1
|
Sung JY, Lee JW. Cancer-Associated Fibroblast Subtypes Reveal Distinct Gene Signatures in the Tumor Immune Microenvironment of Vestibular Schwannoma. Cells 2024; 13:1669. [PMID: 39404431 PMCID: PMC11475780 DOI: 10.3390/cells13191669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Cancer-associated fibroblast (CAF) composition within the same organ varies across different cancer subtypes. Distinct CAF subtypes exhibit unique features due to interactions with immune cells and the tumor microenvironment. However, data on CAF subtypes in individuals with vestibular schwannoma (VS) are lacking. Therefore, we aimed to distinguish CAF subtypes at the single-cell level, investigate how stem-like CAF characteristics influence the tumor immune microenvironment, and identify CAF subtype-specific metabolic reprogramming pathways that contribute to tumor development. Data were analyzed from three patients with VS, encompassing 33,081 single cells, one bulk transcriptome cohort, and The Cancer Genome Atlas Pan-Cancer database (RNA sequencing and clinical data). Our findings revealed that antigen-presenting CAFs are linked to substantially heightened immune activity, supported by metabolic reprogramming, which differs from tumorigenesis. High expression of the stem-like CAF gene signature correlated with poor prognosis in low-grade gliomas within the pan-cancer database. This is the first study to classify CAF subtypes in VS patients and identify a therapeutic vulnerability biomarker by developing a stem-like CAF gene signature. Personalized treatments tailored to individual patients show promise in advancing precision medicine.
Collapse
Affiliation(s)
- Ji-Yong Sung
- Department of Research & Development, VeraOmics, Seoksanro 138, Namdong-Gu, Incheon 21551, Republic of Korea
| | - Jung Woo Lee
- Department of Orthopedic Surgery, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea
- Yonsei Institute of Sports Science and Exercise Medicine, Wonju 26426, Republic of Korea
| |
Collapse
|
2
|
Søland TM, Lipka A, Ruus AK, Molværsmyr AK, Galtung HK, Haug TM. Extracellular vesicles from cancer cell lines of different origins drive the phenotype of normal oral fibroblasts in a CAF-like direction. Front Oncol 2024; 14:1456346. [PMID: 39381039 PMCID: PMC11458688 DOI: 10.3389/fonc.2024.1456346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Normal oral fibroblasts (NOFs) are located in the connective tissue of the oral mucosa. The NOFs play an important role in wound healing, tumor progression, and metastasis. They are subjected to influence by external and internal stimuli, among them extracellular vesicles (EVs), that are considered as important players in cell to cell communication, especially in carcinogenesis and metastatic processes. During tumorigenesis, stromal NOFs may undergo activation into cancer-associated fibroblasts (CAFs) that modify their phenotype to provide pro-oncogenic signals that in turn facilitate tumor initiation, progression, and metastasis. The aim of the study was to reveal the effect of EVs derived from local (oral squamous cell carcinoma - OSCC) and distant (pancreatic adenocarcinoma - PDAC; malignant melanoma brain metastasis - MBM) cancer origin on NOFs and their possible change into a CAF-like direction. Methods The effect of each of the cancer EV types on NOFs proliferation, viability, and migration was tested. Also, changes in gene expression of the well-established CAF biomarkers ACTA2, FAP, PDGFR, and two putative CAF biomarkers, the Ca2+- activated ion channels ANO1 and KCNMA, were studied. Results Obtained results indicate that NOFs receive and process signals transmitted by EVs originating from both OSCC, PDAC, and MBM. The fibroblast response was dependent on EV origin and concentration, and duration of EV exposure. Conclusion The present results indicate that the molecular cargo of the EVs direct NOFs towards a pro-tumorigenic phenotype.
Collapse
|
3
|
Teder-Laving M, Kals M, Reigo A, Ehin R, Objärtel T, Vaht M, Nikopensius T, Metspalu A, Kingo K. Genome-wide meta-analysis identifies novel loci conferring risk of acne vulgaris. Eur J Hum Genet 2024; 32:1136-1143. [PMID: 36922633 PMCID: PMC11368920 DOI: 10.1038/s41431-023-01326-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/02/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
Acne vulgaris is a common chronic skin disorder presenting with comedones, cystic structures forming within the distal hair follicle, and in most cases additionally with inflammatory skin lesions on the face and upper torso. We performed a genome-wide association study and meta-analysis of data from 34,422 individuals with acne and 364,991 controls from three independent European-ancestry cohorts. We replicated 19 previously implicated genome-wide significant risk loci and identified four novel loci [11q12.2 (FADS2), 12q21.1 (LGR5), 17q25.3 (FASN), and 22q12.1 (ZNRF3-KREMEN1)], bringing the total number of reported acne risk loci to 50. Our meta-analysis results explain 9.4% of the phenotypic variance of acne. A polygenic model of acne risk variants showed that individuals in the top 5% of the risk percentiles had a 1.62-fold (95% CI 1.47-1.78) increased acne risk relative to individuals with average risk (20-80% on the polygenic risk score distribution). Our findings highlight the Wnt and MAPK pathways as key factors in the genetic predisposition to acne vulgaris, together with the effects of genetic variation on the structure and maintenance of the hair follicle and pilosebaceous unit. Two novel loci, 11q12.2 and 17q25.3, contain genes encoding key enzymes involved in lipid biosynthesis pathways.
Collapse
Affiliation(s)
- Maris Teder-Laving
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia.
| | - Mart Kals
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Anu Reigo
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Riin Ehin
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Health Technologies, Tallinn University of Technology, Tallinn, Estonia
- BioCC Ltd, Tartu, Estonia
| | - Telver Objärtel
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mariliis Vaht
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tiit Nikopensius
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Külli Kingo
- Faculty of Medicine, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
4
|
Wang M, Jiang M, Xie A, Zhang N, Xu Y. Identification of CAF-related lncRNAs at the pan-cancer level represents a potential carcinogenic risk. Hum Mol Genet 2024; 33:1064-1073. [PMID: 38507061 DOI: 10.1093/hmg/ddae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/04/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are increasingly recognized as playing a crucial role in regulating cancer progression and metastasis. These cells can be activated by long non-coding RNAs (lncRNAs), promoting the malignant biological processes of tumor cells. Therefore, it is essential to understand the regulatory relationship between CAFs and lncRNAs in cancers. Here, we identified CAF-related lncRNAs at the pan-cancer level to systematically predict their potential regulatory functions. The identified lncRNAs were also validated using various external data at both tissue and cellular levels. This study has revealed that these CAF-related lncRNAs exhibit expression perturbations in cancers and are highly correlated with the infiltration of stromal cells, particularly fibroblasts and endothelial cells. By prioritizing a list of CAF-related lncRNAs, we can further distinguish patient subtypes that show survival and molecular differences. In addition, we have developed a web server, CAFLnc (https://46906u5t63.zicp.fun/CAFLnc/), to visualize our results. In conclusion, CAF-related lncRNAs hold great potential as a valuable resource for comprehending lncRNA functions and advancing the identification of biomarkers for cancer progression and therapeutic targets in cancer treatment.
Collapse
Affiliation(s)
- Mingwei Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, BaoJian Road, NanGang District, Harbin, HL 150081, China
| | - Minghui Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, BaoJian Road, NanGang District, Harbin, HL 150081, China
| | - Aimin Xie
- College of Bioinformatics Science and Technology, Harbin Medical University, BaoJian Road, NanGang District, Harbin, HL 150081, China
| | - Nan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, BaoJian Road, NanGang District, Harbin, HL 150081, China
| | - Yan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, BaoJian Road, NanGang District, Harbin, HL 150081, China
| |
Collapse
|
5
|
Yin X, Yan Y, Li J, Cao Z, Shen S, Chang Q, Zhao Y, Wang X, Wang P. Nuclear receptors for epidermal lipid barrier: Advances in mechanisms and applications. Exp Dermatol 2024; 33:e15107. [PMID: 38840418 DOI: 10.1111/exd.15107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/20/2024] [Accepted: 05/19/2024] [Indexed: 06/07/2024]
Abstract
The skin plays an essential role in preventing the entry of external environmental threats and the loss of internal substances, depending on the epidermal permeability barrier. Nuclear receptors (NRs), present in various tissues and organs including full-thickness skin, have been demonstrated to exert significant effects on the epidermal lipid barrier. Formation of the lipid lamellar membrane and the normal proliferation and differentiation of keratinocytes (KCs) are crucial for the development of the epidermal permeability barrier and is regulated by specific NRs such as PPAR, LXR, VDR, RAR/RXR, AHR, PXR and FXR. These receptors play a key role in regulating KC differentiation and the entire process of epidermal lipid synthesis, processing and secretion. Lipids derived from sebaceous glands are influenced by NRs as well and participate in regulation of the epidermal lipid barrier. Furthermore, intricate interplay exists between these receptors. Disturbance of barrier function leads to a range of diseases, including psoriasis, atopic dermatitis and acne. Targeting these NRs with agonists or antagonists modulate pathways involved in lipid synthesis and cell differentiation, suggesting potential therapeutic approaches for dermatosis associated with barrier damage. This review focuses on the regulatory role of NRs in the maintenance and processing of the epidermal lipid barrier through their effects on skin lipid synthesis and KC differentiation, providing novel insights for drug targets to facilitate precision medicine strategies.
Collapse
Affiliation(s)
- Xidie Yin
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiandan Li
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhi Cao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuzhan Shen
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qihang Chang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiting Zhao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
6
|
Tan IJ, Podwojniak A, Parikh A, Cohen BA. Precision Dermatology: A Review of Molecular Biomarkers and Personalized Therapies. Curr Issues Mol Biol 2024; 46:2975-2990. [PMID: 38666916 PMCID: PMC11049353 DOI: 10.3390/cimb46040186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The evolution of personalized medicine in dermatology signifies a transformative shift towards individualized treatments, driven by the integration of biomarkers. These molecular indicators serve beyond diagnostics, offering insights into disease staging, prognosis, and therapeutic monitoring. Specific criteria guide biomarker selection, ensuring attributes like specificity, sensitivity, cost feasibility, stability, rapid detection, and reproducibility. This literature review, based on data from PubMed, SCOPUS, and Web of Science, explores biomarkers in Hidradenitis Suppurativa (HS), Psoriasis, Atopic Dermatitis (AD), Alopecia Areata (AA), Vitiligo, and Chronic Spontaneous Urticaria (CSU). In HS, TNF-α, IL-1β, and MMPs serve as biomarkers, influencing targeted therapies like adalimumab and anakinra. Psoriasis involves biomarkers such as TNF-α, IL-23, and HLA genes, shaping treatments like IL23 and IL17 inhibitors. AD biomarkers include ECP, IL-4, IL-13, guiding therapies like dupilumab and tralokinumab. For AA, lipocalin-2, cytokines, and genetic polymorphisms inform JAK inhibitors' use. Vitiligo biomarkers range from cytokines to genetic markers like TYR, TYRP1, guiding treatments like JAK inhibitors. CSU biomarkers encompass IgE, cytokines, and autologous serum tests, influencing therapies like omalizumab and cyclosporine. Comparing conditions, common proinflammatory markers reveal limited specificity. While some biomarkers aid diagnosis and standard treatments, others hold more scientific than clinical value. Precision medicine, driven by biomarkers, has shown success in skin malignancies. Future directions involve AI-powered algorithms, nanotechnology, and multi-omics integration for personalized dermatological care.
