCC). HCN-mediated LC translocation is the least understood function of CNT action. Here, β-lactamase (βlac) was used as a reporter in discovery-based live-cell assays to characterize TT-mediated LC translocation. Directed mutagenesis identified a role for a charged loop (767DKE769) connecting α15 and α16 (cis-loop) within HCN in LC translocation; aliphatic substitution inhibited LC translocation but not other toxin functions such as cell binding, intracellular trafficking, or HCN-mediated pore formation. K768 was conserved among the CNTs. In molecular simulations of the HCN with a membrane, the cis-loop did not bind with the cell membrane. Taken together, the results of these studies implicate the cis-loop in LC translocation, independently of pore formation. IMPORTANCE How protein toxins translocate their catalytic domain across a cell membrane is the least understood step in toxin action. This study utilized a reporter, β-lactamase, that was genetically fused to full-length, nontoxic tetanus toxin (βlac-TT) in discovery-based live-cell assays to study LC translocation. Directed mutagenesis identified a role for K768 in LC translocation. K768 was located between α15 and α16 (termed the cis-loop). Cellular assays showed that K768 did not interfere with other toxin functions, including cell binding, intracellular trafficking, and pore formation. The equivalent K768 is conserved among the clostridial neurotoxin family of proteins as a conserved structural motif. The cis-loop appears to contribute to LC translocation.
Collapse
|
26
|
Rossetto O, Pirazzini M, Fabris F, Montecucco C. Botulinum Neurotoxins: Mechanism of Action. Handb Exp Pharmacol 2020; 263:35-47. [PMID: 32277300 DOI: 10.1007/164_2020_355] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Botulinum neurotoxins (BoNTs) are a growing family of bacterial protein toxins that cause botulism, a rare but often fatal animal and human disease. They are the most potent toxins known owing to their molecular architecture, which underlies their mechanism of action. BoNTs target peripheral nerve terminals by a unique mode of binding and enter into their cytosol where they cleave SNARE proteins, thus inhibiting the neurotransmitter release. The specificity and rapidity of binding, which limits the anatomical area of its neuroparalytic action, and its reversible action make BoNT a valuable pharmaceutical to treat neurological and non-neurological diseases determined by hyperactivity of cholinergic nerve terminals. This review reports the progress on our understanding of how BoNTs cause nerve paralysis highlighting the different steps of their molecular mechanism of action as key aspects to explain their extreme toxicity but also their unique pharmacological properties.
Collapse
Affiliation(s)
- O Rossetto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - M Pirazzini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - F Fabris
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - C Montecucco
- Department of Biomedical Sciences, University of Padova, Padova, Italy. .,Institute of Neuroscience, National Research Council, Padova, Italy.
| |
Collapse
|
27
|
Pellett S, Tepp WH, Johnson EA. Critical Analysis of Neuronal Cell and the Mouse Bioassay for Detection of Botulinum Neurotoxins. Toxins (Basel) 2019; 11:E713. [PMID: 31817843 PMCID: PMC6950160 DOI: 10.3390/toxins11120713] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022] Open
Abstract
Botulinum Neurotoxins (BoNTs) are a large protein family that includes the most potent neurotoxins known to humankind. BoNTs delivered locally in humans at low doses are widely used pharmaceuticals. Reliable and quantitative detection of BoNTs is of paramount importance for the clinical diagnosis of botulism, basic research, drug development, potency determination, and detection in clinical, environmental, and food samples. Ideally, a definitive assay for BoNT should reflect the activity of each of the four steps in nerve intoxication. The in vivo mouse bioassay (MBA) is the 'gold standard' for the detection of BoNTs. The MBA is sensitive, robust, semi-quantitative, and reliable within its sensitivity limits. Potential drawbacks with the MBA include assay-to-assay potency variations, especially between laboratories, and false positives or negatives. These limitations can be largely avoided by careful planning and performance. Another detection method that has gained importance in recent years for research and potency determination of pharmaceutical BoNTs is cell-based assays, as these assays can be highly sensitive, quantitative, human-specific, and detect fully functional holotoxins at physiologically relevant concentrations. A myriad of other in vitro BoNT detection methods exist. This review focuses on critical factors and assay limitations of the mouse bioassay and cell-based assays for BoNT detection.
Collapse
Affiliation(s)
| | | | - Eric A. Johnson
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA; (S.P.); (W.H.T.)
| |
Collapse
|
28
|
Rossetto O, Pirazzini M, Lista F, Montecucco C. The role of the single interchains disulfide bond in tetanus and botulinum neurotoxins and the development of antitetanus and antibotulism drugs. Cell Microbiol 2019; 21:e13037. [PMID: 31050145 PMCID: PMC6899712 DOI: 10.1111/cmi.13037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/18/2019] [Accepted: 04/30/2019] [Indexed: 01/02/2023]
Abstract
A large number of bacterial toxins consist of active and cell binding protomers linked by an interchain disulfide bridge. The largest family of such disulfide-bridged exotoxins is that of the clostridial neurotoxins that consist of two chains and comprise the tetanus neurotoxins causing tetanus and the botulinum neurotoxins causing botulism. Reduction of the interchain disulfide abolishes toxicity, and we discuss the experiments that revealed the role of this structural element in neuronal intoxication. The redox couple thioredoxin reductase-thioredoxin (TrxR-Trx) was identified as the responsible for reduction of this disulfide occurring on the cytosolic surface of synaptic vesicles. We then discuss the very relevant finding that drugs that inhibit TrxR-Trx also prevent botulism. On this basis, we propose that ebselen and PX-12, two TrxR-Trx specific drugs previously used in clinical trials in humans, satisfy all the requirements for clinical tests aiming at evaluating their capacity to effectively counteract human and animal botulism arising from intestinal toxaemias such as infant botulism.
