1
|
Zwakenberg S, Westland D, van Es RM, Rehmann H, Anink J, Ciapaite J, Bosma M, Stelloo E, Liv N, Sobrevals Alcaraz P, Verhoeven-Duif NM, Jans JJM, Vos HR, Aronica E, Zwartkruis FJT. mTORC1 restricts TFE3 activity by auto-regulating its presence on lysosomes. Mol Cell 2024:S1097-2765(24)00832-3. [PMID: 39486419 DOI: 10.1016/j.molcel.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/10/2024] [Accepted: 10/07/2024] [Indexed: 11/04/2024]
Abstract
To stimulate cell growth, the protein kinase complex mTORC1 requires intracellular amino acids for activation. Amino-acid sufficiency is relayed to mTORC1 by Rag GTPases on lysosomes, where growth factor signaling enhances mTORC1 activity via the GTPase Rheb. In the absence of amino acids, GATOR1 inactivates the Rags, resulting in lysosomal detachment and inactivation of mTORC1. We demonstrate that in human cells, the release of mTORC1 from lysosomes depends on its kinase activity. In accordance with a negative feedback mechanism, activated mTOR mutants display low lysosome occupancy, causing hypo-phosphorylation and nuclear localization of the lysosomal substrate TFE3. Surprisingly, mTORC1 activated by Rheb does not increase the cytoplasmic/lysosomal ratio of mTORC1, indicating the existence of mTORC1 pools with distinct substrate specificity. Dysregulation of either pool results in aberrant TFE3 activity and may explain nuclear accumulation of TFE3 in epileptogenic malformations in focal cortical dysplasia type II (FCD II) and tuberous sclerosis (TSC).
Collapse
Affiliation(s)
- Susan Zwakenberg
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Denise Westland
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Robert M van Es
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Holger Rehmann
- Department of Energy and Life Science, Flensburg University of Applied Sciences, Flensburg, Germany
| | - Jasper Anink
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Jolita Ciapaite
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Marjolein Bosma
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Ellen Stelloo
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Nalan Liv
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Paula Sobrevals Alcaraz
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Nanda M Verhoeven-Duif
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Judith J M Jans
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Harmjan R Vos
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Fried J T Zwartkruis
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Fernandes SA, Angelidaki DD, Nüchel J, Pan J, Gollwitzer P, Elkis Y, Artoni F, Wilhelm S, Kovacevic-Sarmiento M, Demetriades C. Spatial and functional separation of mTORC1 signalling in response to different amino acid sources. Nat Cell Biol 2024:10.1038/s41556-024-01523-7. [PMID: 39385049 DOI: 10.1038/s41556-024-01523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/09/2024] [Indexed: 10/11/2024]
Abstract
Amino acid (AA) availability is a robust determinant of cell growth through controlling mechanistic/mammalian target of rapamycin complex 1 (mTORC1) activity. According to the predominant model in the field, AA sufficiency drives the recruitment and activation of mTORC1 on the lysosomal surface by the heterodimeric Rag GTPases, from where it coordinates the majority of cellular processes. Importantly, however, the teleonomy of the proposed lysosomal regulation of mTORC1 and where mTORC1 acts on its effector proteins remain enigmatic. Here, by using multiple pharmacological and genetic means to perturb the lysosomal AA-sensing and protein recycling machineries, we describe the spatial separation of mTORC1 regulation and downstream functions in mammalian cells, with lysosomal and non-lysosomal mTORC1 phosphorylating distinct substrates in response to different AA sources. Moreover, we reveal that a fraction of mTOR localizes at lysosomes owing to basal lysosomal proteolysis that locally supplies new AAs, even in cells grown in the presence of extracellular nutrients, whereas cytoplasmic mTORC1 is regulated by exogenous AAs. Overall, our study substantially expands our knowledge about the topology of mTORC1 regulation by AAs and hints at the existence of distinct, Rag- and lysosome-independent mechanisms that control its activity at other subcellular locations. Given the importance of mTORC1 signalling and AA sensing for human ageing and disease, our findings will probably pave the way towards the identification of function-specific mTORC1 regulators and thus highlight more effective targets for drug discovery against conditions with dysregulated mTORC1 activity in the future.
Collapse
Affiliation(s)
- Stephanie A Fernandes
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Graduate School of Ageing Research, Cologne, Germany
| | | | - Julian Nüchel
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jiyoung Pan
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Graduate School of Ageing Research, Cologne, Germany
| | | | - Yoav Elkis
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Filippo Artoni
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Graduate School of Ageing Research, Cologne, Germany
| | - Sabine Wilhelm
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Constantinos Demetriades
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
- Cologne Graduate School of Ageing Research, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.
| |
Collapse
|
3
|
Bayly-Jones C, Lupton CJ, Keen AC, Dong S, Mastos C, Luo W, Qian C, Jones GD, Venugopal H, Chang YG, Clarke RJ, Halls ML, Ellisdon AM. LYCHOS is a human hybrid of a plant-like PIN transporter and a GPCR. Nature 2024; 634:1238-1244. [PMID: 39358511 PMCID: PMC11525196 DOI: 10.1038/s41586-024-08012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
Lysosomes have crucial roles in regulating eukaryotic metabolism and cell growth by acting as signalling platforms to sense and respond to changes in nutrient and energy availability1. LYCHOS (GPR155) is a lysosomal transmembrane protein that functions as a cholesterol sensor, facilitating the cholesterol-dependent activation of the master protein kinase mechanistic target of rapamycin complex 1 (mTORC1)2. However, the structural basis of LYCHOS assembly and activity remains unclear. Here we determine several high-resolution cryo-electron microscopy structures of human LYCHOS, revealing a homodimeric transmembrane assembly of a transporter-like domain fused to a G-protein-coupled receptor (GPCR) domain. The class B2-like GPCR domain is captured in the apo state and packs against the surface of the transporter-like domain, providing an unusual example of a GPCR as a domain in a larger transmembrane assembly. Cholesterol sensing is mediated by a conserved cholesterol-binding motif, positioned between the GPCR and transporter domains. We reveal that the LYCHOS transporter-like domain is an orthologue of the plant PIN-FORMED (PIN) auxin transporter family, and has greater structural similarity to plant auxin transporters than to known human transporters. Activity assays support a model in which the LYCHOS transporter and GPCR domains coordinate to sense cholesterol and regulate mTORC1 activation.
Collapse
Affiliation(s)
- Charles Bayly-Jones
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- School of Chemistry, University of Sydney, Camperdown, New South Wales, Australia
| | - Christopher J Lupton
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Alastair C Keen
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Shuqi Dong
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Chantel Mastos
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Wentong Luo
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Chunyi Qian
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Gareth D Jones
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Hari Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Yong-Gang Chang
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ronald J Clarke
- School of Chemistry, University of Sydney, Camperdown, New South Wales, Australia
- University of Sydney Nano Institute, Camperdown, New South Wales, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| | - Andrew M Ellisdon
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
4
|
Burton JC, Royer F, Grimsey NJ. Spatiotemporal control of kinases and the biomolecular tools to trace activity. J Biol Chem 2024; 300:107846. [PMID: 39362469 DOI: 10.1016/j.jbc.2024.107846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
The delicate balance of cell physiology is implicitly tied to the expression and activation of proteins. Post-translational modifications offer a tool to dynamically switch protein activity on and off to orchestrate a wide range of protein-protein interactions to tune signal transduction during cellular homeostasis and pathological responses. There is a growing acknowledgment that subcellular locations of kinases define the spatial network of potential scaffolds, adaptors, and substrates. These highly ordered and localized biomolecular microdomains confer a spatially distinct bias in the outcomes of kinase activity. Furthermore, they may hold essential clues to the underlying mechanisms that promote disease. Developing tools to dissect the spatiotemporal activation of kinases is critical to reveal these mechanisms and promote the development of spatially targeted kinase inhibitors. Here, we discuss the spatial regulation of kinases, the tools used to detect their activity, and their potential impact on human health.
Collapse
Affiliation(s)
- Jeremy C Burton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA
| | - Fredejah Royer
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA
| | - Neil J Grimsey
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA.
| |
Collapse
|
5
|
Frei MS, Mehta S, Zhang J. Next-Generation Genetically Encoded Fluorescent Biosensors Illuminate Cell Signaling and Metabolism. Annu Rev Biophys 2024; 53:275-297. [PMID: 38346245 DOI: 10.1146/annurev-biophys-030722-021359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Genetically encoded fluorescent biosensors have revolutionized the study of cell signaling and metabolism, as they allow for live-cell measurements with high spatiotemporal resolution. This success has spurred the development of tailor-made biosensors that enable the study of dynamic phenomena on different timescales and length scales. In this review, we discuss different approaches to enhancing and developing new biosensors. We summarize the technologies used to gain structural insights into biosensor design and comment on useful screening technologies. Furthermore, we give an overview of different applications where biosensors have led to key advances over recent years. Finally, we give our perspective on where future work is bound to make a large impact.
Collapse
Affiliation(s)
- Michelle S Frei
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA; , ,
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA; , ,
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA; , ,
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
6
|
Li C, Yi Y, Ouyang Y, Chen F, Lu C, Peng S, Wang Y, Chen X, Yan X, Xu H, Li S, Feng L, Xie X. TORSEL, a 4EBP1-based mTORC1 live-cell sensor, reveals nutrient-sensing targeting by histone deacetylase inhibitors. Cell Biosci 2024; 14:68. [PMID: 38824577 PMCID: PMC11143692 DOI: 10.1186/s13578-024-01250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Mammalian or mechanistic target of rapamycin complex 1 (mTORC1) is an effective therapeutic target for diseases such as cancer, diabetes, aging, and neurodegeneration. However, an efficient tool for monitoring mTORC1 inhibition in living cells or tissues is lacking. RESULTS We developed a genetically encoded mTORC1 sensor called TORSEL. This sensor changes its fluorescence pattern from diffuse to punctate when 4EBP1 dephosphorylation occurs and interacts with eIF4E. TORSEL can specifically sense the physiological, pharmacological, and genetic inhibition of mTORC1 signaling in living cells and tissues. Importantly, TORSEL is a valuable tool for imaging-based visual screening of mTORC1 inhibitors. Using TORSEL, we identified histone deacetylase inhibitors that selectively block nutrient-sensing signaling to inhibit mTORC1. CONCLUSIONS TORSEL is a unique living cell sensor that efficiently detects the inhibition of mTORC1 activity, and histone deacetylase inhibitors such as panobinostat target mTORC1 signaling through amino acid sensing.
Collapse
Affiliation(s)
- Canrong Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yuguo Yi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yingyi Ouyang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Fengzhi Chen
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Chuxin Lu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shujun Peng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yifan Wang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xinyu Chen
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xiao Yan
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Haolun Xu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shuiming Li
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Lin Feng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoduo Xie
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
7
|
Zhao T, Fan J, Abu-Zaid A, Burley SK, Zheng XS. Nuclear mTOR Signaling Orchestrates Transcriptional Programs Underlying Cellular Growth and Metabolism. Cells 2024; 13:781. [PMID: 38727317 PMCID: PMC11083943 DOI: 10.3390/cells13090781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
mTOR is a central regulator of cell growth and metabolism in response to mitogenic and nutrient signals. Notably, mTOR is not only found in the cytoplasm but also in the nucleus. This review highlights direct involvement of nuclear mTOR in regulating transcription factors, orchestrating epigenetic modifications, and facilitating chromatin remodeling. These effects intricately modulate gene expression programs associated with growth and metabolic processes. Furthermore, the review underscores the importance of nuclear mTOR in mediating the interplay between metabolism and epigenetic modifications. By integrating its functions in nutrient signaling and gene expression related to growth and metabolism, nuclear mTOR emerges as a central hub governing cellular homeostasis, malignant transformation, and cancer progression. Better understanding of nuclear mTOR signaling has the potential to lead to novel therapies against cancer and other growth-related diseases.
