1
|
Xu K, Tan J, Lin D, Jiang H, Chu Y, Zhou L, Zhang J, Lu Y. Gut microbes of the cecum versus the colon drive more severe lethality and multi-organ damage. Int Immunopharmacol 2025; 147:114029. [PMID: 39793233 DOI: 10.1016/j.intimp.2025.114029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Intestinal perforations lead to a high risk of sepsis-associated morbidity and multi-organ dysfunctions. A perforation allows intestinal contents (IC) to enter the peritoneal cavity, causing abdominal infections. Right- and left-sided perforations have different prognoses in humans, but the mechanisms associated with different cecum and colon perforations remain unclear. This study investigates how gut flora influences outcomes from perforations at different sites in mice. Using fecal-induced peritonitis mouse model, isolated IC from the cecum or colon was injected peritoneally at 2 mg/kg. Bacterial burden was quantified with quantitative PCR, and microbial communities were analyzed using 16S rRNA gene sequencing. Survival rates were monitored, and blood biochemical indices, histological changes, cytokines expression, immunological signaling and multiple-organ damage were assessed at 16 h post-injections. The results showed cecum IC developed more severe sepsis than colon IC, with shorter median survival time and greater multi-organ damage. Mice treated with cecum IC displayed elevated tissue damage markers in the liver, heart, and kidneys, contributing to worsened pathology. This was likely driven by systematic inflammatory cytokines production and lung inflammation. Mechanistically, cecum IC triggered stronger cGAS-STING and TBK1-NF-κB signaling, promoting systemic inflammation compared to the colon IC. Moreover, bacterial analysis demonstrated that cecum IC carry a higher bacterial burden than colon IC and exhibit a different microbial community. A detailed microbiome comparison revealed an increased abundance of potentially pathogenic bacteria in the cecum IC. These findings suggest that the site of intestinal perforation influences sepsis severity, with the cecum being associated with a higher bacterial burden and a relatively increased abundance of potentially pathogenic bacteria compared to the colon. Our findings first compared the lethality associated with the microbial composition of the cecum and colon, indicating the perforation site could help providers predict the severity of sepsis, thereby introducing a novel perspective to microbiology and sepsis research.
Collapse
Affiliation(s)
- Kejia Xu
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Juan Tan
- Department of Pathology, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha Hunan 410013, China
| | - Dongyang Lin
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Haoran Jiang
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yimin Chu
- Digestive Endoscopy Center, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Luting Zhou
- Department of Pathology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Junjie Zhang
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| | - Yinzhong Lu
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| |
Collapse
|
2
|
Wang Y, Bai M, Peng Q, Li L, Tian F, Guo Y, Jing C. Angiogenesis, a key point in the association of gut microbiota and its metabolites with disease. Eur J Med Res 2024; 29:614. [PMID: 39710789 DOI: 10.1186/s40001-024-02224-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024] Open
Abstract
The gut microbiota is a complex and dynamic ecosystem that plays a crucial role in human health and disease, including obesity, diabetes, cardiovascular diseases, neurodegenerative diseases, inflammatory bowel disease, and cancer. Chronic inflammation is a common feature of these diseases and is closely related to angiogenesis (the process of forming new blood vessels), which is often dysregulated in pathological conditions. Inflammation potentially acts as a central mediator. This abstract aims to elucidate the connection between the gut microbiota and angiogenesis in various diseases. The gut microbiota influences angiogenesis through various mechanisms, including the production of metabolites that directly or indirectly affect vascularization. For example, short-chain fatty acids (SCFAs) such as butyrate, propionate, and acetate are known to regulate immune responses and inflammation, thereby affecting angiogenesis. In the context of cardiovascular diseases, the gut microbiota promotes atherosclerosis and vascular dysfunction by producing trimethylamine N-oxide (TMAO) and other metabolites that promote inflammation and endothelial dysfunction. Similarly, in neurodegenerative diseases, the gut microbiota may influence neuroinflammation and the integrity of the blood-brain barrier, thereby affecting angiogenesis. In cases of fractures and wound healing, the gut microbiota promotes angiogenesis by activating inflammatory responses and immune effects, facilitating the healing of tissue damage. In cancer, the gut microbiota can either inhibit or promote tumor growth and angiogenesis, depending on the specific bacterial composition and their metabolites. For instance, some bacteria can activate inflammasomes, leading to the production of inflammatory factors that alter the tumor immune microenvironment and activate angiogenesis-related signaling pathways, affecting tumor angiogenesis and metastasis. Some bacteria can directly interact with tumor cells, activating angiogenesis-related signaling pathways. Diet, as a modifiable factor, significantly influences angiogenesis through diet-derived microbial metabolites. Diet can rapidly alter the composition of the microbiota and its metabolic activity, thereby changing the concentration of microbial-derived metabolites and profoundly affecting the host's immune response and angiogenesis. For example, a high animal protein diet promotes the production of pro-atherogenic metabolites like TMAO, activating inflammatory pathways and interfering with platelet function, which is associated with the severity of coronary artery plaques, peripheral artery disease, and cardiovascular diseases. A diet rich in dietary fiber promotes the production of SCFAs, which act as ligands for cell surface or intracellular receptors, regulating various biological processes, including inflammation, tissue homeostasis, and immune responses, thereby influencing angiogenesis. In summary, the role of the gut microbiota in angiogenesis is multifaceted, playing an important role in disease progression by affecting various biological processes such as inflammation, immune responses, and multiple signaling pathways. Diet-derived microbial metabolites play a crucial role in linking the gut microbiota and angiogenesis. Understanding the complex interactions between diet, the gut microbiota, and angiogenesis has the potential to uncover novel therapeutic targets for managing these conditions. Therefore, interventions targeting the gut microbiota and its metabolites, such as through fecal microbiota transplantation (FMT) and the application of probiotics to alter the composition of the gut microbiota and enhance the production of beneficial metabolites, present a promising therapeutic strategy.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Mingshuai Bai
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Qifan Peng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Feng Tian
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Ying Guo
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Changqing Jing
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
3
|
Zhong L, Yang Q, Shao Y, Hu S, Guo L. Helicobacter pylori promotes intestinal flora imbalance and hepatic metabolic disorders under arsenic stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117512. [PMID: 39671763 DOI: 10.1016/j.ecoenv.2024.117512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/21/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Environmental arsenic contamination is a serious issue that cannot be ignored, since arsenic levels in drinking water frequently exceed safety standards, and there is an increased prevalence of Helicobacter pylori (H. pylori) infection. This results in an increasing population at risk of simultaneous exposure to both harmful agents, yet whether a synergistic interaction exists between them remains unclear. Therefore, this study aims to investigate the combined effects and underlying pathogenic mechanisms of concurrent exposure to these two hazardous factors by establishing a mouse model that is infected with H. pylori and exposed to inorganic arsenic through drinking water. Analysis of intestinal flora revealed significant alterations in the composition, relative abundance (Akkermansia, Faecalibaculum, Ilieibacterium, etc.), and metabolic potential of the intestinal microflora (amino acid metabolism and energy metabolism) in the combinatory exposure group. Non-targeted metabolomics analysis identified that the combinatory exposure group exhibited greater fluctuations in metabolite content, particularly in triacylglycerol, fatty-acid, peptide and amino acid. Moreover, H. pylori infection and arsenic exposure had increased levels of metabolites associated with the intestinal microbiota in their livers (4-Ethylphenyl sulfate and Phenylacetylglycine). Further analysis revealed significant correlations between changes in the intestinal flora and alterations in liver metabolic profiles. Herein, we hypothesize that H. pylori infection may exacerbate the intestinal flora imbalance and hepatic metabolic disturbances caused by arsenic exposure, which may disrupt enterohepatic homeostasis and potentially increase biological susceptibility to heavy metal toxicity.
Collapse
Affiliation(s)
- Linmin Zhong
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Qiling Yang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yiming Shao
- Dongguan Key Laboratory of Sepsis Translational Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Shanwen Hu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Lianxian Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
4
|
Florjan A, Rupnik M, Mahnic A. Gut microbiota composition in recurrent acute otitis media: a cross-sectional observational study. Folia Microbiol (Praha) 2024; 69:1363-1368. [PMID: 38837014 PMCID: PMC11485140 DOI: 10.1007/s12223-024-01174-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Recurrent acute otitis media (rAOM) poses a significant challenge in children aged 1 to 6 years, characterized by frequent and treatment-resistant ear infections. While existing studies predominantly focus on alterations in the nasopharyngeal microbiome associated with rAOM, our research explores the understudied association with the gut microbiome. In this cross-sectional observational prospective study, we enrolled 35 children aged 1 to 6 years during the 2021/2022 cold season. The test group comprised children with rAOM (n = 16), and the control group consisted of generally healthy children (n = 19). Samples (stool and nasopharyngeal swabs) were collected in late spring to ensure an antibiotic-free period. Detailed metadata was gathered through a questionnaire examining factors potentially influencing microbiota. Microbiota composition was assessed through amplicon sequencing of the V3-V4 region of the 16S rRNA gene. Our findings revealed limited alterations in gut microbiota composition among children with rAOM compared to healthy controls. Six bacterial taxa (Veillonella, Lachnospiraceae, Ruminococcaceae, Lachnospiraceae, Bacteroides and Blautia) were differentially represented with weak statistical significance. However, several bacterial taxa displayed correlations with multiple consecutive infections, with Turicibacter showing the most significant association. Additionally, day care centre attendance emerged as a potent gut microbiota modifier, independent of rAOM. Although our study identified limited differences in gut microbiota composition between children with rAOM and healthy controls, the observed correlations between the number of infections and specific bacterial taxa suggest a potential link between rAOM and the gut microbiota, warranting further investigation.