Collapse
Affiliation(s)
- Ornella Rossetto
- Dipartimento di Scienze BiomedicheUniversità di PadovaPaduaItaly
| | - Marco Pirazzini
- Dipartimento di Scienze BiomedicheUniversità di PadovaPaduaItaly
| | - Florigio Lista
- Sezione di Istologia e Biologia MolecolareCentro di ricerca Medica e Veterinaria del Ministero della DifesaRomeItaly
| | - Cesare Montecucco
- Dipartimento di Scienze BiomedicheUniversità di PadovaPaduaItaly
- Istituto Neuroscienze del CNRUniversità di PadovaPaduaItaly
| |
Collapse
|
29
|
Pereira C, Rodrigues IS, Pereira LMG, Lisboa J, Pinto RD, Araújo L, Oliveira P, Benz R, Dos Santos NMS, do Vale A. Role of AIP56 disulphide bond and its reduction by cytosolic redox systems for efficient intoxication. Cell Microbiol 2019; 22:e13109. [PMID: 31454143 DOI: 10.1111/cmi.13109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/08/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022]
Abstract
Apoptosis-inducing protein of 56 kDa (AIP56) is a major virulence factor of Photobacterium damselae subsp. piscicida, a gram-negative pathogen that infects warm water fish species worldwide and causes serious economic losses in aquacultures. AIP56 is a single-chain AB toxin composed by two domains connected by an unstructured linker peptide flanked by two cysteine residues that form a disulphide bond. The A domain comprises a zinc-metalloprotease moiety that cleaves the NF-kB p65, and the B domain is involved in binding and internalisation of the toxin into susceptible cells. Previous experiments suggested that disruption of AIP56 disulphide bond partially compromised toxicity, but conclusive evidences supporting the importance of that bond in intoxication were lacking. Here, we show that although the disulphide bond of AIP56 is dispensable for receptor recognition, endocytosis, and membrane interaction, it needs to be intact for efficient translocation of the toxin into the cytosol. We also show that the host cell thioredoxin reductase-thioredoxin system is involved in AIP56 intoxication by reducing the disulphide bond of the toxin at the cytosol. The present study contributes to a better understanding of the molecular mechanisms operating during AIP56 intoxication and reveals common features shared with other AB toxins.
Collapse
Affiliation(s)
- Cassilda Pereira
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Inês S Rodrigues
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Liliana M G Pereira
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Johnny Lisboa
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Rute D Pinto
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Leonor Araújo
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Pedro Oliveira
- EPIUnit, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Nuno M S Dos Santos
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana do Vale
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
30
|
Contreras E, Masuyer G, Qureshi N, Chawla S, Dhillon HS, Lee HL, Chen J, Stenmark P, Gill SS. A neurotoxin that specifically targets Anopheles mosquitoes. Nat Commun 2019; 10:2869. [PMID: 31253776 PMCID: PMC6599013 DOI: 10.1038/s41467-019-10732-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/23/2019] [Indexed: 11/24/2022] Open
Abstract
Clostridial neurotoxins, including tetanus and botulinum neurotoxins, generally target vertebrates. We show here that this family of toxins has a much broader host spectrum, by identifying PMP1, a clostridial-like neurotoxin that selectively targets anopheline mosquitoes. Isolation of PMP1 from Paraclostridium bifermentans strains collected in anopheline endemic areas on two continents indicates it is widely distributed. The toxin likely evolved from an ancestral form that targets the nervous system of similar organisms, using a common mechanism that disrupts SNARE-mediated exocytosis. It cleaves the mosquito syntaxin and employs a unique receptor recognition strategy. Our research has an important impact on the study of the evolution of clostridial neurotoxins and provides the basis for the use of P. bifermentans strains and PMP1 as innovative, environmentally friendly approaches to reduce malaria through anopheline control. So far identified clostridial neurotoxins target vertebrates. Here, Contreras et al. isolate the clostridial-like neurotoxin PMP1 from Paraclostridium bifermentans strains and show that it selectively targets anopheline mosquitoes by targeting mosquito syntaxin.
Collapse
Affiliation(s)
- Estefania Contreras
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Nadia Qureshi
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Swati Chawla
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Harpal S Dhillon
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Han Lim Lee
- Unit of Medical Entomology, Institute for Medical Research, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| | - Jianwu Chen
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden. .,Department of Experimental Medical Science, Lund University, Lund, 22100, Sweden.
| | - Sarjeet S Gill
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
31
|
Garland M, Babin BM, Miyashita SI, Loscher S, Shen Y, Dong M, Bogyo M. Covalent Modifiers of Botulinum Neurotoxin Counteract Toxin Persistence. ACS Chem Biol 2019; 14:76-87. [PMID: 30571080 DOI: 10.1021/acschembio.8b00937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Botulinum neurotoxins (BoNTs) are the most potent toxins known to man and a significant threat as weapons of bioterrorism. BoNTs contain a metalloprotease domain that blocks neurotransmitter release in nerve terminals, resulting in a descending, flaccid paralysis with a 5-10% mortality rate. Existing treatment options cannot access or neutralize the toxin following its endocytosis, so there is a clear need to develop novel therapies. Numerous substrate-based and zinc-chelating small-molecule inhibitors have been reported; however, none have progressed to the clinic. This is likely due to the difficulty that reversible inhibitors have in achieving sustained inhibition of the toxin, which has a half-life of months in vivo. An alternative strategy for mitigating BoNT persistence is covalent, irreversible inhibition of toxin function. However, few examples of covalent BoNT inhibitors have been reported. Here, we describe a competition-based screen to identify covalent modifiers of the conserved active-site-adjacent cysteine C165 in the BoNT/A serotype. We found that compounds containing cysteine-reactive electrophiles designed to target cysteine proteases failed to bind C165 while selenide compounds were efficient covalent binders of this cysteine. Importantly, covalent modification at C165 resulted in sustained, irreversible inhibition of BoNT/A protease activity. Covalent selenide inhibitors were nontoxic and protective in a neuronal assay of intoxication, making them promising new scaffolds for the study of the BoNT/A toxin as well as for the design of novel therapy agents.
