1
|
Engquist EN, Greco A, Joosten LA, van Engelen BG, Banerji CR, Zammit PS. Transcriptomic gene signatures measure satellite cell activity in muscular dystrophies. iScience 2024; 27:109947. [PMID: 38840844 PMCID: PMC11150970 DOI: 10.1016/j.isci.2024.109947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/20/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
The routine need for myonuclear turnover in skeletal muscle, together with more sporadic demands for hypertrophy and repair, are performed by resident muscle stem cells called satellite cells. Muscular dystrophies are characterized by muscle wasting, stimulating chronic repair/regeneration by satellite cells. Here, we derived and validated transcriptomic signatures for satellite cells, myoblasts/myocytes, and myonuclei using publicly available murine single cell RNA-Sequencing data. Our signatures distinguished disease from control in transcriptomic data from several muscular dystrophies including facioscapulohumeral muscular dystrophy (FSHD), Duchenne muscular dystrophy, and myotonic dystrophy type I. For FSHD, the expression of our gene signatures correlated with direct counts of satellite cells on muscle sections, as well as with increasing clinical and pathological severity. Thus, our gene signatures enable the investigation of myogenesis in bulk transcriptomic data from muscle biopsies. They also facilitate study of muscle regeneration in transcriptomic data from human muscle across health and disease.
Collapse
Affiliation(s)
- Elise N. Engquist
- King’s College London, Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK
| | - Anna Greco
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, The Netherlands
| | - Leo A.B. Joosten
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University if Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Baziel G.M. van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Christopher R.S. Banerji
- King’s College London, Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK
- The Alan Turing Institute, The British Library, 96 Euston Road, London NW1 2DB, UK
- University College London Hospitals, NHS Foundation Trust, London NW1 2BU, UK
| | - Peter S. Zammit
- King’s College London, Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK
| |
Collapse
|
2
|
Yamada Y, Venkadakrishnan VB, Mizuno K, Bakht M, Ku SY, Garcia MM, Beltran H. Targeting DNA methylation and B7-H3 in RB1-deficient and neuroendocrine prostate cancer. Sci Transl Med 2023; 15:eadf6732. [PMID: 37967200 PMCID: PMC10954288 DOI: 10.1126/scitranslmed.adf6732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 10/25/2023] [Indexed: 11/17/2023]
Abstract
Aberrant DNA methylation has been implicated as a key driver of prostate cancer lineage plasticity and histologic transformation to neuroendocrine prostate cancer (NEPC). DNA methyltransferases (DNMTs) are highly expressed, and global DNA methylation is dysregulated in NEPC. We identified that deletion of DNMT genes decreases expression of neuroendocrine lineage markers and substantially reduced NEPC tumor development and metastasis in vivo. Decitabine, a pan-DNMT inhibitor, attenuated tumor growth in NEPC patient-derived xenograft models, as well as retinoblastoma gene (RB1)-deficient castration-resistant prostate adenocarcinoma (CRPC) models compared with RB1-proficient CRPC. We further found that DNMT inhibition increased expression of B7 homolog 3 (B7-H3), an emerging druggable target, via demethylation of B7-H3. We tested DS-7300a (i-DXd), an antibody-drug conjugate targeting B7-H3, alone and in combination with decitabine in models of advanced prostate cancer. There was potent single-agent antitumor activity of DS-7300a in both CRPC and NEPC bearing high expression of B7-H3. In B7-H3-low models, combination therapy of decitabine plus DS-7300a resulted in enhanced response. DNMT inhibition may therefore be a promising therapeutic target for NEPC and RB1-deficient CRPC and may sensitize B7-H3-low prostate cancer to DS-7300a through increasing target expression. NEPC and RB1-deficient CRPC represent prostate cancer subgroups with poor prognosis, and the development of biomarker-driven therapeutic strategies for these populations may ultimately help improve patient outcomes.
Collapse
Affiliation(s)
- Yasutaka Yamada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Varadha Balaji Venkadakrishnan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Kei Mizuno
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Martin Bakht
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Sheng-Yu Ku
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Maria Mica Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
3
|
Whitford MKM, McCaffrey L. Polarity in breast development and cancer. Curr Top Dev Biol 2023; 154:245-283. [PMID: 37100520 DOI: 10.1016/bs.ctdb.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Mammary gland development and breast cancer progression are associated with extensive remodeling of epithelial tissue architecture. Apical-basal polarity is a key feature of epithelial cells that coordinates key elements of epithelial morphogenesis including cell organization, proliferation, survival, and migration. In this review we discuss advances in our understanding of how apical-basal polarity programs are used in breast development and cancer. We describe cell lines, organoids, and in vivo models commonly used for studying apical-basal polarity in breast development and disease and discuss advantages and limitations of each. We also provide examples of how core polarity proteins regulate branching morphogenesis and lactation during development. We describe alterations to core polarity genes in breast cancer and their associations with patient outcomes. The impact of up- or down-regulation of key polarity proteins in breast cancer initiation, growth, invasion, metastasis, and therapeutic resistance are discussed. We also introduce studies demonstrating that polarity programs are involved in regulating the stroma, either through epithelial-stroma crosstalk, or through signaling of polarity proteins in non-epithelial cell types. Overall, a key concept is that the function of individual polarity proteins is highly contextual, depending on developmental or cancer stage and cancer subtype.
Collapse
Affiliation(s)
- Mara K M Whitford
- Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Luke McCaffrey
- Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Chen WJ, Lin IH, Lee CW, Yoshioka K, Ono Y, Yan YT, Yen Y, Chen YF. Ribonucleotide reductase M2B in the myofibers modulates stem cell fate in skeletal muscle. NPJ Regen Med 2022; 7:37. [PMID: 35906243 PMCID: PMC9338274 DOI: 10.1038/s41536-022-00231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
The balance among quiescence, differentiation, and self-renewal of skeletal muscle stem cells (MuSCs) is tightly regulated by their intrinsic and extrinsic properties from the niche. How the niche controls MuSC fate remains unclear. Ribonucleotide reductase M2B (Rrm2b) modulates MuSC quiescence/differentiation in muscle in response to injury. Rrm2b knockout in myofibers, but not in MuSCs, led to weakness of muscles, such as a loss of muscle mass and strength. After muscle injury, damaged myofibers were more efficiently repaired in the Rrm2b myofiber-specific knockout mice than the control mice, but these myofibers were thinner and showed weak functioning. Rrm2b-deleted myofibers released several myokines, which trigger MuSCs to differentiate but not re-enter the quiescent stage to replenish the stem cell pool. Overall, Rrm2b in the myofibers plays a critical role in modulating the MuSC fate by modifying the microenvironment, and it may lead to a possible strategy to treat muscle disorders.
Collapse
Affiliation(s)
- Wan-Jing Chen
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, 11529, Taiwan
| | - I-Hsuan Lin
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, 11031, Taipei, Taiwan
| | - Chien-Wei Lee
- Center for Translational Genomics Research, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Kiyoshi Yoshioka
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yu-Ting Yan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, 11529, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yun Yen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, 11031, Taipei, Taiwan. .,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, 11031, Taipei, Taiwan. .,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, 11031, Taipei, Taiwan. .,Cancer Center, Taipei Municipal WanFang Hospital, 116081, Taipei, Taiwan. .,Center for Cancer Translational Research, Tzu Chi University, Hualien, Taiwan.
| | - Yi-Fan Chen
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, 11529, Taiwan. .,Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, 11031, Taipei, Taiwan. .,International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, 11031, Taipei, Taiwan. .,Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
5
|
Shirakawa T, Toyono T, Inoue A, Matsubara T, Kawamoto T, Kokabu S. Factors Regulating or Regulated by Myogenic Regulatory Factors in Skeletal Muscle Stem Cells. Cells 2022; 11:cells11091493. [PMID: 35563799 PMCID: PMC9104119 DOI: 10.3390/cells11091493] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
MyoD, Myf5, myogenin, and MRF4 (also known as Myf6 or herculin) are myogenic regulatory factors (MRFs). MRFs are regarded as master transcription factors that are upregulated during myogenesis and influence stem cells to differentiate into myogenic lineage cells. In this review, we summarize MRFs, their regulatory factors, such as TLE3, NF-κB, and MRF target genes, including non-myogenic genes such as taste receptors. Understanding the function of MRFs and the physiology or pathology of satellite cells will contribute to the development of cell therapy and drug discovery for muscle-related diseases.
Collapse
Affiliation(s)
- Tomohiko Shirakawa
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan; (T.S.); (A.I.); (T.K.)
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Takashi Toyono
- Division of Anatomy, Department of Health Promotion, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Asako Inoue
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan; (T.S.); (A.I.); (T.K.)
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan; (T.S.); (A.I.); (T.K.)
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
- Correspondence: ; Tel.: +81-93-582-1131; Fax: +81-93-285-6000
| |
Collapse
|
6
|
Fujimaki S, Matsumoto T, Muramatsu M, Nagahisa H, Horii N, Seko D, Masuda S, Wang X, Asakura Y, Takahashi Y, Miyamoto Y, Usuki S, Yasunaga KI, Kamei Y, Nishinakamura R, Minami T, Fukuda T, Asakura A, Ono Y. The endothelial Dll4-muscular Notch2 axis regulates skeletal muscle mass. Nat Metab 2022; 4:180-189. [PMID: 35228746 DOI: 10.1038/s42255-022-00533-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 01/17/2022] [Indexed: 02/03/2023]
Abstract
Adult skeletal muscle is a highly plastic tissue that readily reduces or gains its mass in response to mechanical and metabolic stimulation; however, the upstream mechanisms that control muscle mass remain unclear. Notch signalling is highly conserved, and regulates many cellular events, including proliferation and differentiation of various types of tissue stem cell via cell-cell contact. Here we reveal that multinucleated myofibres express Notch2, which plays a crucial role in disuse- or diabetes-induced muscle atrophy. Mechanistically, in both atrophic conditions, the microvascular endothelium upregulates and releases the Notch ligand, Dll4, which then activates muscular Notch2 without direct cell-cell contact. Inhibition of the Dll4-Notch2 axis substantively prevents these muscle atrophy and promotes mechanical overloading-induced muscle hypertrophy in mice. Our results illuminate a tissue-specific function of the endothelium in controlling tissue plasticity and highlight the endothelial Dll4-muscular Notch2 axis as a central upstream mechanism that regulates catabolic signals from mechanical and metabolic stimulation, providing a therapeutic target for muscle-wasting diseases.