Collapse
Affiliation(s)
- Andrej Florjan
- Department of Otorhinolaryngology and Cervicofacial Surgery, General Hospital Celje, Oblakova ulica 5, 3000, Celje, Slovenia
| | - Maja Rupnik
- Department for Microbiological Research, National Laboratory of Health, Environment and Food, Prvomajska ulica 1, 2000, Maribor, Slovenia
- Department of Microbiology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
| | - Aleksander Mahnic
- Department for Microbiological Research, National Laboratory of Health, Environment and Food, Prvomajska ulica 1, 2000, Maribor, Slovenia.
- Department of Microbiology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.
| |
Collapse
|
5
|
Tu Z, Wang Y, Liang J, Liu J. Helicobacter pylori-targeted AI-driven vaccines: a paradigm shift in gastric cancer prevention. Front Immunol 2024; 15:1500921. [PMID: 39669583 PMCID: PMC11634812 DOI: 10.3389/fimmu.2024.1500921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024] Open
Abstract
Helicobacter pylori (H. pylori), a globally prevalent pathogen Group I carcinogen, presents a formidable challenge in gastric cancer prevention due to its increasing antimicrobial resistance and strain diversity. This comprehensive review critically analyzes the limitations of conventional antibiotic-based therapies and explores cutting-edge approaches to combat H. pylori infections and associated gastric carcinogenesis. We emphasize the pressing need for innovative therapeutic strategies, with a particular focus on precision medicine and tailored vaccine development. Despite promising advancements in enhancing host immunity, current Helicobacter pylori vaccine clinical trials have yet to achieve long-term efficacy or gain approval regulatory approval. We propose a paradigm-shifting approach leveraging artificial intelligence (AI) to design precision-targeted, multiepitope vaccines tailored to multiple H. pylori subtypes. This AI-driven strategy has the potential to revolutionize antigen selection and optimize vaccine efficacy, addressing the critical need for personalized interventions in H. pylori eradication efforts. By leveraging AI in vaccine design, we propose a revolutionary approach to precision therapy that could significantly reduce H. pylori -associated gastric cancer burden.
Collapse
Affiliation(s)
| | | | | | - Jinping Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
6
|
Zhu Z, Yang Y, Han X, Peng L, Zhu H. Causality of Helicobacter pylori infection on eosinophilic esophagitis and potential pathogenesis: a Mendelian randomization study. Front Immunol 2024; 15:1365604. [PMID: 38779684 PMCID: PMC11109363 DOI: 10.3389/fimmu.2024.1365604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Background Observational studies have indicated a possible connection between Helicobacter pylori (H. pylori) infection and eosinophilic esophagitis (EoE), but their causal relationship has yet to be established. To investigate the causal associations between H. pylori infection and EoE, we performed a Mendelian randomization (MR) analysis. Methods Firstly, we conducted both univariable and multivariable Mendelian randomization (MR) analyses. Furthermore, a two-step MR was carried out to ascertain the potential underlying pathways of these associations, particularly the involvement of inflammatory cytokines. We employed the inverse-variance weighted (IVW) method as the main analysis in our MR study. To enhance the credibility of the results, we also conducted several sensitivity analyses. Results Our study demonstrated a noteworthy correlation between genetically predicted anti-H. pylori IgG antibody levels and a reduced risk of EoE (OR=0.325, 95% CI=0.165-0.643, P value=0.004, adj p value=0.009). No significant causal associations were detected between other H. pylori antibodies and EoE in our study. When it comes to multivariable MR analysis controlling for education attainment, household income, and deprivation individually, the independent causal impact of anti-H. pylori IgG on EoE persisted. Surprisingly, the two-step MR analysis indicated that inflammatory factors (IL-4, IL-5, IL-13, IL-17, and IFN-γ) did not appear to mediate the protective effect of H. pylori infection against EoE. Conclusion Findings suggested that among the range of H. pylori-related antibodies, anti-H. pylori IgG antibody is the sole causal factor associated with protection against EoE. Certain inflammatory factors may not be involved in mediating this association. These findings make a significant contribution to advancing our understanding of the pathogenesis of EoE and its evolving etiology.
Collapse
Affiliation(s)
| | | | | | - Lei Peng
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Siegel NA, Jimenez MT, Rocha CS, Rolston M, Dandekar S, Solnick JV, Miller LA. Helicobacter pylori infection in infant rhesus macaque monkeys is associated with an altered lung and oral microbiome. Sci Rep 2024; 14:9998. [PMID: 38693196 PMCID: PMC11063185 DOI: 10.1038/s41598-024-59514-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/11/2024] [Indexed: 05/03/2024] Open
Abstract
It is estimated that more than half of the world population has been infected with Helicobacter pylori. Most newly acquired H. pylori infections occur in children before 10 years of age. We hypothesized that early life H. pylori infection could influence the composition of the microbiome at mucosal sites distant to the stomach. To test this hypothesis, we utilized the infant rhesus macaque monkey as an animal model of natural H. pylori colonization to determine the impact of infection on the lung and oral microbiome during a window of postnatal development. From a cohort of 4-7 month-old monkeys, gastric biopsy cultures identified 44% of animals infected by H. pylori. 16S ribosomal RNA gene sequencing of lung washes and buccal swabs from animals showed distinct profiles for the lung and oral microbiome, independent of H. pylori infection. In order of relative abundance, the lung microbiome was dominated by the phyla Proteobacteria, Firmicutes, Bacteroidota, Fusobacteriota, Campilobacterota and Actinobacteriota while the oral microbiome was dominated by Proteobacteria, Firmicutes, Bacteroidota, and Fusobacteriota. In comparison to the oral cavity, the lung was composed of more genera and species that significantly differed by H. pylori status, with a total of 6 genera and species that were increased in H. pylori negative infant monkey lungs. Lung, but not plasma IL-8 concentration was also associated with gastric H. pylori load and lung microbial composition. We found the infant rhesus macaque monkey lung harbors a microbiome signature that is distinct from that of the oral cavity during postnatal development. Gastric H. pylori colonization and IL-8 protein were linked to the composition of microbial communities in the lung and oral cavity. Collectively, these findings provide insight into how H. pylori infection might contribute to the gut-lung axis during early childhood and modulate future respiratory health.
Collapse
Affiliation(s)
- Noah A Siegel
- California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - Monica T Jimenez
- California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - Clarissa Santos Rocha
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Matthew Rolston
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Satya Dandekar
- California National Primate Research Center, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Jay V Solnick
- California National Primate Research Center, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Lisa A Miller
- California National Primate Research Center, University of California Davis, Davis, CA, USA.
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| |
Collapse
|
8
|
Elghannam MT, Hassanien MH, Ameen YA, Turky EA, ELattar GM, ELRay AA, ELTalkawy MD. Helicobacter pylori and oral-gut microbiome: clinical implications. Infection 2024; 52:289-300. [PMID: 37917397 PMCID: PMC10954935 DOI: 10.1007/s15010-023-02115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
More than half of the world's population are colonized with H. pylori; however, the prevalence varies geographically with the highest incidence in Africa. H. pylori is probably a commensal organism that has been associated with the development of gastritis, ulcers, and gastric cancer. H. pylori alone is most probably not enough for the development of gastric carcinoma, but evidence for its association with the disease is high and has, therefore, been classified by the International Agency for Research on Cancer as a Class 1 carcinogen. Bacteroidetes and Fusobacteria positively coexisted during H. pylori infection along the oral-gut axis. The eradication therapy required to treat H. pylori infection can also have detrimental consequences for the gut microbiota, leading to a decreased alpha diversity. Therefore, therapy regimens integrated with probiotics may abolish the negative effects of antibiotic therapy on the gut microbiota. These eradication therapies combined with probiotics have also higher rates of eradication, when compared to standard treatments, and are associated with reduced side effects, improving the patient's compliance. The eradication therapy not only affects gut microbiome but also affects the oral microbiome with robust predominance of harmful bacteria. However, there have been reports of a protective role of H. pylori in Barrett's esophagus, esophageal adenocarcinoma, eosinophilic esophagitis, IBD, asthma, and even multiple sclerosis. Therefore, eradication therapy should be carefully considered, and test to treat policy should be tailored to specific communities especially in highly endemic areas. Supplementation of probiotics, prebiotics, herbals, and microbial metabolites to reduce the negative effects of eradication therapy should be considered. After failure of many eradication attempts, the benefits of H. pylori eradication should be carefully balanced against the risk of adverse effects especially in the elderly, persons with frailty, and intolerance to antibiotics.
Collapse
Affiliation(s)
- Maged T Elghannam
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Moataz H Hassanien
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Yosry A Ameen
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Emad A Turky
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Gamal M ELattar
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Ahmed A ELRay
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohammed D ELTalkawy
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
9
|
Triantafillidis JK, Georgiou K, Konstadoulakis MM, Papalois AE. Early-onset gastrointestinal cancer: An epidemiological reality with great significance and implications. World J Gastrointest Oncol 2024; 16:583-597. [PMID: 38577465 PMCID: PMC10989383 DOI: 10.4251/wjgo.v16.i3.583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/17/2023] [Accepted: 01/11/2024] [Indexed: 03/12/2024] Open
Abstract
During the last few years, epidemiological data from many countries suggest that the incidence and prevalence of many cancers of the digestive system are shifting from the older to the younger ages, the so-called "early-onset cancer". This is particularly evident in colorectal cancer and secondarily in other malignant digestive neoplasms, mainly stomach and in a lesser degree pancreas, and biliary tract. It should be emphasized that data concerning digestive neoplasms, except for those referring to the colon and stomach, could be characterized as rather insufficient. The exact magnitude of the shift in younger ages is expected to become clearer shortly, as long as relevant epidemiological data from many parts of the world would be available. The most important question concerns the etiology of this phenomenon, since its magnitude cannot be explained solely by the better diagnostic methodology and the preventive programs applied in many countries. The existing data support the assumption that a number of environmental factors may play a primary role in influencing carcinogenesis, sometimes from childhood. Changes that have appeared in the last decades related mainly to eating habits, consistency of gut microbiome and an increase of obese people interacting with genetic factors, ultimately favor the process of carcinogenesis. Even these factors however, are not entirely sufficient to explain the age-related changes in the frequency of digestive neoplasms. Studies of the individual effect of each of the already known factors or factors likely to be involved in the etiology of this phenomenon and studies using state-of-the-art technologies to accurately determine the degree of the population exposure to these factors are required. In this article, we attempt to describe the epidemiological data supporting the age-shifting of digestive malignancies and their possible pathogenesis. Finally, we propose some measures regarding the attitude of the scientific community to this alarming phenomenon.