Collapse
Affiliation(s)
- Isabella J. Tan
- Rutgers Robert Wood Johnson Medical School, 125 Paterson Steet, New Brunswick, NJ 08901, USA; (I.J.T.); (A.P.)
| | - Alicia Podwojniak
- Rowan-Virtua School of Osteopathic Medicine, 113 E Laurel Road, Stratford, NJ 08084, USA;
| | - Aarushi Parikh
- Rutgers Robert Wood Johnson Medical School, 125 Paterson Steet, New Brunswick, NJ 08901, USA; (I.J.T.); (A.P.)
| | - Bernard A. Cohen
- Department of Dermatology, The Johns Hopkins Hospital, Baltimore, MD 21287, USA
| |
Collapse
|
7
|
Su JX, Li SJ, Zhou XF, Zhang ZJ, Yan Y, Liu SL, Qi Q. Chemotherapy-induced metastasis: molecular mechanisms and clinical therapies. Acta Pharmacol Sin 2023; 44:1725-1736. [PMID: 37169853 PMCID: PMC10462662 DOI: 10.1038/s41401-023-01093-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
Chemotherapy, the most widely accepted treatment for malignant tumors, is dependent on cell death induced by various drugs including antimetabolites, alkylating agents, mitotic spindle inhibitors, antitumor antibiotics, and hormonal anticancer drugs. In addition to causing side effects due to non-selective cytotoxicity, chemotherapeutic drugs can initiate and promote metastasis, which greatly reduces their clinical efficacy. The knowledge of how they induce metastasis is essential for developing strategies that improve the outcomes of chemotherapy. Herein, we summarize the recent findings on chemotherapy-induced metastasis and discuss the underlying mechanisms including tumor-initiating cell expansion, the epithelial-mesenchymal transition, extracellular vesicle involvement, and tumor microenvironment alterations. In addition, the use of combination treatments to overcome chemotherapy-induced metastasis is also elaborated.
Collapse
Affiliation(s)
- Jin-Xuan Su
- State Key Laboratory of Bioactive Molecules and Druggability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Si-Jia Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiao-Feng Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhi-Jing Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yu Yan
- Functional Experimental Teaching Center, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Song-Lin Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Qi Qi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
8
|
Jiang W, Chen Y, Sun M, Huang X, Zhang H, Fu Z, Wang J, Zhang S, Lian C, Tang B, Xiang D, Wang Y, Zhang Y, Jian C, Yang C, Zhang J, Zhang D, Chen T, Zhang J. LncRNA DGCR5-encoded polypeptide RIP aggravates SONFH by repressing nuclear localization of β-catenin in BMSCs. Cell Rep 2023; 42:112969. [PMID: 37573506 DOI: 10.1016/j.celrep.2023.112969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/21/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023] Open
Abstract
The differentiation fate of bone marrow mesenchymal stem cells (BMSCs) affects the progression of steroid-induced osteonecrosis of the femoral head (SONFH). We find that lncRNA DGCR5 encodes a 102-amino acid polypeptide, RIP (Rac1 inactivated peptide), which promotes the adipogenic differentiation of BMSCs and aggravates the progression of SONFH. RIP, instead of lncRNA DGCR5, binds to the N-terminal motif of RAC1, and inactivates the RAC1/PAK1 cascade, resulting in decreased Ser675 phosphorylation of β-catenin. Ultimately, the nuclear localization of β-catenin decreases, and the differentiation balance of BMSCs tilts toward the adipogenesis lineage. In the femoral head of rats, overexpression of RIP causes trabecular bone disorder and adipocyte accumulation, which can be rescued by overexpressing RAC1. This finding expands the regulatory role of lncRNAs in BMSCs and suggests RIP as a potential therapeutic target.
Collapse
Affiliation(s)
- Weiqian Jiang
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Chen
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingjie Sun
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao Huang
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongrui Zhang
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Fu
- Department of Orthopedics, Binzhou People's Hospital, Binzhou, Shandong Province, China
| | - Jingjiang Wang
- Department of Orthopedics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shichun Zhang
- Department of Orthopedics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chengjie Lian
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Boyu Tang
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dulei Xiang
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yange Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yulu Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Changchun Jian
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chaohua Yang
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Zhang
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dian Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jian Zhang
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
9
|
Han J, Lin K, Choo H, Chen Y, Zhang X, Xu RH, Wang X, Wu Y. Distinct bulge stem cell populations maintain the pilosebaceous unit in a β-catenin-dependent manner. iScience 2022; 26:105805. [PMID: 36619975 PMCID: PMC9813789 DOI: 10.1016/j.isci.2022.105805] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/21/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
The pilosebaceous unit (PSU) is composed of multiple compartments and the self-renewal of PSU depends on distinct hair follicle stem cell (HFSC) populations. However, the differential roles of the HFSCs in sebaceous gland (SG) renewal have not been completely understood. Here, we performed multiple lineage tracing analysis to unveil the contribution of different HFSC populations to PSU regeneration during the hair cycle and wound healing. Our results indicated that the upper bulge stem cells contributed extensively to the SG replenishment during hair cycling, while HFSCs in the lower bugle did not. During skin wound healing, all HFSC populations participated in the SG replenishment. Moreover, β-catenin activation promoted the contribution of HFSCs to SG replenishment, whereas β-catenin deletion substantially repressed the event. Thus, our findings indicated that HFSCs contributed to SG replenishment in a β-catenin-dependent manner.
Collapse
Affiliation(s)
- Jimin Han
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Kaijun Lin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - HuiQin Choo
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China
| | - Yu Chen
- School of Life Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xuezheng Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Corresponding author
| | - Yaojiong Wu
- School of Life Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Corresponding author
| |
Collapse
|
10
|
Ahmed NS, Foote JB, Singh KK. Impaired Mitochondria Promote Aging-Associated Sebaceous Gland Dysfunction and Pathology. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1546-1558. [PMID: 35948081 PMCID: PMC9667715 DOI: 10.1016/j.ajpath.2022.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/30/2022] [Accepted: 07/14/2022] [Indexed: 06/05/2023]
Abstract
Mitochondrial dysfunction is one of the hallmarks of aging. Changes in sebaceous gland (SG) function and sebum production have been reported during aging. This study shows the direct effects of mitochondrial dysfunction on SG morphology and function. A mitochondrial DNA (mtDNA) depleter mouse was used as a model for introducing mitochondrial dysfunction in the whole animal. The effects on skin SGs and modified SGs of the eyelid, lip, clitoral, and preputial glands were characterized. The mtDNA depleter mice showed gross morphologic and histopathologic changes in SGs associated with increased infiltration by mast cells, neutrophils, and polarized macrophages. Consistently, there was increased expression of proinflammatory cytokines. The inflammatory changes were associated with abnormal sebocyte accumulation of lipid, defective sebum delivery at the skin surface, and the up-regulation of key lipogenesis-regulating genes and androgen receptor. The mtDNA depleter mice expressed aging-associated senescent marker. Increased sebocyte proliferation and aberrant expression of stem cell markers were observed. These studies provide, for the first time, a causal link between mitochondrial dysfunction and abnormal sebocyte function within sebaceous and modified SGs throughout the whole body of the animal. They suggest that mtDNA depleter mouse may serve as a novel tool to develop targeted therapeutics to address SG disorders in aging humans.
Collapse
Affiliation(s)
- Noha S Ahmed
- Department of Genetics, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Dermatology, Zagazig University, Zagazig, Egypt
| | - Jeremy B Foote
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama; Animal Resources Program, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Keshav K Singh
- Department of Genetics, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
11
|
Cantisani C, Rossi R, Nisticò SP, Vitiello M, Farnetani F, Bennaro L, Pellacani G. Management of patients with giant basal cell carcinoma during SARS COV2 outbreak in Italy. TRANSLATIONAL BIOPHOTONICS 2022; 4:e202200009. [PMID: 35942364 PMCID: PMC9350373 DOI: 10.1002/tbio.202200009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most frequently occurring type of all cancers, and represents 80% of all skin cancer. The estimated lifetime risk for BCC in the white population is between 33% and 39% for men and 23% and 28% for women. Its incidence doubles every 25 years and is increasing in the young population. Death is uncommon and seems to decrease in the last years, probably due to early and better diagnosis. BCC arises from abnormal and uncontrolled growth of basal cells. It is a slow-growing tumor, therefore usually curable at an early stage with surgery or alternative treatment, such as cryotherapy, laser, photodynamic therapy, retinoids and topical agent like 5-Fluorouracil cream, imiquimod cream, and so forth. Topical treatment of superficial basocellular carcinoma is a viable option, when surgery is not an advisable treatment, especially in the case of giant basocellular carcinoma. In this subtype, imiquimod 5% cream can be a safe and effective treatment, but there are few reports in available literature. We present our case series of eight patients with superficial giant basocellular carcinoma successfully treated with imiquimod 5% cream, which showed clinical improvement after 8 weeks of treatment.
Collapse
Affiliation(s)
- Carmen Cantisani
- Department of Dermatology and Venereology, UOC of Dermatology, Policlinico Umberto I HospitalSapienza Medical School of RomeRomeItaly
| | - Raimondo Rossi
- Department of Dermatology and Venereology, UOC of Dermatology, Policlinico Umberto I HospitalSapienza Medical School of RomeRomeItaly
| | | | - Martina Vitiello
- Department of Dermatology and Venereology, UOC of Dermatology, Policlinico Umberto I HospitalSapienza Medical School of RomeRomeItaly
| | | | - Luigi Bennaro
- Department of Health SciencesMagna Grecia UniversityCatanzaroItaly
| | - Giovanni Pellacani
- Department of Dermatology and Venereology, UOC of Dermatology, Policlinico Umberto I HospitalSapienza Medical School of RomeRomeItaly
| |
Collapse
|
12
|
Aulanni’am A, Raissa R, Riawan W, Wuragil DK, Permata FS, Beltran MAG. Epidermal Stem Cell in Wound Healing of Gliricidia sepium Leaves from Indonesia and the Philippines in Rats (Rattus norvegicus). Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AIM: This study intended to investigate the regenerate wound, due to the ointment therapy containing Gliricidia sepium leaves that has potential-induced epidermal stem cells producing. It determined its effect on the expression of transforming growth factor-β1 (TGF-β1), Smad-3, β-catenin, LGR-6.
MATERIALS AND METHODS: About 16 Wistar male rats aged approximately 2 months (150–200g) were used and were divided into four treatment groups (T1, positive control; T2, negative control; T3, wounds treated with G. sepium from Indonesia; and T4, wounds treated with G. sepium from the Philippines). The treatment of ointment was applied to the wound for 3 days. The expression of TGF-β1, Smad-3, β-catenin, and LGR-6 was observed by immunohistochemistry staining.
RESULTS: G. sepium leaves significantly (p < 0.05) upregulated the expression of TGF-β1, Smad-3, β-catenin, and LGR-6 in the group treated with Indonesian G. sepium leaves were higher than that in the group treated with G. sepium leaves from the Philippines.