Collapse
Affiliation(s)
- Shin Fujimaki
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiro Matsumoto
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Masashi Muramatsu
- Division of Molecular and Vascular Biology, IRDA, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Nagahisa
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Naoki Horii
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Daiki Seko
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shinya Masuda
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Xuerui Wang
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Yoko Asakura
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Yukie Takahashi
- International Research Center for Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuta Miyamoto
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Kei-Ichiro Yasunaga
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yasutomi Kamei
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Takashi Minami
- Division of Molecular and Vascular Biology, IRDA, Kumamoto University, Kumamoto, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Atsushi Asakura
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan.
| |
Collapse
|
7
|
Yoshioka K, Nagahisa H, Miura F, Araki H, Kamei Y, Kitajima Y, Seko D, Nogami J, Tsuchiya Y, Okazaki N, Yonekura A, Ohba S, Sumita Y, Chiba K, Ito K, Asahina I, Ogawa Y, Ito T, Ohkawa Y, Ono Y. Hoxa10 mediates positional memory to govern stem cell function in adult skeletal muscle. SCIENCE ADVANCES 2021; 7:7/24/eabd7924. [PMID: 34108202 PMCID: PMC8189581 DOI: 10.1126/sciadv.abd7924] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 04/21/2021] [Indexed: 05/04/2023]
Abstract
Muscle stem cells (satellite cells) are distributed throughout the body and have heterogeneous properties among muscles. However, functional topographical genes in satellite cells of adult muscle remain unidentified. Here, we show that expression of Homeobox-A (Hox-A) cluster genes accompanied with DNA hypermethylation of the Hox-A locus was robustly maintained in both somite-derived muscles and their associated satellite cells in adult mice, which recapitulates their embryonic origin. Somite-derived satellite cells were clearly separated from cells derived from cranial mesoderm in Hoxa10 expression. Hoxa10 inactivation led to genomic instability and mitotic catastrophe in somite-derived satellite cells in mice and human. Satellite cell-specific Hoxa10 ablation in mice resulted in a decline in the regenerative ability of somite-derived muscles, which were unobserved in cranial mesoderm-derived muscles. Thus, our results show that Hox gene expression profiles instill the embryonic history in satellite cells as positional memory, potentially modulating region-specific pathophysiology in adult muscles.
Collapse
Affiliation(s)
- Kiyoshi Yoshioka
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
- Musculoskeletal Molecular Biology Research Group, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Hiroshi Nagahisa
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Hiromitsu Araki
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Yasutomi Kamei
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Yasuo Kitajima
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
- Musculoskeletal Molecular Biology Research Group, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Daiki Seko
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
- Musculoskeletal Molecular Biology Research Group, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Jumpei Nogami
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshifumi Tsuchiya
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
- Musculoskeletal Molecular Biology Research Group, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Narihiro Okazaki
- Department of Orthopaedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Akihiko Yonekura
- Department of Orthopaedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Seigo Ohba
- Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Yoshinori Sumita
- Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Ko Chiba
- Department of Orthopaedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Kosei Ito
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Izumi Asahina
- Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan.
- Musculoskeletal Molecular Biology Research Group, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
8
|
Yoshioka K, Kitajima Y, Seko D, Tsuchiya Y, Ono Y. The body region specificity in murine models of muscle regeneration and atrophy. Acta Physiol (Oxf) 2021; 231:e13553. [PMID: 32875719 PMCID: PMC7757168 DOI: 10.1111/apha.13553] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/15/2020] [Accepted: 08/26/2020] [Indexed: 01/06/2023]
Abstract
AIM Skeletal muscles are distributed throughout the body, presenting a variety of sizes, shapes and functions. Here, we examined whether muscle regeneration and atrophy occurred homogeneously throughout the body in mouse models. METHODS Acute muscle regeneration was induced by a single intramuscular injection of cardiotoxin in adult mice. Chronic muscle regeneration was assessed in mdx mice. Muscle atrophy in different muscles was evaluated by cancer cachexia, ageing and castration mouse models. RESULTS We found that, in the cardiotoxin-injected acute muscle injury model, head muscles slowly regenerated, while limb muscles exhibited a rapid regeneration and even overgrowth. This overgrowth was also observed in limb muscles alone (but not in head muscles) in mdx mice as chronic injury models. We described the body region-specific decline in the muscle mass in muscle atrophy models: cancer cachexia-induced, aged and castrated mice. The positional identities, including gene expression profiles and hormone sensitivity, were robustly preserved in the ectopically engrafted satellite cell-derived muscles in the castrated model. CONCLUSION Our results indicate that positional identities in muscles should be considered for the development of efficient regenerative therapies for muscle weakness, such as muscular dystrophy and age-related sarcopenia.
Collapse
Affiliation(s)
- Kiyoshi Yoshioka
- Department of Muscle Development and Regeneration Institute of Molecular Embryology and Genetics Kumamoto University Kumamoto Japan
| | - Yasuo Kitajima
- Department of Muscle Development and Regeneration Institute of Molecular Embryology and Genetics Kumamoto University Kumamoto Japan
| | - Daiki Seko
- Department of Muscle Development and Regeneration Institute of Molecular Embryology and Genetics Kumamoto University Kumamoto Japan
| | - Yoshifumi Tsuchiya
- Department of Muscle Development and Regeneration Institute of Molecular Embryology and Genetics Kumamoto University Kumamoto Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration Institute of Molecular Embryology and Genetics Kumamoto University Kumamoto Japan
| |
Collapse
|
9
|
Damaged Myofiber-Derived Metabolic Enzymes Act as Activators of Muscle Satellite Cells. Stem Cell Reports 2020; 15:926-940. [PMID: 32888505 PMCID: PMC7561495 DOI: 10.1016/j.stemcr.2020.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Muscle satellite cells are normally quiescent but are rapidly activated following muscle damage. Here, we investigated whether damaged myofibers influence the activation of satellite cells. Our findings revealed that satellite cells are directly activated by damaged-myofiber-derived factors (DMDFs). DMDFs induced satellite cells to enter the cell cycle; however, the cells stayed at the G1 phase and did not undergo S phase, and these cells were reversible to the quiescent-like state. Proteome analysis identified metabolic enzymes, including GAPDH, as DMDFs, whose recombinant proteins stimulated the activation of satellite cells. Satellite cells pre-exposed to the DMDFs demonstrated accelerated proliferation ex vivo. Treatment with recombinant GAPDH prior to muscle injury promoted expansion of the satellite cell population in vivo. Thus, our results indicate that DMDFs are not only a set of biomarkers for muscle damage, but also act as moonlighting proteins involved in satellite cell activation at the initial step of muscle regeneration.
Collapse
|
10
|
Seko D, Fujita R, Kitajima Y, Nakamura K, Imai Y, Ono Y. Estrogen Receptor β Controls Muscle Growth and Regeneration in Young Female Mice. Stem Cell Reports 2020; 15:577-586. [PMID: 32822588 PMCID: PMC7486216 DOI: 10.1016/j.stemcr.2020.07.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/27/2022] Open
Abstract
Estrogens are female sex hormones that are important for comprehensively maintaining muscle function, and an insufficiency affects muscle strength and regeneration in females. However, it is still unclear whether estrogen signaling is mediated through receptors. To investigate the specific role of estrogen receptor β (ERβ) in skeletal muscle and satellite cells (muscle stem cells), we generated muscle-specific ERβ-knockout (mKO) and satellite cell-specific ERβ-knockout (scKO) mice, respectively. Young female mKO mice displayed a decrease in fast-type dominant muscle mass. Female, but not male, scKO mice exhibited impaired muscle regeneration following acute muscle injury, probably due to reduced proliferation and increased apoptosis of satellite cells. RNA-sequencing analysis revealed that loss of ERβ in satellite cells altered gene expression of extracellular matrix components, including laminin and collagen. The results indicate that the estrogen-ERβ pathway is a sex-specific regulatory mechanism that controls muscle growth and regeneration in female mice. ERβ controls muscle growth in young female mice ERβ is essential for muscle regeneration in female mice Inactivation of ERβ causes an increase in apoptosis ERβ is required for satellite cell population expansion
Collapse
Affiliation(s)
- Daiki Seko
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan; Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ryo Fujita
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Yuriko Kitajima
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kodai Nakamura
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Graduate School of Medicine, Ehime University, Ehime, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan; Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Center for Metabolic Regulation of Healthy Aging, Kumamoto University Faculty of Life Sciences, Nagasaki, Japan.
| |
Collapse
|
11
|
Santoni MJ, Kashyap R, Camoin L, Borg JP. The Scribble family in cancer: twentieth anniversary. Oncogene 2020; 39:7019-7033. [PMID: 32999444 PMCID: PMC7527152 DOI: 10.1038/s41388-020-01478-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/05/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Among the more than 160 PDZ containing proteins described in humans, the cytoplasmic scaffold Scribble stands out because of its essential role in many steps of cancer development and dissemination. Its fame has somehow blurred the importance of homologous proteins, Erbin and Lano, all belonging to the LRR and PDZ (LAP) protein family first described twenty years ago. In this review, we will retrace the history of LAP family protein research and draw attention to their contribution in cancer by detailing the features of its members at the structural and functional levels, and highlighting their shared-but also different-implication in the tumoral process.