Collapse
Affiliation(s)
- John K Triantafillidis
- Department of IBD and GI Endoscopy, Metropolitan General Hospital, Holargos 15562, Athens, Greece. Hellenic Society for Gastrointestinal Oncology, 354 Iera Odos, Chaidari 12461, Attica, Greece
| | - Konstantinos Georgiou
- 2nd Department of Surgery, University of Athens School of Medicine, Aretaieion Hospital, Athens 11528, Greece
| | - Manousos M Konstadoulakis
- 2nd Department of Surgery, University of Athens School of Medicine, Aretaieion Hospital, Athens 11528, Greece
| | - Apostolos E Papalois
- 2nd Department of Surgery, University of Athens School of Medicine, Aretaieion Hospital, Athens 11528, Greece
| |
Collapse
|
10
|
Engelsberger V, Gerhard M, Mejías-Luque R. Effects of Helicobacter pylori infection on intestinal microbiota, immunity and colorectal cancer risk. Front Cell Infect Microbiol 2024; 14:1339750. [PMID: 38343887 PMCID: PMC10853882 DOI: 10.3389/fcimb.2024.1339750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Infecting about half of the world´s population, Helicobacter pylori is one of the most prevalent bacterial infections worldwide and the strongest known risk factor for gastric cancer. Although H. pylori colonizes exclusively the gastric epithelium, the infection has also been associated with various extragastric diseases, including colorectal cancer (CRC). Epidemiological studies reported an almost two-fold increased risk for infected individuals to develop CRC, but only recently, direct causal and functional links between the chronic infection and CRC have been revealed. Besides modulating the host intestinal immune response, H. pylori is thought to increase CRC risk by inducing gut microbiota alterations. It is known that H. pylori infection not only impacts the gastric microbiota at the site of infection but also leads to changes in bacterial colonization in the distal large intestine. Considering that the gut microbiome plays a driving role in CRC, H. pylori infection emerges as a key factor responsible for promoting changes in microbiome signatures that could contribute to tumor development. Within this review, we want to focus on the interplay between H. pylori infection, changes in the intestinal microbiota, and intestinal immunity. In addition, the effects of H. pylori antibiotic eradication therapy will be discussed.
Collapse
Affiliation(s)
| | | | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
11
|
Gong X, Shen L, Xie J, Liu D, Xie Y, Liu D. Helicobacter pylori infection reduces the efficacy of cancer immunotherapy: A systematic review and meta-analysis. Helicobacter 2023; 28:e13011. [PMID: 37661590 DOI: 10.1111/hel.13011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Cancer immunotherapy has shown promising results in several tumors, but its efficacy is influenced by the immune state of the body. Helicobacter pylori (H. pylori) infection can modulate the immune function of the body through various pathways, ultimately affecting the effectiveness of cancer immunotherapy. AIM In this meta-analysis, we aimed to explore the association between H. pylori infection and the efficacy of cancer immunotherapy. METHODS We conducted a comprehensive search of PubMed, Embase, Web of Science, and Cochrane Central Register of Controlled Trials to identify relevant articles. We extracted and pooled the hazard ratio (HR) of the overall survival (OS) and progression-free survival (PFS) by Review Manager 5.4. RESULTS Our analysis included four studies with a total of 263 participants. Compared to the control group, patients receiving cancer immunotherapy with H. pylori infection had a shorter OS (HR = 2.68, 95% CI: 2.00-4.11, p < 0.00001) and PFS (HR = 2.25, 95% CI: 1.66-3.60, p < 0.00001). CONCLUSION Our meta-analysis suggested that H. pylori infection has a detrimental effect on cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaomin Gong
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Liting Shen
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Jinliang Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Dingwei Liu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Yong Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Dongsheng Liu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| |
Collapse
|
12
|
Luo S, Ru J, Mirzaei MK, Xue J, Peng X, Ralser A, Mejías-Luque R, Gerhard M, Deng L. Gut virome profiling identifies an association between temperate phages and colorectal cancer promoted by Helicobacter pylori infection. Gut Microbes 2023; 15:2257291. [PMID: 37747149 PMCID: PMC10578192 DOI: 10.1080/19490976.2023.2257291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers worldwide. While a close correlation between chronic Helicobacter pylori infection and CRC has been reported, the role of the virome has been overlooked. Here, we infected Apc-mutant mouse models and C57BL/6 mice with H. pylori and conducted a comprehensive metagenomics analysis of H. pylori-induced changes in lower gastrointestinal tract bacterial and viral communities. We observed an expansion of temperate phages in H. pylori infected Apc+/1638N mice at the early stage of carcinogenesis. Some of the temperate phages were predicted to infect bacteria associated with CRC, including Enterococcus faecalis. We also observed a high prevalence of virulent genes, such as flgJ, cwlJ, and sleB, encoded by temperate phages. In addition, we identified phages associated with pre-onset and onset of H. pylori-promoted carcinogenesis. Through co-occurrence network analysis, we found strong associations between the viral and bacterial communities in infected mice before the onset of carcinogenesis. These findings suggest that the expansion of temperate phages, possibly caused by prophage induction triggered by H. pylori infection, may have contributed to the development of CRC in mice by interacting with the bacterial community.
Collapse
Affiliation(s)
- Shiqi Luo
- Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, Neuherberg, Germany
- Chair for Preventions of Microbial Diseases, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Jinlong Ru
- Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, Neuherberg, Germany
- Chair for Preventions of Microbial Diseases, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mohammadali Khan Mirzaei
- Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, Neuherberg, Germany
- Chair for Preventions of Microbial Diseases, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Jinling Xue
- Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, Neuherberg, Germany
- Chair for Preventions of Microbial Diseases, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Xue Peng
- Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, Neuherberg, Germany
- Faculty of Biology, Biocenter, Ludwig Maximilian University of Munich, Munich, Germany
| | - Anna Ralser
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Li Deng
- Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, Neuherberg, Germany
- Chair for Preventions of Microbial Diseases, School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
13
|
Siegel NA, Jimenez MT, Rocha CS, Rolston M, Dandekar S, Solnick JV, Miller LA. Helicobacter pylori Infection in Infant Rhesus Macaque Monkeys is Associated with an Altered Lung and Oral Microbiome. RESEARCH SQUARE 2023:rs.3.rs-3225953. [PMID: 37609264 PMCID: PMC10441512 DOI: 10.21203/rs.3.rs-3225953/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Background It is estimated that more than half of the world population has been infected with Helicobacter pylori. Most newly acquired H. pylori infections occur in children before 10 years of age. We hypothesized that early life H. pylori infection could influence the composition of the microbiome at mucosal sites distant to the stomach. To test this hypothesis, we utilized the infant rhesus macaque monkey as an animal model of natural H. pylori colonization to determine the impact of infection on the lung and oral microbiome during a window of postnatal development. Results From a cohort of 4-7-month-old monkeys, gastric biopsy cultures identified 44% of animals infected by H. pylori. 16S ribosomal RNA gene sequencing of lung washes and buccal swabs from animals showed distinct profiles for the lung and oral microbiome, independent of H. pylori infection. In relative order of abundance, the lung microbiome was dominated by the phyla Proteobacteria, Firmicutes, Bacteroidota, Fusobacteriota, Campilobacterota and Actinobacteriota while the oral microbiome was dominated by Proteobacteria, Firmicutes, Bacteroidota, and Fusobacteriota. Relative to the oral cavity, the lung was composed of more genera and species that significantly differed by H. pylori status, with a total of 6 genera and species that were increased in H. pylori negative infant monkey lungs. Lung, but not plasma IL-8 concentration was also associated with gastric H. pylori load and lung microbial composition. Conclusions We found the infant rhesus macaque monkey lung harbors a microbiome signature that is distinct from that of the oral cavity during postnatal development. Gastric H. pylori colonization and IL-8 protein were linked to the composition of microbial communities in the lung and oral cavity. Collectively, these findings provide insight into how H. pylori infection might contribute to the gut-lung axis during early childhood and modulate future respiratory health.
Collapse
|
14
|
Zang H, Wang J, Wang H, Guo J, Li Y, Zhao Y, Song J, Liu F, Liu X, Zhao Y. Metabolic alterations in patients with Helicobacter pylori-related gastritis: The H. pylori-gut microbiota-metabolism axis in progression of the chronic inflammation in the gastric mucosa. Helicobacter 2023:e12984. [PMID: 37186092 DOI: 10.1111/hel.12984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/15/2023] [Accepted: 03/13/2023] [Indexed: 05/17/2023]
Abstract
PURPOSE To characterize the serum metabolism in patients with Helicobacter pylori-positive and H. pylori-negative gastritis. METHODS Clinical data and serum gastric function parameters, PGI (pepsinogen I), PGII, PGR (PGI/II), and G-17 (gastrin-17) of 117 patients with chronic gastritis were collected, including 57 H. pylori positive and 60 H. pylori negative subjects. Twenty cases in each group were randomly selected to collect intestinal mucosa specimens and serum samples. The gut microbiota profiles were generated by 16S rRNA gene sequencing, and the serum metabolites were analyzed by a targeted metabolomics approach based on liquid chromatography-mass spectrometry (LC-MS) technology. RESULTS Altered expression of 20 metabolites, including isovaleric acid, was detected in patients with HPAG. Some taxa of Bacteroides, Fusobacterium, and Prevotella in the gut microbiota showed significant correlations with differentially expressed metabolites between H. pylori positive and H. pylori negative individuals. As a result, an H. pylori-gut microbiota-metabolism (HGM) axis was proposed. CONCLUSION Helicobacter pylori infection may influence the progression of mucosal diseases and the emergence of other complications in the host by altering the gut microbiota, and thus affecting the host serum metabolism.