Collapse
Affiliation(s)
- Megan Garland
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California 94305, United States
| | | | - Shin-Ichiro Miyashita
- Department of Urology, Boston Children’s Hospital,
and Department of Microbiology and Immunobiology, Department of Surgery,
Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | - Yi Shen
- Department of Urology, Boston Children’s Hospital,
and Department of Microbiology and Immunobiology, Department of Surgery,
Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Min Dong
- Department of Urology, Boston Children’s Hospital,
and Department of Microbiology and Immunobiology, Department of Surgery,
Harvard Medical School, Boston, Massachusetts 02115, United States
| | | |
Collapse
|
32
|
Neurobiology and therapeutic applications of neurotoxins targeting transmitter release. Pharmacol Ther 2019; 193:135-155. [DOI: 10.1016/j.pharmthera.2018.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Abstract
Botulinum neurotoxins (BoNTs) and tetanus neurotoxin (TeNT) are the most potent toxins known and cause botulism and tetanus, respectively. BoNTs are also widely utilized as therapeutic toxins. They contain three functional domains responsible for receptor-binding, membrane translocation, and proteolytic cleavage of host proteins required for synaptic vesicle exocytosis. These toxins also have distinct features: BoNTs exist within a progenitor toxin complex (PTC), which protects the toxin and facilitates its absorption in the gastrointestinal tract, whereas TeNT is uniquely transported retrogradely within motor neurons. Our increasing knowledge of these toxins has allowed the development of engineered toxins for medical uses. The discovery of new BoNTs and BoNT-like proteins provides additional tools to understand the evolution of the toxins and to engineer toxin-based therapeutics. This review summarizes the progress on our understanding of BoNTs and TeNT, focusing on the PTC, receptor recognition, new BoNT-like toxins, and therapeutic toxin engineering.
Collapse
Affiliation(s)
- Min Dong
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden;
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden; .,Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
34
|
Davies JR, Liu SM, Acharya KR. Variations in the Botulinum Neurotoxin Binding Domain and the Potential for Novel Therapeutics. Toxins (Basel) 2018; 10:toxins10100421. [PMID: 30347838 PMCID: PMC6215321 DOI: 10.3390/toxins10100421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 01/23/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are categorised into immunologically distinct serotypes BoNT/A to /G). Each serotype can also be further divided into subtypes based on differences in amino acid sequence. BoNTs are ~150 kDa proteins comprised of three major functional domains: an N-terminal zinc metalloprotease light chain (LC), a translocation domain (HN), and a binding domain (HC). The HC is responsible for targeting the BoNT to the neuronal cell membrane, and each serotype has evolved to bind via different mechanisms to different target receptors. Most structural characterisations to date have focussed on the first identified subtype within each serotype (e.g., BoNT/A1). Subtype differences within BoNT serotypes can affect intoxication, displaying different botulism symptoms in vivo, and less emphasis has been placed on investigating these variants. This review outlines the receptors for each BoNT serotype and describes the basis for the highly specific targeting of neuronal cell membranes. Understanding receptor binding is of vital importance, not only for the generation of novel therapeutics but also for understanding how best to protect from intoxication.
Collapse
Affiliation(s)
- Jonathan R Davies
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| | - Sai Man Liu
- Ipsen Bioinnovation Limited, Abingdon OX14 4RY, UK.
| | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
35
|
Transynaptic Action of Botulinum Neurotoxin Type A at Central Cholinergic Boutons. J Neurosci 2018; 38:10329-10337. [PMID: 30315128 DOI: 10.1523/jneurosci.0294-18.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 08/06/2018] [Accepted: 08/15/2018] [Indexed: 01/14/2023] Open
Abstract
Botulinum neurotoxin Type A (BoNT/A) is an effective treatment for several movement disorders, including spasticity and dystonia. BoNT/A acts by cleaving synaptosomal-associated protein of 25 kDa (SNAP-25) at the neuromuscular junction, thus blocking synaptic transmission and weakening overactive muscles. However, not all the therapeutic benefits of the neurotoxin are explained by peripheral neuroparalysis, suggesting an action of BoNT/A on central circuits. Currently, the specific targets of BoNT/A central activity remain unclear. Here, we show that catalytically active BoNT/A is transported to the facial nucleus (FN) after injection into the nasolabial musculature of rats and mice. BoNT/A-mediated cleavage of SNAP-25 in the FN is prevented by intracerebroventricular delivery of antitoxin antibodies, demonstrating that BoNT/A physically leaves the motoneurons to enter second-order neurons. Analysis of intoxicated terminals within the FN shows that BoNT/A is transcytosed preferentially into cholinergic synapses. The cholinergic boutons containing cleaved SNAP-25 are associated with a larger size, suggesting impaired neuroexocytosis. Together, the present findings indicate a previously unrecognized source of reduced motoneuron drive after BoNT/A via blockade of central, excitatory cholinergic inputs. These data highlight the ability of BoNT/A to selectively target and modulate specific central circuits, with consequent impact on its therapeutic effectiveness in movement disorders.SIGNIFICANCE STATEMENT Botulinum neurotoxins are among the most potent toxins known. Despite this, their specific and reversible action prompted their use in clinical practice to treat several neuromuscular pathologies (dystonia, spasticity, muscle spasms) characterized by hyperexcitability of peripheral nerve terminals or even in nonpathological applications (i.e., cosmetic use). Substantial experimental and clinical evidence indicates that not all botulinum neurotoxin Type A (BoNT/A) effects can be explained solely by the local action (i.e., silencing of the neuromuscular junction). In particular, there are cases in which the clinical benefit exceeds the duration of peripheral neurotransmission blockade. In this study, we demonstrate that BoNT/A is transported to facial motoneurons, released, and internalized preferentially into cholinergic terminals impinging onto the motoneurons. Our data demonstrate a direct central action of BoNT/A.