Collapse
Affiliation(s)
- Marie-Josée Santoni
- grid.463833.90000 0004 0572 0656Centre de Recherche en Cancérologie de Marseille, CRCM, Equipe labellisée Ligue ‘Cell Polarity, Cell Signaling and Cancer’, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Rudra Kashyap
- grid.463833.90000 0004 0572 0656Centre de Recherche en Cancérologie de Marseille, CRCM, Equipe labellisée Ligue ‘Cell Polarity, Cell Signaling and Cancer’, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, 13009 Marseille, France ,grid.5596.f0000 0001 0668 7884Cellular and Molecular Medicine, Katholisch University of Leuven, Leuven, Belgium
| | - Luc Camoin
- grid.463833.90000 0004 0572 0656Aix Marseille Université, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Jean-Paul Borg
- grid.463833.90000 0004 0572 0656Centre de Recherche en Cancérologie de Marseille, CRCM, Equipe labellisée Ligue ‘Cell Polarity, Cell Signaling and Cancer’, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, 13009 Marseille, France ,grid.463833.90000 0004 0572 0656Aix Marseille Université, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France ,grid.440891.00000 0001 1931 4817Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
12
|
Fate decision of satellite cell differentiation and self-renewal by miR-31-IL34 axis. Cell Death Differ 2019; 27:949-965. [PMID: 31332295 DOI: 10.1038/s41418-019-0390-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/13/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022] Open
Abstract
Quiescent satellite cells (SCs) that are activated to produce numerous myoblasts underpin the complete healing of damaged skeletal muscle. How cell-autonomous regulatory mechanisms modulate the balance among cells committed to differentiation and those committed to self-renewal to maintain the stem cell pool remains poorly explored. Here, we show that miR-31 inactivation compromises muscle regeneration in adult mice by impairing the expansion of myoblasts. miR-31 is pivotal for SC proliferation, and its deletion promotes asymmetric cell fate segregation of proliferating cells, resulting in enhanced myogenic commitment and re-entry into quiescence. Further analysis revealed that miR-31 posttranscriptionally suppresses interleukin 34 (IL34) mRNA, the protein product of which activates JAK-STAT3 signaling required for myogenic progression. IL34 inhibition rescues the regenerative deficiency of miR-31 knockout mice. Our results provide evidence that targeting miR-31 or IL34 activities in SCs could be used to counteract the functional exhaustion of SCs in pathological conditions.
Collapse
|
13
|
Zhang W, Zhang S, Xu Y, Ma Y, Zhang D, Li X, Zhao S. The DNA Methylation Status of Wnt and Tgfβ Signals Is a Key Factor on Functional Regulation of Skeletal Muscle Satellite Cell Development. Front Genet 2019; 10:220. [PMID: 30949196 PMCID: PMC6437077 DOI: 10.3389/fgene.2019.00220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 02/28/2019] [Indexed: 12/16/2022] Open
Abstract
DNA methylation is an important form of epigenetic regulation that can regulate the expression of genes and the development of tissues. Muscle satellite cells play an important role in skeletal muscle development and regeneration. Therefore, the DNA methylation status of genes in satellite cells is important in the regulation of the development of skeletal muscle. This study systematically investigated the changes of genome-wide DNA methylation in satellite cells during skeletal muscle development. According to the MeDIP-Seq data, 52,809-123,317 peaks were obtained for each sample, covering 0.70-1.79% of the genome. The number of reads and peaks was highest in the intron regions followed by the CDS regions. A total of 96,609 DMRs were identified between any two time points. Among them 6198 DMRs were annotated into the gene promoter regions, corresponding to 4726 DMGs. By combining the MeDIP-Seq and RNA-Seq data, a total of 202 overlap genes were obtained between DMGs and DEGs. GO and Pathway analysis revealed that the overlap genes were mainly involved in 128 biological processes and 23 pathways. Among the biological processes, terms related to regulation of cell proliferation and Wnt signaling pathway were significantly different. Gene-gene interaction analysis showed that Wnt5a, Wnt9a, and Tgfβ1 were the key nodes in the network. Furthermore, the expression level of Wnt5a, Wnt9a, and Tgfβ1 genes could be influenced by the methylation status of promoter region during skeletal muscle development. These results indicated that the Wnt and Tgfβ signaling pathways may play an important role in functional regulation of satellite cells, and the DNA methylation status of Wnt and Tgfβ signals is a key regulatory factor during skeletal muscle development. This study provided new insights into the effects of genome-wide methylation on the function of satellite cells.
Collapse
Affiliation(s)
- Weiya Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Saixian Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Yueyuan Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Yunlong Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Dingxiao Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
14
|
Scully D, Sfyri P, Verpoorten S, Papadopoulos P, Muñoz‐Turrillas MC, Mitchell R, Aburima A, Patel K, Gutiérrez L, Naseem KM, Matsakas A. Platelet releasate promotes skeletal myogenesis by increasing muscle stem cell commitment to differentiation and accelerates muscle regeneration following acute injury. Acta Physiol (Oxf) 2019; 225:e13207. [PMID: 30339324 DOI: 10.1111/apha.13207] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/27/2018] [Accepted: 10/14/2018] [Indexed: 12/11/2022]
Abstract
AIM The use of platelets as biomaterials has gained intense research interest. However, the mechanisms regarding platelet-mediated skeletal myogenesis remain to be established. The aim of this study was to determine the role of platelet releasate in skeletal myogenesis and muscle stem cell fate in vitro and ex vivo respectively. METHODS We analysed the effect of platelet releasate on proliferation and differentiation of C2C12 myoblasts by means of cell proliferation assays, immunohistochemistry, gene expression and cell bioenergetics. We expanded in vitro findings on single muscle fibres by determining the effect of platelet releasate on murine skeletal muscle stem cells using protein expression profiles for key myogenic regulatory factors. RESULTS TRAP6 and collagen used for releasate preparation had a more pronounced effect on myoblast proliferation vs thrombin and sonicated platelets (P < 0.05). In addition, platelet concentration positively correlated with myoblast proliferation. Platelet releasate increased myoblast and muscle stem cell proliferation in a dose-dependent manner, which was mitigated by VEGFR and PDGFR inhibition. Inhibition of VEGFR and PDGFR ablated MyoD expression on proliferating muscle stem cells, compromising their commitment to differentiation in muscle fibres (P < 0.001). Platelet releasate was detrimental to myoblast fusion and affected differentiation of myoblasts in a temporal manner. Most importantly, we show that platelet releasate promotes skeletal myogenesis through the PDGF/VEGF-Cyclin D1-MyoD-Scrib-Myogenin axis and accelerates skeletal muscle regeneration after acute injury. CONCLUSION This study provides novel mechanistic insights on the role of platelet releasate in skeletal myogenesis and set the physiological basis for exploiting platelets as biomaterials in regenerative medicine.
Collapse
Affiliation(s)
- David Scully
- Molecular Physiology Laboratory, Centre for Atherothrombotic and Metabolic Disease, Hull York Medical School University of Hull Hull UK
| | - Peggy Sfyri
- Molecular Physiology Laboratory, Centre for Atherothrombotic and Metabolic Disease, Hull York Medical School University of Hull Hull UK
| | - Sandrine Verpoorten
- Molecular Physiology Laboratory, Centre for Atherothrombotic and Metabolic Disease, Hull York Medical School University of Hull Hull UK
| | - Petros Papadopoulos
- Department of Hematology, Instituto de Investigación Sanitaria San Carlos (IdISSC) Hospital Clínico San Carlos Madrid Spain
| | - María Carmen Muñoz‐Turrillas
- Centro Comunitario de Sangre y Tejidos de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA) Oviedo Spain
| | - Robert Mitchell
- School of Biological Sciences University of Reading Reading UK
| | - Ahmed Aburima
- Molecular Physiology Laboratory, Centre for Atherothrombotic and Metabolic Disease, Hull York Medical School University of Hull Hull UK
| | - Ketan Patel
- School of Biological Sciences University of Reading Reading UK
| | - Laura Gutiérrez
- Department of Medicine Universidad de Oviedo and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA) Oviedo Spain
| | - Khalid M. Naseem
- Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds Leeds UK
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Atherothrombotic and Metabolic Disease, Hull York Medical School University of Hull Hull UK
| |
Collapse
|
15
|
Wang YX, Feige P, Brun CE, Hekmatnejad B, Dumont NA, Renaud JM, Faulkes S, Guindon DE, Rudnicki MA. EGFR-Aurka Signaling Rescues Polarity and Regeneration Defects in Dystrophin-Deficient Muscle Stem Cells by Increasing Asymmetric Divisions. Cell Stem Cell 2019; 24:419-432.e6. [PMID: 30713094 DOI: 10.1016/j.stem.2019.01.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/20/2018] [Accepted: 01/07/2019] [Indexed: 12/17/2022]
Abstract
Loss of dystrophin expression in Duchenne muscular dystrophy (DMD) causes progressive degeneration of skeletal muscle, which is exacerbated by reduced self-renewing asymmetric divisions of muscle satellite cells. This, in turn, affects the production of myogenic precursors and impairs regeneration and suggests that increasing such divisions may be beneficial. Here, through a small-molecule screen, we identified epidermal growth factor receptor (EGFR) and Aurora kinase A (Aurka) as regulators of asymmetric satellite cell divisions. Inhibiting EGFR causes a substantial shift from asymmetric to symmetric division modes, whereas EGF treatment increases asymmetric divisions. EGFR activation acts through Aurka to orient mitotic centrosomes, and inhibiting Aurka blocks EGF stimulation-induced asymmetric division. In vivo EGF treatment markedly activates asymmetric divisions of dystrophin-deficient satellite cells in mdx mice, increasing progenitor numbers, enhancing regeneration, and restoring muscle strength. Therefore, activating an EGFR-dependent polarity pathway promotes functional rescue of dystrophin-deficient satellite cells and enhances muscle force generation.