CONCLUSIONS: Both leaves Varian contain flavonoids, saponins, and tannins, which act as producing epidermal stem cell agents to enhance the wound healing process. It can be concluded that both Gl. sepium Varian Indonesia and the Philippines have a potential effect on wound healing.
Collapse
|
13
|
[Research Status of Tumor-associated Fibroblasts Regulating Immune Cells]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:207-213. [PMID: 35340164 PMCID: PMC8976201 DOI: 10.3779/j.issn.1009-3419.2022.101.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cancer-associated fibroblasts (CAFs) and tumor-infiltrating immune cells are the most essential components of the tumor microenvironment (TME). They communicate with each other in tumor microenvironment and play a critical role in tumorigenesis and development. CAFs are very heterogeneous and different subtypes of CAFs display different functions. At the same time, it can contribute to the regulation of the function of tumor-infiltrating immune cells and eventually result in the carcinogenesis, tumor progression, invasion, metastasis and other biological behaviors of tumors by producting various growth factors and cytokines etc. Based on the current research results at home and abroad, this paper reviews the recent research progress on the regulation of CAFs on infiltrating immune cells in tumor microenvironment.
.
Collapse
|
14
|
Identification of DPP4/CTNNB1/MET as a Theranostic Signature of Thyroid Cancer and Evaluation of the Therapeutic Potential of Sitagliptin. BIOLOGY 2022; 11:biology11020324. [PMID: 35205190 PMCID: PMC8869712 DOI: 10.3390/biology11020324] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
Simple Summary In recent years, the incidence of thyroid cancer has been increasing globally, with papillary thyroid cancer (PTCa) being the most prevalent pathological type. Although PTCa has been regarded to be slow growing and has a good prognosis, in some cases, PTCa can be aggressive and progress despite surgery and radioactive iodine treatment. Therefore, searching for new targets and therapies is required. We utilized bioinformatics analyses to identify critical theranostic markers for PTCa. We found that DPP4/CTNNB1/MET is an oncogenic signature that is overexpressed in PTCa and associated with disease progression, distant metastasis, treatment resistance, immuno-evasive phenotypes, and poor clinical outcomes. Interestingly, our in silico molecular docking results revealed that sitagliptin, an antidiabetic drug, has strong affinities and potential for targeting DPP4/CTNNB1/MET signatures, even higher than standard inhibitors of these genes. Collectively, our findings suggest that sitagliptin could be repurposed for treating PTCa. Abstract In recent years, the incidence of thyroid cancer has been increasing globally, with papillary thyroid cancer (PTCa) being the most prevalent pathological type, accounting for approximately 80% of all cases. Although PTCa has been regarded to be slow growing and has a good prognosis, in some cases, PTCa can be aggressive and progress despite surgery and radioactive iodine treatment. In addition, most cancer treatment drugs have been shown to be cytotoxic and nonspecific to cancer cells, as they also affect normal cells and consequently cause harm to the body. Therefore, searching for new targets and therapies is required. Herein, we explored a bioinformatics analysis to identify important theranostic markers for THCA. Interestingly, we identified that the DPP4/CTNNB1/MET gene signature was overexpressed in PTCa, which, according to our analysis, is associated with immuno-invasive phenotypes, cancer progression, metastasis, resistance, and unfavorable clinical outcomes of thyroid cancer cohorts. Since most cancer drugs were shown to exhibit cytotoxicity and to be nonspecific, herein, we evaluated the anticancer effects of the antidiabetic drug sitagliptin, which was recently shown to possess anticancer activities, and is well tolerated and effective. Interestingly, our in silico molecular docking results exhibited putative binding affinities of sitagliptin with DPP4/CTNNB1/MET signatures, even higher than standard inhibitors of these genes. This suggests that sitagliptin is a potential THCA therapeutic, worthy of further investigation both in vitro and in vivo and in clinical settings.
Collapse
|
15
|
Wang J, He J, Zhu M, Han Y, Yang R, Liu H, Xu X, Chen X. Cellular Heterogeneity and Plasticity of Skin Epithelial Cells in Wound Healing and Tumorigenesis. Stem Cell Rev Rep 2022; 18:1912-1925. [PMID: 35143021 PMCID: PMC9391238 DOI: 10.1007/s12015-021-10295-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/20/2022]
Abstract
Cellular differentiation, the fundamental hallmark of cells, plays a critical role in homeostasis. And stem cells not only regulate the process where embryonic stem cells develop into a complete organism, but also replace ageing or damaged cells by proliferation, differentiation and migration. In characterizing distinct subpopulations of skin epithelial cells, stem cells show large heterogeneity and plasticity for homeostasis, wound healing and tumorigenesis. Epithelial stem cells and committed progenitors replenish each other or by themselves owing to the remarkable plasticity and heterogeneity of epidermal cells under certain circumstance. The development of new assay methods, including single-cell RNA sequence, lineage tracing assay, intravital microscopy systems and photon-ablation assay, highlight the plasticity of epidermal stem cells in response to injure and tumorigenesis. However, the critical mechanisms and key factors that regulate cellular plasticity still need for further exploration. In this review, we discuss the recent insights about the heterogeneity and plasticity of epithelial stem cells in homeostasis, wound healing and skin tumorigenesis. Understanding how stem cells collaborate together to repair injury and initiate tumor will offer new solutions for relevant diseases. Schematic abstract of cellular heterogeneity and plasticity of skin epithelial cells in wound healing and tumorigenesis.
Collapse
Affiliation(s)
- Jingru Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Burn Surgery, First People's Hospital of Foshan, Foshan, China
| | - Jia He
- Department of Burn Surgery, First People's Hospital of Foshan, Foshan, China.,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Meishu Zhu
- Department of Burn and Plastic Surgery, Second People's Hospital of Shenzhen, First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yan Han
- The Yonghe Medical Group Limited Company, George Town, Cayman Islands
| | - Ronghua Yang
- Department of Burn Surgery, First People's Hospital of Foshan, Foshan, China
| | - Hongwei Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Xuejuan Xu
- Endocrinology Department, First People's Hospital of Foshan, Foshan, China.
| | - Xiaodong Chen
- Department of Burn Surgery, First People's Hospital of Foshan, Foshan, China.
| |
Collapse
|
16
|
Abstract
A definite identification of epidermal stem cells is not known and the mechanism of epidermal differentiation is not fully understood. Toward both of these quests, considerable information is available from the research on lineage tracing and clonal growth analysis in the basal layer of the epidermis, on the hair follicle and the interfollicular epidermal stem cells, and on Wnt signaling along with its role in the developmental patterning and cell differentiation. In this paper, literature on the aforementioned research has been collated and analyzed. In addition, models of the basal layer cellular composition and the epidermal differentiation have been presented. Graphical Abstract.
Collapse
Affiliation(s)
- Raghvendra Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
17
|
Shang W, Quan Tan AY, van Steensel MAM, Lim X. ABERRANT WNT SIGNALING INDUCES COMEDO-LIKE CHANGES IN THE MURINE UPPER HAIR FOLLICLE. J Invest Dermatol 2021; 142:2603-2612.e6. [PMID: 34929175 DOI: 10.1016/j.jid.2021.11.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022]
Abstract
Stem cell proliferation and differentiation must be carefully balanced to support tissue maintenance and growth. Defective stem cell regulation may underpin diseases in many organs, including the skin. Lrig1-expressing stem cells residing in the HF junction zone (JZ) support sebaceous gland (SG) homeostasis. An emerging hypothesis from observations in both mouse and human holds that imbalances in key stem cell regulatory pathways such as Wnt signaling may lead to abnormal fate determination of these Lrig1+ve cells. They accumulate and form cystic structures in the JZ that are similar to the comedones found in human acne. To test the possible involvement of Wnt signals in this scenario, we used the Lrig1-CreERT2 mouse line to modulate Wnt signaling in JZ stem cells. We observed that persistent activation of Wnt signaling leads to JZ cyst formation with associated SG atrophy. The cysts strongly express stem cell markers and can be partially reduced by all-trans retinoic acid treatment as well as by Hedgehog signaling inhibition. Conversely, loss of Wnt signaling leads to enlargement of JZ, infundibulum and SGs. These data implicate abnormal Wnt signaling in the generation of mouse pathologies that resemble human acne and respond to acne treatments.
Collapse
Affiliation(s)
- Wei Shang
- Skin Research Institute of Singapore, Agency for Science, Technology, and Research
| | - Alvin Yong Quan Tan
- Skin Research Institute of Singapore, Agency for Science, Technology, and Research
| | - Maurice A M van Steensel
- Skin Research Institute of Singapore, Agency for Science, Technology, and Research;; Lee Kong Chian School of Medicine, Nanyang Technological University Singapore
| | - Xinhong Lim
- Skin Research Institute of Singapore, Agency for Science, Technology, and Research;.
| |
Collapse
|
18
|
Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X, Shi S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer 2021; 20:131. [PMID: 34635121 PMCID: PMC8504100 DOI: 10.1186/s12943-021-01428-1] [Citation(s) in RCA: 906] [Impact Index Per Article: 302.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/11/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), a stromal cell population with cell-of-origin, phenotypic and functional heterogeneity, are the most essential components of the tumor microenvironment (TME). Through multiple pathways, activated CAFs can promote tumor growth, angiogenesis, invasion and metastasis, along with extracellular matrix (ECM) remodeling and even chemoresistance. Numerous previous studies have confirmed the critical role of the interaction between CAFs and tumor cells in tumorigenesis and development. However, recently, the mutual effects of CAFs and the tumor immune microenvironment (TIME) have been identified as another key factor in promoting tumor progression. The TIME mainly consists of distinct immune cell populations in tumor islets and is highly associated with the antitumor immunological state in the TME. CAFs interact with tumor-infiltrating immune cells as well as other immune components within the TIME via the secretion of various cytokines, growth factors, chemokines, exosomes and other effector molecules, consequently shaping an immunosuppressive TME that enables cancer cells to evade surveillance of the immune system. In-depth studies of CAFs and immune microenvironment interactions, particularly the complicated mechanisms connecting CAFs with immune cells, might provide novel strategies for subsequent targeted immunotherapies. Herein, we shed light on recent advances regarding the direct and indirect crosstalk between CAFs and infiltrating immune cells and further summarize the possible immunoinhibitory mechanisms induced by CAFs in the TME. In addition, we present current related CAF-targeting immunotherapies and briefly describe some future perspectives on CAF research in the end.
Collapse
Affiliation(s)
- Xiaoqi Mao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
19
|
Kretzschmar K, Boonekamp KE, Bleijs M, Asra P, Koomen M, Chuva de Sousa Lopes SM, Giovannone B, Clevers H. Troy/Tnfrsf19 marks epidermal cells that govern interfollicular epidermal renewal and cornification. Stem Cell Reports 2021; 16:2379-2394. [PMID: 34358453 PMCID: PMC8452520 DOI: 10.1016/j.stemcr.2021.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/01/2023] Open
Abstract
The skin epidermis is a highly compartmentalized tissue consisting of a cornifying epithelium called the interfollicular epidermis (IFE) and associated hair follicles (HFs). Several stem cell populations have been described that mark specific compartments in the skin but none of them is specific to the IFE. Here, we identify Troy as a marker of IFE and HF infundibulum basal layer cells in developing and adult human and mouse epidermis. Genetic lineage-tracing experiments demonstrate that Troy-expressing basal cells contribute to long-term renewal of all layers of the cornifying epithelium. Single-cell transcriptomics and organoid assays of Troy-expressing cells, as well as their progeny, confirmed stem cell identity as well as the ability to generate differentiating daughter cells. In conclusion, we define Troy as a marker of epidermal basal cells that govern interfollicular epidermal renewal and cornification.