Collapse
|
36
|
Tehran DA, Pirazzini M. Preparation of Cerebellum Granule Neurons from Mouse or Rat Pups and Evaluation of Clostridial Neurotoxin Activity and Their Inhibitors by Western Blot and Immunohistochemistry. Bio Protoc 2018; 8:e2918. [PMID: 34395747 DOI: 10.21769/bioprotoc.2918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/12/2018] [Accepted: 06/17/2018] [Indexed: 01/29/2023] Open
Abstract
Cerebellar Granule Neurons (CGN) from post-natal rodents have been widely used as a model to study neuronal development, physiology and pathology. CGN cultured in vitro maintain the same features displayed in vivo by mature cerebellar granule cells, including the development of a dense neuritic network, neuronal activity, neurotransmitter release and the expression of neuronal protein markers. Moreover, CGN represent a convenient model for the study of Clostridial Neurotoxins (CNT), most notably known as Tetanus and Botulinum neurotoxins, as they abundantly express both CNT receptors and intraneuronal substrates, i.e., Soluble N-ethylmaleimide-sensitive factor activating protein receptors (SNARE proteins). Here, we describe a protocol for obtaining a highly pure culture of CGN from postnatal rats/mice and an easy procedure for their intoxication with CNT. We also illustrate handy methods to evaluate CNT activity and their inhibition.
Collapse
Affiliation(s)
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
37
|
Surana S, Tosolini AP, Meyer IF, Fellows AD, Novoselov SS, Schiavo G. The travel diaries of tetanus and botulinum neurotoxins. Toxicon 2018; 147:58-67. [DOI: 10.1016/j.toxicon.2017.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
|
38
|
Zhang J, Zhang B, Li X, Han X, Liu R, Fang J. Small molecule inhibitors of mammalian thioredoxin reductase as potential anticancer agents: An update. Med Res Rev 2018; 39:5-39. [DOI: 10.1002/med.21507] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
- School of Pharmacy; Lanzhou University; Lanzhou China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Xiao Han
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Ruijuan Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
- School of Pharmacy; Lanzhou University; Lanzhou China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| |
Collapse
|
39
|
Moga MA, Dimienescu OG, Bălan A, Scârneciu I, Barabaș B, Pleș L. Therapeutic Approaches of Botulinum Toxin in Gynecology. Toxins (Basel) 2018; 10:toxins10040169. [PMID: 29690530 PMCID: PMC5923335 DOI: 10.3390/toxins10040169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 12/15/2022] Open
Abstract
Botulinum toxins (BoNTs) are produced by several anaerobic species of the genus Clostridium and, although they were originally considered lethal toxins, today they find their usefulness in the treatment of a wide range of pathologies in various medical specialties. Botulinum neurotoxin has been identified in seven different isoforms (BoNT-A, BoNT-B, BoNT-C, BoNT-D, BoNT-E, BoNT-F, and BoNT-G). Neurotoxigenic Clostridia can produce more than 40 different BoNT subtypes and, recently, a new BoNT serotype (BoNT-X) has been reported in some studies. BoNT-X has not been shown to actually be an active neurotoxin despite its catalytically active LC, so it should be described as a putative eighth serotype. The mechanism of action of the serotypes is similar: they inhibit the release of acetylcholine from the nerve endings but their therapeutically potency varies. Botulinum toxin type A (BoNT-A) is the most studied serotype for therapeutic purposes. Regarding the gynecological pathology, a series of studies based on the efficiency of its use in the treatment of refractory myofascial pelvic pain, vaginism, dyspareunia, vulvodynia and overactive bladder or urinary incontinence have been reported. The current study is a review of the literature regarding the efficiency of BoNT-A in the gynecological pathology and on the long and short-term effects of its administration.
Collapse
Affiliation(s)
- Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Oana Gabriela Dimienescu
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Andreea Bălan
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Ioan Scârneciu
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Barna Barabaș
- Department of Fundamental Disciplines and Clinical Prevention, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Liana Pleș
- Clinical Department of Obstetrics and Gynecology, The Carol Davila University of Medicine and Pharmacy, Bucharest 020021, Romania.
| |
Collapse
|
40
|
Zanetti G, Negro S, Megighian A, Pirazzini M. Electrophysiological Recordings of Evoked End-Plate Potential on Murine Neuro-muscular Synapse Preparations. Bio Protoc 2018; 8:e2803. [PMID: 34286022 DOI: 10.21769/bioprotoc.2803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/29/2018] [Accepted: 04/22/2018] [Indexed: 11/02/2022] Open
Abstract
Neuromuscular junction (NMJ) is the specialized chemical synapse that mediates the transmission of the electrical impulse running along motor neuron axons to skeletal muscle fibers. NMJ is the best characterized chemical synapse and its study along many years of research has provided most of the general knowledge of synapse development, structure and functionality. Electrophysiology is the most accurate experimental procedure to study NMJ physiology and it largely contributed to the elucidation of synaptic transmission basic principles. Many electrophysiological techniques have been developed to study NMJ physiology and physiopathology. In this paper, we describe an ex vivo tissue preparation for electrophysiology that can be applied to investigate nerve-muscle transmission functionality in mice. It is routinely used in our laboratory to study presynaptic neurotoxins, antitoxins, and to monitor NMJ degeneration and regeneration. This is a broadly applicable technique which can also be adopted to investigate alterations of NMJ activity in mouse models of neuromuscular diseases, including peripheral neuropathies, motor neuron disorders and myasthenic syndromes.