Collapse
Affiliation(s)
- Yu Xin Wang
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Peter Feige
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Caroline E Brun
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Bahareh Hekmatnejad
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nicolas A Dumont
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Sharlene Faulkes
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Daniel E Guindon
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael A Rudnicki
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
16
|
Kitajima Y, Suzuki N, Nunomiya A, Osana S, Yoshioka K, Tashiro Y, Takahashi R, Ono Y, Aoki M, Nagatomi R. The Ubiquitin-Proteasome System Is Indispensable for the Maintenance of Muscle Stem Cells. Stem Cell Reports 2018; 11:1523-1538. [PMID: 30416048 PMCID: PMC6294073 DOI: 10.1016/j.stemcr.2018.10.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 01/06/2023] Open
Abstract
Adult muscle stem cells (satellite cells) are required for adult skeletal muscle regeneration. A proper balance between quiescence, proliferation, and differentiation is essential for the maintenance of the satellite cell pool and their regenerative function. Although the ubiquitin-proteasome is required for most protein degradation in mammalian cells, how its dysfunction affects tissue stem cells remains unclear. Here, we investigated the function of the proteasome in satellite cells using mice lacking the crucial proteasomal component, Rpt3. Ablation of Rpt3 in satellite cells decreased proteasome activity. Proteasome dysfunction in Rpt3-deficient satellite cells impaired their ability to proliferate, survive and differentiate, resulting in defective muscle regeneration. We found that inactivation of proteasomal activity induced proliferation defects and apoptosis in satellite cells. Mechanistically, insufficient proteasomal activity upregulated the p53 pathway, which caused cell-cycle arrest. Our findings delineate a critical function of the proteasome system in maintaining satellite cells in adult muscle. Ablation of Rpt3 in satellite cells leads to decreased proteasome activity Proteasome dysfunction in satellite cells results in defective muscle regeneration Proteasome dysfunction induces proliferation defects and apoptosis Inhibition of p53 rescues Rpt3-mediated defects in proliferation
Collapse
Affiliation(s)
- Yasuo Kitajima
- Musculoskeletal Molecular Biology Research Group, Nagasaki University Graduate School of Biomedical Sciences, Basic and Translational Research Center for Hard Tissue Disease, 1-7-1 Sakamoto, Sakamoto, Nagasaki 852-8588, Japan; Japan Society for the Promotion of Science, Tokyo, Japan.
| | - Naoki Suzuki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | - Aki Nunomiya
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, 2-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
| | - Shion Osana
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, 2-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
| | - Kiyoshi Yoshioka
- Musculoskeletal Molecular Biology Research Group, Nagasaki University Graduate School of Biomedical Sciences, Basic and Translational Research Center for Hard Tissue Disease, 1-7-1 Sakamoto, Sakamoto, Nagasaki 852-8588, Japan
| | - Yoshitaka Tashiro
- Department of Aging Neurobiology, National Center for Geriatrics and Gerontology, Obu City, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yusuke Ono
- Musculoskeletal Molecular Biology Research Group, Nagasaki University Graduate School of Biomedical Sciences, Basic and Translational Research Center for Hard Tissue Disease, 1-7-1 Sakamoto, Sakamoto, Nagasaki 852-8588, Japan.
| | - Masashi Aoki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | - Ryoichi Nagatomi
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, 2-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|
17
|
Lopez Almeida L, Sebbagh M, Bertucci F, Finetti P, Wicinski J, Marchetto S, Castellano R, Josselin E, Charafe-Jauffret E, Ginestier C, Borg JP, Santoni MJ. The SCRIB Paralog LANO/LRRC1 Regulates Breast Cancer Stem Cell Fate through WNT/β-Catenin Signaling. Stem Cell Reports 2018; 11:1040-1050. [PMID: 30344009 PMCID: PMC6234904 DOI: 10.1016/j.stemcr.2018.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022] Open
Abstract
Tumor initiation, progression, and therapeutic resistance have been proposed to originate from a subset of tumor cells, cancer stem cells (CSCs). However, the current understanding of the mechanisms involved in their self-renewal and tumor initiation capacity remains limited. Here, we report that expression of LANO/LRRC1, the vertebrate paralog of SCRIB tumor suppressor, is associated with a stem cell signature in normal and tumoral mammary epithelia. Through in vitro and in vivo experiments including a Lano/Lrrc1 knockout mouse model, we demonstrate its involvement in the regulation of breast CSC (bCSC) fate. Mechanistically, we demonstrate that Lano/LRRC1-depleted cells secrete increased levels of WNT ligands, which act in a paracrine manner to positively deregulate the WNT/β-catenin pathway in bCSCs. In addition to describing the first function of LANO/LRRC1, our results suggest that its expression level could be used as a biomarker to stratify breast cancer patients who could benefit from WNT/β-catenin signaling inhibitors.
Collapse
Affiliation(s)
- Leonor Lopez Almeida
- Centre de Recherche en Cancérologie de Marseille, CRCM, Aix Marseille University, Institut Paoli-Calmettes, CNRS, INSERM, 'Cell Polarity, Cell Signaling and Cancer'- Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - Michael Sebbagh
- Centre de Recherche en Cancérologie de Marseille, CRCM, Aix Marseille University, Institut Paoli-Calmettes, CNRS, INSERM, 'Cell Polarity, Cell Signaling and Cancer'- Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - François Bertucci
- Centre de Recherche en Cancérologie de Marseille, CRCM, Aix Marseille University, Institut Paoli-Calmettes, CNRS, INSERM, 'Predictive Oncology'- Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - Pascal Finetti
- Centre de Recherche en Cancérologie de Marseille, CRCM, Aix Marseille University, Institut Paoli-Calmettes, CNRS, INSERM, 'Predictive Oncology'- Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - Julien Wicinski
- Centre de Recherche en Cancérologie de Marseille, CRCM, Aix Marseille University, Institut Paoli-Calmettes, CNRS, INSERM, 'Epithelial Stem Cells and Cancer', Marseille, France
| | - Sylvie Marchetto
- Centre de Recherche en Cancérologie de Marseille, CRCM, Aix Marseille University, Institut Paoli-Calmettes, CNRS, INSERM, 'Cell Polarity, Cell Signaling and Cancer'- Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - Rémy Castellano
- Centre de Recherche en Cancérologie de Marseille, CRCM, Aix Marseille University, Institut Paoli-Calmettes, CNRS, INSERM, TrGET Pre-clinical Assay Platform, Marseille, France
| | - Emmanuelle Josselin
- Centre de Recherche en Cancérologie de Marseille, CRCM, Aix Marseille University, Institut Paoli-Calmettes, CNRS, INSERM, TrGET Pre-clinical Assay Platform, Marseille, France
| | - Emmanuelle Charafe-Jauffret
- Centre de Recherche en Cancérologie de Marseille, CRCM, Aix Marseille University, Institut Paoli-Calmettes, CNRS, INSERM, 'Epithelial Stem Cells and Cancer', Marseille, France
| | - Christophe Ginestier
- Centre de Recherche en Cancérologie de Marseille, CRCM, Aix Marseille University, Institut Paoli-Calmettes, CNRS, INSERM, 'Epithelial Stem Cells and Cancer', Marseille, France
| | - Jean-Paul Borg
- Centre de Recherche en Cancérologie de Marseille, CRCM, Aix Marseille University, Institut Paoli-Calmettes, CNRS, INSERM, 'Cell Polarity, Cell Signaling and Cancer'- Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - Marie-Josée Santoni
- Centre de Recherche en Cancérologie de Marseille, CRCM, Aix Marseille University, Institut Paoli-Calmettes, CNRS, INSERM, 'Cell Polarity, Cell Signaling and Cancer'- Equipe Labellisée Ligue Contre le Cancer, Marseille, France.
| |
Collapse
|
18
|
Kitajima Y, Ono Y. Visualization of PAX7 protein dynamics in muscle satellite cells in a YFP knock-in-mouse line. Skelet Muscle 2018; 8:26. [PMID: 30139390 PMCID: PMC6108100 DOI: 10.1186/s13395-018-0174-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/01/2018] [Indexed: 11/13/2022] Open
Abstract
Background Satellite cells are residential muscle stem cells that express a paired box protein, PAX7. Results Here, we report a knock-in mouse line expressing a PAX7-enhanced yellow fluorescent protein (YFP) fusion protein that enables visualization of PAX7 protein dynamics in living satellite cells through YFP fluorescence. The YFP fluorescence signals in Pax7-YFP knock-in mice clearly recapitulated the endogenous expression of PAX7 protein in satellite cells. YFP+ satellite cells were efficiently isolated from muscle tissues by fluorescence-activated cell sorting. Homozygous Pax7-YFP knock-in mice (Pax7YFP/YFP) were viable, grew and regenerated muscle normally, and Pax7YFP/YFP mouse-derived satellite cells proliferated, differentiated, and self-renewed as efficiently as those from wild-type (Pax7+/+) mice. Conclusions Taken together, our Pax7-YFP mouse line is a useful tool to aid the development of stem-cell-based therapies for muscle diseases. Electronic supplementary material The online version of this article (10.1186/s13395-018-0174-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasuo Kitajima
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan.,Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Yusuke Ono
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan. .,Agency for Medical Research and Development (AMED), 1-7-1 Otemachi, Chiyodaku, Tokyo, 100-0004, Japan.
| |
Collapse
|
19
|
Li L, Fan CM. A CREB-MPP7-AMOT Regulatory Axis Controls Muscle Stem Cell Expansion and Self-Renewal Competence. Cell Rep 2018; 21:1253-1266. [PMID: 29091764 DOI: 10.1016/j.celrep.2017.10.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/27/2017] [Accepted: 10/06/2017] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle regeneration requires resident muscle stem cells, termed satellite cells (SCs). SCs are largely quiescent during homeostasis yet become activated upon injury to supply myonuclei and self-renewed SCs. Molecular mechanisms underlying the competence of SCs to proliferate and self-renew in response to injury remain unclear. Here, we show that CREB activity establishes proliferative potential during SC quiescence. SCs with inhibited CREB activity remain quiescent and positioned in their niche, but upon injury, they cannot enter or maintain a proliferative state for expansion and self-renewal. We demonstrate mechanistically that Mpp7 is a CREB target and its functional mediator. MPP7 loss affects the level and sub-cellular localization of AMOT and YAP1 in quiescent SCs. Furthermore, MPP7 and AMOT are required for YAP1 nuclear accumulation, and the three are individually required for a proliferative state in myoblasts. We propose that the CREB-MPP7-AMOT-YAP1 axis establishes the competence of quiescent SCs to expand and self-renew, thereby preserving stem cell function.