Collapse
Affiliation(s)
- Kai Kretzschmar
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, the Netherlands; Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, University Hospital Würzburg, 97080 Würzburg, Germany.
| | - Kim E Boonekamp
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, the Netherlands; German Cancer Research Centre (DKFZ), 69120 Heidelberg, Germany
| | - Margit Bleijs
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands
| | - Priyanca Asra
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, the Netherlands
| | - Mandy Koomen
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, the Netherlands
| | | | | | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands.
| |
Collapse
|
20
|
Raskov H, Orhan A, Gaggar S, Gögenur I. Cancer-Associated Fibroblasts and Tumor-Associated Macrophages in Cancer and Cancer Immunotherapy. Front Oncol 2021; 11:668731. [PMID: 34094963 PMCID: PMC8172975 DOI: 10.3389/fonc.2021.668731] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Our understanding of the tumor microenvironment (TME), including the interplay between tumor cells, stromal cells, immune cells, and extracellular matrix components, is mandatory for the innovation of new therapeutic approaches in cancer. The cell-cell communication within the TME plays a pivotal role in the evolution and progression of cancer. Cancer-associated fibroblasts (CAF) and tumor-associated macrophages (TAM) are major cell populations in the stroma of all solid tumors and often exert protumorigenic functions; however, the origin and precise functions of CAF and TAM are still incompletely understood. CAF and TAM hold significant potential as therapeutic targets to improve outcomes in oncology when combined with existing therapies. The regulation of CAF/TAM communication and/or their differentiation could be of high impact for improving the future targeted treatment strategies. Nevertheless, there is much scope for research and innovation in this field with regards to the development of novel drugs. In this review, we elaborate on the current knowledge on CAF and TAM in cancer and cancer immunotherapy. Additionally, by focusing on their heterogenous functions in different stages and types of cancer, we explore their role as potential therapeutic targets and highlight certain aspects of their functions that need further research.
Collapse
Affiliation(s)
- Hans Raskov
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Adile Orhan
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shruti Gaggar
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Gonzalez-Meljem JM, Martinez-Barbera JP. Adamantinomatous craniopharyngioma as a model to understand paracrine and senescence-induced tumourigenesis. Cell Mol Life Sci 2021; 78:4521-4544. [PMID: 34019103 PMCID: PMC8195904 DOI: 10.1007/s00018-021-03798-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/03/2020] [Accepted: 01/15/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a process that can prevent tumour development in a cell autonomous manner by imposing a stable cell cycle arrest after oncogene activation. Paradoxically, senescence can also promote tumour growth cell non-autonomously by creating a permissive tumour microenvironment that fuels tumour initiation, progression to malignancy and metastasis. In a pituitary tumour known as adamantinomatous craniopharyngioma (ACP), cells that carry oncogenic β-catenin mutations and overactivate the WNT signalling pathway form cell clusters that become senescent and activate a senescence-associated secretory phenotype (SASP). Research in mouse models of ACP has provided insights into the function of the senescent cell clusters and revealed a critical role for SASP-mediated activities in paracrine tumour initiation. In this review, we first discuss this research on ACP and subsequently explore the theme of paracrine tumourigenesis in other tumour models available in the literature. Evidence is accumulating supporting the notion that paracrine signalling brought about by senescent cells may underlie tumourigenesis across different tumours and cancer models.
Collapse
Affiliation(s)
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Research and Teaching Programme, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
22
|
Fibroblast Subsets in Intestinal Homeostasis, Carcinogenesis, Tumor Progression, and Metastasis. Cancers (Basel) 2021; 13:cancers13020183. [PMID: 33430285 PMCID: PMC7825703 DOI: 10.3390/cancers13020183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Colorectal cancer often develops via the adenoma–carcinoma sequence, a process which is accompanied by (epi) genetic alterations in epithelial cells and gradual phenotypic changes in fibroblast populations. Recent studies have made it clear that these fibroblast populations which, in the context of invasive cancers are termed cancer-associated fibroblasts (CAFs), play an important role in intestinal tumor progression. This review provides an overview on the emerging role of fibroblasts in various stages of colorectal cancer development, ranging from adenoma initiation to metastatic spread of tumor cells. As fibroblasts show considerable heterogeneity in subsets and phenotypes during cancer development, a better functional understanding of stage-specific (alterations in) fibroblast/CAF populations is key to increase the effectiveness of fibroblast-based prognosticators and therapies. Abstract In intestinal homeostasis, continuous renewal of the epithelium is crucial to withstand the plethora of stimuli which can damage the structural integrity of the intestines. Fibroblasts contribute to this renewal by facilitating epithelial cell differentiation as well as providing the structural framework in which epithelial cells can regenerate. Upon dysregulation of intestinal homeostasis, (pre-) malignant neoplasms develop, a process which is accompanied by (epi) genetic alterations in epithelial cells as well as phenotypic changes in fibroblast populations. In the context of invasive carcinomas, these fibroblast populations are termed cancer-associated fibroblasts (CAFs). CAFs are the most abundant cell type in the tumor microenvironment of colorectal cancer (CRC) and consist of various functionally heterogeneous subsets which can promote or restrain cancer progression. Although most previous research has focused on the biology of epithelial cells, accumulating evidence shows that certain fibroblast subsets can also importantly contribute to tumor initiation and progression, thereby possibly providing avenues for improvement of clinical care for CRC patients. In this review, we summarized the current literature on the emerging role of fibroblasts in various stages of CRC development, ranging from adenoma initiation to the metastatic spread of cancer cells. In addition, we highlighted translational and therapeutic perspectives of fibroblasts in the different stages of intestinal tumor progression.
Collapse
|
23
|
Langton AK, Ayer J, Griffiths TW, Rashdan E, Naidoo K, Caley MP, Birch-Machin MA, O'Toole EA, Watson REB, Griffiths CEM. Distinctive clinical and histological characteristics of atrophic and hypertrophic facial photoageing. J Eur Acad Dermatol Venereol 2020; 35:762-768. [PMID: 33275818 PMCID: PMC7986784 DOI: 10.1111/jdv.17063] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/27/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Photoageing describes complex cutaneous changes which occur following chronic exposure to solar ultraviolet radiation (UVR). Amongst White Northern Europeans, facial photoageing appears as distinct clinical phenotypes: 'hypertrophic' photoageing (HP) and 'atrophic' photoageing (AP). Deep, coarse wrinkles predominate in individuals with HP, whereas those with AP have relatively smooth, unwrinkled skin with pronounced telangiectasia. AP individuals have an increased propensity for developing keratinocyte cancers. OBJECTIVES To investigate whether histological differences underlie these distinct phenotypes of facial photoageing. METHODS Facial skin biopsies were obtained from participants with AP (10 M, 10 F; mean age: 78.7 years) or HP (10 M, 10 F; mean age: 74.5 years) and were assessed histologically and by immunohistochemistry. RESULTS Demographic characterization revealed 95% of AP subjects, as compared to 35% with HP, were Fitzpatrick skin type I/II; of these, 50% had a history of one or more keratinocyte cancers. There was no history of keratinocyte cancers in the HP cohort. Analysis of UVR-induced mitochondrial DNA damage confirmed that all volunteers had received similar lifetime cumulative doses of sun exposure. Histologically, male AP had a significantly thicker epidermis than did AP females or those of either sex with HP. HP facial skin exhibited severe solar elastosis, whereas in AP facial skin, solar elastosis was apparent only in females. Loss of papillary dermal fibrillin-rich microfibrils occurred in all HP and AP female subjects, but not in AP males. Furthermore, male AP had a significant reduction in collagen VII at the dermal-epidermal junction than did AP females or those of either sex with HP. CONCLUSIONS This study provides further evidence that AP and HP represent distinct clinical and histological entities. Knowledge of these two phenotypes is clinically relevant due to the increased prevalence of keratinocyte cancers in those - particularly males - with the AP phenotype.
Collapse
Affiliation(s)
- A K Langton
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - J Ayer
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - T W Griffiths
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - E Rashdan
- Dermatological Sciences, Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - K Naidoo
- Dermatological Sciences, Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle upon Tyne, UK.,Dermatology Department, James Cook University Hospital, Middlesbrough, UK
| | - M P Caley
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - M A Birch-Machin
- Dermatological Sciences, Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - E A O'Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - R E B Watson
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - C E M Griffiths
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
24
|
Ishii R, Yanagisawa H, Sada A. Defining compartmentalized stem cell populations with distinct cell division dynamics in the ocular surface epithelium. Development 2020; 147:dev197590. [PMID: 33199446 PMCID: PMC7758628 DOI: 10.1242/dev.197590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022]
Abstract
Adult tissues contain label-retaining cells (LRCs), which are relatively slow-cycling and considered to represent a property of tissue stem cells (SCs). In the ocular surface epithelium, LRCs are present in the limbus and conjunctival fornix; however, the character of these LRCs remains unclear, owing to lack of appropriate molecular markers. Using three CreER transgenic mouse lines, we demonstrate that the ocular surface epithelium accommodates spatially distinct populations with different cell division dynamics. In the limbus, long-lived Slc1a3CreER-labeled SCs either migrate centripetally toward the central cornea or slowly expand their clones laterally within the limbal region. In the central cornea, non-LRCs labeled with Dlx1CreER and K14CreER behave as short-lived progenitor cells. The conjunctival epithelium in the bulbar, fornix and palpebral compartment is regenerated by regionally unique SC populations. Severe damage to the cornea leads to the cancellation of SC compartments and conjunctivalization, whereas milder limbal injury induces a rapid increase of laterally expanding clones in the limbus. Taken together, our work defines compartmentalized multiple SC/progenitor populations of the mouse eye in homeostasis and their behavioral changes in response to injury.
Collapse
Affiliation(s)
- Ryutaro Ishii
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Aiko Sada
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
25
|
Patel PM, Jones VA, Kridin K, Amber KT. The role of Dipeptidyl Peptidase-4 in cutaneous disease. Exp Dermatol 2020; 30:304-318. [PMID: 33131073 DOI: 10.1111/exd.14228] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/21/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Dipeptidyl peptidase-4 (DPP4) is a multifunctional, transmembrane glycoprotein present on the cell surface of various tissues. It is present in multiple molecular forms including cell surface and soluble. The role of DPP4 and its inhibition in cutaneous dermatoses have been a recent point of investigation. DPP4 exerts a notable influence on T-cell biology, the induction of skin-specific lymphocytes, and the homeostasis between regulatory and effector T cells. Moreover, DPP4 interacts with a broad range of molecules, including adenosine deaminase, caveolin-1, CXCR4 receptor, M6P/insulin-like growth factor II-receptor and fibroblast activation protein-α, triggering downstream effects that modulate the immune response, cell adhesion and chemokine activity. DPP4 expression on melanocytes, keratinocytes and fibroblasts further alters cell function and, thus, has crucial implications in cutaneous pathology. As a result, DPP4 plays a significant role in bullous pemphigoid, T helper type 1-like reactions, cutaneous lymphoma, melanoma, wound healing and fibrotic disorders. This review illustrates the multifactorial role of DPP4 expression, regulation, and inhibition in cutaneous diseases.