Collapse
Affiliation(s)
- Giulia Zanetti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Samuele Negro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Aram Megighian
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
41
|
Pellett S, Bradshaw M, Tepp WH, Pier CL, Whitemarsh RCM, Chen C, Barbieri JT, Johnson EA. The Light Chain Defines the Duration of Action of Botulinum Toxin Serotype A Subtypes. mBio 2018; 9:e00089-18. [PMID: 29588398 PMCID: PMC5874905 DOI: 10.1128/mbio.00089-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 02/20/2018] [Indexed: 12/26/2022] Open
Abstract
Botulinum neurotoxin (BoNT) is the causative agent of botulism and a widely used pharmaceutical to treat a variety of neurological diseases. BoNTs are 150-kDa protein toxins organized into heavy chain (HC) and light chain (LC) domains linked by a disulfide bond. The HC selectively binds to neurons and aids cell entry of the enzymatically active LC. There are seven immunological BoNT serotypes (A to G); each serotype includes genetic variants, termed subtypes. Only two subtypes, BoNT/A1 and BoNT/B1, are currently used as therapeutics. BoNT serotype A (BoNT/A) subtypes A2 to A8 show distinct potency, duration of action, and pathology relative to BoNT/A1. Specifically, BoNT/A3 possesses shorter duration of action and elicits distinct symptoms in mice at high toxin doses. In this report, we analyzed the roles of LC and HC of BoNT/A3 for duration of action, neuronal cell entry, and mouse pathology by using clostridium-derived recombinant hybrid BoNTs consisting of reciprocal LC and HC (BoNTA1/A3 and BoNTA3/A1). Hybrid toxins were processed in their expression host to a dichain BoNT consisting of LC and HC linked via a disulfide bond. The LC and HC defined BoNT potency in mice and BoNT toxicity for cultured neuronal cells, while the LC defined the duration of BoNT action in cell and mouse models. Protein alignment identified a previously unrecognized region within the LC subtype A3 (LC/A3) relative to the other LC serotype A (LC/A) subtypes (low primary acid homology [LPH]) that correlated to intracellular LC localization. This study shows the utility of recombinant hybrid BoNTs with new therapeutic potential, while remaining sensitive to antitoxins and therapies to native BoNT.IMPORTANCE Botulinum neurotoxins are the most potent protein toxins for humans and potential bioterrorism threats, but they are also widely used as pharmaceuticals. Within the large family of BoNTs, only two subtypes are currently used as pharmaceuticals, with a large number of BoNT subtypes remaining as untapped potential sources for unique pharmaceuticals. Here, two recombinant hybrid toxins were engineered, consisting of domains from two BoNT subtypes that possess distinct duration of action and activity in human neurons and mice. We define the functional domains responsible for BoNT action and demonstrate creation of functional hybrid BoNTs with new therapeutic potential, while remaining sensitive to antitoxins and therapies to native BoNT.
Collapse
Affiliation(s)
- Sabine Pellett
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| | - Marite Bradshaw
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| | - William H Tepp
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| | - Christina L Pier
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Chen Chen
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Joseph T Barbieri
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Eric A Johnson
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
42
|
Konstantinović J, Kiris E, Kota KP, Kugelman-Tonos J, Videnović M, Cazares LH, Terzić Jovanović N, Verbić TŽ, Andjelković B, Duplantier AJ, Bavari S, Šolaja BA. New Steroidal 4-Aminoquinolines Antagonize Botulinum Neurotoxin Serotype A in Mouse Embryonic Stem Cell Derived Motor Neurons in Postintoxication Model. J Med Chem 2018; 61:1595-1608. [PMID: 29385334 DOI: 10.1021/acs.jmedchem.7b01710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synthesis and inhibitory potencies against botulinum neurotoxin serotype A light chain (BoNT/A LC) using in vitro HPLC based enzymatic assay for various steroidal, benzothiophene, thiophene, and adamantane 4-aminoquinoline derivatives are described. In addition, the compounds were evaluated for the activity against BoNT/A holotoxin in mouse embryonic stem cell derived motor neurons. Steroidal derivative 16 showed remarkable protection (up to 89% of uncleaved SNAP-25) even when administered 30 min postintoxication. This appears to be the first example of LC inhibitors antagonizing BoNT intoxication in mouse embryonic stem cell derived motor neurons (mES-MNs) in a postexposure model. Oral administration of 16 was well tolerated in the mouse up to 600 mg/kg, q.d. Although adequate unbound drug levels were not achieved at this dose, the favorable in vitro ADMET results strongly support further work in this series.
Collapse
Affiliation(s)
- Jelena Konstantinović
- Faculty of Chemistry, University of Belgrade , Studentski trg 16, P.O. Box 51, 11158 Belgrade, Serbia
| | - Erkan Kiris
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Krishna P Kota
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases , 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Johanny Kugelman-Tonos
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases , 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Milica Videnović
- Faculty of Chemistry Innovative Centre , Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Lisa H Cazares
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases , 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Nataša Terzić Jovanović
- Institute of Chemistry, Technology, and Metallurgy, University of Belgrade , Njegoševa 12, 11000 Belgrade, Serbia
| | - Tatjana Ž Verbić
- Faculty of Chemistry, University of Belgrade , Studentski trg 16, P.O. Box 51, 11158 Belgrade, Serbia
| | - Boban Andjelković
- Faculty of Chemistry, University of Belgrade , Studentski trg 16, P.O. Box 51, 11158 Belgrade, Serbia
| | - Allen J Duplantier
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases , 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases , 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Bogdan A Šolaja
- Faculty of Chemistry, University of Belgrade , Studentski trg 16, P.O. Box 51, 11158 Belgrade, Serbia.,Serbian Academy of Sciences and Arts , Knez Mihailova 35, 11158 Belgrade, Serbia
| |
Collapse
|
43
|
Buchanan BB. The Path to Thioredoxin and Redox Regulation Beyond Chloroplasts. PLANT & CELL PHYSIOLOGY 2017; 58:1826-1832. [PMID: 29016988 DOI: 10.1093/pcp/pcx119] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/30/2017] [Indexed: 05/24/2023]
Abstract
Once the ferredoxin/thioredoxin system was established as a mechanism linking light to the post-translational regulation of chloroplast enzymes, I considered that plants might harbor a light-independent mechanism utilizing this same enzyme chemistry based on thiol-disulfide redox transitions. After reflection, it occurred to me that such a mechanism could be fundamental to seeds of cereals that undergo dramatic change following exposure to oxygen during maturation and drying. The pursuit of this idea led to the discovery of a family of extraplastidic thioredoxins, designated the h-type, that resemble animal and bacterial counterparts in undergoing enzymatic reduction with NADPH. Current evidence suggests that h-type thioredoxins function broadly throughout the plant. Here I describe how the thioredoxin h field developed, its current status and potential for contributing material benefits to society.