Collapse
Affiliation(s)
- Hongmin Zang
- Hebei University of Chinese Medicine, Shijiazhuang, China
- The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, China
| | - Jin Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Huijie Wang
- The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, China
| | - Jiaxuan Guo
- The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, China
| | - Yuchan Li
- The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, China
| | - Yinuo Zhao
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Jinzhong Song
- Hebei University of Chinese Medicine, Shijiazhuang, China
- The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, China
| | - Fengshuang Liu
- Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Academy of Traditional Chinese Medicine, Shijiazhuang, China
| | - Xuzhao Liu
- North China University of Science and Technology, Tangshan, China
| | - Yubin Zhao
- Hebei University of Chinese Medicine, Shijiazhuang, China
- North China University of Science and Technology, Tangshan, China
- Shijiazhuang People's Hospital, Shijiazhuang, China
| |
Collapse
|
15
|
Ralser A, Dietl A, Jarosch S, Engelsberger V, Wanisch A, Janssen KP, Middelhoff M, Vieth M, Quante M, Haller D, Busch DH, Deng L, Mejías-Luque R, Gerhard M. Helicobacter pylori promotes colorectal carcinogenesis by deregulating intestinal immunity and inducing a mucus-degrading microbiota signature. Gut 2023:gutjnl-2022-328075. [PMID: 37015754 DOI: 10.1136/gutjnl-2022-328075] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/19/2023] [Indexed: 04/06/2023]
Abstract
OBJECTIVE Helicobacter pylori infection is the most prevalent bacterial infection worldwide. Besides being the most important risk factor for gastric cancer development, epidemiological data show that infected individuals harbour a nearly twofold increased risk to develop colorectal cancer (CRC). However, a direct causal and functional connection between H. pylori infection and colon cancer is lacking. DESIGN We infected two Apc-mutant mouse models and C57BL/6 mice with H. pylori and conducted a comprehensive analysis of H. pylori-induced changes in intestinal immune responses and epithelial signatures via flow cytometry, chip cytometry, immunohistochemistry and single cell RNA sequencing. Microbial signatures were characterised and evaluated in germ-free mice and via stool transfer experiments. RESULTS H. pylori infection accelerated tumour development in Apc-mutant mice. We identified a unique H. pylori-driven immune alteration signature characterised by a reduction in regulatory T cells and pro-inflammatory T cells. Furthermore, in the intestinal and colonic epithelium, H. pylori induced pro-carcinogenic STAT3 signalling and a loss of goblet cells, changes that have been shown to contribute-in combination with pro-inflammatory and mucus degrading microbial signatures-to tumour development. Similar immune and epithelial alterations were found in human colon biopsies from H. pylori-infected patients. Housing of Apc-mutant mice under germ-free conditions ameliorated, and early antibiotic eradication of H. pylori infection normalised the tumour incidence to the level of uninfected controls. CONCLUSIONS Our studies provide evidence that H. pylori infection is a strong causal promoter of colorectal carcinogenesis. Therefore, implementation of H. pylori status into preventive measures of CRC should be considered.
Collapse
Affiliation(s)
- Anna Ralser
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
| | - Alisa Dietl
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sebastian Jarosch
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Biberach an der Riß, Germany
| | - Veronika Engelsberger
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
| | - Andreas Wanisch
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
| | - Klaus Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Moritz Middelhoff
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Friedrich-Alexander University Erlangen-Nuremberg, Bayreuth, Germany
| | - Michael Quante
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
- ZIEL Institute for Food & Health, Technical University of Munich, Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
- Munich Partner Site, German Center for Infection Research (DZIF), Munich, Germany
| | - Li Deng
- Institute of Virology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
- Chair for Preventions of Microbial Diseases, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
- Munich Partner Site, German Center for Infection Research (DZIF), Munich, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
- Munich Partner Site, German Center for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
16
|
Xi J, Li Y, Zhang H, Bai Z. Dynamic variations of the gastric microbiota: Key therapeutic points in the reversal of Correa's cascade. Int J Cancer 2023; 152:1069-1084. [PMID: 36029278 DOI: 10.1002/ijc.34264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 01/21/2023]
Abstract
Correa's cascade is a dynamic process in the development of intestinal-type gastric cancer (GC), and its pathological features, gastric microbiota and interactions between microorganisms and their hosts vary at different developmental stages. The characteristics of cells, tissues and gastric microbiota before or after key therapeutic points are critical for monitoring malignant transformation and early tumour reversal. This review summarises the pathological features of gastric mucosa, characteristics of gastric microbiota, specific microbial markers, microbe-microbe interactions and microbe-host interactions at different stages in Correa's cascade. The markers related to each Correa's cascade point were analysed in detail. We attempted to identify key therapeutic points for early cancer reversal and provide a novel approach to reduce the incidence of GC and improve precise treatment.
Collapse
Affiliation(s)
- Jiahui Xi
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine, Gansu Province, Lanzhou, China
| | - Yonghong Li
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumour, Gansu Provincial Hospital, Lanzhou, China
| | - Hui Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhongtian Bai
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine, Gansu Province, Lanzhou, China.,General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
17
|
Amalia R, Panenggak NSR, Doohan D, Rezkitha YAA, Waskito LA, Syam AF, Lubis M, Yamaoka Y, Miftahussurur M. A comprehensive evaluation of an animal model for Helicobacter pylori-associated stomach cancer: Fact and controversy. Helicobacter 2023; 28:e12943. [PMID: 36627714 DOI: 10.1111/hel.12943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 01/12/2023]
Abstract
Even though Helicobacter pylori infection was the most causative factor of gastric cancer, numerous in vivo studies failed to induce gastric cancer using H. pylori infection only. The utilization of established animal studies in cancer research is crucial as they aim to investigate the coincidental association between suspected oncogenes and pathogenesis as well as generate models for the development and testing of potential treatments. The methods to establish gastric cancer using infected animal models remain limited, diverse in methods, and showed different results. This study investigates the differences in animal models, which highlight different pathological results in gaster by literature research. Electronic databases searched were performed in PubMed, Science Direct, and Cochrane, without a period filter. A total of 135 articles were used in this study after a full-text assessment was conducted. The most frequent animal models used for gastric cancer were Mice, while Mongolian gerbils and Transgenic mice were the most susceptible model for gastric cancer associated with H. pylori infection. Additionally, transgenic mice showed that the susceptibility to gastric cancer progression was due to genetic and epigenetic factors. These studies showed that in Mongolian gerbil models, H. pylori could function as a single agent to trigger stomach cancer. However, most gastric cancer susceptibilities were not solely relying on H. pylori infection, and numerous factors are involved in cancer progression. Further study using Mongolian gerbils and Transgenic mice is crucial to conduct and establish the best models for gastric cancer associated H. pylori.
Collapse
Affiliation(s)
- Rizki Amalia
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Nur Syahadati Retno Panenggak
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Dalla Doohan
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Anatomy, Histology and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Yudith Annisa Ayu Rezkitha
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Internal Medicine, Faculty of Medicine, Universitas Muhammadiyah Surabaya, Surabaya, Indonesia
| | - Langgeng Agung Waskito
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ari Fahrial Syam
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Masrul Lubis
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan.,Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Texas, Houston, USA
| | - Muhammad Miftahussurur
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine-Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
18
|
Isaeva GS, Isaeva R. Mechanisms of microbial interactions between probiotic microorganisms
and Helicobacter pylori. CLINICAL MICROBIOLOGY AND ANTIMICROBIAL CHEMOTHERAPY 2023; 25:225-238. [DOI: 10.36488/cmac.2023.3.225-238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Infection caused by Helicobacter pylori is currently one of the most common infection in the world, but the clinical picture can vary from asymptomatic manifestations to the development of stomach cancer. In order to eradicate the pathogen various regimens of antibacterial therapy have been proposed, but recent studies indicate a decrease in efficiency of this therapy due to the increasing rate of H. pylori resistance to antibiotics, the appearance of side effects, including the development of dysbiosis. One of the perspective directions of an alternative approach to the treatment of helicobacteriosis is probiotic therapy. The usage of probiotic therapy of H. pylori infection has two main directions. The first one is associated with the usage of probiotics to reduce the frequency of undesirable effects from the gastrointestinal tract during H. pylori antimicrobial therapy and the second one is the potentiation of the eradication effect due to the antagonistic effect on H. pylori. The purpose of this review was to summarize the latest data about the mechanisms of microbial interactions between probiotic microorganisms and H. pylori. The review examines the influence of H. pylori on the gastrointestinal microbiota, interspecific interactions of microorganisms in microbial consortia, mechanisms of antagonistic action of probiotic cultures on H. pylori, as well as the analysis of experience of using probiotics in the treatment of helicobacteriosis. At the same time, there will be many unresolved questions about the choice of the specific composition of the probiotic cocktail, dosage, duration of therapy, mechanisms of antimicrobial action of probiotics, as well as possible negative sides of this therapy, which requires further research.
Collapse
Affiliation(s)
- Guzel Sh. Isaeva
- Kazan Research Institute of Epidemiology and Microbiology, Kazan State Medical University (Kazan, Russia)
| | - R.A. Isaeva
- Kazan Research Institute of Epidemiology and Microbiology, Kazan State Medical University (Kazan, Russia)
| |
Collapse
|
19
|
Ramai D, Salati M, Pomati G, Amoroso C, Facciorusso A, Botticelli A, Ghidini M. Antibiotics, the microbiome and gastrointestinal cancers: A causal interference? Curr Opin Pharmacol 2022; 67:102315. [PMID: 36351361 DOI: 10.1016/j.coph.2022.102315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/07/2022]
Abstract
Our understanding of the gut microbiota has significantly evolved over the last two decades. Advances in the analysis of the gut microbiome continues to reveal complex microbial communities and discoveries about their role in health and diseases, including cancer development, are continuously growing. In addition, research has demonstrated that the use of antibiotics can modulate the gut microbiota composition negatively and influence cancer treatment outcomes, suggesting that antibiotics should be avoided if possible. In this article, we review the role of the gut microbiota in the formation of GI cancers. We show that specific bacterial populations can positively or negatively affect cancer formation with specific attention given to gastric and colorectal cancer. We also review the role of microbial-targeted therapies on cancer treatment outcomes.