Collapse
Affiliation(s)
- Payal M Patel
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Virginia A Jones
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Khalaf Kridin
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Kyle T Amber
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
26
|
Contribution of GATA6 to homeostasis of the human upper pilosebaceous unit and acne pathogenesis. Nat Commun 2020; 11:5067. [PMID: 33082341 PMCID: PMC7575575 DOI: 10.1038/s41467-020-18784-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Although acne is the most common human inflammatory skin disease, its pathogenic mechanisms remain incompletely understood. Here we show that GATA6, which is expressed in the upper pilosebaceous unit of normal human skin, is down-regulated in acne. GATA6 controls keratinocyte proliferation and differentiation to prevent hyperkeratinisation of the infundibulum, which is the primary pathological event in acne. When overexpressed in immortalised human sebocytes, GATA6 triggers a junctional zone and sebaceous differentiation program whilst limiting lipid production and cell proliferation. It modulates the immunological repertoire of sebocytes, notably by upregulating PD-L1 and IL10. GATA6 expression contributes to the therapeutic effect of retinoic acid, the main treatment for acne. In a human sebaceous organoid model GATA6-mediated down-regulation of the infundibular differentiation program is mediated by induction of TGFβ signalling. We conclude that GATA6 is involved in regulation of the upper pilosebaceous unit and may be an actionable target in the treatment of acne.
Collapse
|
27
|
Musa M, Ali A. Cancer-associated fibroblasts of colorectal cancer and their markers: updates, challenges and translational outlook. Future Oncol 2020; 16:2329-2344. [PMID: 32687721 DOI: 10.2217/fon-2020-0384] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Accumulation of cancer-associated fibroblasts (CAFs) in the tumor microenvironment is associated with poor prognosis and recurrence of colorectal cancer (CRC). Despite their prominent roles in colorectal carcinogenesis, there is a lack of robust and specific markers to classify the heterogeneous and highly complex CAF populations. This has resulted in confusing and misleading definitions of CAFs in cancer niche. Advancements in molecular biology approaches have open doors to reliable CAF marker detection methods in various solid tumors. These discoveries would contribute to more efficient screening, monitoring and targeted therapy of CRC thus potentially will reduce cancer morbidity and mortality rates. This review highlights current scenarios, dilemma, translational potentials of CAF biomarker and future therapeutic applications involving CAF marker identification in CRC.
Collapse
Affiliation(s)
- Marahaini Musa
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Adli Ali
- Department of Paediatrics, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Wilayah Persekutuan, 56000 Kuala Lumpur, Malaysia.,Department of Paediatrics, Oxford University, Level 2, Children's Hospital, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| |
Collapse
|
28
|
Zhao J, Chen X, Herjan T, Li X. The role of interleukin-17 in tumor development and progression. J Exp Med 2020; 217:jem.20190297. [PMID: 31727782 PMCID: PMC7037244 DOI: 10.1084/jem.20190297] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/21/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
IL-17, a potent proinflammatory cytokine, has been shown to intimately contribute to the formation, growth, and metastasis of a wide range of malignancies. Recent studies implicate IL-17 as a link among inflammation, wound healing, and cancer. While IL-17-mediated production of inflammatory mediators mobilizes immune-suppressive and angiogenic myeloid cells, emerging studies reveal that IL-17 can directly act on tissue stem cells to promote tissue repair and tumorigenesis. Here, we review the pleotropic impacts of IL-17 on cancer biology, focusing how IL-17-mediated inflammatory response and mitogenic signaling are exploited to equip its cancer-promoting function and discussing the implications in therapies.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Xing Chen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Tomasz Herjan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
29
|
Sameri S, Samadi P, Dehghan R, Salem E, Fayazi N, Amini R. Stem Cell Aging in Lifespan and Disease: A State-of-the-Art Review. Curr Stem Cell Res Ther 2020; 15:362-378. [DOI: 10.2174/1574888x15666200213105155] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/09/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022]
Abstract
Aging is considered as inevitable changes at different levels of genome, cell, and organism.
From the accumulation of DNA damages to imperfect protein homeostasis, altered cellular communication
and exhaustion of stem cells, aging is a major risk factor for many prevalent diseases, such as
cancer, cardiovascular disease, pulmonary disease, diabetes, and neurological disorders. The cells are
dynamic systems, which, through a cycle of processes such as replication, growth, and death, could
replenish the bodies’ organs and tissues, keeping an entire organism in optimal working order. In many
different tissues, adult stem cells are behind these processes, replenishing dying cells to maintain normal
tissue function and regenerating injured tissues. Therefore, adult stem cells play a vital role in preventing
the aging of organs and tissues, and can delay aging. However, during aging, these cells also
undergo some detrimental changes such as alterations in the microenvironment, a decline in the regenerative
capacity, and loss of function. This review aimed to discuss age-related changes of stem cells in
different tissues and cells, including skin, muscles, brain, heart, hair follicles, liver, and lung.
Collapse
Affiliation(s)
- Saba Sameri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pouria Samadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Dehghan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Elham Salem
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nashmin Fayazi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
30
|
Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, Hynes RO, Jain RK, Janowitz T, Jorgensen C, Kimmelman AC, Kolonin MG, Maki RG, Powers RS, Puré E, Ramirez DC, Scherz-Shouval R, Sherman MH, Stewart S, Tlsty TD, Tuveson DA, Watt FM, Weaver V, Weeraratna AT, Werb Z. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer 2020; 20:174-186. [PMID: 31980749 PMCID: PMC7046529 DOI: 10.1038/s41568-019-0238-1] [Citation(s) in RCA: 2026] [Impact Index Per Article: 506.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are a key component of the tumour microenvironment with diverse functions, including matrix deposition and remodelling, extensive reciprocal signalling interactions with cancer cells and crosstalk with infiltrating leukocytes. As such, they are a potential target for optimizing therapeutic strategies against cancer. However, many challenges are present in ongoing attempts to modulate CAFs for therapeutic benefit. These include limitations in our understanding of the origin of CAFs and heterogeneity in CAF function, with it being desirable to retain some antitumorigenic functions. On the basis of a meeting of experts in the field of CAF biology, we summarize in this Consensus Statement our current knowledge and present a framework for advancing our understanding of this critical cell type within the tumour microenvironment.
Collapse
Affiliation(s)
- Erik Sahai
- The Francis Crick Institute, London, UK.
| | - Igor Astsaturov
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Edna Cukierman
- Cancer Biology Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - David G DeNardo
- Division of Oncology, Washington University Medical School, St Louis, MO, USA
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Douglas Fearon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Richard O Hynes
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rakesh K Jain
- Edwin L Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Northwell Health Cancer Institute, New Hyde Park, NY, USA
| | - Claus Jorgensen
- Cancer Research UK Manchester Institute, University of Manchester, Nether Alderley, UK
| | - Alec C Kimmelman
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University Medical Center, New York, NY, USA
| | - Mikhail G Kolonin
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Robert G Maki
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Northwell Health Cancer Institute, New York, NY, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - R Scott Powers
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Ellen Puré
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel C Ramirez
- Zucker School of Medicine at Hofstra/Northwell Health System, New York, NY, USA
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Mara H Sherman
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Sheila Stewart
- Department of Cell Biology and Physiology, Department of Medicine, ICCE Institute, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA
| | - Thea D Tlsty
- UCSF Helen Diller Comprehensive Cancer Center, San Francisco, CA, USA
- Department of Pathology, UCSF, San Francisco, CA, USA
| | | | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London, UK
| | - Valerie Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Ashani T Weeraratna
- Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
31
|
Clayton RW, Langan EA, Ansell DM, de Vos IJHM, Göbel K, Schneider MR, Picardo M, Lim X, van Steensel MAM, Paus R. Neuroendocrinology and neurobiology of sebaceous glands. Biol Rev Camb Philos Soc 2020; 95:592-624. [PMID: 31970855 DOI: 10.1111/brv.12579] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
The nervous system communicates with peripheral tissues through nerve fibres and the systemic release of hypothalamic and pituitary neurohormones. Communication between the nervous system and the largest human organ, skin, has traditionally received little attention. In particular, the neuro-regulation of sebaceous glands (SGs), a major skin appendage, is rarely considered. Yet, it is clear that the SG is under stringent pituitary control, and forms a fascinating, clinically relevant peripheral target organ in which to study the neuroendocrine and neural regulation of epithelia. Sebum, the major secretory product of the SG, is composed of a complex mixture of lipids resulting from the holocrine secretion of specialised epithelial cells (sebocytes). It is indicative of a role of the neuroendocrine system in SG function that excess circulating levels of growth hormone, thyroxine or prolactin result in increased sebum production (seborrhoea). Conversely, growth hormone deficiency, hypothyroidism, and adrenal insufficiency result in reduced sebum production and dry skin. Furthermore, the androgen sensitivity of SGs appears to be under neuroendocrine control, as hypophysectomy (removal of the pituitary) renders SGs largely insensitive to stimulation by testosterone, which is crucial for maintaining SG homeostasis. However, several neurohormones, such as adrenocorticotropic hormone and α-melanocyte-stimulating hormone, can stimulate sebum production independently of either the testes or the adrenal glands, further underscoring the importance of neuroendocrine control in SG biology. Moreover, sebocytes synthesise several neurohormones and express their receptors, suggestive of the presence of neuro-autocrine mechanisms of sebocyte modulation. Aside from the neuroendocrine system, it is conceivable that secretion of neuropeptides and neurotransmitters from cutaneous nerve endings may also act on sebocytes or their progenitors, given that the skin is richly innervated. However, to date, the neural controls of SG development and function remain poorly investigated and incompletely understood. Botulinum toxin-mediated or facial paresis-associated reduction of human sebum secretion suggests that cutaneous nerve-derived substances modulate lipid and inflammatory cytokine synthesis by sebocytes, possibly implicating the nervous system in acne pathogenesis. Additionally, evidence suggests that cutaneous denervation in mice alters the expression of key regulators of SG homeostasis. In this review, we examine the current evidence regarding neuroendocrine and neurobiological regulation of human SG function in physiology and pathology. We further call attention to this line of research as an instructive model for probing and therapeutically manipulating the mechanistic links between the nervous system and mammalian skin.