Collapse
Affiliation(s)
- Bob B Buchanan
- Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
44
|
Ren X, Zou L, Zhang X, Branco V, Wang J, Carvalho C, Holmgren A, Lu J. Redox Signaling Mediated by Thioredoxin and Glutathione Systems in the Central Nervous System. Antioxid Redox Signal 2017; 27:989-1010. [PMID: 28443683 PMCID: PMC5649126 DOI: 10.1089/ars.2016.6925] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE The thioredoxin (Trx) and glutathione (GSH) systems play important roles in maintaining the redox balance in the brain, a tissue that is prone to oxidative stress due to its high-energy demand. These two disulfide reductase systems are active in various areas of the brain and are considered to be critical antioxidant systems in the central nervous system (CNS). Various neuronal disorders have been characterized to have imbalanced redox homeostasis. Recent Advances: In addition to their detrimental effects, recent studies have highlighted that reactive oxygen species/reactive nitrogen species (ROS/RNS) act as critical signaling molecules by modifying thiols in proteins. The Trx and GSH systems, which reversibly regulate thiol modifications, regulate redox signaling involved in various biological events in the CNS. CRITICAL ISSUES In this review, we focus on the following: (i) how ROS/RNS are produced and mediate signaling in CNS; (ii) how Trx and GSH systems regulate redox signaling by catalyzing reversible thiol modifications; (iii) how dysfunction of the Trx and GSH systems causes alterations of cellular redox signaling in human neuronal diseases; and (iv) the effects of certain small molecules that target thiol-based signaling pathways in the CNS. FUTURE DIRECTIONS Further study on the roles of thiol-dependent redox systems in the CNS will improve our understanding of the pathogenesis of many human neuronal disorders and also help to develop novel protective and therapeutic strategies against neuronal diseases. Antioxid. Redox Signal. 27, 989-1010.
Collapse
Affiliation(s)
- Xiaoyuan Ren
- 1 Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Lili Zou
- 1 Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden .,2 Translational Neuroscience and Neural Regeneration and Repair Institute/Institute of Cell Therapy, The First Hospital of Yichang, Three Gorges University , Yichang, China
| | - Xu Zhang
- 1 Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Vasco Branco
- 3 Research Institute for Medicines (iMed.ULisboa) , Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Jun Wang
- 2 Translational Neuroscience and Neural Regeneration and Repair Institute/Institute of Cell Therapy, The First Hospital of Yichang, Three Gorges University , Yichang, China
| | - Cristina Carvalho
- 3 Research Institute for Medicines (iMed.ULisboa) , Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Arne Holmgren
- 1 Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Jun Lu
- 4 School of Pharmaceutical Sciences, Southwest University , Chongqing, China
| |
Collapse
|
45
|
Neurophysiological Measures of Efficacy and Safety for Botulinum Toxin Injection in Facial and Bulbar Muscles: Special Considerations. Toxins (Basel) 2017; 9:toxins9110352. [PMID: 29084148 PMCID: PMC5705967 DOI: 10.3390/toxins9110352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/16/2017] [Accepted: 10/27/2017] [Indexed: 12/27/2022] Open
Abstract
Botulinum toxin (BoNT) injections into facial and bulbar muscles are widely and increasingly used as medical treatments for cervical and facial dystonia, facial hemispasm, correction of facial palsy, hyperhidrosis, as well as cosmetic treatment of glabellar lines associated with grief and anger. Although BoNT treatment is generally considered safe, the diffusion of the toxin to surrounding muscles may result in complications, including difficulties swallowing, in a dose-dependent manner. The sensitivity of clinical examination for detecting adverse events after BoNT treatment is limited. Few reports have highlighted the potential effects on other muscles in the facial area due to the spreading of the toxin. The possibilities of spreading and thus unknown pharmacological BoNT effects in non-targeted muscles emphasise the importance of correct administration of BoNT in terms of dose selection, injection points, and appropriate effect surveillance. In this review article, we will focus on novel objective measures of efficacy and safety regarding BoNT treatment of facial muscles and the reasons why this is important.
Collapse
|
46
|
Pirazzini M, Azarnia Tehran D, Zanetti G, Rossetto O, Montecucco C. Hsp90 and Thioredoxin-Thioredoxin Reductase enable the catalytic activity of Clostridial neurotoxins inside nerve terminals. Toxicon 2017; 147:32-37. [PMID: 29111118 DOI: 10.1016/j.toxicon.2017.10.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/21/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022]
Abstract
Botulinum (BoNTs) and tetanus (TeNT) neurotoxins are the most toxic substances known and form the growing family of Clostridial neurotoxins (CNT), the etiologic agents of botulism and tetanus. CNT are composed of a metalloprotease light chain (L), linked via a disulfide bond to a heavy chain (H). H mediates the binding to nerve terminals and the membrane translocation of L into the cytosol, where its substrates, the three SNARE proteins, are localized. L translocation is accompanied by unfolding and, once delivered on the cytosolic side of the endosome membrane, it has to be reduced and reacquire the native fold to be active. The Thioredoxin-Thioredoxin Reductase system (Trx-TrxR) specifically reduces the interchain disulfide bond while the cytosolic chaperone protein Hsp90 mediates L refolding. Both steps are essential for CNT activity and their inhibition efficiently blocks the neurotoxicity in cultured neurons and mice. Trx and its reductase physically interact with Hsp90 and are loosely bound to the cytosolic side of synaptic vesicles, the organelle exploited by CNT to enter nerve terminals and wherefrom L is translocated into the cytosol. Therefore, Trx, TrxR and Hsp90 orchestrate a chaperone-redox molecular machinery that enables the catalytic activity of the L inside nerve terminals. Given the fundamental role of L reduction and refolding, this machinery represents a rational target for the development of mechanism-based antitoxins.