Collapse
Affiliation(s)
- Daryl Ramai
- Division of Gastroenterology and Hepatology, University of Utah Health, Salt Lake City, UT, USA
| | - Massimiliano Salati
- Department of Oncology and Hematology, Division of Oncology, University Hospital of Modena, Modena, Italy
| | - Giulia Pomati
- Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Facciorusso
- Gastroenterology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Andrea Botticelli
- Department of Radiological, Oncological, Pathological Department, La Sapienza, University of Rome, Policlinico Umberto I, Rome, Italy
| | - Michele Ghidini
- Division of Medical Oncology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
20
|
Liang B, Yuan Y, Peng XJ, Liu XL, Hu XK, Xing DM. Current and future perspectives for Helicobacter pylori treatment and management: From antibiotics to probiotics. Front Cell Infect Microbiol 2022; 12:1042070. [PMID: 36506013 PMCID: PMC9732553 DOI: 10.3389/fcimb.2022.1042070] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative anaerobic bacterium that colonizes the human stomach and is the leading cause of gastric diseases such as chronic gastritis and peptic ulcers, as well as the most definite and controllable risk factor for the development of gastric cancer. Currently, the regimen for H. pylori eradication has changed from triple to quadruple, the course of treatment has been extended, and the type and dose of antibiotics have been adjusted, with limited improvement in efficacy but gradually increasing side effects and repeated treatment failures in an increasing number of patients. In recent years, probiotics have become one of the most important tools for supporting intestinal health and immunity. Numerous in vitro studies, animal studies, and clinical observations have demonstrated that probiotics have the advantage of reducing side effects and increasing eradication rates in adjuvant anti-H. pylori therapy and are a valuable supplement to conventional therapy. However, many different types of probiotics are used as adjuncts against H. pylori, in various combinations, with different doses and timing, and the quality of clinical studies varies, making it difficult to standardize the results. In this paper, we focus on the risk, status, prevention, control, and treatment of H. pylori infection and review international consensus guidelines. We also summarize the available scientific evidence on using Limosilactobacillus reuteri (L. reuteri) as a critical probiotic for H. pylori treatment and discuss its clinical research and application from an evidence-based perspective.
Collapse
Affiliation(s)
- Bing Liang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yang Yuan
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao-Jin Peng
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin-Lin Liu
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao-Kun Hu
- Intervention Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dong-Ming Xing
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China,School of Life Sciences, Tsinghua University, Beijing, China,*Correspondence: Dong-Ming Xing,
| |
Collapse
|
21
|
Enterotoxin tilimycin from gut-resident Klebsiella promotes mutational evolution and antibiotic resistance in mice. Nat Microbiol 2022; 7:1834-1848. [PMID: 36289400 PMCID: PMC9613472 DOI: 10.1038/s41564-022-01260-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/29/2022] [Indexed: 11/20/2022]
Abstract
Klebsiella spp. that secrete the DNA-alkylating enterotoxin tilimycin colonize the human intestinal tract. Numbers of toxigenic bacteria increase during antibiotic use, and the resulting accumulation of tilimycin in the intestinal lumen damages the epithelium via genetic instability and apoptosis. Here we examine the impact of this genotoxin on the gut ecosystem. 16S rRNA sequencing of faecal samples from mice colonized with Klebsiella oxytoca strains and mechanistic analyses show that tilimycin is a pro-mutagenic antibiotic affecting multiple phyla. Transient synthesis of tilimycin in the murine gut antagonized niche competitors, reduced microbial richness and altered taxonomic composition of the microbiota both during and following exposure. Moreover, tilimycin secretion increased rates of mutagenesis in co-resident opportunistic pathogens such as Klebsiella pneumoniae and Escherichia coli, as shown by de novo acquisition of antibiotic resistance. We conclude that tilimycin is a bacterial mutagen, and flares of genotoxic Klebsiella have the potential to drive the emergence of resistance, destabilize the gut microbiota and shape its evolutionary trajectory. Production of the enterotoxin tilimycin by gut-resident Klebsiella species can alter gut microbiota composition, induce mutational evolution and drive the emergence of antibiotic resistance in mice.
Collapse
|
22
|
Liu D, Wang J, Xie Y. Refractory Helicobacter pylori infection and the gastric microbiota. Front Cell Infect Microbiol 2022; 12:976710. [PMID: 36237432 PMCID: PMC9552320 DOI: 10.3389/fcimb.2022.976710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
Background Curing refractory Helicobacter pylori infection is difficult. In addition, there is currently no research on the gastric microbiota of refractory H. pylori infection. Methods We designed a clinical retrospective study involving 32 subjects divided into three groups: 1. nAGHp.a, treatment-naïve patients with H. pylori infection; 2. nAGHp.b, H. pylori-negative patients; and 3. EFHp.a, patients with refractory H. pylori infection. Gastric mucosal samples from the biobank of our research center were collected for 16S rRNA sequencing analysis and bacterial functions were predicted via PICRUSt. Results There were significant differences between the H. pylori- positive group and the H. pylori-negative group in species diversity, gastric microbiota structure, and bacterial function. The beneficial Lactobacillus in the H. pylori-positive group were significantly enriched compared with those in the refractory H. pylori infection group. The bacterial interaction network diagram suggested that the microbiota interactions in the refractory H. pylori infection group decreased. The gastric microbiota of the refractory H. pylori infection group was enriched in the pathways of metabolism and infectious diseases (energy metabolism, bacterial secretion system, glutathione metabolism, protein folding and associated processing, sulphur metabolism, membrane and intracellular structural molecules, lipopolysaccharide biosynthesis, ubiquinone and other terpenoid-quinone biosynthesis, inorganic ion transport and metabolism, and metabolism of cofactors and vitamins) when compared with the H. pylori-positive group without treatment based on PICRUSt analysis. Conclusion Significant alterations occurred in the gastric microbiota when eradication of H. pylori failed multiple times. A history of eradication of multiple H. pylori infections leads to an imbalance in the gastric mucosal microbiota to a certain extent, which was mainly reflected in the inhibition of the growth of beneficial Lactobacillus in the stomach. Patients with refractory H. pylori infection may be at a higher risk of developing gastric cancer than other H. pylori-positive patients.
Collapse
Affiliation(s)
- Dongsheng Liu
- Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinyun Wang
- Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Xie
- Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Yong Xie,
| |
Collapse
|
23
|
Wang S, Zhang M, Yu L, Tian F, Lu W, Wang G, Chen W, Wang J, Zhai Q. Evaluation of the Potential Protective Effects of Lactobacillus Strains against Helicobacter pylori Infection: A Randomized, Double-Blinded, Placebo-Controlled Trial. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:6432750. [PMID: 36193094 PMCID: PMC9525740 DOI: 10.1155/2022/6432750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The beneficial effects of probiotic supplementation standard antibiotic therapies for Helicobacter pylori infection have been verified, but the ability of probiotic monotherapy to eradicate H. pylori remains unclear. AIM To evaluate the accuracy and efficacy of specific Lactobacillus strains against H. pylori infection. METHODS Seventy-eight patients with H. pylori infection were treated with strain L. crispatus G14-5M (L. crispatus CCFM1118) or L. helveticus M2-09-R02-S146 (L. helveticus CCFM1121) or L. plantarum CCFM8610 at a dose of 2 g twice daily for one month. 14C-urea breath test, the gastrointestinal symptom rating scale, serum pepsinogen concentrations, and serum cytokine concentrations of patients were measured at baseline and end-of-trial to analyze the effect of the Lactobacillus strains in eradicating H. pylori infection and reducing gastrointestinal discomfort in patients. In addition, the composition and abundance of the intestinal microbiota of patients were also measured at end-of-trial. RESULTS The 14C-urea breath test value of the three Lactobacillus treatment groups had decreased significantly, and the eradication rate of H. pylori had increased by the end of the trial. In particular, the eradication rate in the G14-5M treatment group was significantly higher than the placebo group (70.59% vs. 15.38%, P=0.0039), indicating that one-month administration of the G14-5M regimen was sufficient to eradicate H. pylori infection. The ingestion of Lactobacillus strains also ameliorated the gastrointestinal symptom rating scale scores, and the serum interleukin-8 concentrations of H. pylori-infected patients appeared to modulate the gut microbiota of patients. However, none of the Lactobacillus strains had a significant effect on general blood physiological characteristics, serum tumor necrosis factor α concentrations, or serum pepsinogen concentrations in the patients. CONCLUSION Three Lactobacillus strains significantly alleviate the gastrointestinal discomfort and the gastric inflammatory response of H. pylori-infected patients. The activity of probiotics in eradicating H. pyloriinfection may be species/strain specific.