Collapse
Affiliation(s)
- Richard W Clayton
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore
| | - Ewan A Langan
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Department of Dermatology, Allergology und Venereology, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| | - David M Ansell
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, U.K
| | - Ivo J H M de Vos
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore
| | - Klaus Göbel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore.,Department of Dermatology, Cologne Excellence Cluster on Stress Responses in Aging Associated Diseases (CECAD), and Centre for Molecular Medicine Cologne, The University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany
| | - Marlon R Schneider
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, Berlin, 10589, Germany
| | - Mauro Picardo
- Cutaneous Physiopathology and Integrated Centre of Metabolomics Research, San Gallicano Dermatological Institute IRCCS, Via Elio Chianesi 53, Rome, 00144, Italy
| | - Xinhong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Maurice A M van Steensel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Ralf Paus
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Dr. Phllip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB 2023A, Miami, FL, 33136, U.S.A.,Monasterium Laboratory, Mendelstraße 17, Münster, 48149, Germany
| |
Collapse
|
32
|
Li Q, Liu B, Chao HP, Ji Y, Lu Y, Mehmood R, Jeter C, Chen T, Moore JR, Li W, Liu C, Rycaj K, Tracz A, Kirk J, Calhoun-Davis T, Xiong J, Deng Q, Huang J, Foster BA, Gokhale A, Chen X, Tang DG. LRIG1 is a pleiotropic androgen receptor-regulated feedback tumor suppressor in prostate cancer. Nat Commun 2019; 10:5494. [PMID: 31792211 PMCID: PMC6889295 DOI: 10.1038/s41467-019-13532-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
LRIG1 has been reported to be a tumor suppressor in gastrointestinal tract and epidermis. However, little is known about the expression, regulation and biological functions of LRIG1 in prostate cancer (PCa). We find that LRIG1 is overexpressed in PCa, but its expression correlates with better patient survival. Functional studies reveal strong tumor-suppressive functions of LRIG1 in both AR+ and AR- xenograft models, and transgenic expression of LRIG1 inhibits tumor development in Hi-Myc and TRAMP models. LRIG1 also inhibits castration-resistant PCa and exhibits therapeutic efficacy in pre-established tumors. We further show that 1) AR directly transactivates LRIG1 through binding to several AR-binding sites in LRIG1 locus, and 2) LRIG1 dampens ERBB expression in a cell type-dependent manner and inhibits ERBB2-driven tumor growth. Collectively, our study indicates that LRIG1 represents a pleiotropic AR-regulated feedback tumor suppressor that functions to restrict oncogenic signaling from AR, Myc, ERBBs, and, likely, other oncogenic drivers.
Collapse
Affiliation(s)
- Qiuhui Li
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Hsueh-Ping Chao
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Yibing Ji
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Rashid Mehmood
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Collene Jeter
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - John R Moore
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Wenqian Li
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Can Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Kiera Rycaj
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Amanda Tracz
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Jason Kirk
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tammy Calhoun-Davis
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Jie Xiong
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Qu Deng
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University of School of Medicine, Durham, NC, 27710, USA
| | - Barbara A Foster
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Abhiram Gokhale
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Xin Chen
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA.
- Department of Oncology, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology (HUST), 430030, Wuhan, China.
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA.
- Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, 200120, Shanghai, China.
| |
Collapse
|
33
|
Lang CMR, Chan CK, Veltri A, Lien WH. Wnt Signaling Pathways in Keratinocyte Carcinomas. Cancers (Basel) 2019; 11:cancers11091216. [PMID: 31438551 PMCID: PMC6769728 DOI: 10.3390/cancers11091216] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
The skin functions as a barrier between the organism and the surrounding environment. Direct exposure to external stimuli and the accumulation of genetic mutations may lead to abnormal cell growth, irreversible tissue damage and potentially favor skin malignancy. Skin homeostasis is coordinated by an intricate signaling network, and its dysregulation has been implicated in the development of skin cancers. Wnt signaling is one such regulatory pathway orchestrating skin development, homeostasis, and stem cell activation. Aberrant regulation of Wnt signaling cascades not only gives rise to tumor initiation, progression and invasion, but also maintains cancer stem cells which contribute to tumor recurrence. In this review, we summarize recent studies highlighting functional evidence of Wnt-related oncology in keratinocyte carcinomas, as well as discussing preclinical and clinical approaches that target oncogenic Wnt signaling to treat cancers. Our review provides valuable insight into the significance of Wnt signaling for future interventions against keratinocyte carcinomas.
Collapse
Affiliation(s)
| | - Chim Kei Chan
- de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium
| | - Anthony Veltri
- de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium
| | - Wen-Hui Lien
- de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium.
| |
Collapse
|
34
|
Long-term expansion and differentiation of adult murine epidermal stem cells in 3D organoid cultures. Proc Natl Acad Sci U S A 2019; 116:14630-14638. [PMID: 31253707 DOI: 10.1073/pnas.1715272116] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mammalian epidermal stem cells maintain homeostasis of the skin epidermis and contribute to its regeneration throughout adult life. While 2D mouse epidermal stem cell cultures have been established decades ago, a long-term, feeder cell- and serum-free culture system recapitulating murine epidermal architecture has not been available. Here we describe an epidermal organoid culture system that allows long-term, genetically stable expansion of adult epidermal stem cells. Our epidermal expansion media combines atypically high calcium concentrations, activation of cAMP, FGF, and R-spondin signaling with inhibition of bone morphogenetic protein (BMP) signaling. Organoids are established robustly from adult mouse skin and expand over at least 6 mo, while maintaining the basal-apical organization of the mouse interfollicular epidermis. The system represents a powerful tool to study epidermal homeostasis and disease in vitro.
Collapse
|
35
|
Clayton R, Göbel K, Niessen C, Paus R, Steensel M, Lim X. Homeostasis of the sebaceous gland and mechanisms of acne pathogenesis. Br J Dermatol 2019; 181:677-690. [DOI: 10.1111/bjd.17981] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2019] [Indexed: 12/13/2022]
Affiliation(s)
- R.W. Clayton
- Skin Research Institute of Singapore Agency for Science, Technology and Research (A*STAR) Singapore
- Centre for Dermatology Research University of Manchester, and NIHR Manchester Biomedical Research Centre Manchester U.K
| | - K. Göbel
- Skin Research Institute of Singapore Agency for Science, Technology and Research (A*STAR) Singapore
- Department of Dermatology Cologne Excellence Cluster on Stress Responses in Aging Associated Diseases (CECAD), and Centre for Molecular Medicine Cologne The University of Cologne Germany
| | - C.M. Niessen
- Department of Dermatology Cologne Excellence Cluster on Stress Responses in Aging Associated Diseases (CECAD), and Centre for Molecular Medicine Cologne The University of Cologne Germany
| | - R. Paus
- Centre for Dermatology Research University of Manchester, and NIHR Manchester Biomedical Research Centre Manchester U.K
- Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL U.S.A
| | - M.A.M. Steensel
- Skin Research Institute of Singapore Agency for Science, Technology and Research (A*STAR) Singapore
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore
| | - X. Lim
- Skin Research Institute of Singapore Agency for Science, Technology and Research (A*STAR) Singapore
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore
| |
Collapse
|
36
|
Belokhvostova D, Berzanskyte I, Cujba AM, Jowett G, Marshall L, Prueller J, Watt FM. Homeostasis, regeneration and tumour formation in the mammalian epidermis. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2019; 62:571-582. [PMID: 29938768 DOI: 10.1387/ijdb.170341fw] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The epidermis is the outer covering of the skin and provides a protective interface between the body and the environment. It is well established that the epidermis is maintained by stem cells that self-renew and generate differentiated cells. In this review, we discuss how recent technological advances, including single cell transcriptomics and in vivo imaging, have provided new insights into the nature and plasticity of the stem cell compartment and the differing roles of stem cells in homeostasis, wound repair and cancer.
Collapse
Affiliation(s)
- Daria Belokhvostova
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, London, UK
| | | | | | | | | | | | | |
Collapse
|
37
|
Oulès B, Rognoni E, Hoste E, Goss G, Fiehler R, Natsuga K, Quist S, Mentink R, Donati G, Watt FM. Mutant Lef1 controls Gata6 in sebaceous gland development and cancer. EMBO J 2019; 38:embj.2018100526. [PMID: 30886049 PMCID: PMC6484415 DOI: 10.15252/embj.2018100526] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 12/21/2022] Open
Abstract
Mutations in Lef1 occur in human and mouse sebaceous gland (SG) tumors, but their contribution to carcinogenesis remains unclear. Since Gata6 controls lineage identity in SG, we investigated the link between these two transcription factors. Here, we show that Gata6 is a β‐catenin‐independent transcriptional target of mutant Lef1. During epidermal development, Gata6 is expressed in a subset of Sox9‐positive Lef1‐negative hair follicle progenitors that give rise to the upper SG. Overexpression of Gata6 by in utero lentiviral injection is sufficient to induce ectopic sebaceous gland elements. In mice overexpressing mutant Lef1, Gata6 ablation increases the total number of skin tumors yet decreases the proportion of SG tumors. The increased tumor burden correlates with impaired DNA mismatch repair and decreased expression of Mlh1 and Msh2 genes, defects frequently observed in human sebaceous neoplasia. Gata6 specifically marks human SG tumors and also defines tumors with elements of sebaceous differentiation, including a subset of basal cell carcinomas. Our findings reveal that Gata6 controls sebaceous gland development and cancer.
Collapse
Affiliation(s)
- Bénédicte Oulès
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Emanuel Rognoni
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK.,Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Esther Hoste
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK.,Unit for Cellular and Molecular Pathophysiology, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Georgina Goss
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | | | - Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Sven Quist
- Clinic for Dermatology and Venereology, Otto-von-Guericke-University, Magdeburg, Germany
| | | | - Giacomo Donati
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK.,Department of Life Sciences and Systems Biology, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| |
Collapse
|
38
|
Li B, Hu W, Ma K, Zhang C, Fu X. Are hair follicle stem cells promising candidates for wound healing? Expert Opin Biol Ther 2019; 19:119-128. [PMID: 30577700 DOI: 10.1080/14712598.2019.1559290] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION With the continued focus on in-depth investigations of hair follicle stem cells (HFSCs), the role of HFSCs in wound healing has attracted increasing attention from researchers. This review may afford meaningful implications for HFSC treatment of wounds. AREAS COVERED We present the properties of HFSCs, analyze the possibility of HFSCs in wound healing, and sum up the recent studies into wound repair with HFSCs. The details of HFSCs in wound healing have been discussed. The possible mechanisms of wound healing with HFSCs have been elaborated. Additionally, the factors that influence HFSCs in wound healing are also summarized. EXPERT OPINION Hair follicle stem cells are promising sources for wound healing. However, a further understanding of human HFSCs and the safety use of HFSCs in clinical practice still remain in relative infancy.