Collapse
Affiliation(s)
- Marco Pirazzini
- Dipartimento di Scienze Biomediche, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy.
| | - Domenico Azarnia Tehran
- Dipartimento di Scienze Biomediche, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy
| | - Giulia Zanetti
- Dipartimento di Scienze Biomediche, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy
| | - Ornella Rossetto
- Dipartimento di Scienze Biomediche, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy
| | - Cesare Montecucco
- Dipartimento di Scienze Biomediche, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy; Istituto CNR di Neuroscienze, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy
| |
Collapse
|
47
|
Elliott M, Maignel J, Liu SM, Favre-Guilmard C, Mir I, Farrow P, Hornby F, Marlin S, Palan S, Beard M, Krupp J. Augmentation of VAMP-catalytic activity of botulinum neurotoxin serotype B does not result in increased potency in physiological systems. PLoS One 2017; 12:e0185628. [PMID: 28982136 PMCID: PMC5628846 DOI: 10.1371/journal.pone.0185628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/15/2017] [Indexed: 11/19/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are used extensively as therapeutic agents. Serotypes A and B are available as marketed products. Higher doses of BoNT/B are required to reach an efficacy similar to that of products containing BoNT/A. Advances in our understanding of BoNT/B mechanism of action have afforded the opportunity to make rational modifications to the toxin aimed at increasing its activity. Recently, a mutation in the light chain of BoNT/B (S201P) was described that increases the catalytic activity of the isolated BoNT/B light chain in biochemical assays. In this study, we have produced two full-length recombinant BoNT/B toxins in E.coli-one wild type (rBoNT/B1) and one incorporating the S201P mutation (rBoNT/B1(S201P)). We have compared the activity of these two molecules along with a native BoNT/B1 in biochemical cell-free assays and in several biological systems. In the cell-free assay, which measured light-chain activity alone, rBoNT/B1(S201P) cleaved VAMP-2 and VAMP-1 substrate with an activity 3-4-fold higher than rBoNT/B1. However, despite the enhanced catalytic activity of rBoNT/B1(S201P), there was no significant difference in potency between the two molecules in any of the in vitro cell-based assays, using either rodent spinal cord neurons or cortical neurons. Similarly in ex vivo tissue preparations rBoNT/B1(S201P) was not significantly more potent than rBoNT/B1 at inhibiting either diaphragm or detrusor (bladder) muscle activity in C57BL/6N and CD1 mice. Finally, no differences between rBoNT/B1 and rBoNT/B1(S201P) were observed in an in vivo digit abduction score (DAS) assay in C57BL/6N mice, either in efficacy or safety parameters. The lack of translation from the enhanced BoNT/B1(S201P) catalytic activity to potency in complex biological systems suggests that the catalytic step is not the rate-limiting factor for BoNT/B to reach maximum efficacy. In order to augment the efficacy of BoNT/B in humans, strategies other than enhancing light chain activity may need to be considered.
Collapse
Affiliation(s)
- Mark Elliott
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, United Kingdom
- * E-mail:
| | | | - Sai Man Liu
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, United Kingdom
| | | | - Imran Mir
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, United Kingdom
| | - Paul Farrow
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, United Kingdom
| | - Fraser Hornby
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, United Kingdom
| | - Sandra Marlin
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, United Kingdom
| | - Shilpa Palan
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, United Kingdom
| | - Matthew Beard
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, United Kingdom
| | | |
Collapse
|
48
|
Zanetti G, Sikorra S, Rummel A, Krez N, Duregotti E, Negro S, Henke T, Rossetto O, Binz T, Pirazzini M. Botulinum neurotoxin C mutants reveal different effects of syntaxin or SNAP-25 proteolysis on neuromuscular transmission. PLoS Pathog 2017; 13:e1006567. [PMID: 28800600 PMCID: PMC5568444 DOI: 10.1371/journal.ppat.1006567] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/23/2017] [Accepted: 08/03/2017] [Indexed: 11/30/2022] Open
Abstract
Botulinum neurotoxin serotype C (BoNT/C) is a neuroparalytic toxin associated with outbreaks of animal botulism, particularly in birds, and is the only BoNT known to cleave two different SNARE proteins, SNAP-25 and syntaxin. BoNT/C was shown to be a good substitute for BoNT/A1 in human dystonia therapy because of its long lasting effects and absence of neuromuscular damage. Two triple mutants of BoNT/C, namely BoNT/C S51T/R52N/N53P (BoNT/C α-51) and BoNT/C L200W/M221W/I226W (BoNT/C α-3W), were recently reported to selectively cleave syntaxin and have been used here to evaluate the individual contribution of SNAP-25 and syntaxin cleavage to the effect of BoNT/C in vivo. Although BoNT/C α-51 and BoNT/C α-3W toxins cleave syntaxin with similar efficiency, we unexpectedly found also cleavage of SNAP-25, although to a lesser extent than wild type BoNT/C. Interestingly, the BoNT/C mutants exhibit reduced lethality compared to wild type toxin, a result that correlated with their residual activity against SNAP-25. In spite of this, a local injection of BoNT/C α-51 persistently impairs neuromuscular junction activity. This is due to an initial phase in which SNAP-25 cleavage causes a complete blockade of neurotransmission, and to a second phase of incomplete impairment ascribable to syntaxin cleavage. Together, these results indicate that neuroparalysis of BoNT/C at the neuromuscular junction is due to SNAP-25 cleavage, while the proteolysis of syntaxin provides a substantial, but incomplete, neuromuscular impairment. In light of this evidence, we discuss a possible clinical use of BoNT/C α-51 as a botulinum neurotoxin endowed with a wide safety margin and a long lasting effect. The seven established Botulinum Neurotoxins serotypes (BoNT/A to G) and the many BoNT subtypes, the causative agents of botulism, are the most poisonous substances known (lethal doses in the low ng/kg range). Due to their toxicological properties, BoNTs are Janus-faced toxins: potent pathogenic factors and potential bioterrorism agents as well as safe and efficacious therapeutics. BoNTs exert their neuroparalytic action by cleaving SNARE proteins, either SNAP-25 or synaptobrevin/VAMP, which mediate neurotransmitter release at the neuromuscular junction; BoNT/C is the only serotype shown to cleave SNAP-25 and syntaxin-1 in vitro. Our study shows for the first time that this parallel cleavage also occurs in vivo. By using mutated toxins reported to be syntaxin-selective, we found that SNAP-25 proteolysis at the neuromuscular junction is the key determinant of BoNT/C lethality as it completely blocks nerve-muscle transmission. Conversely, syntaxin-1 cleavage only attenuates nerve terminal activity without inactivating the synapse, leading to only a partial decrease of neuromuscular functionality. As a result, the BoNT/C mutants have dramatically reduced lethality, but still modulate neuromuscular junction activity upon intramuscular injection. This aspect is particularly relevant considering the possible use of syntaxin-specific BoNT/C derivatives to improve the present clinical utilization of BoNTs.