Collapse
Affiliation(s)
- Lydia Li
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Chen-Ming Fan
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218, USA.
| |
Collapse
|
20
|
Fujita R, Yoshioka K, Seko D, Suematsu T, Mitsuhashi S, Senoo N, Miura S, Nishino I, Ono Y. Zmynd17 controls muscle mitochondrial quality and whole-body metabolism. FASEB J 2018; 32:5012-5025. [PMID: 29913553 DOI: 10.1096/fj.201701264r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Muscle mitochondria are crucial for systemic metabolic function, yet their regulation remains unclear. The zinc finger MYND domain-containing protein 17 (Zmynd17) was recently identified as a muscle-specific gene in mammals. Here, we investigated the role of Zmynd17 in mice. We found Zmynd17 predominantly expressed in skeletal muscle, especially in fast glycolytic muscle. Genetic Zmynd17 inactivation led to morphologic and functional abnormalities in muscle mitochondria, resulting in decreased respiratory function. Metabolic stress induced by a high-fat diet upregulated Zmynd17 expression and further exacerbated muscle mitochondrial morphology in Zmynd17-deficient mice. Strikingly, Zmynd17 deficiency significantly aggravated metabolic stress-induced hepatic steatosis, glucose intolerance, and insulin resistance. Furthermore, middle-aged mice lacking Zmynd17 exhibited impaired aerobic exercise performance, glucose intolerance, and insulin resistance. Thus, our results indicate that Zmynd17 is a metabolic stress-inducible factor that maintains muscle mitochondrial integrity, with its deficiency profoundly affecting whole-body glucose metabolism.-Fujita, R., Yoshioka, K., Seko, D., Suematsu, T., Mitsuhashi, S., Senoo, N., Miura, S., Nishino, I., Ono, Y. Zmynd17 controls muscle mitochondrial quality and whole-body metabolism.
Collapse
Affiliation(s)
- Ryo Fujita
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kiyoshi Yoshioka
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Daiki Seko
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi Suematsu
- Central Electron Microscope Laboratory, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Satomi Mitsuhashi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Nanami Senoo
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan; and
| | - Shinji Miura
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan; and
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yusuke Ono
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
21
|
Harada A, Maehara K, Ono Y, Taguchi H, Yoshioka K, Kitajima Y, Xie Y, Sato Y, Iwasaki T, Nogami J, Okada S, Komatsu T, Semba Y, Takemoto T, Kimura H, Kurumizaka H, Ohkawa Y. Histone H3.3 sub-variant H3mm7 is required for normal skeletal muscle regeneration. Nat Commun 2018; 9:1400. [PMID: 29643389 PMCID: PMC5895627 DOI: 10.1038/s41467-018-03845-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/16/2018] [Indexed: 12/12/2022] Open
Abstract
Regulation of gene expression requires selective incorporation of histone H3 variant H3.3 into chromatin. Histone H3.3 has several subsidiary variants but their functions are unclear. Here we characterize the function of histone H3.3 sub-variant, H3mm7, which is expressed in skeletal muscle satellite cells. H3mm7 knockout mice demonstrate an essential role of H3mm7 in skeletal muscle regeneration. Chromatin analysis reveals that H3mm7 facilitates transcription by forming an open chromatin structure around promoter regions including those of myogenic genes. The crystal structure of the nucleosome containing H3mm7 reveals that, unlike the S57 residue of other H3 proteins, the H3mm7-specific A57 residue cannot form a hydrogen bond with the R40 residue of the cognate H4 molecule. Consequently, the H3mm7 nucleosome is unstable in vitro and exhibited higher mobility in vivo compared with the H3.3 nucleosome. We conclude that the unstable H3mm7 nucleosome may be required for proper skeletal muscle differentiation. Incorporation of histone H3 variant H3.3 into chromatin regulates transcription. Here the authors find that H3.3 sub-variant H3mm7 is required for skeletal muscle regeneration and that H3mm7 nucleosomes are unstable and exhibit higher mobility, with H3mm7 promoting open chromatin around promoters.
Collapse
Affiliation(s)
- Akihito Harada
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan
| | - Yusuke Ono
- Graduate School of Biomedical Science, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Hiroyuki Taguchi
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Research Institute for Science and Engineering, and Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Kiyoshi Yoshioka
- Graduate School of Biomedical Science, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Yasuo Kitajima
- Graduate School of Biomedical Science, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Yan Xie
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Research Institute for Science and Engineering, and Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Yuko Sato
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Yokohama, 226-8503, Japan
| | - Takeshi Iwasaki
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan
| | - Jumpei Nogami
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan
| | - Seiji Okada
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tetsuro Komatsu
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan
| | - Yuichiro Semba
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan
| | - Tatsuya Takemoto
- Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Yokohama, 226-8503, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Research Institute for Science and Engineering, and Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan.
| |
Collapse
|
22
|
Saito Y, Desai RR, Muthuswamy SK. Reinterpreting polarity and cancer: The changing landscape from tumor suppression to tumor promotion. Biochim Biophys Acta Rev Cancer 2018; 1869:103-116. [DOI: 10.1016/j.bbcan.2017.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022]
|
23
|
Thomas JD, Oliveira R, Sznajder ŁJ, Swanson MS. Myotonic Dystrophy and Developmental Regulation of RNA Processing. Compr Physiol 2018; 8:509-553. [PMID: 29687899 PMCID: PMC11323716 DOI: 10.1002/cphy.c170002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myotonic dystrophy (DM) is a multisystemic disorder caused by microsatellite expansion mutations in two unrelated genes leading to similar, yet distinct, diseases. DM disease presentation is highly variable and distinguished by differences in age-of-onset and symptom severity. In the most severe form, DM presents with congenital onset and profound developmental defects. At the molecular level, DM pathogenesis is characterized by a toxic RNA gain-of-function mechanism that involves the transcription of noncoding microsatellite expansions. These mutant RNAs disrupt key cellular pathways, including RNA processing, localization, and translation. In DM, these toxic RNA effects are predominantly mediated through the modulation of the muscleblind-like and CUGBP and ETR-3-like factor families of RNA binding proteins (RBPs). Dysfunction of these RBPs results in widespread RNA processing defects culminating in the expression of developmentally inappropriate protein isoforms in adult tissues. The tissue that is the focus of this review, skeletal muscle, is particularly sensitive to mutant RNA-responsive perturbations, as patients display a variety of developmental, structural, and functional defects in muscle. Here, we provide a comprehensive overview of DM1 and DM2 clinical presentation and pathology as well as the underlying cellular and molecular defects associated with DM disease onset and progression. Additionally, fundamental aspects of skeletal muscle development altered in DM are highlighted together with ongoing and potential therapeutic avenues to treat this muscular dystrophy. © 2018 American Physiological Society. Compr Physiol 8:509-553, 2018.