Collapse
Affiliation(s)
- Tinghan Zhao
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Jialin Fan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ahmed Abu-Zaid
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Stephen K. Burley
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- RCSB Protein Data Bank and Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - X.F. Steven Zheng
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
8
|
Bond C, Hugelier S, Xing J, Sorokina EM, Lakadamyali M. Multiplexed DNA-PAINT Imaging of the Heterogeneity of Late Endosome/Lysosome Protein Composition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585634. [PMID: 38562776 PMCID: PMC10983937 DOI: 10.1101/2024.03.18.585634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Late endosomes/lysosomes (LELs) are crucial for numerous physiological processes and their dysfunction is linked to many diseases. Proteomic analyses have identified hundreds of LEL proteins, however, whether these proteins are uniformly present on each LEL, or if there are cell-type dependent LEL sub-populations with unique protein compositions is unclear. We employed a quantitative, multiplexed DNA-PAINT super-resolution approach to examine the distribution of six key LEL proteins (LAMP1, LAMP2, CD63, TMEM192, NPC1 and LAMTOR4) on individual LELs. While LAMP1 and LAMP2 were abundant across LELs, marking a common population, most analyzed proteins were associated with specific LEL subpopulations. Our multiplexed imaging approach identified up to eight different LEL subpopulations based on their unique membrane protein composition. Additionally, our analysis of the spatial relationships between these subpopulations and mitochondria revealed a cell-type specific tendency for NPC1-positive LELs to be closely positioned to mitochondria. Our approach will be broadly applicable to determining organelle heterogeneity with single organelle resolution in many biological contexts. Summary This study develops a multiplexed and quantitative DNA-PAINT super-resolution imaging pipeline to investigate the distribution of late endosomal/lysosomal (LEL) proteins across individual LELs, revealing cell-type specific LEL sub-populations with unique protein compositions, offering insights into organelle heterogeneity at single-organelle resolution.
Collapse
|
9
|
Chen Y, Han L, Dufour CR, Alfonso A, Giguère V. Canonical and Nuclear mTOR Specify Distinct Transcriptional Programs in Androgen-Dependent Prostate Cancer Cells. Mol Cancer Res 2024; 22:113-124. [PMID: 37889103 DOI: 10.1158/1541-7786.mcr-23-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/21/2023] [Accepted: 10/24/2023] [Indexed: 10/28/2023]
Abstract
mTOR is a serine/threonine kinase that controls prostate cancer cell growth in part by regulating gene programs associated with metabolic and cell proliferation pathways. mTOR-mediated control of gene expression can be achieved via phosphorylation of transcription factors, leading to changes in their cellular localization and activities. mTOR also directly associates with chromatin in complex with transcriptional regulators, including the androgen receptor (AR). Nuclear mTOR (nmTOR) has been previously shown to act as a transcriptional integrator of the androgen signaling pathway in association with the chromatin remodeling machinery, AR, and FOXA1. However, the contribution of cytoplasmic mTOR (cmTOR) and nmTOR and the role played by FOXA1 in this process remains to be explored. Herein, we engineered cells expressing mTOR tagged with nuclear localization and export signals dictating mTOR localization. Transcriptome profiling in AR-positive prostate cancer cells revealed that nmTOR generally downregulates a subset of the androgen response pathway independently of its kinase activity, while cmTOR upregulates a cell cycle-related gene signature in a kinase-dependent manner. Biochemical and genome-wide transcriptomic analyses demonstrate that nmTOR functionally interacts with AR and FOXA1. Ablation of FOXA1 reprograms the nmTOR cistrome and transcriptome of androgen responsive prostate cancer cells. This works highlights a transcriptional regulatory pathway in which direct interactions between nmTOR, AR and FOXA1 dictate a combinatorial role for these factors in the control of specific gene programs in prostate cancer cells. IMPLICATIONS The finding that canonical and nuclear mTOR signaling pathways control distinct gene programs opens therapeutic opportunities to modulate mTOR activity in prostate cancer cells.
Collapse
Affiliation(s)
- Yonghong Chen
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Lingwei Han
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | | | - Anthony Alfonso
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Vincent Giguère
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| |
Collapse
|
10
|
Lyons AC, Mehta S, Zhang J. Fluorescent biosensors illuminate the spatial regulation of cell signaling across scales. Biochem J 2023; 480:1693-1717. [PMID: 37903110 PMCID: PMC10657186 DOI: 10.1042/bcj20220223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/01/2023]
Abstract
As cell signaling research has advanced, it has become clearer that signal transduction has complex spatiotemporal regulation that goes beyond foundational linear transduction models. Several technologies have enabled these discoveries, including fluorescent biosensors designed to report live biochemical signaling events. As genetically encoded and live-cell compatible tools, fluorescent biosensors are well suited to address diverse cell signaling questions across different spatial scales of regulation. In this review, methods of examining spatial signaling regulation and the design of fluorescent biosensors are introduced. Then, recent biosensor developments that illuminate the importance of spatial regulation in cell signaling are highlighted at several scales, including membranes and organelles, molecular assemblies, and cell/tissue heterogeneity. In closing, perspectives on how fluorescent biosensors will continue enhancing cell signaling research are discussed.
Collapse
Affiliation(s)
- Anne C. Lyons
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| |
Collapse
|
11
|
Ahmad M, Movileanu L. Multiplexed imaging for probing RAS-RAF interactions in living cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184173. [PMID: 37211322 PMCID: PMC10330472 DOI: 10.1016/j.bbamem.2023.184173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/23/2023]
Abstract
GTP-bound RAS interacts with its protein effectors in response to extracellular stimuli, leading to chemical inputs for downstream pathways. Significant progress has been made in measuring these reversible protein-protein interactions (PPIs) in various cell-free environments. Yet, acquiring high sensitivity in heterogeneous solutions remains challenging. Here, using an intermolecular fluorescence resonance energy transfer (FRET) biosensing approach, we develop a method to visualize and localize HRAS-CRAF interactions in living cells. We demonstrate that the EGFR activation and the HRAS-CRAF complex formation can be concurrently probed in a single cell. This biosensing strategy discriminates EGF-stimulated HRAS-CRAF interactions at the cell and organelle membranes. In addition, we provide quantitative FRET measurements for assessing these transient PPIs in a cell-free environment. Finally, we prove the utility of this approach by showing that an EGFR-binding compound is a potent inhibitor of HRAS-CRAF interactions. The outcomes of this work form a fundamental basis for further explorations of the spatiotemporal dynamics of various signaling networks.
Collapse
Affiliation(s)
- Mohammad Ahmad
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA; Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, NY 13244, USA; The BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
12
|
Makhoul C, Houghton FJ, Hinde E, Gleeson PA. Arf5-mediated regulation of mTORC1 at the plasma membrane. Mol Biol Cell 2023; 34:ar23. [PMID: 36735494 PMCID: PMC10092653 DOI: 10.1091/mbc.e22-07-0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) kinase regulates a major signaling pathway in eukaryotic cells. In addition to regulation of mTORC1 at lysosomes, mTORC1 is also localized at other locations. However, little is known about the recruitment and activation of mTORC1 at nonlysosomal sites. To identify regulators of mTORC1 recruitment to nonlysosomal compartments, novel interacting partners with the mTORC1 subunit, Raptor, were identified using immunoprecipitation and mass spectrometry. We show that one of the interacting partners, Arf5, is a novel regulator of mTORC1 signaling at plasma membrane ruffles. Arf5-GFP localizes with endogenous mTOR at PI3,4P2-enriched membrane ruffles together with the GTPase required for mTORC1 activation, Rheb. Knockdown of Arf5 reduced the recruitment of mTOR to membrane ruffles. The activation of mTORC1 at membrane ruffles was directly demonstrated using a plasma membrane-targeted mTORC1 biosensor, and Arf5 was shown to enhance the phosphorylation of the mTORC1 biosensor substrate. In addition, endogenous Arf5 was shown to be required for rapid activation of mTORC1-mediated S6 phosphorylation following nutrient starvation and refeeding. Our findings reveal a novel Arf5-dependent pathway for recruitment and activation of mTORC1 at plasma membrane ruffles, a process relevant for spatial and temporal regulation of mTORC1 by receptor and nutrient stimuli.
Collapse
Affiliation(s)
- Christian Makhoul
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute and
| | - Fiona J Houghton
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute and
| | - Elizabeth Hinde
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute and.,School of Physics, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul A Gleeson
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute and
| |
Collapse
|
13
|
Beesabathuni NS, Park S, Shah PS. Quantitative and temporal measurement of dynamic autophagy rates. Autophagy 2023; 19:1164-1183. [PMID: 36026492 PMCID: PMC10012960 DOI: 10.1080/15548627.2022.2117515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Macroautophagy/autophagy is a multistep degradative process that is essential for maintaining cellular homeostasis and is often dysregulated during disease. Systematically quantifying flux through this pathway is critical for gaining fundamental insights and effectively modulating this process. Established methods to quantify flux use steady-state measurements, which provide limited information about the perturbation and the cellular response. We present a theoretical and experimental framework to measure autophagic steps in the form of rates under non-steady-state conditions. We use this approach to measure temporal responses to rapamycin and wortmannin treatments, two commonly used autophagy modulators. We quantified changes in autophagy rates in as little as 10 min, which can establish direct mechanisms for autophagy perturbation before feedback begins. We identified concentration-dependent effects of rapamycin on the initial and temporal progression of autophagy rates. We also found variable recovery time from wortmannin's inhibition of autophagy, which is further accelerated by rapamycin. Furthermore, we applied this approach to study the effect of serum and glutamine starvation on autophagy. Serum starvation led to a rapid and transient increase in all the rates. Glutamine starvation led to a decrease in the rates on a longer timescale. In summary, this new approach enables the quantification of autophagy flux with high sensitivity and temporal resolution and facilitates a comprehensive understanding of this process.