Collapse
Affiliation(s)
- Shumin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Meiyi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jialin Wang
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
24
|
Zhang N, Peng Y, Zhao L, He P, Zhu J, Liu Y, Liu X, Liu X, Deng G, Zhang Z, Feng M. Integrated Analysis of Gut Microbiome and Lipid Metabolism in Mice Infected with Carbapenem-Resistant Enterobacteriaceae. Metabolites 2022; 12:metabo12100892. [PMID: 36295794 PMCID: PMC9609999 DOI: 10.3390/metabo12100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
The disturbance in gut microbiota composition and metabolism has been implicated in the process of pathogenic bacteria infection. However, the characteristics of the microbiota and the metabolic interaction of commensals−host during pathogen invasion remain more than vague. In this study, the potential associations of gut microbes with disturbed lipid metabolism in mice upon carbapenem-resistant Escherichia coli (CRE) infection were explored by the biochemical and multi-omics approaches including metagenomics, metabolomics and lipidomics, and then the key metabolites−reaction−enzyme−gene interaction network was constructed. Results showed that intestinal Erysipelotrichaceae family was strongly associated with the hepatic total cholesterol and HDL-cholesterol, as well as a few sera and fecal metabolites involved in lipid metabolism such as 24, 25-dihydrolanosterol. A high-coverage lipidomic analysis further demonstrated that a total of 529 lipid molecules was significantly enriched and 520 were depleted in the liver of mice infected with CRE. Among them, 35 lipid species showed high correlations (|r| > 0.8 and p < 0.05) with the Erysipelotrichaceae family, including phosphatidylglycerol (42:2), phosphatidylglycerol (42:3), phosphatidylglycerol (38:5), phosphatidylcholine (42:4), ceramide (d17:1/16:0), ceramide (d18:1/16:0) and diacylglycerol (20:2), with correlation coefficients higher than 0.9. In conclusion, the systematic multi-omics study improved the understanding of the complicated connection between the microbiota and the host during pathogen invasion, which thereby is expected to lead to the future discovery and establishment of novel control strategies for CRE infection.
Collapse
Affiliation(s)
- Ning Zhang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yuanyuan Peng
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Linjing Zhao
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Shanghai University of Engineering Science, Shanghai 201620, China
- Correspondence: ; Tel.: +86-21-6779-1214
| | - Peng He
- Minhang Hospital & School of Pharmacy, Fudan University, Shanghai 200433, China
- Shanghai Engineering Research Center of Immunotherapeutic, Shanghai 201203, China
| | - Jiamin Zhu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yumin Liu
- Instrumental Analysis Centre, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xijian Liu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xiaohui Liu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Guoying Deng
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Zhong Zhang
- Nursing Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Meiqing Feng
- Minhang Hospital & School of Pharmacy, Fudan University, Shanghai 200433, China
- Shanghai Engineering Research Center of Immunotherapeutic, Shanghai 201203, China
| |
Collapse
|
25
|
Nabavi-Rad A, Sadeghi A, Asadzadeh Aghdaei H, Yadegar A, Smith SM, Zali MR. The double-edged sword of probiotic supplementation on gut microbiota structure in Helicobacter pylori management. Gut Microbes 2022; 14:2108655. [PMID: 35951774 PMCID: PMC9373750 DOI: 10.1080/19490976.2022.2108655] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
As Helicobacter pylori management has become more challenging and less efficient over the last decade, the interest in innovative interventions is growing by the day. Probiotic co-supplementation to antibiotic therapies is reported in several studies, presenting a moderate reduction in drug-related side effects and a promotion in positive treatment outcomes. However, the significance of gut microbiota involvement in the competence of probiotic co-supplementation is emphasized by a few researchers, indicating the alteration in the host gastrointestinal microbiota following probiotic and drug uptake. Due to the lack of long-term follow-up studies to determine the efficiency of probiotic intervention in H. pylori eradication, and the delicate interaction of the gut microbiota with the host wellness, this review aims to discuss the gut microbiota alteration by probiotic co-supplementation in H. pylori management to predict the comprehensive effectiveness of probiotic oral administration.Abbreviations: acyl-CoA- acyl-coenzyme A; AMP- antimicrobial peptide; AMPK- AMP-activated protein kinase; AP-1- activator protein 1; BA- bile acid; BAR- bile acid receptor; BCAA- branched-chain amino acid; C2- acetate; C3- propionate; C4- butyrate; C5- valeric acid; CagA- Cytotoxin-associated gene A; cAMP- cyclic adenosine monophosphate; CD- Crohn's disease; CDI- C. difficile infection; COX-2- cyclooxygenase-2; DC- dendritic cell; EMT- epithelial-mesenchymal transition; FMO- flavin monooxygenases; FXR- farnesoid X receptor; GPBAR1- G-protein-coupled bile acid receptor 1; GPR4- G protein-coupled receptor 4; H2O2- hydrogen peroxide; HCC- hepatocellular carcinoma; HSC- hepatic stellate cell; IBD- inflammatory bowel disease; IBS- irritable bowel syndrome; IFN-γ- interferon-gamma; IgA immunoglobulin A; IL- interleukin; iNOS- induced nitric oxide synthase; JAK1- janus kinase 1; JAM-A- junctional adhesion molecule A; LAB- lactic acid bacteria; LPS- lipopolysaccharide; MALT- mucosa-associated lymphoid tissue; MAMP- microbe-associated molecular pattern; MCP-1- monocyte chemoattractant protein-1; MDR- multiple drug resistance; mTOR- mammalian target of rapamycin; MUC- mucin; NAFLD- nonalcoholic fatty liver disease; NF-κB- nuclear factor kappa B; NK- natural killer; NLRP3- NLR family pyrin domain containing 3; NOC- N-nitroso compounds; NOD- nucleotide-binding oligomerization domain; PICRUSt- phylogenetic investigation of communities by reconstruction of unobserved states; PRR- pattern recognition receptor; RA- retinoic acid; RNS- reactive nitrogen species; ROS- reactive oxygen species; rRNA- ribosomal RNA; SCFA- short-chain fatty acids; SDR- single drug resistance; SIgA- secretory immunoglobulin A; STAT3- signal transducer and activator of transcription 3; T1D- type 1 diabetes; T2D- type 2 diabetes; Th17- T helper 17; TLR- toll-like receptor; TMAO- trimethylamine N-oxide; TML- trimethyllysine; TNF-α- tumor necrosis factor-alpha; Tr1- type 1 regulatory T cell; Treg- regulatory T cell; UC- ulcerative colitis; VacA- Vacuolating toxin A.
Collapse
Affiliation(s)
- Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran,CONTACT Abbas Yadegar ; Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St., Velenjak, Tehran, Iran
| | - Sinéad Marian Smith
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland,Sinéad Marian Smith Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Fakharian F, Asgari B, Nabavi-Rad A, Sadeghi A, Soleimani N, Yadegar A, Zali MR. The interplay between Helicobacter pylori and the gut microbiota: An emerging driver influencing the immune system homeostasis and gastric carcinogenesis. Front Cell Infect Microbiol 2022; 12:953718. [PMID: 36046747 PMCID: PMC9423097 DOI: 10.3389/fcimb.2022.953718] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/25/2022] [Indexed: 01/06/2023] Open
Abstract
The human gut microbiota are critical for preserving the health status because they are required for digestion and nutrient acquisition, the development of the immune system, and energy metabolism. The gut microbial composition is greatly influenced by the colonization of the recalcitrant pathogen Helicobacter pylori (H. pylori) and the conventional antibiotic regimens that follow. H. pylori is considered to be the main microorganism in gastric carcinogenesis, and it appears to be required for the early stages of the process. However, a non-H. pylori microbiota profile is also suggested, primarily in the later stages of tumorigenesis. On the other hand, specific groups of gut microbes may produce beneficial byproducts such as short-chain fatty acids (acetate, butyrate, and propionate) that can modulate inflammation and tumorigenesis pathways. In this review, we aim to present how H. pylori influences the population of the gut microbiota to modify the host immunity and trigger the development of gastric carcinogenesis. We will also highlight the effect of the gut microbiota on immunotherapeutic approaches such as immune checkpoint blockade in cancer treatment to present a perspective for further development of innovative therapeutic paradigms to prevent the progression of H. pylori-induced stomach cancer.
Collapse
Affiliation(s)
- Farzaneh Fakharian
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnoush Asgari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Soleimani
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Abbas Yadegar, ;
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Chen X, Wang N, Wang J, Liao B, Cheng L, Ren B. The interactions between oral-gut axis microbiota and Helicobacter pylori. Front Cell Infect Microbiol 2022; 12:914418. [PMID: 35992177 PMCID: PMC9381925 DOI: 10.3389/fcimb.2022.914418] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
In the human body, each microbial habitat exhibits a different microbial population pattern, and these distinctive microflorae are highly related to the development of diseases. The microbial interactions from host different niches are becoming crucial regulators to shape the microbiota and their physiological or pathological functions. The oral cavity and gut are the most complex and interdependent microbial habitats. Helicobacter pylori is one of the most important pathogens from digestive tract, especially the stomach, due to its direct relationships with many gastric diseases including gastric cancer. H. pylori infections can destroy the normal gastric environment and make the stomach a livable channel to enhance the microbial interactions between oral cavity and gut, thus reshaping the oral and gut microbiomes. H. pylori can be also detected in the oral and gut, while the interaction between the oral-gut axis microbiota and H. pylori plays a major role in H. pylori’s colonization, infection, and pathogenicity. Both the infection and eradication of H. pylori and its interaction with oral-gut axis microbiota can alter the balance of the microecology of the oral-gut axis, which can affect the occurrence and progress of related diseases. The shift of oral-gut axis microbiota and their interactions with H. pylori maybe potential targets for H. pylori infectious diagnosis and treatment.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Nanxi Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, China
| | - Jiannan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Lei Cheng, ; Biao Ren,
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Lei Cheng, ; Biao Ren,
| |
Collapse
|
28
|
He C, Peng C, Xu X, Li N, Ouyang Y, Zhu Y, Lu N. Probiotics mitigate Helicobacter pylori-induced gastric inflammation and premalignant lesions in INS-GAS mice with the modulation of gastrointestinal microbiota. Helicobacter 2022; 27:e12898. [PMID: 35531615 DOI: 10.1111/hel.12898] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Dysbiosis of gastric microbiota including Helicobacter pylori (H. pylori) infection is associated with the development of stomach cancer. Probiotics have been shown to attenuate H. pylori-induced gastritis, although their role in cancer prevention remains unclear. Thus, we aimed to explore the effects of probiotics on H. pylori-induced carcinogenesis and the alterations of gastrointestinal microbiota. METHODS Male INS-GAS mice were randomly allocated to H. pylori-infected and non-infected groups. After 4 weeks, probiotic combination (containing Lactobacillus salivarius and Lactobacillus rhamnosus) was administered in drinking water for 12 weeks. Stomachs were collected for RNA-Sequencing and the differentially expressed genes were validated using RT profiler PCR array. 16S rRNA gene sequencing was performed to assess the alterations of gastrointestinal microbiota. RESULTS Probiotics significantly alleviate H. pylori-induced gastric pathology, including reduced infiltration of inflammation and lower incidence of precancerous lesions. RNA-Sequencing results showed that probiotics treatment decreased expressions of genes involved in pro-inflammatory pathways, such as NF-κB, IL-17, and TNF signaling pathway. Of note, probiotics did not suppress the growth of H. pylori, but dramatically reshaped the structure of both gastric and gut microbiota. The microbial diversity was increased in H. pylori-infected group after probiotics treatment. While gastric cancer-associated genera Lactobacillus and Staphylococcus were enriched in the stomach of H. pylori-infected group, the beneficial short-chain fatty acids-producing bacteria, including Bacteroides, Alloprevotella, and Oscellibacter, were more abundant in mice treated with probiotics. Additionally, probiotics restored the H. pylori-induced reduction of anti-inflammatory bacterium Faecalibaculum in the gut. CONCLUSIONS Probiotics therapy can protect against H. pylori-associated carcinogenesis probably through remodeling gastrointestinal microbiota, which in turn prevent host cells from malignant transformation.