Collapse
Affiliation(s)
- James D. Thomas
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Ruan Oliveira
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Łukasz J. Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Maurice S. Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
24
|
Horii N, Uchida M, Hasegawa N, Fujie S, Oyanagi E, Yano H, Hashimoto T, Iemitsu M. Resistance training prevents muscle fibrosis and atrophy
via
down‐regulation of C1q‐induced Wnt signaling in senescent mice. FASEB J 2018; 32:3547-3559. [DOI: 10.1096/fj.201700772rrr] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Naoki Horii
- Faculty of Sport and Health ScienceRitsumeikan UniversityShigaJapan
| | - Masataka Uchida
- Faculty of Sport and Health ScienceRitsumeikan UniversityShigaJapan
| | - Natsuki Hasegawa
- Faculty of Sport and Health ScienceRitsumeikan UniversityShigaJapan
- Japan Society for the Promotion of ScienceTokyoJapan
| | - Shumpei Fujie
- Faculty of Sport and Health ScienceRitsumeikan UniversityShigaJapan
- Japan Society for the Promotion of ScienceTokyoJapan
| | - Eri Oyanagi
- Department of Health and Sports ScienceKawasaki University of Medical WelfareOkayamaJapan
| | - Hiromi Yano
- Department of Health and Sports ScienceKawasaki University of Medical WelfareOkayamaJapan
| | | | - Motoyuki Iemitsu
- Faculty of Sport and Health ScienceRitsumeikan UniversityShigaJapan
| |
Collapse
|
25
|
Hatazawa Y, Ono Y, Hirose Y, Kanai S, Fujii NL, Machida S, Nishino I, Shimizu T, Okano M, Kamei Y, Ogawa Y. Reduced Dnmt3a increases Gdf5 expression with suppressed satellite cell differentiation and impaired skeletal muscle regeneration. FASEB J 2018; 32:1452-1467. [DOI: 10.1096/fj.201700573r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yukino Hatazawa
- Department of Molecular Hndocrinology and MetabolismGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU) Tokyo Japan
- Laboratory of Molecular Nutrition, Graduate School of Fnvironmental and Life Science Kyoto Prefectural University Kyoto Japan
- Japan Society for the Promotion of Science Tokyo Japan
| | - Yusuke Ono
- Musculoskeletal Molecular Biology Research Group Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
- Division of Regenerative Medicine Research Japan Agency for Medical Research and Development (AMED) Tokyo Japan
| | - Yuma Hirose
- Laboratory of Molecular Nutrition, Graduate School of Fnvironmental and Life Science Kyoto Prefectural University Kyoto Japan
| | - Sayaka Kanai
- Department of Molecular Hndocrinology and MetabolismGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Nobuharu L. Fujii
- Department of Health Promotion SciencesGraduate School of Human Health SciencesTokyo Metropolitan University Hachioji Japan
| | - Shuichi Machida
- Graduate School of Health and Sports Science, Juntendo University Chiba Japan
| | - Ichizo Nishino
- National Institute of Neuroscience, National Center of Neurology and Psychiatry Tokyo Japan
| | - Takahiko Shimizu
- Department of Advanced Aging Medicine Chiba University Graduate School of Medicine Chiba Japan
| | - Masaki Okano
- Institute of Molecular Embryology and Genetics, Kumamoto University Kumamoto Japan
| | - Yasutomi Kamei
- Department of Molecular Hndocrinology and MetabolismGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU) Tokyo Japan
- Laboratory of Molecular Nutrition, Graduate School of Fnvironmental and Life Science Kyoto Prefectural University Kyoto Japan
| | - Yoshihiro Ogawa
- Department of Molecular Hndocrinology and MetabolismGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU) Tokyo Japan
- Department of Medicine and Bioregulatory ScienceGraduate School of Medical SciencesKyushu University Fukuoka Japan
- Japan Agency for Medical Research and Development (AMED) Core Research for Evolutional Science and Technology (CREST) Tokyo Japan
| |
Collapse
|
26
|
Hernández-Ancheyta L, Salinas-Tobón MDR, Cifuentes-Goches JC, Hernández-Sánchez J. Trichinella spiralis muscle larvae excretory-secretory products induce changes in cytoskeletal and myogenic transcription factors in primary myoblast cultures. Int J Parasitol 2017; 48:275-285. [PMID: 29258830 DOI: 10.1016/j.ijpara.2017.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/04/2023]
Abstract
Trichinella spiralis infection in skeletal muscle culminates with nurse cell formation. The participation of excretory-secretory products of the muscle larvae has been implicated in this process through different studies performed in infected muscle and the muscle cell line C2C12. In this work, we developed primary myoblast cultures to analyse the changes induced by excretory-secretory products of the muscle larvae in muscle cells. Microarray analyses revealed expression changes in muscle cell differentiation, proliferation, cytoskeleton organisation, cell motion, transcription, cell cycle, apoptosis and signalling pathways such as MAPK, Jak-STAT, Wnt and PI3K-Akt. Some of these changes were further evaluated by other methodologies such as quantitative real-time PCR (qRT-PCR) and western blot, confirming that excretory-secretory products of the muscle larvae treated primary mouse myoblasts undergo increased proliferation, decreased expression of MHC and up-regulation of α-actin. In addition, changes in relevant muscle transcription factors (Pax7, Myf5 and Mef2c) were observed. Taken together, these results provide new information about how T. spiralis could alter the normal process of skeletal muscle repair after ML invasion to accomplish nurse cell formation.
Collapse
Affiliation(s)
- Lizbeth Hernández-Ancheyta
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional, No. 2508, San Pedro Zacatenco, 07360 Mexico City, Mexico
| | - María Del Rosario Salinas-Tobón
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N. Santo Tomás, 11340 Mexico City, Mexico
| | - Juan Carlos Cifuentes-Goches
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional, No. 2508, San Pedro Zacatenco, 07360 Mexico City, Mexico
| | - Javier Hernández-Sánchez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional, No. 2508, San Pedro Zacatenco, 07360 Mexico City, Mexico.
| |
Collapse
|
27
|
Fujimaki S, Seko D, Kitajima Y, Yoshioka K, Tsuchiya Y, Masuda S, Ono Y. Notch1 and Notch2 Coordinately Regulate Stem Cell Function in the Quiescent and Activated States of Muscle Satellite Cells. Stem Cells 2017; 36:278-285. [PMID: 29139178 DOI: 10.1002/stem.2743] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 10/26/2017] [Accepted: 10/29/2017] [Indexed: 12/19/2022]
Abstract
Satellite cells, the muscle tissue stem cells, express three Notch receptors (Notch1-3). The function of Notch1 and Notch2 in satellite cells has to date not been fully evaluated. We investigated the role of Notch1 and Notch2 in myogenic progression in adult skeletal muscle using tamoxifen-inducible satellite cell-specific conditional knockout mice for Notch1 (N1-scKO), Notch2 (N2-scKO), and Notch1/Notch2 (scDKO). In the quiescent state, the number of satellite cells was slightly reduced in N2-scKO, but not significantly in N1-scKO, and almost completely depleted in scDKO mice. N1-scKO and N2-scKO mice both exhibited a defect in muscle regeneration induced by cardiotoxin injection, while muscle regeneration was severely compromised with marked fibrosis in scDKO mice. In the activated state, ablation of either Notch1 or Notch2 alone in satellite cells prevented population expansion and self-renewal but induced premature myogenesis. Therefore, our results indicate that Notch1 and Notch2 coordinately maintain the stem-cell pool in the quiescent state by preventing activation and regulate stem-cell-fate decision in the activated state, governing adult muscle regeneration. Stem Cells 2018;36:278-285.
Collapse
Affiliation(s)
- Shin Fujimaki
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Daiki Seko
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Yasuo Kitajima
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Kiyoshi Yoshioka
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Yoshifumi Tsuchiya
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Shinya Masuda
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yusuke Ono
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Division of Regenerative Medicine Research, AMED, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
28
|
Milgrom-Hoffman M, Humbert PO. Regulation of cellular and PCP signalling by the Scribble polarity module. Semin Cell Dev Biol 2017; 81:33-45. [PMID: 29154823 DOI: 10.1016/j.semcdb.2017.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
Abstract
Since the first identification of the Scribble polarity module proteins as a new class of tumour suppressors that regulate both cell polarity and proliferation, an increasing amount of evidence has uncovered a broader role for Scribble, Dlg and Lgl in the control of fundamental cellular functions and their signalling pathways. Here, we review these findings as well as discuss more specifically the role of the Scribble module in PCP signalling.
Collapse
Affiliation(s)
- Michal Milgrom-Hoffman
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O Humbert
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
29
|
Moreno-Fortuny A, Bragg L, Cossu G, Roostalu U. MCAM contributes to the establishment of cell autonomous polarity in myogenic and chondrogenic differentiation. Biol Open 2017; 6:1592-1601. [PMID: 28923978 PMCID: PMC5703611 DOI: 10.1242/bio.027771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell polarity has a fundamental role in shaping the morphology of cells and growing tissues. Polarity is commonly thought to be established in response to extracellular signals. Here we used a minimal in vitro assay that enabled us to monitor the determination of cell polarity in myogenic and chondrogenic differentiation in the absence of external signalling gradients. We demonstrate that the initiation of cell polarity is regulated by melanoma cell adhesion molecule (MCAM). We found highly polarized localization of MCAM, Moesin (MSN), Scribble (SCRIB) and Van-Gogh-like 2 (VANGL2) at the distal end of elongating myotubes. Knockout of MCAM or elimination of its endocytosis motif does not impair the initiation of myogenesis or myoblast fusion, but prevents myotube elongation. MSN, SCRIB and VANGL2 remain uniformly distributed in MCAM knockout cells. We show that MCAM is also required at early stages of chondrogenic differentiation. In both myogenic and chondrogenic differentiation MCAM knockout leads to transcriptional downregulation of Scrib and enhanced MAP kinase activity. Our data demonstrates the importance of cell autonomous polarity in differentiation. Summary: CD146/MCAM regulates cell autonomous polarization and asymmetric localization of Scribble, Van-Gogh-like 2 and Moesin, which is required in skeletal muscle myotube elongation and chondrocyte differentiation.
Collapse
Affiliation(s)
- Artal Moreno-Fortuny
- Manchester Academic Health Science Centre, Division of Extracellular Matrix and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Laricia Bragg
- Manchester Academic Health Science Centre, Division of Extracellular Matrix and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Giulio Cossu
- Manchester Academic Health Science Centre, Division of Extracellular Matrix and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Urmas Roostalu
- Manchester Academic Health Science Centre, Division of Extracellular Matrix and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
30
|
Lim KYB, Gödde NJ, Humbert PO, Kvansakul M. Structural basis for the differential interaction of Scribble PDZ domains with the guanine nucleotide exchange factor β-PIX. J Biol Chem 2017; 292:20425-20436. [PMID: 29061852 DOI: 10.1074/jbc.m117.799452] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 10/11/2017] [Indexed: 11/06/2022] Open
Abstract
Scribble is a highly conserved protein regulator of cell polarity that has been demonstrated to function as a tumor suppressor or, conversely, as an oncogene in a context-dependent manner, and it also controls many physiological processes ranging from immunity to memory. Scribble consists of a leucine-rich repeat domain and four PDZ domains, with the latter being responsible for most of Scribble's complex formation with other proteins. Given the similarities of the Scribble PDZ domain sequences in their binding grooves, it is common for these domains to show overlapping preferences for the same ligand. Yet, Scribble PDZ domains can still exhibit unique binding profiles toward other ligands. This raises the fundamental question as to how these PDZ domains discriminate ligands and exert specificities in Scribble complex formation. To better understand how Scribble PDZ domains direct cell polarity signaling, we investigated here their interactions with the well-characterized Scribble binding partner β-PIX, a guanine nucleotide exchange factor. We report the interaction profiles of all isolated Scribble PDZ domains with a β-PIX peptide. We show that Scribble PDZ1 and PDZ3 are the major interactors with β-PIX and reveal a distinct binding hierarchy in the interactions between the individual Scribble PDZ domains and β-PIX. Furthermore, using crystal structures of PDZ1 and PDZ3 bound to β-PIX, we define the structural basis for Scribble's ability to specifically engage β-PIX via its PDZ domains and provide a mechanistic platform for understanding Scribble-β-PIX-coordinated cellular functions such as directional cell migration.