Collapse
Affiliation(s)
| | - Soyoon Park
- Department of Microbiology and Molecular Genetics, University of California, Davis One Shields Ave, Davis, CA, USA
| | - Priya S Shah
- Department of Chemical Engineering, University of California, Davis, Davis, CA, USA.,Department of Microbiology and Molecular Genetics, University of California, Davis One Shields Ave, Davis, CA, USA
| |
Collapse
|
14
|
Chen L, Lyu Y, Zhang X, Zheng L, Li Q, Ding D, Chen F, Liu Y, Li W, Zhang Y, Huang Q, Wang Z, Xie T, Zhang Q, Sima Y, Li K, Xu S, Ren T, Xiong M, Wu Y, Song J, Yuan L, Yang H, Zhang XB, Tan W. Molecular imaging: design mechanism and bioapplications. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
15
|
Schmitt DL, Mehta S, Zhang J. Study of spatiotemporal regulation of kinase signaling using genetically encodable molecular tools. Curr Opin Chem Biol 2022; 71:102224. [PMID: 36347198 PMCID: PMC10031819 DOI: 10.1016/j.cbpa.2022.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 01/27/2023]
Abstract
Precise spatiotemporal organization and regulation of signal transduction networks are essential for cellular response to internal and external cues. To understand how this biochemical activity architecture impacts cellular function, many genetically encodable tools which regulate kinase activity at a subcellular level have been developed. In this review, we highlight various types of genetically encodable molecular tools, including tools to regulate endogenous kinase activity and biorthogonal techniques to perturb kinase activity. Finally, we emphasize the use of these tools alongside biosensors for kinase activity to measure and perturb kinase activity in real time for a better understanding of the cellular biochemical activity architecture.
Collapse
Affiliation(s)
- Danielle L Schmitt
- Department of Pharmacology, University of California San Diego, USA; Department of Chemistry and Biochemistry, University of California Los Angeles, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, USA; Department of Bioengineering, University of California San Diego, USA; Department of Chemistry and Biochemistry, University of California San Diego, USA.
| |
Collapse
|
16
|
Iffland PH, Everett ME, Cobb-Pitstick KM, Bowser LE, Barnes AE, Babus JK, Romanowski AJ, Baybis M, Elziny S, Puffenberger EG, Gonzaga-Jauregui C, Poulopoulos A, Carson VJ, Crino PB. NPRL3 loss alters neuronal morphology, mTOR localization, cortical lamination and seizure threshold. Brain 2022; 145:3872-3885. [PMID: 35136953 PMCID: PMC10200289 DOI: 10.1093/brain/awac044] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/10/2021] [Accepted: 12/10/2021] [Indexed: 08/13/2023] Open
Abstract
Mutations in nitrogen permease regulator-like 3 (NPRL3), a component of the GATOR1 complex within the mTOR pathway, are associated with epilepsy and malformations of cortical development. Little is known about the effects of NPRL3 loss on neuronal mTOR signalling and morphology, or cerebral cortical development and seizure susceptibility. We report the clinical phenotypic spectrum of a founder NPRL3 pedigree (c.349delG, p.Glu117LysFS; n = 133) among Old Order Mennonites dating to 1727. Next, as a strategy to define the role of NPRL3 in cortical development, CRISPR/Cas9 Nprl3 knockout in Neuro2a cells in vitro and in foetal mouse brain in vivo was used to assess the effects of Nprl3 knockout on mTOR activation, subcellular mTOR localization, nutrient signalling, cell morphology and aggregation, cerebral cortical cytoarchitecture and network integrity. The NPRL3 pedigree exhibited an epilepsy penetrance of 28% and heterogeneous clinical phenotypes with a range of epilepsy semiologies, i.e. focal or generalized onset, brain imaging abnormalities, i.e. polymicrogyria, focal cortical dysplasia or normal imaging, and EEG findings, e.g. focal, multi-focal or generalized spikes, focal or generalized slowing. Whole exome analysis comparing a seizure-free group (n = 37) to those with epilepsy (n = 24) to search for gene modifiers for epilepsy did not identify a unique genetic modifier that explained the variability in seizure penetrance in this cohort. Nprl3 knockout in vitro caused mTOR pathway hyperactivation, cell soma enlargement and the formation of cellular aggregates seen in time-lapse videos that were prevented with the mTOR inhibitors rapamycin or torin1. In Nprl3 knockout cells, mTOR remained localized on the lysosome in a constitutively active conformation, as evidenced by phosphorylation of ribosomal S6 and 4E-BP1 proteins, even under nutrient starvation (amino acid-free) conditions, demonstrating that Nprl3 loss decouples mTOR activation from neuronal metabolic state. To model human malformations of cortical development associated with NPRL3 variants, we created a focal Nprl3 knockout in foetal mouse cortex by in utero electroporation and found altered cortical lamination and white matter heterotopic neurons, effects which were prevented with rapamycin treatment. EEG recordings showed network hyperexcitability and reduced seizure threshold to pentylenetetrazol treatment. NPRL3 variants are linked to a highly variable clinical phenotype which we propose results from mTOR-dependent effects on cell structure, cortical development and network organization.
Collapse
Affiliation(s)
- Philip H Iffland
- University of Maryland School of Medicine Departments of Neurology and Pharmacology, Baltimore, MD 21201, USA
| | | | | | | | - Allan E Barnes
- University of Maryland School of Medicine Departments of Neurology and Pharmacology, Baltimore, MD 21201, USA
| | - Janice K Babus
- University of Maryland School of Medicine Departments of Neurology and Pharmacology, Baltimore, MD 21201, USA
| | - Andrea J Romanowski
- University of Maryland School of Medicine Departments of Neurology and Pharmacology, Baltimore, MD 21201, USA
| | - Marianna Baybis
- University of Maryland School of Medicine Departments of Neurology and Pharmacology, Baltimore, MD 21201, USA
| | - Soad Elziny
- University of Maryland School of Medicine Departments of Neurology and Pharmacology, Baltimore, MD 21201, USA
| | | | | | - Alexandros Poulopoulos
- University of Maryland School of Medicine Departments of Neurology and Pharmacology, Baltimore, MD 21201, USA
| | | | - Peter B Crino
- University of Maryland School of Medicine Departments of Neurology and Pharmacology, Baltimore, MD 21201, USA
| |
Collapse
|
17
|
Jamsheer K M, Awasthi P, Laxmi A. The social network of target of rapamycin complex 1 in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7026-7040. [PMID: 35781571 DOI: 10.1093/jxb/erac278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Target of rapamycin complex 1 (TORC1) is a highly conserved serine-threonine protein kinase crucial for coordinating growth according to nutrient availability in eukaryotes. It works as a central integrator of multiple nutrient inputs such as sugar, nitrogen, and phosphate and promotes growth and biomass accumulation in response to nutrient sufficiency. Studies, especially in the past decade, have identified the central role of TORC1 in regulating growth through interaction with hormones, photoreceptors, and stress signaling machinery in plants. In this review, we comprehensively analyse the interactome and phosphoproteome of the Arabidopsis TORC1 signaling network. Our analysis highlights the role of TORC1 as a central hub kinase communicating with the transcriptional and translational apparatus, ribosomes, chaperones, protein kinases, metabolic enzymes, and autophagy and stress response machinery to orchestrate growth in response to nutrient signals. This analysis also suggests that along with the conserved downstream components shared with other eukaryotic lineages, plant TORC1 signaling underwent several evolutionary innovations and co-opted many lineage-specific components during. Based on the protein-protein interaction and phosphoproteome data, we also discuss several uncharacterized and unexplored components of the TORC1 signaling network, highlighting potential links for future studies.
Collapse
Affiliation(s)
- Muhammed Jamsheer K
- Amity Institute of Genome Engineering, Amity University Uttar Pradesh, Noida 201313, India
| | - Prakhar Awasthi
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
18
|
Kwon Y, Mehta S, Clark M, Walters G, Zhong Y, Lee HN, Sunahara RK, Zhang J. Non-canonical β-adrenergic activation of ERK at endosomes. Nature 2022; 611:173-179. [PMID: 36289326 PMCID: PMC10031817 DOI: 10.1038/s41586-022-05343-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 09/13/2022] [Indexed: 11/09/2022]
Abstract
G-protein-coupled receptors (GPCRs), the largest family of signalling receptors, as well as important drug targets, are known to activate extracellular-signal-regulated kinase (ERK)-a master regulator of cell proliferation and survival1. However, the precise mechanisms that underlie GPCR-mediated ERK activation are not clearly understood2-4. Here we investigated how spatially organized β2-adrenergic receptor (β2AR) signalling controls ERK. Using subcellularly targeted ERK activity biosensors5, we show that β2AR signalling induces ERK activity at endosomes, but not at the plasma membrane. This pool of ERK activity depends on active, endosome-localized Gαs and requires ligand-stimulated β2AR endocytosis. We further identify an endosomally localized non-canonical signalling axis comprising Gαs, RAF and mitogen-activated protein kinase kinase, resulting in endosomal ERK activity that propagates into the nucleus. Selective inhibition of endosomal β2AR and Gαs signalling blunted nuclear ERK activity, MYC gene expression and cell proliferation. These results reveal a non-canonical mechanism for the spatial regulation of ERK through GPCR signalling and identify a functionally important endosomal signalling axis.
Collapse
Affiliation(s)
- Yonghoon Kwon
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Mary Clark
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Geneva Walters
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Yanghao Zhong
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Ha Neul Lee
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Roger K Sunahara
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
19
|
Kim E, Suh JS, Jang YK, Kim H, Choi G, Kim TJ. Harmine inhibits proliferation and migration of glioblastoma via ERK signalling. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
IK Ca channels control breast cancer metabolism including AMPK-driven autophagy. Cell Death Dis 2022; 13:902. [PMID: 36302750 PMCID: PMC9613901 DOI: 10.1038/s41419-022-05329-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022]
Abstract
Ca2+-activated K+ channels of intermediate conductance (IK) are frequently overexpressed in breast cancer (BC) cells, while IK channel depletion reduces BC cell proliferation and tumorigenesis. This raises the question, of whether and mechanistically how IK activity interferes with the metabolic activity and energy consumption rates, which are fundamental for rapidly growing cells. Using BC cells obtained from MMTV-PyMT tumor-bearing mice, we show that both, glycolysis and mitochondrial ATP-production are reduced in cells derived from IK-deficient breast tumors. Loss of IK altered the sub-/cellular K+- and Ca2+- homeostasis and mitochondrial membrane potential, ultimately resulting in reduced ATP-production and metabolic activity. Consequently, we find that BC cells lacking IK upregulate AMP-activated protein kinase activity to induce autophagy compensating the glycolytic and mitochondrial energy shortage. Our results emphasize that IK by modulating cellular Ca2+- and K+-dynamics contributes to the remodeling of metabolic pathways in cancer. Thus, targeting IK channel might disturb the metabolic activity of BC cells and reduce malignancy.
Collapse
|
21
|
Mahen R. cNap1 bridges centriole contact sites to maintain centrosome cohesion. PLoS Biol 2022; 20:e3001854. [PMID: 36282799 PMCID: PMC9595518 DOI: 10.1371/journal.pbio.3001854] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Centrioles are non-membrane-bound organelles that participate in fundamental cellular processes through their ability to form physical contacts with other structures. During interphase, two mature centrioles can associate to form a single centrosome—a phenomenon known as centrosome cohesion. Centrosome cohesion is important for processes such as cell migration, and yet how it is maintained is unclear. Current models indicate that pericentriolar fibres termed rootlets, also known as the centrosome linker, entangle to maintain centriole proximity. Here, I uncover a centriole–centriole contact site and mechanism of centrosome cohesion based on coalescence of the proximal centriole component cNap1. Using live-cell imaging of endogenously tagged cNap1, I show that proximal centrioles form dynamic contacts in response to physical force from the cytoskeleton. Expansion microscopy reveals that cNap1 bridges between these contact sites, physically linking proximal centrioles on the nanoscale. Fluorescence correlation spectroscopy (FCS)-calibrated imaging shows that cNap1 accumulates at nearly micromolar concentrations on proximal centrioles, corresponding to a few hundred protein copy numbers. When ectopically tethered to organelles such as lysosomes, cNap1 forms viscous and cohesive assemblies that promote organelle spatial proximity. These results suggest a mechanism of centrosome cohesion by cNap1 at the proximal centriole and illustrate how a non-membrane-bound organelle forms organelle contact sites. During interphase, two mature centrioles can associate to form a single centrosome; this "centrosome cohesion" is important for processes such as cell migration, but how is it maintained? This study combines live cell quantitative imaging, expansion microscopy and ectopic tethering to provide insights into the mechanisms by which centrioles maintain spatial proximity inside human cells.