Collapse
Affiliation(s)
- Bingmin Li
- a Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science , Chinese PLA General Hospital , Beijing , People's Republic of China.,b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| | - Wenzhi Hu
- a Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science , Chinese PLA General Hospital , Beijing , People's Republic of China.,b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| | - Kui Ma
- a Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science , Chinese PLA General Hospital , Beijing , People's Republic of China.,b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| | - Cuiping Zhang
- b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| | - Xiaobing Fu
- a Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science , Chinese PLA General Hospital , Beijing , People's Republic of China.,b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| |
Collapse
|
39
|
Chen X, Cai G, Liu C, Zhao J, Gu C, Wu L, Hamilton TA, Zhang CJ, Ko J, Zhu L, Qin J, Vidimos A, Koyfman S, Gastman BR, Jensen KB, Li X. IL-17R-EGFR axis links wound healing to tumorigenesis in Lrig1 + stem cells. J Exp Med 2018; 216:195-214. [PMID: 30578323 PMCID: PMC6314525 DOI: 10.1084/jem.20171849] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/10/2018] [Accepted: 10/23/2018] [Indexed: 12/31/2022] Open
Abstract
This study provides mechanistic insight into how IL-17 receptor adopts EGFR to activate ERK5 axis in Lrig1+ stem cells for their proliferation and migration during wounding healing and tumorigenesis. Lrig1 marks a distinct population of stem cells restricted to the upper pilosebaceous unit in normal epidermis. Here we report that IL-17A–mediated activation of EGFR plays a critical role in the expansion and migration of Lrig1+ stem cells and their progenies in response to wounding, thereby promoting wound healing and skin tumorigenesis. Lrig1-specific deletion of the IL-17R adaptor Act1 or EGFR in mice impairs wound healing and reduces tumor formation. Mechanistically, IL-17R recruits EGFR for IL-17A–mediated signaling in Lrig1+ stem cells. While TRAF4, enriched in Lrig1+ stem cells, tethers IL-17RA and EGFR, Act1 recruits c-Src for IL-17A–induced EGFR transactivation and downstream activation of ERK5, which promotes the expansion and migration of Lrig1+ stem cells. This study demonstrates that IL-17A activates the IL-17R–EGFR axis in Lrig1+ stem cells linking wound healing to tumorigenesis.
Collapse
Affiliation(s)
- Xing Chen
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Gang Cai
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH.,Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Caini Liu
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Junjie Zhao
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Chunfang Gu
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH.,National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Ling Wu
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Thomas A Hamilton
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Cun-Jin Zhang
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Jennifer Ko
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH.,Department of Anatomical Pathology, Cleveland Clinic, Cleveland, OH
| | - Liang Zhu
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH
| | - Jun Qin
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH
| | | | - Shlomo Koyfman
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH
| | - Brian R Gastman
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH.,Department of Dermatology, Cleveland Clinic, Cleveland, OH.,Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH
| | - Kim B Jensen
- Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
40
|
Rognoni E, Watt FM. Skin Cell Heterogeneity in Development, Wound Healing, and Cancer. Trends Cell Biol 2018; 28:709-722. [PMID: 29807713 PMCID: PMC6098245 DOI: 10.1016/j.tcb.2018.05.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022]
Abstract
Skin architecture and function depend on diverse populations of epidermal cells and dermal fibroblasts. Reciprocal communication between the epidermis and dermis plays a key role in skin development, homeostasis and repair. While several stem cell populations have been identified in the epidermis with distinct locations and functions, it is now recognised that there is additional heterogeneity within the mesenchymal cells of the dermis. Here, we discuss recent insights into how these distinct cell populations are maintained and coordinated during development, homeostasis, and wound healing. We highlight the importance of the local environment, or niche, in cellular plasticity. We also discuss new mechanisms that have been identified as influencing wound repair and cancer progression.
Collapse
Affiliation(s)
- Emanuel Rognoni
- King's College London, Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK
| | - Fiona M Watt
- King's College London, Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK.
| |
Collapse
|
41
|
Kaya G, Saurat JH. Cutaneous Adnexal Cysts Revisited: What We Know and What We Think We Know. Dermatopathology (Basel) 2018; 5:79-85. [PMID: 29998103 PMCID: PMC6031948 DOI: 10.1159/000488585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/02/2018] [Indexed: 11/30/2022] Open
Abstract
Cutaneous cysts have been classified by dermatopathologists in many different ways. Here, we propose a novel classification of cutaneous adnexal cysts according to their origin in the folliculosebaceous unit and the sweat glands. By examining the lining of the cystic structure, its origin can be easily identified. Epidermal cysts have an epithelial wall containing a granular layer with lamellar keratinization, indicating an infundibular origin. Tricholemmal cysts have an undulating epithelial wall with no granular layer and a compact keratinization, showing an isthmic origin. In steatocystoma, dermoid cyst, and folliculosebaceous hamartoma, the epithelial lining shows a crenulated appearance which is seen in the sebaceous duct. Hidrocystoma shows the characteristic cuboidal epithelial lining of sweat glands with decapitation secretion in its apocrine forms. The hair matrix cyst wall is composed of basaloid cells maturing to squamoid cells, as seen in the normal hair matrix and shadow cells in the lumen. Metabolizing acquired dioxin-induced skin hamartoma (MADISH) is a cystic lesion with lamellar keratinization, and no sebaceous glands. The classification proposed here aims to simplify the complexity of cutaneous adnexal cysts, and to facilitate a better understanding of the origin of cystic lesions of the skin.
Collapse
Affiliation(s)
- Gürkan Kaya
- Department of Dermatology, University Hospital of Geneva, Geneva, Switzerland
| | - Jean-Hilaire Saurat
- Department of Pharmacology and Toxicology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
42
|
Diverse mechanisms for endogenous regeneration and repair in mammalian organs. Nature 2018; 557:322-328. [PMID: 29769669 DOI: 10.1038/s41586-018-0073-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/07/2018] [Indexed: 12/11/2022]
Abstract
Mammalian organs comprise an extraordinary diversity of cell and tissue types. Regenerative organs, such as the skin and gastrointestinal tract, use resident stem cells to maintain tissue function. Organs with a lower cellular turnover, such as the liver and lungs, mostly rely on proliferation of committed progenitor cells. In many organs, injury reveals the plasticity of both resident stem cells and differentiated cells. The ability of resident cells to maintain and repair organs diminishes with age, whereas, paradoxically, the risk of cancer increases. New therapeutic approaches aim to harness cell plasticity for tissue repair and regeneration while avoiding the risk of malignant transformation of cells.
Collapse
|
43
|
Hawkshaw NJ, Hardman JA, Haslam IS, Shahmalak A, Gilhar A, Lim X, Paus R. Identifying novel strategies for treating human hair loss disorders: Cyclosporine A suppresses the Wnt inhibitor, SFRP1, in the dermal papilla of human scalp hair follicles. PLoS Biol 2018; 16:e2003705. [PMID: 29738529 PMCID: PMC5940179 DOI: 10.1371/journal.pbio.2003705] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
Hair growth disorders often carry a major psychological burden. Therefore, more effective human hair growth–modulatory agents urgently need to be developed. Here, we used the hypertrichosis-inducing immunosuppressant, Cyclosporine A (CsA), as a lead compound to identify new hair growth–promoting molecular targets. Through microarray analysis we identified the Wnt inhibitor, secreted frizzled related protein 1 (SFRP1), as being down-regulated in the dermal papilla (DP) of CsA-treated human scalp hair follicles (HFs) ex vivo. Therefore, we further investigated the function of SFRP1 using a pharmacological approach and found that SFRP1 regulates intrafollicular canonical Wnt/β-catenin activity through inhibition of Wnt ligands in the human hair bulb. Conversely, inhibiting SFRP1 activity through the SFRP1 antagonist, WAY-316606, enhanced hair shaft production, hair shaft keratin expression, and inhibited spontaneous HF regression (catagen) ex vivo. Collectively, these data (a) identify Wnt signalling as a novel, non–immune-inhibitory CsA target; (b) introduce SFRP1 as a physiologically important regulator of canonical β-catenin activity in a human (mini-)organ; and (c) demonstrate WAY-316606 to be a promising new promoter of human hair growth. Since inhibiting SFRP1 only facilitates Wnt signalling through ligands that are already present, this ‘ligand-limited’ therapeutic strategy for promoting human hair growth may circumvent potential oncological risks associated with chronic Wnt over-activation. Hair loss is a common disorder and can lead to psychological distress. Cyclosporine A, a fungal metabolite commonly used as an immunosuppressant, can potently induce hair growth in humans. However, it cannot be effectively used to restore hair growth because of its toxic profile. In this study, we used Cyclosporine A as a lead compound to identify novel therapeutic targets that can aid the development of new hair growth–promoting agents. Through microarray analysis, we found that the level of the secreted Wnt inhibitor, SFRP1, was significantly reduced by Cyclosporine A. This inspired us to design a new pharmacological approach that uses WAY-316606, a reportedly well-tolerated and specific antagonist of SFRP1, to prolong the growth phase of the hair cycle. We show that WAY-316606 enhances human hair growth ex vivo, suggesting that it is a more targeted hair growth promoter with the potential to treat human hair loss disorders.
Collapse
Affiliation(s)
- Nathan J. Hawkshaw
- Centre for Dermatology Research, University of Manchester, Manchester Academic Health Science Centre and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
| | - Jonathan A. Hardman
- Centre for Dermatology Research, University of Manchester, Manchester Academic Health Science Centre and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
| | - Iain S. Haslam
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | | | - Amos Gilhar
- Skin Research Laboratory, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Xinhong Lim
- Institute of Medical Biology, Agency for Science, Technology, and Research, Singapore
- Skin Research Institute of Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Duke-NUS Medical School, Singapore
| | - Ralf Paus
- Centre for Dermatology Research, University of Manchester, Manchester Academic Health Science Centre and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
44
|
Philippeos C, Telerman SB, Oulès B, Pisco AO, Shaw TJ, Elgueta R, Lombardi G, Driskell RR, Soldin M, Lynch MD, Watt FM. Spatial and Single-Cell Transcriptional Profiling Identifies Functionally Distinct Human Dermal Fibroblast Subpopulations. J Invest Dermatol 2018; 138:811-825. [PMID: 29391249 PMCID: PMC5869055 DOI: 10.1016/j.jid.2018.01.016] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/21/2018] [Indexed: 12/14/2022]
Abstract
Previous studies have shown that mouse dermis is composed of functionally distinct fibroblast lineages. To explore the extent of fibroblast heterogeneity in human skin, we used a combination of comparative spatial transcriptional profiling of human and mouse dermis and single-cell transcriptional profiling of human dermal fibroblasts. We show that there are at least four distinct fibroblast populations in adult human skin, not all of which are spatially segregated. We define markers permitting their isolation and show that although marker expression is lost in culture, different fibroblast subpopulations retain distinct functionality in terms of Wnt signaling, responsiveness to IFN-γ, and ability to support human epidermal reconstitution when introduced into decellularized dermis. These findings suggest that ex vivo expansion or in vivo ablation of specific fibroblast subpopulations may have therapeutic applications in wound healing and diseases characterized by excessive fibrosis.