Collapse
Affiliation(s)
- Krystle Y B Lim
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086.,the Cell Cycle and Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002
| | - Nathan J Gödde
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086.,the Cell Cycle and Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002
| | - Patrick O Humbert
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, .,the Cell Cycle and Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002.,the Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3002, and.,the Departments of Biochemistry and Molecular Biology and.,Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Marc Kvansakul
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086,
| |
Collapse
|
31
|
Kitajima Y, Ogawa S, Egusa S, Ono Y. Soymilk Improves Muscle Weakness in Young Ovariectomized Female Mice. Nutrients 2017; 9:nu9080834. [PMID: 28777295 PMCID: PMC5579627 DOI: 10.3390/nu9080834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 12/11/2022] Open
Abstract
Estrogens play a key role in an extensive range of physiological functions in various types of tissues throughout the body in females. We previously showed that estrogen insufficiency caused muscle weakness that could be rescued by estrogen administration in a young female ovariectomized (OVX) mouse model. However, long-term estrogen replacement therapy increases risks of breast cancer and cardiovascular diseases. Soymilk contains plant-based protein and isoflavones that exert estrogen-like activity. Here we examined the effects of prolonged soymilk intake on muscle and its resident stem cells, called satellite cells, in the estrogen-insufficient model. Six-week-old C57BL/6 OVX female mice were fed with a dried soymilk-containing diet. We found that prolonged soymilk intake upregulated grip strength in OVX mice. Correspondingly, cross-sectional area of tibialis anterior muscle was significantly increased in OVX mice fed with soymilk. Furthermore, soymilk diet mitigated dysfunction of satellite cells isolated from OVX mice. Thus, these results indicated that prolonged soymilk intake is beneficial for improving muscle weakness in an estrogen-insufficient state in females.
Collapse
Affiliation(s)
- Yuriko Kitajima
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan.
| | - Shizuka Ogawa
- Research and Development Division, Marusanai Co., Ltd., Aichi 444-2193, Japan.
| | - Shintaro Egusa
- Research and Development Division, Marusanai Co., Ltd., Aichi 444-2193, Japan.
| | - Yusuke Ono
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan.
| |
Collapse
|
32
|
Kokabu S, Nakatomi C, Matsubara T, Ono Y, Addison WN, Lowery JW, Urata M, Hudnall AM, Hitomi S, Nakatomi M, Sato T, Osawa K, Yoda T, Rosen V, Jimi E. The transcriptional co-repressor TLE3 regulates myogenic differentiation by repressing the activity of the MyoD transcription factor. J Biol Chem 2017; 292:12885-12894. [PMID: 28607151 DOI: 10.1074/jbc.m116.774570] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/08/2017] [Indexed: 11/06/2022] Open
Abstract
Satellite cells are skeletal muscle stem cells that provide myonuclei for postnatal muscle growth, maintenance, and repair/regeneration in adults. Normally, satellite cells are mitotically quiescent, but they are activated in response to muscle injury, in which case they proliferate extensively and exhibit up-regulated expression of the transcription factor MyoD, a master regulator of myogenesis. MyoD forms a heterodimer with E proteins through their basic helix-loop-helix domain, binds to E boxes in the genome and thereby activates transcription at muscle-specific promoters. The central role of MyoD in muscle differentiation has increased interest in finding potential MyoD regulators. Here we identified transducin-like enhancer of split (TLE3), one of the Groucho/TLE family members, as a regulator of MyoD function during myogenesis. TLE3 was expressed in activated and proliferative satellite cells in which increased TLE3 levels suppressed myogenic differentiation, and, conversely, reduced TLE3 levels promoted myogenesis with a concomitant increase in proliferation. We found that, via its glutamine- and serine/proline-rich domains, TLE3 interferes with MyoD function by disrupting the association between the basic helix-loop-helix domain of MyoD and E proteins. Our findings indicate that TLE3 participates in skeletal muscle homeostasis by dampening satellite cell differentiation via repression of MyoD transcriptional activity.
Collapse
Affiliation(s)
- Shoichiro Kokabu
- Divisions of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu 803-8580, Japan; Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan; Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115.
| | - Chihiro Nakatomi
- Divisions of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Takuma Matsubara
- Divisions of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Yusuke Ono
- Musculoskeletal Molecular Biology Research Group, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8102, Japan
| | - William N Addison
- Research Unit, Department of Human Genetics, Shriners Hospitals for Children, McGill University, Montreal, Quebec H4A 0A9, Canada
| | - Jonathan W Lowery
- Division of Biomedical Science, College of Osteopathic Medicine, Marian University, Indianapolis, Indiana 46222
| | - Mariko Urata
- Divisions of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Aaron M Hudnall
- Division of Biomedical Science, College of Osteopathic Medicine, Marian University, Indianapolis, Indiana 46222
| | - Suzuro Hitomi
- Division of Physiology, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Mitsushiro Nakatomi
- Division of Anatomy, Department of Health Promotion, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Tsuyoshi Sato
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Kenji Osawa
- Division of Oral Medicine, Department of Science of Physical Functions, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Tetsuya Yoda
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| | - Eijiro Jimi
- Divisions of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu 803-8580, Japan; Oral Health Brain Health Total Health, Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
33
|
Crist C. Emerging new tools to study and treat muscle pathologies: genetics and molecular mechanisms underlying skeletal muscle development, regeneration, and disease. J Pathol 2016; 241:264-272. [PMID: 27762447 DOI: 10.1002/path.4830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022]
Abstract
Skeletal muscle is the most abundant tissue in our body, is responsible for generating the force required for movement, and is also an important thermogenic organ. Skeletal muscle is an enigmatic tissue because while on the one hand, skeletal muscle regeneration after injury is arguably one of the best-studied stem cell-dependent regenerative processes, on the other hand, skeletal muscle is still subject to many degenerative disorders with few therapeutic options in the clinic. It is important to develop new regenerative medicine-based therapies for skeletal muscle. Future therapeutic strategies should take advantage of rapidly developing technologies enabling the differentiation of skeletal muscle from human pluripotent stem cells, along with precise genome editing, which will go hand in hand with a steady and focused approach to understanding underlying mechanisms of skeletal muscle development, regeneration, and disease. In this review, I focus on highlighting the recent advances that particularly have relied on developmental and molecular biology approaches to understanding muscle development and stem cell function. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Colin Crist
- Lady Davis Institute for Medical Research, Jewish General Hospital, and Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
34
|
Fujita R, Ono Y. eIF2α, a potential target for stem cell-based therapies. Stem Cell Investig 2016; 3:30. [PMID: 27582342 DOI: 10.21037/sci.2016.07.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/05/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Ryo Fujita
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yusuke Ono
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
35
|
Kravic B, Huraskin D, Frick AD, Jung J, Redai V, Palmisano R, Marchetto S, Borg JP, Mei L, Hashemolhosseini S. LAP proteins are localized at the post-synaptic membrane of neuromuscular junctions and appear to modulate synaptic morphology and transmission. J Neurochem 2016; 139:381-395. [PMID: 27321929 DOI: 10.1111/jnc.13710] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 11/30/2022]
Abstract
Erbin, Lano, Scribble, and Densin-180 belong to LAP (leucine-rich repeats and PDZ domain) adaptor proteins involved in cell signaling pathways. Previously, we identified Erbin, Lano, and Scribble, but not Densin-180, in muscle cells, where they are involved in regulating the aggregation of nicotinic acetylcholine receptors in vitro. Here, we analyzed their cellular localization at the neuromuscular junction (NMJ) in skeletal muscles of mice. Erbin, Lano, and Scribble were significantly accumulated at NMJs and localized in different synaptic cells. Moreover, we used mouse mutants to analyze the role of Erbin at the NMJ. We used two Erbin mutant mouse strains that either completely lack Erbin protein (Erbinnull/null ) or express a truncated Erbin mutant where the carboxy-terminal PDZ domain is replaced by β-galactosidase (ErbinΔC/ΔC ) thereby abolishing its interaction with ErbB receptor tyrosine kinases. Neither the lack of the PDZ domain of Erbin, nor its complete absence interfered with the general localization of LAP proteins at NMJs, but Lano and Scribble transcript levels were up-regulated in homozygous Erbin-null muscles. Furthermore, grip strength was reduced and neural transmission impaired in homozygous aged Erbin-null but not Erbin-ΔC mice. Erbin-null skeletal muscles did not reveal any conspicuous impairment of the muscle fiber. Localization of other NMJ marker proteins was not affected either. Quantitative 3D morphometry showed that NMJs of Erbin-null muscles were significantly smaller and fragmented in the soleus. We speculate that Erbin, Lano, and Scribble act at the post-synaptic membrane of NMJs in a concerted fashion to regulate nicotinic acetylcholine receptors cluster morphology and neural transmission. Cover Image for this issue: doi: 10.1111/jnc.13340.
Collapse
Affiliation(s)
- Bojana Kravic
- Institut für Biochemie, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Danyil Huraskin
- Institut für Biochemie, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander D Frick
- Institut für Biochemie, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jasmin Jung
- Institut für Biochemie, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Veronika Redai
- Institut für Biochemie, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ralf Palmisano
- Optical Imaging Center Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sylvie Marchetto
- CRCM, Cell Polarity, Cell signaling and Cancer "Equipe labellisée Ligue Contre le Cancer", Inserm, U1068, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Aix-Marseille Université, Marseille, France.,CNRS, UMR7258, Marseille, France
| | - Jean-Paul Borg
- CRCM, Cell Polarity, Cell signaling and Cancer "Equipe labellisée Ligue Contre le Cancer", Inserm, U1068, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Aix-Marseille Université, Marseille, France.,CNRS, UMR7258, Marseille, France
| | - Lin Mei
- Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, Georgia, USA
| | - Said Hashemolhosseini
- Institut für Biochemie, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
36
|
Chang NC, Chevalier FP, Rudnicki MA. Satellite Cells in Muscular Dystrophy - Lost in Polarity. Trends Mol Med 2016; 22:479-496. [PMID: 27161598 PMCID: PMC4885782 DOI: 10.1016/j.molmed.2016.04.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 12/21/2022]
Abstract
Recent findings employing the mdx mouse model for Duchenne muscular dystrophy (DMD) have revealed that muscle satellite stem cells play a direct role in contributing to disease etiology and progression of DMD, the most common and severe form of muscular dystrophy. Lack of dystrophin expression in DMD has critical consequences in satellite cells including an inability to establish cell polarity, abrogation of asymmetric satellite stem-cell divisions, and failure to enter the myogenic program. Thus, muscle wasting in dystrophic mice is not only caused by myofiber fragility but is exacerbated by intrinsic satellite cell dysfunction leading to impaired regeneration. Despite intense research and clinical efforts, there is still no effective cure for DMD. In this review we highlight recent research advances in DMD and discuss the current state of treatment and, importantly, how we can incorporate satellite cell-targeted therapeutic strategies to correct satellite cell dysfunction in DMD.