Collapse
Affiliation(s)
- Robert Mahen
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, United Kingdom
- Photonics Group, Department of Physics, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Henderson J, Havranek O, Ma MCJ, Herman V, Kupcova K, Chrbolkova T, Pacheco-Blanco M, Wang Z, Comer JM, Zal T, Davis RE. Detecting Förster resonance energy transfer in living cells by conventional and spectral flow cytometry. Cytometry A 2022; 101:818-834. [PMID: 34128311 DOI: 10.1002/cyto.a.24472] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 01/27/2023]
Abstract
Assays based on Förster resonance energy transfer (FRET) can be used to study many processes in cell biology. Although this is most often done with microscopy for fluorescence detection, we report two ways to measure FRET in living cells by flow cytometry. Using a conventional flow cytometer and the "3-cube method" for intensity-based calculation of FRET efficiency, we measured the enzymatic activity of specific kinases in cells expressing a genetically-encoded reporter. For both AKT and protein kinase A, the method measured kinase activity in time-course, dose-response, and kinetic assays. Using the Cytek Aurora spectral flow cytometer, which applies linear unmixing to emission measured in multiple wavelength ranges, FRET from the same reporters was measured with greater single-cell precision, in real time and in the presence of other fluorophores. Results from gene-knockout studies suggested that spectral flow cytometry might enable the sorting of cells on the basis of FRET. The methods we present provide convenient and flexible options for using FRET with flow cytometry in studies of cell biology.
Collapse
Affiliation(s)
- Jared Henderson
- Department of Lymphoma and Myeloma, The University of Texas-MD Anderson Cancer Center, Houston, Texas, USA
| | - Ondrej Havranek
- Department of Lymphoma and Myeloma, The University of Texas-MD Anderson Cancer Center, Houston, Texas, USA.,BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.,Department of Hematology, Charles University and General University Hospital, Prague, Czech Republic
| | - Man Chun John Ma
- Department of Lymphoma and Myeloma, The University of Texas-MD Anderson Cancer Center, Houston, Texas, USA
| | - Vaclav Herman
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.,Department of Hematology, Charles University and General University Hospital, Prague, Czech Republic
| | - Kristyna Kupcova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Tereza Chrbolkova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | | | - Zhiqiang Wang
- Department of Lymphoma and Myeloma, The University of Texas-MD Anderson Cancer Center, Houston, Texas, USA
| | - Justin M Comer
- Department of Lymphoma and Myeloma, The University of Texas-MD Anderson Cancer Center, Houston, Texas, USA
| | - Tomasz Zal
- Department of Leukemia, The University of Texas-MD Anderson Cancer Center, Houston, Texas, USA
| | - Richard Eric Davis
- Department of Lymphoma and Myeloma, The University of Texas-MD Anderson Cancer Center, Houston, Texas, USA.,Department of Translational Molecular Pathology, The University of Texas-MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
23
|
Weeks R, Zhou X, Yuan TL, Zhang J. Fluorescent Biosensor for Measuring Ras Activity in Living Cells. J Am Chem Soc 2022; 144:17432-17440. [PMID: 36122391 PMCID: PMC10031818 DOI: 10.1021/jacs.2c05203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The small GTPase Ras is a critical regulator of cell growth and proliferation. Its activity is frequently dysregulated in cancers, prompting decades of work to pharmacologically target Ras. Understanding Ras biology and developing effective Ras therapeutics both require probing Ras activity in its native context, yet tools to measure its activities in cellulo are limited. Here, we developed a ratiometric Ras activity reporter (RasAR) that provides quantitative measurement of Ras activity in living cells with high spatiotemporal resolution. We demonstrated that RasAR can probe live-cell activities of all the primary isoforms of Ras. Given that the functional roles of different isoforms of Ras are intimately linked to their subcellular distribution and regulation, we interrogated the spatiotemporal regulation of Ras utilizing subcellularly targeted RasAR and uncovered the role of Src kinase as an upstream regulator to inhibit HRas. Furthermore, we showed that RasAR enables capture of KRasG12C inhibition dynamics in living cells upon treatment with KRasG12C covalent inhibitors, including ARS1620, Sotorasib, and Adagrasib. We found in living cells a residual Ras activity lingers for hours in the presence of these inhibitors. Together, RasAR represents a powerful molecular tool to enable live-cell interrogation of Ras activity and facilitate the development of Ras inhibitors.
Collapse
Affiliation(s)
- Ryan Weeks
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xin Zhou
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tina L. Yuan
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Correspondence: Jin Zhang, 9500 Gilman Drive, BRF-II 1120, La Jolla, CA 92093-0702, phone (858) 246-0602,
| |
Collapse
|
24
|
Spatial regulation of AMPK signaling revealed by a sensitive kinase activity reporter. Nat Commun 2022; 13:3856. [PMID: 35790710 PMCID: PMC9256702 DOI: 10.1038/s41467-022-31190-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 06/06/2022] [Indexed: 12/13/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a master regulator of cellular energetics which coordinates metabolism by phosphorylating a plethora of substrates throughout the cell. But how AMPK activity is regulated at different subcellular locations for precise spatiotemporal control over metabolism is unclear. Here we present a sensitive, single-fluorophore AMPK activity reporter (ExRai AMPKAR), which reveals distinct kinetic profiles of AMPK activity at the mitochondria, lysosome, and cytoplasm. Genetic deletion of the canonical upstream kinase liver kinase B1 (LKB1) results in slower AMPK activity at lysosomes but does not affect the response amplitude at lysosomes or mitochondria, in sharp contrast to the necessity of LKB1 for maximal cytoplasmic AMPK activity. We further identify a mechanism for AMPK activity in the nucleus, which results from cytoplasmic to nuclear shuttling of AMPK. Thus, ExRai AMPKAR enables illumination of the complex subcellular regulation of AMPK signaling.
Collapse
|
25
|
Nuclear-targeted 4E-BP1 is dephosphorylated, induces nuclear translocation of eIF4E, and alters mRNA translation. Exp Cell Res 2022; 418:113246. [PMID: 35697076 DOI: 10.1016/j.yexcr.2022.113246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/23/2022]
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) phosphorylates and inhibits eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1). This leads to the release of eIF4E from 4E-BP1 and the initiation of eIF4E-dependent mRNA translation. In this study, we examined the expression of a 4E-BP1-based reporter (mTORC1 activity reporter; TORCAR) with various localization signal tags to clarify the relationship between the localization of 4E-BP1 and its phosphorylation. Phosphorylation of 4E-BP1 at threonine 37/46 and serine 65 was efficient at lysosomes and the plasma membrane, whereas it was significantly decreased in the nucleus. In addition, the localization of endogenous eIF4E shifted from the cytoplasm to the nucleus only when nuclear-localized TORCAR was expressed. Nuclear-localized TORCAR decreased cyclin D1 protein levels and altered cell cycle distribution. These data provide an experimental tool to manipulate the localization of endogenous eIF4E without affecting mTORC1 and highlight the important role of nuclear-cytoplasmic shuttling of eIF4E.
Collapse
|
26
|
Zhou X, Mehta S, Zhang J. AktAR and Akt-STOPS: Genetically Encodable Molecular Tools to Visualize and Perturb Akt Kinase Activity at Different Subcellular Locations in Living Cells. Curr Protoc 2022; 2:e416. [PMID: 35532280 PMCID: PMC9093046 DOI: 10.1002/cpz1.416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The serine/threonine protein kinase Akt integrates diverse upstream inputs to regulate cell survival, growth, metabolism, migration, and differentiation. Mounting evidence suggests that Akt activity is differentially regulated depending on its subcellular location, which can include the plasma membrane, endomembrane, and nuclear compartment. This spatial control of Akt activity is critical for achieving signaling specificity and proper physiological functions, and deregulation of compartment-specific Akt signaling is implicated in various diseases, including cancer and diabetes. Understanding the spatial coordination of the signaling network centered around this key kinase and the underlying regulatory mechanisms requires precise tracking of Akt activity at distinct subcellular compartments within its native biological contexts. To address this challenge, new molecular tools are being developed, enabling us to directly interrogate the spatiotemporal regulation of Akt in living cells. These include, for instance, the newly developed genetically encodable fluorescent-protein-based Akt kinase activity reporter (AktAR2), which serves as a substrate surrogate of Akt kinase and translates Akt-specific phosphorylation into a quantifiable change in Förster resonance energy transfer (FRET). In addition, we developed the Akt substrate tandem occupancy peptide sponge (Akt-STOPS), which allows biochemical perturbation of subcellular Akt activity. Both molecular tools can be readily targeted to distinct subcellular localizations. Here, we describe a workflow to study Akt kinase activity at different subcellular locations in living cells. We provide a protocol for using genetically targeted AktAR2 and Akt-STOPS, along with fluorescence imaging in living NIH3T3 cells, to visualize and perturb, respectively, the activity of endogenous Akt kinase at different subcellular compartments. We further describe a protocol for using chemically inducible dimerization (CID) to control the plasma membrane-specific inhibition of Akt activity in real time. Lastly, we describe a protocol for maintaining NIH3T3 cells in culture, a cell line known to exhibit robust Akt activity. In all, this approach enables interrogation of spatiotemporal regulation and functions of Akt, as well as the intricate signaling networks in which it is embedded, at specific subcellular locations. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Visualizing and perturbing subcellular Akt kinase activity using AktAR and Akt-STOPS Basic Protocol 2: Using chemically inducible dimerization (CID) to control inhibition of Akt at the plasma membrane Support Protocol: Maintaining NIH3T3 cells in culture.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, California.,Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California.,Department of Bioengineering, University of California, San Diego, La Jolla, California
| |
Collapse
|
27
|
Simcox J, Lamming DW. The central moTOR of metabolism. Dev Cell 2022; 57:691-706. [PMID: 35316619 PMCID: PMC9004513 DOI: 10.1016/j.devcel.2022.02.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 12/21/2022]
Abstract
The protein kinase mechanistic target of rapamycin (mTOR) functions as a central regulator of metabolism, integrating diverse nutritional and hormonal cues to control anabolic processes, organismal physiology, and even aging. This review discusses the current state of knowledge regarding the regulation of mTOR signaling and the metabolic regulation of the four macromolecular building blocks of the cell: carbohydrate, nucleic acid, lipid, and protein by mTOR. We review the role of mTOR in the control of organismal physiology and aging through its action in key tissues and discuss the potential for clinical translation of mTOR inhibition for the treatment and prevention of diseases of aging.