Collapse
Affiliation(s)
- Christina Philippeos
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK
| | - Stephanie B Telerman
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK
| | - Bénédicte Oulès
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK
| | - Angela O Pisco
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK
| | - Tanya J Shaw
- King's College London Centre for Molecular and Cellular Biology of Inflammation, London, UK
| | - Raul Elgueta
- King's College London MRC Centre for Transplantation, Guy's Hospital, Great Maze Pond, London, UK
| | - Giovanna Lombardi
- King's College London MRC Centre for Transplantation, Guy's Hospital, Great Maze Pond, London, UK
| | - Ryan R Driskell
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK; School of Molecular Medicine, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Mark Soldin
- Department of Plastic and Reconstructive Surgery, St. George's National Health Service Trust, London, UK
| | - Magnus D Lynch
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK; St. John's Institute of Dermatology, Tower Wing, Guy's Hospital, Great Maze Pond, London, UK
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK.
| |
Collapse
|
45
|
Liakath-Ali K, Mills EW, Sequeira I, Lichtenberger BM, Pisco AO, Sipilä KH, Mishra A, Yoshikawa H, Wu CCC, Ly T, Lamond AI, Adham IM, Green R, Watt FM. An evolutionarily conserved ribosome-rescue pathway maintains epidermal homeostasis. Nature 2018; 556:376-380. [PMID: 29643507 DOI: 10.1038/s41586-018-0032-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 02/28/2018] [Indexed: 01/01/2023]
Abstract
Ribosome-associated mRNA quality control mechanisms ensure the fidelity of protein translation1,2. Although these mechanisms have been extensively studied in yeast, little is known about their role in mammalian tissues, despite emerging evidence that stem cell fate is controlled by translational mechanisms3,4. One evolutionarily conserved component of the quality control machinery, Dom34 (in higher eukaryotes known as Pelota (Pelo)), rescues stalled ribosomes 5 . Here we show that Pelo is required for mammalian epidermal homeostasis. Conditional deletion of Pelo in mouse epidermal stem cells that express Lrig1 results in hyperproliferation and abnormal differentiation of these cells. By contrast, deletion of Pelo in Lgr5-expressing stem cells has no effect and deletion in Lgr6-expressing stem cells induces only a mild phenotype. Loss of Pelo results in accumulation of short ribosome footprints and global upregulation of translation, rather than affecting the expression of specific genes. Translational inhibition by rapamycin-mediated downregulation of mTOR (mechanistic target of rapamycin kinase) rescues the epidermal phenotype. Our study reveals that the ribosome-rescue machinery is important for mammalian tissue homeostasis and that it has specific effects on different stem cell populations.
Collapse
Affiliation(s)
- Kifayathullah Liakath-Ali
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, Stanford, CA, USA
| | - Eric W Mills
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Inês Sequeira
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Beate M Lichtenberger
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Kalle H Sipilä
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Ajay Mishra
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
- Cambridge Infinitus Research Centre, University of Cambridge, Cambridge, UK
| | - Harunori Yoshikawa
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Colin Chih-Chien Wu
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tony Ly
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ibrahim M Adham
- Institute of Human Genetics, University Medical Centre of Göttingen, Göttingen, Germany
| | - Rachel Green
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK.
| |
Collapse
|
46
|
CK1α ablation in keratinocytes induces p53-dependent, sunburn-protective skin hyperpigmentation. Proc Natl Acad Sci U S A 2017; 114:E8035-E8044. [PMID: 28878021 DOI: 10.1073/pnas.1702763114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Casein kinase 1α (CK1α), a component of the β-catenin destruction complex, is a critical regulator of Wnt signaling; its ablation induces both Wnt and p53 activation. To characterize the role of CK1α (encoded by Csnk1a1) in skin physiology, we crossed mice harboring floxed Csnk1a1 with mice expressing K14-Cre-ERT2 to generate mice in which tamoxifen induces the deletion of Csnk1a1 exclusively in keratinocytes [single-knockout (SKO) mice]. As expected, CK1α loss was accompanied by β-catenin and p53 stabilization, with the preferential induction of p53 target genes, but phenotypically most striking was hyperpigmentation of the skin, importantly without tumorigenesis, for at least 9 mo after Csnk1a1 ablation. The number of epidermal melanocytes and eumelanin levels were dramatically increased in SKO mice. To clarify the putative role of p53 in epidermal hyperpigmentation, we established K14-Cre-ERT2 CK1α/p53 double-knockout (DKO) mice and found that coablation failed to induce epidermal hyperpigmentation, demonstrating that it was p53-dependent. Transcriptome analysis of the epidermis revealed p53-dependent up-regulation of Kit ligand (KitL). SKO mice treated with ACK2 (a Kit-neutralizing antibody) or imatinib (a Kit inhibitor) abrogated the CK1α ablation-induced hyperpigmentation, demonstrating that it requires the KitL/Kit pathway. Pro-opiomelanocortin (POMC), a precursor of α-melanocyte-stimulating hormone (α-MSH), was not activated in the CK1α ablation-induced hyperpigmentation, which is in contrast to the mechanism of p53-dependent UV tanning. Nevertheless, acute sunburn effects were successfully prevented in the hyperpigmented skin of SKO mice. CK1α inhibition induces skin-protective eumelanin but no carcinogenic pheomelanin and may therefore constitute an effective strategy for safely increasing eumelanin via UV-independent pathways, protecting against acute sunburn.
Collapse
|
47
|
Brown S, Pineda CM, Xin T, Boucher J, Suozzi KC, Park S, Matte-Martone C, Gonzalez DG, Rytlewski J, Beronja S, Greco V. Correction of aberrant growth preserves tissue homeostasis. Nature 2017; 548:334-337. [PMID: 28783732 PMCID: PMC5675114 DOI: 10.1038/nature23304] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 06/23/2017] [Indexed: 01/08/2023]
Abstract
Cells in healthy tissues acquire mutations with surprising frequency. Many of these mutations are associated with abnormal cellular behaviours such as differentiation defects and hyperproliferation, yet fail to produce macroscopically detectable phenotypes. It is currently unclear how the tissue remains phenotypically normal, despite the presence of these mutant cells. Here we use intravital imaging to track the fate of mouse skin epithelium burdened with varying numbers of activated Wnt/β-catenin stem cells. We show that all resulting growths that deform the skin tissue architecture regress, irrespective of their size. Wild-type cells are required for the active elimination of mutant cells from the tissue, while utilizing both endogenous and ectopic cellular behaviours to dismantle the aberrant structures. After regression, the remaining structures are either completely eliminated or converted into functional skin appendages in a niche-dependent manner. Furthermore, tissue aberrancies generated from oncogenic Hras, and even mutation-independent deformations to the tissue, can also be corrected, indicating that this tolerance phenomenon reflects a conserved principle in the skin. This study reveals an unanticipated plasticity of the adult skin epithelium when faced with mutational and non-mutational insult, and elucidates the dynamic cellular behaviours used for its return to a homeostatic state.
Collapse
Affiliation(s)
- Samara Brown
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Cristiana M Pineda
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Tianchi Xin
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Jonathan Boucher
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Kathleen C Suozzi
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Sangbum Park
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | | | - David G Gonzalez
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Julie Rytlewski
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Slobodan Beronja
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Valentina Greco
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut 06510, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut 06510, USA
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut 06510, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
48
|
Kretzschmar K, Clevers H. Wnt/β-catenin signaling in adult mammalian epithelial stem cells. Dev Biol 2017; 428:273-282. [PMID: 28526587 DOI: 10.1016/j.ydbio.2017.05.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 01/06/2023]
Abstract
Adult stem cells self-renew and replenish differentiated cells in various organs and tissues throughout a mammal's life. Over the last 25 years an ever-growing body of knowledge has unraveled the essential regulation of adult mammalian epithelia by the canonical Wnt signaling with its key intracellular effector β-catenin. In this review, we discuss the principles of the signaling pathway and its role in adult epithelial stem cells of the intestine and skin during homeostasis and tumorigenesis. We further highlight the research that led to the identification of new stem cell markers and methods to study adult stem cells ex vivo.
Collapse
Affiliation(s)
- Kai Kretzschmar
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, The Netherlands; Cancer Genomics Netherlands, UMC Utrecht, 3584 CG Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, The Netherlands; Cancer Genomics Netherlands, UMC Utrecht, 3584 CG Utrecht, The Netherlands; Princess Máxima Centre for Pediatric Oncology, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
49
|
Donati G, Rognoni E, Hiratsuka T, Liakath-Ali K, Hoste E, Kar G, Kayikci M, Russell R, Kretzschmar K, Mulder KW, Teichmann SA, Watt FM. Wounding induces dedifferentiation of epidermal Gata6 + cells and acquisition of stem cell properties. Nat Cell Biol 2017; 19:603-613. [PMID: 28504705 DOI: 10.1038/ncb3532] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/18/2017] [Indexed: 02/08/2023]
Abstract
The epidermis is maintained by multiple stem cell populations whose progeny differentiate along diverse, and spatially distinct, lineages. Here we show that the transcription factor Gata6 controls the identity of the previously uncharacterized sebaceous duct (SD) lineage and identify the Gata6 downstream transcription factor network that specifies a lineage switch between sebocytes and SD cells. During wound healing differentiated Gata6+ cells migrate from the SD into the interfollicular epidermis and dedifferentiate, acquiring the ability to undergo long-term self-renewal and differentiate into a much wider range of epidermal lineages than in undamaged tissue. Our data not only demonstrate that the structural and functional complexity of the junctional zone is regulated by Gata6, but also reveal that dedifferentiation is a previously unrecognized property of post-mitotic, terminally differentiated cells that have lost contact with the basement membrane. This resolves the long-standing debate about the contribution of terminally differentiated cells to epidermal wound repair.
Collapse
Affiliation(s)
- Giacomo Donati
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK.,Cancer Research UK Cambridge Research Institute, Cambridge CB2 0RE, UK.,Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Emanuel Rognoni
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK
| | - Toru Hiratsuka
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK
| | - Kifayathullah Liakath-Ali
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK
| | - Esther Hoste
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK.,VIB Center for Inflammation Research, Department of Biomedical Molecular Biology (Ghent University), B-9052 Ghent, Belgium
| | - Gozde Kar
- European Bioinformatics Institute and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK
| | - Melis Kayikci
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Roslin Russell
- Cancer Research UK Cambridge Research Institute, Cambridge CB2 0RE, UK
| | - Kai Kretzschmar
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK.,Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK.,Hubrecht Institute, KNAW and UMC Utrecht, 3584CT Utrecht, The Netherlands
| | - Klaas W Mulder
- Cancer Research UK Cambridge Research Institute, Cambridge CB2 0RE, UK.,Radboud Institute for Molecular Life Sciences, Department of Molecular Developmental Biology, Radboud University, Nijmegen, The Netherlands
| | - Sarah A Teichmann
- European Bioinformatics Institute and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
50
|
Neirinckx V, Hedman H, Niclou SP. Harnessing LRIG1-mediated inhibition of receptor tyrosine kinases for cancer therapy. Biochim Biophys Acta Rev Cancer 2017; 1868:109-116. [PMID: 28259645 DOI: 10.1016/j.bbcan.2017.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023]
Abstract
Leucine-rich repeats and immunoglobulin-like domains containing protein 1 (LRIG1) is an endogenous feedback regulator of receptor tyrosine kinases (RTKs) and was recently shown to inhibit growth of different types of malignancies. Additionally, this multifaceted RTK inhibitor was reported to be a tumor suppressor, a stem cell regulator, and a modulator of different cellular phenotypes. This mini-review provides a concise and up-to-date summary about the known functions of LRIG1 and its related family members, with a special emphasis on underlying molecular mechanisms and the opportunities for harnessing its therapeutic potential against cancer.
Collapse
Affiliation(s)
- Virginie Neirinckx
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 1526, Luxembourg
| | - Hakan Hedman
- Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, 90187 Umeå, Sweden
| | - Simone P Niclou
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 1526, Luxembourg; K.G. Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| |
Collapse
|