Collapse
Affiliation(s)
- Giulia Zanetti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Stefan Sikorra
- Institut für Zellbiochemie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Nadja Krez
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Elisa Duregotti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Samuele Negro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Tina Henke
- Institut für Zellbiochemie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Thomas Binz
- Institut für Zellbiochemie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- * E-mail:
| |
Collapse
|
49
|
SiMa Cells for a Serotype Specific and Sensitive Cell-Based Neutralization Test for Botulinum Toxin A and E. Toxins (Basel) 2017; 9:toxins9070230. [PMID: 28726719 PMCID: PMC5535177 DOI: 10.3390/toxins9070230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022] Open
Abstract
Botulinum toxins (BoNTs), of which there are seven serotypes, are among the most potent neurotoxins, with serotypes A, B and E causing human botulism. Antitoxins form the first line of treatment for botulism, and functional, highly sensitive in vitro methods for toxin neutralization are needed to replace the current in vivo methods used for determination of antitoxin potency. In this preliminary proof of concept study, we report the development of a neutralization test using the neuroblastoma SiMa cell line. The assay is serotype specific for either BoNT/A or BoNT/E, which both cleave unique sequences on SNAP-25 within SiMa cells. The end point is simple immunodetection of cleaved SNAP-25 from cell lysates with antibodies detecting only the newly exposed sequence on SNAP-25. Neutralizing antibodies prevent the toxin-induced cleavage of SNAP-25. The toxin neutralization assay, with an EC50 of ~2 mIU/mL determined with a standardized reference antiserum, is more sensitive than the mouse bioassays. Relevance was demonstrated with commercial and experimental antitoxins targeting different functional domains, and of known in vivo neutralizing activities. This is the first report describing a simple, specific, in vitro cell-based assay for the detection of neutralizing antibodies against BoNT/A and BoNT/E with a sensitivity exceeding that of the mouse bioassay.
Collapse
|
50
|
Bremer PT, Pellett S, Carolan JP, Tepp WH, Eubanks LM, Allen KN, Johnson EA, Janda KD. Metal Ions Effectively Ablate the Action of Botulinum Neurotoxin A. J Am Chem Soc 2017; 139:7264-7272. [PMID: 28475321 PMCID: PMC5612488 DOI: 10.1021/jacs.7b01084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Botulinum neurotoxin serotype A (BoNT/A) causes a debilitating and potentially fatal illness known as botulism. The toxin is also a bioterrorism threat, yet no pharmacological antagonist to counteract its effects has reached clinical approval. Existing strategies to negate BoNT/A intoxication have looked to antibodies, peptides, or organic small molecules as potential therapeutics. In this work, a departure from the traditional drug discovery mindset was pursued, in which the enzyme's susceptibility to metal ions was exploited. A screen of a series of metal salts showed marked inhibitory activity of group 11 and 12 metals against the BoNT/A light chain (LC) protease. Enzyme kinetics revealed that copper (I) and (II) cations displayed noncompetitive inhibition of the LC (Ki ≈ 1 μM), while mercury (II) cations were 10-fold more potent. Crystallographic and mutagenesis studies elucidated a key binding interaction between Cys165 on BoNT/A LC and the inhibitory metals. As potential copper prodrugs, ligand-copper complexes were examined in a cell-based model and were found to prevent BoNT/A cleavage of the endogenous protein substrate, SNAP-25, even at low μM concentrations of complexes. Further investigation of the complexes suggested a bioreductive mechanism causing intracellular release of copper, which directly inhibited the BoNT/A protease. In vivo experiments demonstrated that copper (II) dithiocarbamate and bis(thiosemicarbazone) complexes could delay BoNT/A-mediated lethality in a rodent model, indicating their potential for treating the harmful effects of BoNT/A intoxication. Our studies illustrate that metals can be therapeutically viable enzyme inhibitors; moreover, enzymes that share homology with BoNT LCs may be similarly targeted with metals.
Collapse
Affiliation(s)
- Paul T. Bremer
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, Madison, Wisconsin 53706, USA
| | - James P. Carolan
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | - William H. Tepp
- Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, Madison, Wisconsin 53706, USA
| | - Lisa M. Eubanks
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Karen N. Allen
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | - Eric A. Johnson
- Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, Madison, Wisconsin 53706, USA
| | - Kim D. Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|