Collapse
Affiliation(s)
- Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Dudley W Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
28
|
Dufour CR, Scholtes C, Yan M, Chen Y, Han L, Li T, Xia H, Deng Q, Vernier M, Giguère V. The mTOR chromatin-bound interactome in prostate cancer. Cell Rep 2022; 38:110534. [PMID: 35320709 DOI: 10.1016/j.celrep.2022.110534] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/07/2021] [Accepted: 02/24/2022] [Indexed: 11/03/2022] Open
Abstract
A growing number of studies support a direct role for nuclear mTOR in gene regulation and chromatin structure. Still, the scarcity of known chromatin-bound mTOR partners limits our understanding of how nuclear mTOR controls transcription. Herein, comprehensive mapping of the mTOR chromatin-bound interactome in both androgen-dependent and -independent cellular models of prostate cancer (PCa) identifies a conserved 67-protein interaction network enriched for chromatin modifiers, transcription factors, and SUMOylation machinery. SUMO2/3 and nuclear pore protein NUP210 are among the strongest interactors, while the androgen receptor (AR) is the dominant androgen-inducible mTOR partner. Further investigation reveals that NUP210 facilitates mTOR nuclear trafficking, that mTOR and AR form a functional transcriptional module with the nucleosome remodeling and deacetylase (NuRD) complex, and that androgens specify mTOR-SUMO2/3 promoter-enhancer association. This work identifies a vast network of mTOR-associated nuclear complexes advocating innovative molecular strategies to modulate mTOR-dependent gene regulation with conceivable implications for PCa and other diseases.
Collapse
Affiliation(s)
- Catherine R Dufour
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| | - Charlotte Scholtes
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| | - Ming Yan
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| | - Yonghong Chen
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, Faculty of Medicine, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Lingwei Han
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, Faculty of Medicine, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Ting Li
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| | - Hui Xia
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, Faculty of Medicine, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Qiyun Deng
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, Faculty of Medicine, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Mathieu Vernier
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| | - Vincent Giguère
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, Faculty of Medicine, McGill University, Montréal, QC H3G 1Y6, Canada.
| |
Collapse
|
29
|
Guerra P, Vuillemenot LA, Rae B, Ladyhina V, Milias-Argeitis A. Systematic In Vivo Characterization of Fluorescent Protein Maturation in Budding Yeast. ACS Synth Biol 2022; 11:1129-1141. [PMID: 35180343 PMCID: PMC8938947 DOI: 10.1021/acssynbio.1c00387] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Fluorescent protein
(FP) maturation can limit the accuracy with
which dynamic intracellular processes are captured and reduce the in vivo brightness of a given FP in fast-dividing cells.
The knowledge of maturation timescales can therefore help users determine
the appropriate FP for each application. However, in vivo maturation rates can greatly deviate from in vitro estimates that are mostly available. In this work, we present the
first systematic study of in vivo maturation for
12 FPs in budding yeast. To overcome the technical limitations of
translation inhibitors commonly used to study FP maturation, we implemented
a new approach based on the optogenetic stimulations of FP expression
in cells grown under constant nutrient conditions. Combining the rapid
and orthogonal induction of FP transcription with a mathematical model
of expression and maturation allowed us to accurately estimate maturation
rates from microscopy data in a minimally invasive manner. Besides
providing a useful resource for the budding yeast community, we present
a new joint experimental and computational approach for characterizing
FP maturation, which is applicable to a wide range of organisms.
Collapse
Affiliation(s)
- Paolo Guerra
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Luc-Alban Vuillemenot
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Brady Rae
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Valeriia Ladyhina
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Andreas Milias-Argeitis
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| |
Collapse
|
30
|
Zhong Y, Zhou X, Guan KL, Zhang J. Rheb regulates nuclear mTORC1 activity independent of farnesylation. Cell Chem Biol 2022; 29:1037-1045.e4. [PMID: 35294906 DOI: 10.1016/j.chembiol.2022.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/26/2021] [Accepted: 02/10/2022] [Indexed: 11/26/2022]
Abstract
The small GTPase Ras homolog enriched in brain (Rheb) plays a critical role in activating the mechanistic target of rapamycin complex 1 (mTORC1), a signaling hub that regulates various cellular functions. We recently observed nuclear mTORC1 activity, raising an intriguing question as to how Rheb, which is known to be farnesylated and localized to intracellular membranes, regulates nuclear mTORC1. In this study, we found that active Rheb is present in the nucleus and required for nuclear mTORC1 activity. We showed that inhibition of farnesyltransferase reduced cytosolic, but not nuclear, mTORC1 activity. Furthermore, a farnesylation-deficient Rheb mutant, with preferential nuclear localization and specific lysosome tethering, enables nuclear and cytosolic mTORC1 activities, respectively. These data suggest that non-farnesylated Rheb is capable of interacting with and activating mTORC1, providing mechanistic insights into the molecular functioning of Rheb as well as regulation of the recently observed, active pool of nuclear mTORC1.
Collapse
Affiliation(s)
- Yanghao Zhong
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Xin Zhou
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Kun-Liang Guan
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
31
|
Chen M, Sun T, Zhong Y, Zhou X, Zhang J. A Highly Sensitive Fluorescent Akt Biosensor Reveals Lysosome-Selective Regulation of Lipid Second Messengers and Kinase Activity. ACS CENTRAL SCIENCE 2021; 7:2009-2020. [PMID: 34963894 PMCID: PMC8704034 DOI: 10.1021/acscentsci.1c00919] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 06/14/2023]
Abstract
The serine/threonine protein kinase Akt regulates a wide range of cellular functions via phosphorylation of various substrates distributed throughout the cell, including at the plasma membrane and endomembrane compartments. Disruption of compartmentalized Akt signaling underlies the pathology of many diseases such as cancer and diabetes. However, the specific spatial organization of Akt activity and the underlying regulatory mechanisms, particularly the mechanism controlling its activity at the lysosome, are not clearly understood. We developed a highly sensitive excitation-ratiometric Akt activity reporter (ExRai-AktAR2), enabling the capture of minute changes in Akt activity dynamics at subcellular compartments. In conjunction with super-resolution expansion microscopy, we found that growth factor stimulation leads to increased colocalization of Akt with lysosomes and accumulation of lysosomal Akt activity. We further showed that 3-phosphoinositides (3-PIs) accumulate on the lysosomal surface, in a manner dependent on dynamin-mediated endocytosis. Importantly, lysosomal 3-PIs are needed for growth-factor-induced activities of Akt and mechanistic target of rapamycin complex 1 (mTORC1) on the lysosomal surface, as targeted depletion of 3-PIs has detrimental effects. Thus, 3-PIs, a class of critical lipid second messengers that are typically found in the plasma membrane, unexpectedly accumulate on the lysosomal membrane in response to growth factor stimulation, to direct the multifaceted kinase Akt to organize lysosome-specific signaling.
Collapse
Affiliation(s)
- Mingyuan Chen
- Department
of Bioengineering, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
| | - Tengqian Sun
- Department
of Pharmacology, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
| | - Yanghao Zhong
- Department
of Pharmacology, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Xin Zhou
- Department
of Pharmacology, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
| | - Jin Zhang
- Department
of Bioengineering, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
- Department
of Pharmacology, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
- Department
of Chemistry & Biochemistry, University
of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
32
|
Yang JM, Chi WY, Liang J, Takayanagi S, Iglesias PA, Huang CH. Deciphering cell signaling networks with massively multiplexed biosensor barcoding. Cell 2021; 184:6193-6206.e14. [PMID: 34838160 PMCID: PMC8686192 DOI: 10.1016/j.cell.2021.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/27/2021] [Accepted: 11/03/2021] [Indexed: 12/27/2022]
Abstract
Genetically encoded fluorescent biosensors are powerful tools for monitoring biochemical activities in live cells, but their multiplexing capacity is limited by the available spectral space. We overcome this problem by developing a set of barcoding proteins that can generate over 100 barcodes and are spectrally separable from commonly used biosensors. Mixtures of barcoded cells expressing different biosensors are simultaneously imaged and analyzed by deep learning models to achieve massively multiplexed tracking of signaling events. Importantly, different biosensors in cell mixtures show highly coordinated activities, thus facilitating the delineation of their temporal relationship. Simultaneous tracking of multiple biosensors in the receptor tyrosine kinase signaling network reveals distinct mechanisms of effector adaptation, cell autonomous and non-autonomous effects of KRAS mutations, as well as complex interactions in the network. Biosensor barcoding presents a scalable method to expand multiplexing capabilities for deciphering the complexity of signaling networks and their interactions between cells.
Collapse
Affiliation(s)
- Jr-Ming Yang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA.
| | - Wei-Yu Chi
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Jessica Liang
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Saki Takayanagi
- XDBio Graduate Program, Johns Hopkins School of Medicine, MD 21205, USA
| | - Pablo A Iglesias
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Chuan-Hsiang Huang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA.
| |
Collapse
|
33
|
Hodson N, Mazzulla M, Holowaty MNH, Kumbhare D, Moore DR. RPS6 phosphorylation occurs to a greater extent in the periphery of human skeletal muscle fibers, near focal adhesions, after anabolic stimuli. Am J Physiol Cell Physiol 2021; 322:C94-C110. [PMID: 34852208 DOI: 10.1152/ajpcell.00357.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Following anabolic stimuli (mechanical loading and/or amino acid provision) the mechanistic target of rapamycin complex 1 (mTORC1), a master regulator of protein synthesis, translocates toward the cell periphery. However, it is unknown if mTORC1-mediated phosphorylation events occur in these peripheral regions or prior to translocation (i.e. in central regions). We therefore aimed to determine the cellular location of a mTORC1-mediated phosphorylation event, RPS6Ser240/244, in human skeletal muscle following anabolic stimuli. Fourteen young, healthy males either ingested a protein-carbohydrate beverage (0.25g/kg protein, 0.75g/kg carbohydrate) alone (n=7;23±5yrs;76.8±3.6kg;13.6±3.8%BF, FED) or following a whole-body resistance exercise bout (n=7;22±2yrs;78.1±3.6kg;12.2±4.9%BF, EXFED). Vastus lateralis muscle biopsies were obtained at rest (PRE) and 120 and 300min following anabolic stimuli. RPS6Ser240/244 phosphorylation measured by immunofluorescent staining or immunoblot was positively correlated (r=0.76, p<0.001). Peripheral staining intensity of p-RPS6Ser240/244 increased above PRE in both FED and EXFED at 120min (~54% and ~138% respectively, p<0.05) but was greater in EXFED at both post-stimuli time points (p<0.05). The peripheral-central ratio of p-RPS6240/244 staining displayed a similar pattern, even when corrected for total RPS6 distribution, suggesting RPS6 phosphorylation occurs to a greater extent in the periphery of fibers. Moreover, p-RPS6Ser240/244 intensity within paxillin-positive regions, a marker of focal adhesion complexes, was elevated at 120min irrespective of stimulus (p=0.006) before returning to PRE at 300min. These data confirm that RPS6Ser240/244 phosphorylation occurs in the region of human muscle fibers to which mTOR translocates following anabolic stimuli and identifies focal adhesion complexes as a potential site of mTORC1 regulation in vivo.