Collapse
Affiliation(s)
- Natasha C Chang
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Fabien P Chevalier
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
37
|
Almada AE, Wagers AJ. Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease. Nat Rev Mol Cell Biol 2016; 17:267-79. [PMID: 26956195 DOI: 10.1038/nrm.2016.7] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Satellite cells are adult myogenic stem cells that repair damaged muscle. The enduring capacity for muscle regeneration requires efficient satellite cell expansion after injury, their differentiation to produce myoblasts that can reconstitute damaged fibres and their self-renewal to replenish the muscle stem cell pool for subsequent rounds of injury and repair. Emerging studies indicate that misregulation of satellite cell fate and function can contribute to age-associated muscle dysfunction and influence the severity of muscle diseases, including Duchenne muscular dystrophy (DMD). It has also become apparent that satellite cell fate during muscle regeneration and ageing, and in the context of DMD, is governed by an intricate network of intrinsic and extrinsic regulators. Targeted manipulation of this network may offer unique opportunities for muscle regenerative medicine.
Collapse
Affiliation(s)
- Albert E Almada
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
38
|
Tierney MT, Sacco A. Satellite Cell Heterogeneity in Skeletal Muscle Homeostasis. Trends Cell Biol 2016; 26:434-444. [PMID: 26948993 DOI: 10.1016/j.tcb.2016.02.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/06/2016] [Accepted: 02/10/2016] [Indexed: 12/12/2022]
Abstract
The cellular turnover required for skeletal muscle maintenance and repair is mediated by resident stem cells, also termed satellite cells. Satellite cells normally reside in a quiescent state, intermittently entering the cell cycle to fuse with neighboring myofibers and replenish the stem cell pool. However, the mechanisms by which satellite cells maintain the precise balance between self-renewal and differentiation necessary for long-term homeostasis remain unclear. Recent work has supported a previously unappreciated heterogeneity in the satellite cell compartment that may underlie the observed variability in cell fate and function. In this review, we examine the work supporting this notion as well as the potential governing principles, developmental origins, and principal determinants of satellite cell heterogeneity.
Collapse
Affiliation(s)
- Matthew T Tierney
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Road, La Jolla, CA 92037, USA; Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Alessandra Sacco
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Rd, La Jolla, CA 92037, USA.
| |
Collapse
|
39
|
Abstract
Skeletal muscle stem cells are satellite cells that play crucial roles in tissue repair and regeneration after muscle injury. Accumulating evidence indicates that satellite cells are genetically and functionally heterogeneous, even within the same muscle. A small population of satellite cells possesses "stemness" and exhibits the remarkable ability to regenerate through robust self-renewal when transplanted into a regenerating muscle niche. In contrast, not all satellite cells self-renew. For example, some cells are committed myogenic progenitors that immediately undergo myogenic differentiation with minimal cell division after activation. Recent studies illuminate the cellular and molecular characteristics of the functional heterogeneity among satellite cells. To evaluate heterogeneity and stem cell dynamics, here we describe methods to conduct a clonal analysis of satellite cells and to visualize a slowly dividing cell population.
Collapse
Affiliation(s)
- Yasuo Kitajima
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, Japan
| | - Shizuka Ogawa
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, Japan
| | - Yusuke Ono
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, Japan.
| |
Collapse
|
40
|
Seko D, Ogawa S, Li TS, Taimura A, Ono Y. μ-Crystallin controls muscle function through thyroid hormone action. FASEB J 2015; 30:1733-40. [PMID: 26718889 DOI: 10.1096/fj.15-280933] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/17/2015] [Indexed: 12/22/2022]
Abstract
μ-Crystallin (Crym), a thyroid hormone-binding protein, is abnormally up-regulated in the muscles of patients with facioscapulohumeral muscular dystrophy, a dominantly inherited progressive myopathy. However, the physiologic function of Crym in skeletal muscle remains to be elucidated. In this study, Crym was preferentially expressed in skeletal muscle throughout the body. Crym-knockout mice exhibited a significant hypertrophy of fast-twitch glycolytic type IIb fibers, causing an increase in grip strength and high intensity running ability in Crym-null mice. Genetic inactivation of Crym or blockade of Crym by siRNA-mediated knockdown up-regulated the gene expression of fast-glycolytic contractile fibers in satellite cell-derived myotubes in vitro These alterations in Crym-inactivated muscle were rescued by inhibition of thyroid hormone, even though Crym is a positive regulator of thyroid hormone action in nonmuscle cells. The results demonstrated that Crym is a crucial regulator of muscle plasticity, controlling metabolic and contractile properties of myofibers, and thus the selective inactivation of Crym may be a potential therapeutic target for muscle-wasting diseases, such as muscular dystrophies and age-related sarcopenia.-Seko, D., Ogawa, S., Li, T.-S., Taimura, A., Ono, Y. μ-Crystallin controls muscle function through thyroid hormone action.
Collapse
Affiliation(s)
- Daiki Seko
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, and Institute of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki, Japan
| | - Shizuka Ogawa
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, and
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, and
| | - Akihiro Taimura
- Institute of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki, Japan
| | - Yusuke Ono
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, and
| |
Collapse
|
41
|
Affiliation(s)
- Ryo Fujita
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan.,Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Daiki Seko
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan.,Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yusuke Ono
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan.,Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
42
|
Masuda S, Hisamatsu T, Seko D, Urata Y, Goto S, Li TS, Ono Y. Time- and dose-dependent effects of total-body ionizing radiation on muscle stem cells. Physiol Rep 2015; 3:3/4/e12377. [PMID: 25869487 PMCID: PMC4425979 DOI: 10.14814/phy2.12377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exposure to high levels of genotoxic stress, such as high-dose ionizing radiation, increases both cancer and noncancer risks. However, it remains debatable whether low-dose ionizing radiation reduces cellular function, or rather induces hormetic health benefits. Here, we investigated the effects of total-body γ-ray radiation on muscle stem cells, called satellite cells. Adult C57BL/6 mice were exposed to γ-radiation at low- to high-dose rates (low, 2 or 10 mGy/day; moderate, 50 mGy/day; high, 250 mGy/day) for 30 days. No hormetic responses in proliferation, differentiation, or self-renewal of satellite cells were observed in low-dose radiation-exposed mice at the acute phase. However, at the chronic phase, population expansion of satellite cell-derived progeny was slightly decreased in mice exposed to low-dose radiation. Taken together, low-dose ionizing irradiation may suppress satellite cell function, rather than induce hormetic health benefits, in skeletal muscle in adult mice.
Collapse
Affiliation(s)
- Shinya Masuda
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tsubasa Hisamatsu
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Daiki Seko
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshishige Urata
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shinji Goto
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yusuke Ono
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
43
|
Figeac N, Zammit PS. Coordinated action of Axin1 and Axin2 suppresses β-catenin to regulate muscle stem cell function. Cell Signal 2015; 27:1652-65. [PMID: 25866367 DOI: 10.1016/j.cellsig.2015.03.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/23/2015] [Indexed: 01/01/2023]
Abstract
The resident stem cells of skeletal muscle are satellite cells, which are regulated by both canonical and non-canonical Wnt pathways. Canonical Wnt signalling promotes differentiation, and is controlled at many levels, including via Axin1 and Axin2-mediated β-catenin degradation. Axin1 and Axin2 are thought equivalent suppressors of canonical Wnt signalling, although Axin2 is also a Wnt target gene. We show that Axin1 expression was higher in proliferating satellite cells, while Axin2 was up-regulated during differentiation. siRNA-mediated Axin1 knockdown changed cell morphology, suppressed proliferation and promoted myogenic differentiation. Simultaneous knockdown of both Axin1 and β-catenin rescued proliferation and partially, premature differentiation. Surprisingly, retroviral-mediated overexpression of Axin2 was unable to compensate for knockdown of Axin1 in satellite cells, indicating that Axin1 and Axin2 are not fully redundant. Isolated satellite cells from Axin2-null mice also had no major phenotype. However, siRNA-mediated knockdown of Axin1 in Axin2-null cells strongly inhibited proliferation, while inducing differentiation, clear nuclear localisation of β-catenin, up-regulation of canonical Wnt target genes (Axin2, Lef1, Tcf4, Pitx2c and Lgr5) and activation of a TCF reporter construct. Again, concomitant knockdown of Axin1 and β-catenin in Axin2-null satellite cells rescued morphology and proliferation, but only partially prevented precocious differentiation. Thus, Axin1 and Axin2 do not have equivalent functions in satellite cells, but are both involved in repression of Wnt/β-catenin signalling to maintain proliferation and contribute to controlling timely myogenic differentiation.
Collapse
Affiliation(s)
- Nicolas Figeac
- King's College London, Randall Division of Cell & Molecular Biophysics, New Hunt's House, Guy's Campus, United Kingdom.
| | - Peter S Zammit
- King's College London, Randall Division of Cell & Molecular Biophysics, New Hunt's House, Guy's Campus, United Kingdom.
| |
Collapse
|