Collapse
Affiliation(s)
- Cong He
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chao Peng
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xinbo Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Nianshuang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yaobin Ouyang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
29
|
Xiao W, Ma ZS. Influences of Helicobacter pylori infection on diversity, heterogeneity, and composition of human gastric microbiomes across stages of gastric cancer development. Helicobacter 2022; 27:e12899. [PMID: 35678078 DOI: 10.1111/hel.12899] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/09/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND About a half of the world's population is infected with Helicobacter pylori (H. pylori), but only 1%-3% of them develop gastric cancer. As a primary risk factor for gastric cancer, the relationship between H. pylori infection and gastric microbiome has been a focus in recent years. MATERIALS AND METHODS We reanalyze 11 human gastric microbiome datasets with or without H. pylori, covering the healthy control (HC) and four disease stages (chronic gastritis (CG), atrophic gastritis (AG), intestinal metaplasia (IM), and gastric cancer (GC)) of gastric cancer development to quantitatively compare the influences of the H. pylori infection and disease stages on the diversity, heterogeneity, and composition of gastric microbiome. Four medical ecology approaches including (i) diversity analysis with Hill numbers, (ii) heterogeneity analysis with Taylor's power law extensions (TPLE), (iii) diversity scaling analysis with diversity-area relationship (DAR) model, and (iv) shared species analysis were applied to fulfill the data reanalysis. RESULTS (i) The influences of H. pylori infection on the species diversity, spatial heterogeneity, and potential diversity of gastric microbiome seem to be more prevalent than the influences of disease stages during gastric cancer development. (ii) The influences of H. pyloriinfection on diversity, heterogeneity, and composition of gastric microbiomes in HC, CG, IM, and GC stages appear more prevalent than those in AG stage. CONCLUSION Our study confirmed the impact of H. pylori infection on human gastric microbiomes: The influences of H. pylori infection on the diversity, heterogeneity, and composition of gastric microbiomes appear to be disease-stage dependent.
Collapse
Affiliation(s)
- Wanmeng Xiao
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China
| | - Zhanshan Sam Ma
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
30
|
Oster P, Vaillant L, McMillan B, Velin D. The Efficacy of Cancer Immunotherapies Is Compromised by Helicobacter pylori Infection. Front Immunol 2022; 13:899161. [PMID: 35677057 PMCID: PMC9168074 DOI: 10.3389/fimmu.2022.899161] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori infects the gastric mucosa of a large number of humans. Although asymptomatic in the vast majority of cases, H pylori infection can lead to the development of peptic ulcers gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. Using a variety of mechanisms, H pylori locally suppresses the function of the host immune system to establish chronic infection. Systemic immunomodulation has been observed in both clinical and pre-clinical studies, which have demonstrated that H pylori infection is associated with reduced incidence of inflammatory diseases, such as asthma and Crohn’s disease. The introduction of immunotherapies in the arsenal of anti-cancer drugs has revealed a new facet of H pylori-induced immune suppression. In this review, we will describe the intimate interactions between H pylori and its host, and formulate hypothtyeses describing the detrimental impact of H pylori infection on the efficacy of cancer immunotherapies.
Collapse
|
31
|
Nath AN, Retnakumar RJ, Francis A, Chhetri P, Thapa N, Chattopadhyay S. Peptic Ulcer and Gastric Cancer: Is It All in the Complex Host-Microbiome Interplay That Is Encoded in the Genomes of "Us" and "Them"? Front Microbiol 2022; 13:835313. [PMID: 35547123 PMCID: PMC9083406 DOI: 10.3389/fmicb.2022.835313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
It is increasingly being recognized that severe gastroduodenal diseases such as peptic ulcer and gastric cancer are not just the outcomes of Helicobacter pylori infection in the stomach. Rather, both diseases develop and progress due to the perfect storms created by a combination of multiple factors such as the expression of different H. pylori virulence proteins, consequent human immune responses, and dysbiosis in gastrointestinal microbiomes. In this mini review, we have discussed how the genomes of H. pylori and other gastrointestinal microbes as well as the genomes of different human populations encode complex and variable virulome–immunome interplay, which influences gastroduodenal health. The heterogeneities that are encrypted in the genomes of different human populations and in the genomes of their respective resident microbes partly explain the inconsistencies in clinical outcomes among the H. pylori-infected people.
Collapse
Affiliation(s)
- Angitha N Nath
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - R J Retnakumar
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, India.,Manipal Academy of Higher Education, Manipal, India
| | - Ashik Francis
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Prakash Chhetri
- Department of Zoology, Biotech Hub, Nar Bahadur Bhandari Degree College, Tadong, India
| | - Namrata Thapa
- Department of Zoology, Biotech Hub, Nar Bahadur Bhandari Degree College, Tadong, India
| | | |
Collapse
|
32
|
Bets VD, Achasova KM, Borisova MA, Kozhevnikova EN, Litvinova EA. Role of Mucin 2 Glycoprotein and L-Fucose in Interaction of Immunity and Microbiome within the Experimental Model of Inflammatory Bowel Disease. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:301-318. [PMID: 35527372 DOI: 10.1134/s0006297922040010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Many factors underlie the development of inflammatory bowel disease (IBD) in humans. In particular, imbalance of microbiota and thinning of the mucosal layer in the large intestine play a huge role. Pathogenic microorganisms also exacerbate the course of diseases. In this research the role of mucin 2 deficiency in the formation of intestinal microflora in the experimental model using the Muc2 gene knockout mice in the presence of Helicobacter spp. was investigated. Also, restorative and anti-inflammatory effect of the dietary L-fucose in the Muc2-/- mice on microflora and immunity was evaluated. For this purpose, bacterial diversity in feces was studied in the animals before and after antibiotic therapy and role of the dietary L-fucose in their recovery was assessed. To determine the effect of bacterial imbalance and fucose on the immune system, mRNA levels of the genes encoding pro-inflammatory cytokines (Tnf, Il1a, Il1b, Il6) and transcription factors of T cells (Foxp3 - Treg, Rorc - Th17, Tbx21 - Th1) were determined in the colon tissue of the Muc2-/- mice. Significant elimination of bacteria due to antibiotic therapy caused decrease of the fucose levels in the intestine and facilitated reduction of the regulatory T cell transcription factor (Foxp3). When the dietary L-fucose was added to antibiotics, the level of bacterial DNA of Bacteroides spp. in the feces of the Muc2-/- mice was partially restored. T regulatory cells are involved in the regulation of inflammation in the Muc2-/- mice. Antibiotics reduced the number of regulatory T cell but did not decrease the inflammatory response to infection. Fucose, as a component of mucin 2, helped to maintain the level of Bacteroides spp. during antibiotic therapy of the Muc2-/- mice and restored biochemical parameters, but did not affect the inflammatory response.
Collapse
Affiliation(s)
- Victoria D Bets
- Novosibirsk State Agrarian University, Novosibirsk, 630039, Russia
| | - Kseniya M Achasova
- Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia.,Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Mariya A Borisova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Elena N Kozhevnikova
- Novosibirsk State Agrarian University, Novosibirsk, 630039, Russia.,Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia.,Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | |
Collapse
|
33
|
Oster P, Vaillant L, Riva E, McMillan B, Begka C, Truntzer C, Richard C, Leblond MM, Messaoudene M, Machremi E, Limagne E, Ghiringhelli F, Routy B, Verdeil G, Velin D. Helicobacter pylori infection has a detrimental impact on the efficacy of cancer immunotherapies. Gut 2022; 71:457-466. [PMID: 34253574 PMCID: PMC8862014 DOI: 10.1136/gutjnl-2020-323392] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/24/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE In this study, we determined whether Helicobacter pylori (H. pylori) infection dampens the efficacy of cancer immunotherapies. DESIGN Using mouse models, we evaluated whether immune checkpoint inhibitors or vaccine-based immunotherapies are effective in reducing tumour volumes of H. pylori-infected mice. In humans, we evaluated the correlation between H. pylori seropositivity and the efficacy of the programmed cell death protein 1 (PD-1) blockade therapy in patients with non-small-cell lung cancer (NSCLC). RESULTS In mice engrafted with MC38 colon adenocarcinoma or B16-OVA melanoma cells, the tumour volumes of non-infected mice undergoing anticytotoxic T-lymphocyte-associated protein 4 and/or programmed death ligand 1 or anti-cancer vaccine treatments were significantly smaller than those of infected mice. We observed a decreased number and activation status of tumour-specific CD8+ T cells in the tumours of infected mice treated with cancer immunotherapies independent of the gut microbiome composition. Additionally, by performing an in vitro co-culture assay, we observed that dendritic cells of infected mice promote lower tumour-specific CD8+ T cell proliferation. We performed retrospective human clinical studies in two independent cohorts. In the Dijon cohort, H. pylori seropositivity was found to be associated with a decreased NSCLC patient survival on anti-PD-1 therapy. The survival median for H. pylori seropositive patients was 6.7 months compared with 15.4 months for seronegative patients (p=0.001). Additionally, in the Montreal cohort, H. pylori seropositivity was found to be associated with an apparent decrease of NSCLC patient progression-free survival on anti-PD-1 therapy. CONCLUSION Our study unveils for the first time that the stomach microbiota affects the response to cancer immunotherapies and that H. pylori serology would be a powerful tool to personalize cancer immunotherapy treatment.