Collapse
Affiliation(s)
- Nathan Hodson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Michael Mazzulla
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Maksym N H Holowaty
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | | | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Ovechkina VS, Zakian SM, Medvedev SP, Valetdinova KR. Genetically Encoded Fluorescent Biosensors for Biomedical Applications. Biomedicines 2021; 9:biomedicines9111528. [PMID: 34829757 PMCID: PMC8615007 DOI: 10.3390/biomedicines9111528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
One of the challenges of modern biology and medicine is to visualize biomolecules in their natural environment, in real-time and in a non-invasive fashion, so as to gain insight into their physiological behavior and highlight alterations in pathological settings, which will enable to devise appropriate therapeutic strategies. Genetically encoded fluorescent biosensors constitute a class of imaging agents that enable visualization of biological processes and events directly in situ, preserving the native biological context and providing detailed insight into their localization and dynamics in cells. Real-time monitoring of drug action in a specific cellular compartment, organ, or tissue type; the ability to screen at the single-cell resolution; and the elimination of false-positive results caused by low drug bioavailability that is not detected by in vitro testing methods are a few of the obvious benefits of using genetically encoded fluorescent biosensors in drug screening. This review summarizes results of the studies that have been conducted in the last years toward the fabrication of genetically encoded fluorescent biosensors for biomedical applications with a comprehensive discussion on the challenges, future trends, and potential inputs needed for improving them.
Collapse
Affiliation(s)
- Vera S. Ovechkina
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.O.); (S.M.Z.); (S.P.M.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Suren M. Zakian
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.O.); (S.M.Z.); (S.P.M.)
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Sergey P. Medvedev
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.O.); (S.M.Z.); (S.P.M.)
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Kamila R. Valetdinova
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.O.); (S.M.Z.); (S.P.M.)
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
35
|
Gopallawa I, Kuek LE, Adappa ND, Palmer JN, Lee RJ. Small-molecule Akt-activation in airway cells induces NO production and reduces IL-8 transcription through Nrf-2. Respir Res 2021; 22:267. [PMID: 34666758 PMCID: PMC8525858 DOI: 10.1186/s12931-021-01865-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The non-cancerous functions of Akt in the airway are understudied. In some tissues, Akt phosphorylates and activates endothelial nitric oxide synthase (eNOS) to produce nitric oxide (NO) that has anti-inflammatory effects. NO production has antibacterial and antiviral effects in the airway, and increasing NO may be a useful anti-pathogen strategy. Akt also stimulates the nuclear factor erythroid 2-related factor 2 (Nrf-2) transcription factor, which transcribes antioxidant genes. Therefore, we hypothesized that activation of the Akt/eNOS pathway, which also activates Nrf-2, may have protective effects in human airway cells against injury. METHODS To directly test the effects of Akt signaling in the airway, we treated A549 and 16HBE cells as well as primary bronchial, nasal, and type II alveolar epithelial cells with small molecule Akt activator SC79. We examined the effects of SC79 on eNOS activation, NO production, Nrf-2 target levels, and interleukin-8 (IL-8) transcription during exposure to TNF-α or Pseudomonas flagellin (TLR5 agonist). Additionally, air-liquid interface bronchial cultures were treated with cadmium, an oxidative stressor that causes airway barrier breakdown. RESULTS SC79 induced a ~ twofold induction of p-eNOS and Nrf-2 protein levels blocked by PI3K inhibitor LY294002. Live cell imaging revealed SC79 increased acute NO production. Quantitative RT-PCR showed a ~ twofold increase in Nrf-2 target gene transcription. TNF-α or flagellin-induced IL-8 levels were also significantly reduced with SC79 treatment. Moreover, the transepithelial electrical resistance decrease observed with cadmium was ameliorated by SC79, likely by an acute increase in tight junction protein ZO-1 levels. CONCLUSIONS Together, the data presented here demonstrate SC79 activation of Akt induces potentially anti-pathogenic NO production, antioxidant gene transcription, reduces IL-8 transcription, and may protect against oxidative barrier dysfunction in a wide range of airway epithelial cells.
Collapse
Affiliation(s)
- Indiwari Gopallawa
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Li Eon Kuek
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nithin D Adappa
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James N Palmer
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert J Lee
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
36
|
The Akt-mTOR Pathway Drives Myelin Sheath Growth by Regulating Cap-Dependent Translation. J Neurosci 2021; 41:8532-8544. [PMID: 34475201 DOI: 10.1523/jneurosci.0783-21.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/21/2022] Open
Abstract
In the vertebrate CNS, oligodendrocytes produce myelin, a specialized membrane, to insulate and support axons. Individual oligodendrocytes wrap multiple axons with myelin sheaths of variable lengths and thicknesses. Myelin grows at the distal ends of oligodendrocyte processes, and multiple lines of work have provided evidence that mRNAs and RNA binding proteins localize to myelin, together supporting a model where local translation controls myelin sheath growth. What signal transduction mechanisms could control this? One strong candidate is the Akt-mTOR pathway, a major cellular signaling hub that coordinates transcription, translation, metabolism, and cytoskeletal organization. Here, using zebrafish as a model system, we found that Akt-mTOR signaling promotes myelin sheath growth and stability during development. Through cell-specific manipulations to oligodendrocytes, we show that the Akt-mTOR pathway drives cap-dependent translation to promote myelination and that restoration of cap-dependent translation is sufficient to rescue myelin deficits in mTOR loss-of-function animals. Moreover, an mTOR-dependent translational regulator was phosphorylated and colocalized with mRNA encoding a canonically myelin-translated protein in vivo, and bioinformatic investigation revealed numerous putative translational targets in the myelin transcriptome. Together, these data raise the possibility that Akt-mTOR signaling in nascent myelin sheaths promotes sheath growth via translation of myelin-resident mRNAs during development.SIGNIFICANCE STATEMENT In the brain and spinal cord, oligodendrocytes extend processes that tightly wrap axons with myelin, a protein- and lipid-rich membrane that increases electrical impulses and provides trophic support. Myelin membrane grows dramatically following initial axon wrapping in a process that demands protein and lipid synthesis. How protein and lipid synthesis is coordinated with the need for myelin to be generated in certain locations remains unknown. Our study reveals that the Akt-mTOR signaling pathway promotes myelin sheath growth by regulating protein translation. Because we found translational regulators of the Akt-mTOR pathway in myelin, our data raise the possibility that Akt-mTOR activity regulates translation in myelin sheaths to deliver myelin on demand to the places it is needed.
Collapse
|
37
|
Zhang L, Takahashi Y, Schroeder JI. Protein kinase sensors: an overview of new designs for visualizing kinase dynamics in single plant cells. PLANT PHYSIOLOGY 2021; 187:527-536. [PMID: 35142856 PMCID: PMC8491035 DOI: 10.1093/plphys/kiab277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/16/2021] [Indexed: 05/15/2023]
Abstract
Protein kinase dynamics play key roles in regulation of cell differentiation, growth, development and in diverse cell signaling networks. Protein kinase sensors enable visualization of protein kinase activity in living cells and tissues in time and space. These sensors have therefore become important and powerful molecular tools for investigation of diverse kinase activities and can resolve long-standing and challenging biological questions. In the present Update, we review new advanced approaches for genetically encoded protein kinase biosensor designs developed in animal systems together with the basis of each biosensor's working principle and components. In addition, we review recent first examples of real time plant protein kinase activity biosensor development and application. We discuss how these sensors have helped to resolve how stomatal signal transduction in response to elevated CO2 merges with abscisic acid signaling downstream of a resolved basal SnRK2 kinase activity in guard cells. Furthermore, recent advances, combined with the new strategies described in this Update, can help deepen the understanding of how signaling networks regulate unique functions and responses in distinct plant cell types and tissues and how different stimuli and signaling pathways can interact.
Collapse
Affiliation(s)
- Li Zhang
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, California 92093, USA
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Yohei Takahashi
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, California 92093, USA
| | | |
Collapse
|
38
|
Zhang JF, Mehta S, Zhang J. Signaling Microdomains in the Spotlight: Visualizing Compartmentalized Signaling Using Genetically Encoded Fluorescent Biosensors. Annu Rev Pharmacol Toxicol 2021; 61:587-608. [PMID: 33411579 DOI: 10.1146/annurev-pharmtox-010617-053137] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
How cells muster a network of interlinking signaling pathways to faithfully convert diverse external cues to specific functional outcomes remains a central question in biology. Through their ability to convert dynamic biochemical activities to rapid and precise optical readouts, genetically encoded fluorescent biosensors have become instrumental in unraveling the molecular logic controlling the specificity of intracellular signaling. In this review, we discuss how the use of genetically encoded fluorescent biosensors to visualize dynamic signaling events within their native cellular context is elucidating the different strategies employed by cells to organize signaling activities into discrete compartments, or signaling microdomains, to ensure functional specificity.
Collapse
Affiliation(s)
- Jin-Fan Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, USA; .,Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, USA;
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, USA; .,Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA.,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
39
|
Fernandes SA, Demetriades C. The Multifaceted Role of Nutrient Sensing and mTORC1 Signaling in Physiology and Aging. FRONTIERS IN AGING 2021; 2:707372. [PMID: 35822019 PMCID: PMC9261424 DOI: 10.3389/fragi.2021.707372] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/12/2021] [Indexed: 01/10/2023]
Abstract
The mechanistic Target of Rapamycin (mTOR) is a growth-related kinase that, in the context of the mTOR complex 1 (mTORC1), touches upon most fundamental cellular processes. Consequently, its activity is a critical determinant for cellular and organismal physiology, while its dysregulation is commonly linked to human aging and age-related disease. Presumably the most important stimulus that regulates mTORC1 activity is nutrient sufficiency, whereby amino acids play a predominant role. In fact, mTORC1 functions as a molecular sensor for amino acids, linking the cellular demand to the nutritional supply. Notably, dietary restriction (DR), a nutritional regimen that has been shown to extend lifespan and improve healthspan in a broad spectrum of organisms, works via limiting nutrient uptake and changes in mTORC1 activity. Furthermore, pharmacological inhibition of mTORC1, using rapamycin or its analogs (rapalogs), can mimic the pro-longevity effects of DR. Conversely, nutritional amino acid overload has been tightly linked to aging and diseases, such as cancer, type 2 diabetes and obesity. Similar effects can also be recapitulated by mutations in upstream mTORC1 regulators, thus establishing a tight connection between mTORC1 signaling and aging. Although the role of growth factor signaling upstream of mTORC1 in aging has been investigated extensively, the involvement of signaling components participating in the nutrient sensing branch is less well understood. In this review, we provide a comprehensive overview of the molecular and cellular mechanisms that signal nutrient availability to mTORC1, and summarize the role that nutrients, nutrient sensors, and other components of the nutrient sensing machinery play in cellular and organismal aging.
Collapse
Affiliation(s)
- Stephanie A. Fernandes
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
- Cologne Graduate School for Ageing Research (CGA), Cologne, Germany
| | - Constantinos Demetriades
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
- Cologne Graduate School for Ageing Research (CGA), Cologne, Germany
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| |
Collapse
|
40
|
Nüchel J, Tauber M, Nolte JL, Mörgelin M, Türk C, Eckes B, Demetriades C, Plomann M. An mTORC1-GRASP55 signaling axis controls unconventional secretion to reshape the extracellular proteome upon stress. Mol Cell 2021; 81:3275-3293.e12. [PMID: 34245671 PMCID: PMC8382303 DOI: 10.1016/j.molcel.2021.06.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/21/2021] [Accepted: 06/14/2021] [Indexed: 01/13/2023]
Abstract
Cells communicate with their environment via surface proteins and secreted factors. Unconventional protein secretion (UPS) is an evolutionarily conserved process, via which distinct cargo proteins are secreted upon stress. Most UPS types depend upon the Golgi-associated GRASP55 protein. However, its regulation and biological role remain poorly understood. Here, we show that the mechanistic target of rapamycin complex 1 (mTORC1) directly phosphorylates GRASP55 to maintain its Golgi localization, thus revealing a physiological role for mTORC1 at this organelle. Stimuli that inhibit mTORC1 cause GRASP55 dephosphorylation and relocalization to UPS compartments. Through multiple, unbiased, proteomic analyses, we identify numerous cargoes that follow this unconventional secretory route to reshape the cellular secretome and surfactome. Using MMP2 secretion as a proxy for UPS, we provide important insights on its regulation and physiological role. Collectively, our findings reveal the mTORC1-GRASP55 signaling hub as the integration point in stress signaling upstream of UPS and as a key coordinator of the cellular adaptation to stress. mTORC1 phosphorylates GRASP55 directly at the Golgi in non-stressed cells mTORC1 inactivation by stress leads to GRASP55 dephosphorylation and relocalization GRASP55 relocalization to autophagosomes and MVBs drives UPS of selected cargo mTORC1-GRASP55 link cellular stress to changes in the extracellular proteome via UPS
Collapse
Affiliation(s)
- Julian Nüchel
- Max Planck Institute for Biology of Ageing (MPI-AGE), 50931 Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Biochemistry, 50931 Cologne, Germany
| | - Marina Tauber
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Biochemistry, 50931 Cologne, Germany
| | - Janica L Nolte
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | | | - Clara Türk
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Beate Eckes
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Matrix Biology, 50931 Cologne, Germany
| | - Constantinos Demetriades
- Max Planck Institute for Biology of Ageing (MPI-AGE), 50931 Cologne, Germany; University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany.
| | - Markus Plomann
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Biochemistry, 50931 Cologne, Germany.
| |
Collapse
|
41
|
Vandehoef C, Molaei M, Karpac J. Dietary Adaptation of Microbiota in Drosophila Requires NF-κB-Dependent Control of the Translational Regulator 4E-BP. Cell Rep 2021; 31:107736. [PMID: 32521261 DOI: 10.1016/j.celrep.2020.107736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/22/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
Dietary nutrients shape complex interactions between hosts and their commensal gut bacteria, further promoting flexibility in host-microbiota associations that can drive nutritional symbiosis. However, it remains less clear if diet-dependent host signaling mechanisms also influence these associations. Using Drosophila, we show here that nuclear factor κB (NF-κB)/Relish, an innate immune transcription factor emerging as a signaling node linking nutrient-immune-metabolic interactions, is vital to adapt gut microbiota species composition to host diet macronutrient composition. We find that Relish is required within midgut enterocytes to amplify host-Lactobacillus associations, an important bacterial mediator of nutritional symbiosis, and thus modulate microbiota composition in response to dietary adaptation. Relish limits diet-dependent transcriptional inducibility of the cap-dependent translation inhibitor 4E-BP/Thor to control microbiota composition. Furthermore, maintaining cap-dependent translation in response to dietary adaptation is critical to amplify host-Lactobacillus associations. These results highlight that NF-κB-dependent host signaling mechanisms, in coordination with host translation control, shape diet-microbiota interactions.
Collapse
Affiliation(s)
- Crissie Vandehoef
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Maral Molaei
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Jason Karpac
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA.
| |
Collapse
|
42
|
Mehta S, Zhang J. Biochemical Activity Architectures Visualized-Using Genetically Encoded Fluorescent Biosensors to Map the Spatial Boundaries of Signaling Compartments. Acc Chem Res 2021; 54:2409-2420. [PMID: 33949851 DOI: 10.1021/acs.accounts.1c00056] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
All biological processes arise through the coordinated actions of biochemical pathways. How such functional diversity is achieved by a finite cast of molecular players remains a central mystery in biology. Spatial compartmentation-the idea that biochemical activities are organized around discrete spatial domains within cells-was first proposed nearly 40 years ago and has become firmly rooted in our understanding of how biochemical pathways are regulated to ensure specificity. However, directly interrogating spatial compartmentation and its mechanistic origins has only really become possible in the last 20 or so years, following technological advances such as the development of genetically encoded fluorescent biosensors. These powerful molecular tools permit a direct, real-time visualization of dynamic biochemical processes in native biological contexts, and they are essential for probing the spatial regulation of biochemical activities. In this Account, we review our lab's efforts in developing and using biosensors to map the spatial compartmentation of intracellular signaling pathways and illuminate key mechanisms that establish the boundaries of an intricate biochemical activity architecture. We first discuss the role of regulatory fences, wherein the dynamic activation and deactivation of diffusible messengers produce diverse signaling compartments. For example, we used biosensors for the Ca2+ effector calmodulin and its downstream target calcineurin to reveal a spatial gradient of calmodulin that controls the temporal dynamics of calcineurin signaling. Our studies using cyclic adenosine monophosphate (cAMP) biosensors have similarly elucidated fenced cAMP domains generated by competing production and degradation pathways, ranging in size from cell-spanning gradients to nanoscale hotspots. Second, we describe the role played by intracellular membranes in creating unique signaling platforms with distinctive pathway regulation, as revealed through studies using subcellularly targeted fluorescent biosensors. Using biosensors to visualize subcellular extracellular response kinase (ERK) pathway activity, for example, led us to discover a local signaling circuit that mediates distinct plasma membrane ERK dynamics versus global ERK signaling. Similarly, our work developing biosensors to monitor the subcellular mechanistic target of rapamycin complex 1 (mTORC1) signaling allowed us to not only clarify the presence of mTORC1 activity in the nucleus but also identify a novel mechanism governing the activation of mTORC1 in this location. Finally, we detail how molecular assemblies enable the precise spatial tuning of biochemical activity, through investigations enabled by cutting-edge advances in biosensor design. We recently identified liquid-liquid phase separation as a major factor in cAMP compartmentation aided by a new strategy for targeting biosensors to endogenously expressed proteins via genome editing, for instance, and have also been able to directly visualize nanometer-scale protein kinase signalosomes using an entirely new class of biosensors specifically developed for the dynamic super-resolution imaging of live-cell biochemical activities. Our work provides key insights into the molecular logic of spatially regulated signaling and lays the foundation for a broader exploration of biochemical activity architectures across multiple spatial scales.
Collapse
Affiliation(s)
- Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States
| | - Jin Zhang
- Departments of Pharmacology, Bioengineering, and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
43
|
Zhou X, Zhong Y, Zhang J. Regulation of nuclear mTORC1. Mol Cell Oncol 2021; 8:1896348. [PMID: 34027037 DOI: 10.1080/23723556.2021.1896348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
mTORC1 integrates diverse upstream signals to control cell growth and metabolism. We previously showed that mTORC1 activity is spatially compartmentalized to ensure its signaling specificity. In a recently published study, we demonstrated the existence of mTORC1 activity in the nucleus and identified a unique mode of its regulation in the nuclear compartment.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pharmacology, University of California, San Diego, CA, USA
| | - Yanghao Zhong
- Department of Pharmacology, University of California, San Diego, CA, USA.,Biomedical Sciences Graduate Program, University of California, San Diego, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, CA, USA.,Department of Bioengineering, University of California, San Diego, CA, USA.,Department of Chemistry & Biochemistry, University of California, San Diego, CA, USA
| |
Collapse
|
44
|
Rabanal-Ruiz Y, Byron A, Wirth A, Madsen R, Sedlackova L, Hewitt G, Nelson G, Stingele J, Wills JC, Zhang T, Zeug A, Fässler R, Vanhaesebroeck B, Maddocks OD, Ponimaskin E, Carroll B, Korolchuk VI. mTORC1 activity is supported by spatial association with focal adhesions. J Cell Biol 2021; 220:e202004010. [PMID: 33635313 PMCID: PMC7923692 DOI: 10.1083/jcb.202004010] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/21/2020] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) integrates mitogenic and stress signals to control growth and metabolism. Activation of mTORC1 by amino acids and growth factors involves recruitment of the complex to the lysosomal membrane and is further supported by lysosome distribution to the cell periphery. Here, we show that translocation of lysosomes toward the cell periphery brings mTORC1 into proximity with focal adhesions (FAs). We demonstrate that FAs constitute discrete plasma membrane hubs mediating growth factor signaling and amino acid input into the cell. FAs, as well as the translocation of lysosome-bound mTORC1 to their vicinity, contribute to both peripheral and intracellular mTORC1 activity. Conversely, lysosomal distribution to the cell periphery is dispensable for the activation of mTORC1 constitutively targeted to FAs. This study advances our understanding of spatial mTORC1 regulation by demonstrating that the localization of mTORC1 to FAs is both necessary and sufficient for its activation by growth-promoting stimuli.
Collapse
Affiliation(s)
- Yoana Rabanal-Ruiz
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Alexander Wirth
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Ralitsa Madsen
- UCL Cancer Institute, University College London, London, UK
| | - Lucia Sedlackova
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Graeme Hewitt
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Glyn Nelson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Julian Stingele
- Gene Center, Ludwig Maximilians University Munich, Munich, Germany
- Department of Biochemistry, Ludwig Maximilians University Munich, Munich, Germany
| | - Jimi C. Wills
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Tong Zhang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - André Zeug
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Oliver D.K. Maddocks
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
- Institute of Neuroscience, Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | | | - Viktor I. Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
45
|
Fong MY, Yan W, Ghassemian M, Wu X, Zhou X, Cao M, Jiang L, Wang J, Liu X, Zhang J, Wang SE. Cancer-secreted miRNAs regulate amino-acid-induced mTORC1 signaling and fibroblast protein synthesis. EMBO Rep 2021; 22:e51239. [PMID: 33345445 PMCID: PMC7857427 DOI: 10.15252/embr.202051239] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/28/2022] Open
Abstract
Metabolic reprogramming of non-cancer cells residing in a tumor microenvironment, as a result of the adaptations to cancer-derived metabolic and non-metabolic factors, is an emerging aspect of cancer-host interaction. We show that in normal and cancer-associated fibroblasts, breast cancer-secreted extracellular vesicles suppress mTOR signaling upon amino acid stimulation to globally reduce mRNA translation. This is through delivery of cancer-derived miR-105 and miR-204, which target RAGC, a component of Rag GTPases that regulate mTORC1 signaling. Following amino acid starvation and subsequent re-feeding, 13 C-arginine labeling of de novo synthesized proteins shows selective translation of proteins that cluster to specific cellular functional pathways. The repertoire of these newly synthesized proteins is altered in fibroblasts treated with cancer-derived extracellular vesicles, in addition to the overall suppressed protein synthesis. In human breast tumors, RAGC protein levels are inversely correlated with miR-105 in the stroma. Our results suggest that through educating fibroblasts to reduce and re-prioritize mRNA translation, cancer cells rewire the metabolic fluxes of amino acid pool and dynamically regulate stroma-produced proteins during periodic nutrient fluctuations.
Collapse
Affiliation(s)
- Miranda Y Fong
- Department of PathologyUniversity of California, San DiegoLa JollaCAUSA
- Department of Cancer BiologyBeckman Research Institute of City of HopeDuarteCAUSA
| | - Wei Yan
- Department of PathologyUniversity of California, San DiegoLa JollaCAUSA
| | - Majid Ghassemian
- Biomolecular and Proteomics Mass Spectrometry FacilityUniversity of California, San DiegoLa JollaCAUSA
| | - Xiwei Wu
- Department of Molecular and Cellular BiologyBeckman Research Institute of the City of HopeDuarteCAUSA
| | - Xin Zhou
- Department of PharmacologyUniversity of California, San DiegoLa JollaCAUSA
| | - Minghui Cao
- Department of PathologyUniversity of California, San DiegoLa JollaCAUSA
| | - Li Jiang
- Department of PathologyUniversity of California, San DiegoLa JollaCAUSA
| | - Jessica Wang
- Department of PathologyUniversity of California, San DiegoLa JollaCAUSA
| | - Xuxiang Liu
- Department of Cancer BiologyBeckman Research Institute of City of HopeDuarteCAUSA
| | - Jin Zhang
- Department of PharmacologyUniversity of California, San DiegoLa JollaCAUSA
| | | |
Collapse
|
46
|
Imaging dynamic mTORC1 pathway activity in vivo reveals marked shifts that support time-specific inhibitor therapy in AML. Nat Commun 2021; 12:245. [PMID: 33431855 PMCID: PMC7801403 DOI: 10.1038/s41467-020-20491-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is a high remission, high relapse fatal blood cancer. Although mTORC1 is a master regulator of cell proliferation and survival, its inhibitors have not performed well as AML treatments. To uncover the dynamics of mTORC1 activity in vivo, fluorescent probes are developed to track single cell proliferation, apoptosis and mTORC1 activity of AML cells in the bone marrow of live animals and to quantify these activities in the context of microanatomical localization and intra-tumoral heterogeneity. When chemotherapy drugs commonly used clinically are given to mice with AML, apoptosis is rapid, diffuse and not preferentially restricted to anatomic sites. Dynamic measurement of mTORC1 activity indicated a decline in mTORC1 activity with AML progression. However, at the time of maximal chemotherapy response, mTORC1 signaling is high and positively correlated with a leukemia stemness transcriptional profile. Cell barcoding reveals the induction of mTORC1 activity rather than selection of mTORC1 high cells and timed inhibition of mTORC1 improved the killing of AML cells. These data define the real-time dynamics of AML and the mTORC1 pathway in association with AML growth, response to and relapse after chemotherapy. They provide guidance for timed intervention with pathway-specific inhibitors. The role of mTORC1 in AML has not yet been proven due to the mixed results of its inhibitors in clinical trials. Here the authors show the real-time dynamics of the mTORC1 pathway in association with AML growth and response to chemotherapy with fluorescent markers, providing guidance for timed intervention with pathway-specific inhibitors.
Collapse
|
47
|
Zhou X, Zhong Y, Molinar-Inglis O, Kunkel MT, Chen M, Sun T, Zhang J, Shyy JYJ, Trejo J, Newton AC, Zhang J. Location-specific inhibition of Akt reveals regulation of mTORC1 activity in the nucleus. Nat Commun 2020; 11:6088. [PMID: 33257668 PMCID: PMC7705703 DOI: 10.1038/s41467-020-19937-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) integrates growth, nutrient and energy status cues to control cell growth and metabolism. While mTORC1 activation at the lysosome is well characterized, it is not clear how this complex is regulated at other subcellular locations. Here, we combine location-selective kinase inhibition, live-cell imaging and biochemical assays to probe the regulation of growth factor-induced mTORC1 activity in the nucleus. Using a nuclear targeted Akt Substrate-based Tandem Occupancy Peptide Sponge (Akt-STOPS) that we developed for specific inhibition of Akt, a critical upstream kinase, we show that growth factor-stimulated nuclear mTORC1 activity requires nuclear Akt activity. Further mechanistic dissection suggests that nuclear Akt activity mediates growth factor-induced nuclear translocation of Raptor, a regulatory scaffolding component in mTORC1, and localization of Raptor to the nucleus results in nuclear mTORC1 activity in the absence of growth factor stimulation. Taken together, these results reveal a mode of regulation of mTORC1 that is distinct from its lysosomal activation, which controls mTORC1 activity in the nuclear compartment.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Yanghao Zhong
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | | | - Maya T Kunkel
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Mingyuan Chen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Tengqian Sun
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jiao Zhang
- Division of Cardiology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - John Y-J Shyy
- Division of Cardiology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - JoAnn Trejo
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Alexandra C Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
48
|
Frtús A, Smolková B, Uzhytchak M, Lunova M, Jirsa M, Hof M, Jurkiewicz P, Lozinsky VI, Wolfová L, Petrenko Y, Kubinová Š, Dejneka A, Lunov O. Hepatic Tumor Cell Morphology Plasticity under Physical Constraints in 3D Cultures Driven by YAP-mTOR Axis. Pharmaceuticals (Basel) 2020; 13:ph13120430. [PMID: 33260691 PMCID: PMC7759829 DOI: 10.3390/ph13120430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Recent studies undoubtedly show that the mammalian target of rapamycin (mTOR) and the Hippo–Yes-associated protein 1 (YAP) pathways are important mediators of mechanical cues. The crosstalk between these pathways as well as de-regulation of their signaling has been implicated in multiple tumor types, including liver tumors. Additionally, physical cues from 3D microenvironments have been identified to alter gene expression and differentiation of different cell lineages. However, it remains incompletely understood how physical constraints originated in 3D cultures affect cell plasticity and what the key mediators are of such process. In this work, we use collagen scaffolds as a model of a soft 3D microenvironment to alter cellular size and study the mechanotransduction that regulates that process. We show that the YAP-mTOR axis is a downstream effector of 3D cellular culture-driven mechanotransduction. Indeed, we found that cell mechanics, dictated by the physical constraints of 3D collagen scaffolds, profoundly affect cellular proliferation in a YAP–mTOR-mediated manner. Functionally, the YAP–mTOR connection is key to mediate cell plasticity in hepatic tumor cell lines. These findings expand the role of YAP–mTOR-driven mechanotransduction to the control hepatic tumor cellular responses under physical constraints in 3D cultures. We suggest a tentative mechanism, which coordinates signaling rewiring with cytoplasmic restructuring during cell growth in 3D microenvironments.
Collapse
Affiliation(s)
- Adam Frtús
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (A.F.); (B.S.); (M.U.); (M.L.); (Š.K.)
| | - Barbora Smolková
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (A.F.); (B.S.); (M.U.); (M.L.); (Š.K.)
| | - Mariia Uzhytchak
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (A.F.); (B.S.); (M.U.); (M.L.); (Š.K.)
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (A.F.); (B.S.); (M.U.); (M.L.); (Š.K.)
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic;
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic;
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 18223 Prague, Czech Republic; (M.H.); (P.J.)
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 18223 Prague, Czech Republic; (M.H.); (P.J.)
| | - Vladimir I. Lozinsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia;
| | - Lucie Wolfová
- Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.W.); (Y.P.)
- Department of Tissue Engineering, Contipro a.s., 56102 Dolni Dobrouc, Czech Republic
| | - Yuriy Petrenko
- Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.W.); (Y.P.)
| | - Šárka Kubinová
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (A.F.); (B.S.); (M.U.); (M.L.); (Š.K.)
- Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.W.); (Y.P.)
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (A.F.); (B.S.); (M.U.); (M.L.); (Š.K.)
- Correspondence: (A.D.); (O.L.); Tel.: +420-2660-52141 (A.D.); +420-2660-52131 (O.L.)
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (A.F.); (B.S.); (M.U.); (M.L.); (Š.K.)
- Correspondence: (A.D.); (O.L.); Tel.: +420-2660-52141 (A.D.); +420-2660-52131 (O.L.)
| |
Collapse
|
49
|
Zhou X, Mehta S, Zhang J. Genetically Encodable Fluorescent and Bioluminescent Biosensors Light Up Signaling Networks. Trends Biochem Sci 2020; 45:889-905. [PMID: 32660810 PMCID: PMC7502535 DOI: 10.1016/j.tibs.2020.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
Cell signaling networks are intricately regulated in time and space to determine the responses and fates of cells to different cues. Genetically encodable fluorescent and bioluminescent biosensors enable the direct visualization of these spatiotemporal signaling dynamics within the native biological context, and have therefore become powerful molecular tools whose unique benefits are being used to address challenging biological questions. We first review the basis of biosensor design and remark on recent technologies that are accelerating biosensor development. We then discuss a few of the latest advances in the development and application of genetically encodable fluorescent and bioluminescent biosensors that have led to scientific or technological breakthroughs.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
50
|
Ohata H, Shiokawa D, Obata Y, Sato A, Sakai H, Fukami M, Hara W, Taniguchi H, Ono M, Nakagama H, Okamoto K. NOX1-Dependent mTORC1 Activation via S100A9 Oxidation in Cancer Stem-like Cells Leads to Colon Cancer Progression. Cell Rep 2020; 28:1282-1295.e8. [PMID: 31365870 DOI: 10.1016/j.celrep.2019.06.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/15/2019] [Accepted: 06/22/2019] [Indexed: 12/28/2022] Open
Abstract
Cancer stem cells (CSCs) are associated with the refractory nature of cancer, and elucidating the targetable pathways for CSCs is crucial for devising innovative antitumor therapies. We find that the proliferation of CSC-enriched colon spheroids from clinical specimen is dependent on mTORC1 kinase, which is activated by reactive oxygen species (ROS) produced by NOX1, an NADPH oxidase. In the spheroid-derived xenograft tumors, NOX1 is preferentially expressed in LGR5-positive cells. Dependence on NOX1 expression or mTOR kinase activity is corroborated in the xenograft tumors and mouse colon cancer-derived organoids. NOX1 co-localizes with mTORC1 in VPS41-/VPS39-positive lysosomes, where mTORC1 binds to S100A9, a member of S100 calcium binding proteins, in a NOX1-produced ROS-dependent manner. S100A9 is oxidized by NOX1-produced ROS, which facilitates binding to mTORC1 and its activation. We propose that NOX1-dependent mTORC1 activation via S100A9 oxidation in VPS41-/VPS39-positive lysosomes is crucial for colon CSC proliferation and colon cancer progression.
Collapse
Affiliation(s)
- Hirokazu Ohata
- Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Daisuke Shiokawa
- Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yuuki Obata
- Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Ai Sato
- Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hiroaki Sakai
- Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Mayu Fukami
- Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Wakako Hara
- Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hirokazu Taniguchi
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Masaya Ono
- Department of Clinical Proteomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hitoshi Nakagama
- National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Koji Okamoto
- Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|