Collapse
Affiliation(s)
- Paul Oster
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Laurie Vaillant
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Erika Riva
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Brynn McMillan
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Christina Begka
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Caroline Truntzer
- Department of Medical Oncology, Centre Georges François Leclerc, Dijon, France
| | - Corentin Richard
- Research Centre for the University of Montréal (CRCHUM), Hematology-Oncology Division, Department of Medicine, University of Montreal Healthcare Centre (CHUM), Montreal, Quebec, Canada
| | - Marine M Leblond
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Meriem Messaoudene
- Research Centre for the University of Montréal (CRCHUM), Hematology-Oncology Division, Department of Medicine, University of Montreal Healthcare Centre (CHUM), Montreal, Quebec, Canada
| | - Elisavet Machremi
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Emeric Limagne
- Department of Medical Oncology, Centre Georges François Leclerc, Dijon, France
| | | | - Bertrand Routy
- Research Centre for the University of Montréal (CRCHUM), Hematology-Oncology Division, Department of Medicine, University of Montreal Healthcare Centre (CHUM), Montreal, Quebec, Canada
| | - Gregory Verdeil
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Dominique Velin
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
34
|
Helicobacter pylori may participate in the development of inflammatory bowel disease by modulating the intestinal microbiota. Chin Med J (Engl) 2022; 135:634-638. [PMID: 35234697 PMCID: PMC9276318 DOI: 10.1097/cm9.0000000000002008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 12/04/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a non-specific inflammatory disease of the gastrointestinal (GI) tract that is generally accepted to be closely related to intestinal dysbiosis in the host. GI infections contribute a key role in the pathogenesis of IBD; however, although the results of recent clinical studies have revealed an inverse correlation between Helicobacter pylori (H. pylori) infection and IBD, the exact mechanism underlying the development of IBD remains unclear. H. pylori, as a star microorganism, has been a focus for decades, and recent preclinical and real-world studies have demonstrated that H. pylori not only affects the changes in the gastric microbiota and microenvironment but also influences the intestinal microbiota, indicating a potential correlation with IBD. Detailed analysis revealed that H. pylori infection increased the diversity of the intestinal microbiota, reduced the abundance of Bacteroidetes, augmented the abundance of Firmicutes, and produced short-chain fatty acid-producing bacteria such as Akkermansia. All these factors may decrease vulnerability to IBD. Further studies investigating the H. pylori-intestinal microbiota metabolite axis should be performed to understand the mechanism underlying the development of IBD.
Collapse
|
35
|
Gobert AP, Wilson KT. Induction and Regulation of the Innate Immune Response in Helicobacter pylori Infection. Cell Mol Gastroenterol Hepatol 2022; 13:1347-1363. [PMID: 35124288 PMCID: PMC8933844 DOI: 10.1016/j.jcmgh.2022.01.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/30/2022]
Abstract
Gastric cancer (GC) is the fifth most common cancer and the fourth most common cause of cancer-related death worldwide. The intestinal type of GC progresses from acute to chronic gastritis, multifocal atrophic gastritis, intestinal metaplasia, dysplasia, and carcinoma. Infection of the stomach by Helicobacter pylori, a Gram-negative bacterium that infects approximately 50% of the world's population, is the causal determinant that initiates the gastric inflammation and then disease progression. In this context, the induction of the innate immune response of gastric epithelial cells and myeloid cells by H. pylori effectors plays a critical role in the outcome of the infection. However, only 1% to 3% of infected patients develop gastric adenocarcinoma, emphasizing that other mechanisms regulate the localized non-specific response, including the gastric microbiota and genetic factors. This review summarizes studies describing the factors that induce and regulate the mucosal innate immune response during H. pylori infection.
Collapse
Affiliation(s)
- Alain P Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Nashville, Tennessee; Program in Cancer Biology, Nashville, Tennessee.
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Nashville, Tennessee; Program in Cancer Biology, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee.
| |
Collapse
|
36
|
Gasparetto M, Strisciuglio C, Assa A, Gerasimidis K, Giachero F, Novak J, Robinson P, Tél B, Zilbauer M, Jenke A. Making Research Flourish Through ESPGHAN: A Position Paper From the ESPGHAN Special Interest Group for Basic and Translational Research. J Pediatr Gastroenterol Nutr 2022; 74:301-312. [PMID: 34310437 DOI: 10.1097/mpg.0000000000003250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
ABSTRACT Recent research breakthroughs have emerged from applied basic research throughout all scientific areas, including adult and paediatric gastroenterology, hepatology and nutrition (PGHAN). The research landscape within the European Society of Paediatric Gastroenterology and Nutrition (ESPGHAN) is also inevitably changing from clinical research to studies involving applied laboratory research. This position paper aims to depict the current status quo of basic science and translational research within ESPGHAN, and to delineate how the society could invest in research in the present and future time. The paper also explores which research areas in the field of PGHAN represent the current and future priorities, and what type of support is needed across the ESPGHAN working groups (WGs) and special interest groups (SIGs) to fulfil their research goals.
Collapse
Affiliation(s)
- Marco Gasparetto
- Royal London Children's Hospital, Barts Health NHS Trust, London, UK
| | - Caterina Strisciuglio
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Amit Assa
- Department of Pediatrics, Assuta Ashdod University Hospital, Ashdod, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Federica Giachero
- Clinical, Molecular, Genetics and Epigenetics Faculty of Health, Center for Biochemical Education and Research (ZBAF), Witten-Herdecke University, Witten; Evangelisches Krankenhaus Oberhausen, Children's Hospital, Paediatrics, Oberhausen, Germany
| | - Jan Novak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Philip Robinson
- Wellcome Sanger Institute, Cambridge; Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Bálint Tél
- Semmelweis University, 1st Department of Paediatrics, Budapest, Hungary
| | - Matthias Zilbauer
- University Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Andreas Jenke
- Children's Hospital Kassel, Witten/Herdecke University, Kassel, Germany
| |
Collapse
|
37
|
Jiang F, Guo CG, Leung WK. Letter: the hidden reasons of long-term risk of upper gastrointestinal bleeding after Helicobacter pylori eradication-authors' reply. Aliment Pharmacol Ther 2022; 55:374-375. [PMID: 35040170 DOI: 10.1111/apt.16746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Fang Jiang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chuan-Guo Guo
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wai K Leung
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
38
|
Isaeva G, Isaeva R. Probiotics in the treatment of Helicobacter pylori infection: reality and perspective. Minerva Gastroenterol (Torino) 2022; 68:277-288. [PMID: 35001603 DOI: 10.23736/s2724-5985.21.02926-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Helicobacter pylori (H. pylori) infection is one of the most common in the world today, associated with the development of acute or chronic inflammatory diseases of the gastroduodenal tract. In order to eradicate the pathogen, various antibacterial therapy regimens have been proposed, based on the use of several chemotherapeutic drugs and a proton pump inhibitor (PPI). However, recent studies indicate a decrease in antibiotic effectiveness due to both the growth rate of H. pylori resistance and side effects, often due to the development of dysbiosis. One of the promising areas of investigation is the treatment with probiotic therapy of helicobacteriosis. The use of probiotics, in the context of H. pylori infection, has two main reasons. The first is related to the use of certain probiotics to reduce the frequency of undesirable gastrointestinal consequences during H. pylori eradication therapy. The second is associated with the antagonistic effect of individual probiotics on H. pylori and the potentiation of the eradication effect. The purpose of this review was to summarize the latest data on the use of probiotics to enhance H. pylori eradication and to restore the gastrointestinal microbiota. Many unresolved questions, about the choice of the specific composition of the probiotic cocktail, dosage, duration of therapy, mechanisms of the antimicrobial action of probiotics, as well as possible negative consequences of such therapy, remain.
Collapse
Affiliation(s)
- Guzel Isaeva
- Kazan Research Institute of Epidemiology and Microbiology, Kazan, Russian Federation - .,Microbiology Department, Kazan State Medical University, Kazan, Russian Federation -
| | - Regina Isaeva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| |
Collapse
|
39
|
Retnakumar R, Nath AN, Nair GB, Chattopadhyay S. Gastrointestinal microbiome in the context of Helicobacter pylori infection in stomach and gastroduodenal diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:53-95. [DOI: 10.1016/bs.pmbts.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Liu D, Chen S, Gou Y, Yu W, Zhou H, Zhang R, Wang J, Ye F, Liu Y, Sun B, Zhang K. Gastrointestinal Microbiota Changes in Patients With Gastric Precancerous Lesions. Front Cell Infect Microbiol 2021; 11:749207. [PMID: 34956928 PMCID: PMC8695999 DOI: 10.3389/fcimb.2021.749207] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
Background Gastric microbiota may be involved in gastric cancer. The relationship between gastrointestinal microbes and the risk of gastric cancer is unclear. This study aimed to explore the gastric and intestinal bacteria associated with gastritis and gastric precancerous lesions. We conducted a case-control study by performing 16S rRNA gene analysis of gastric biopsies, juices, and stool samples from 148 cases with gastritis or gastric precancerous lesions from Anhui and neighboring provinces, China. And we validated our findings in public datasets. Results Analysis of microbial sequences revealed decreased bacterial alpha diversity in gastric bacteria during the progression of gastritis. Helicobacter pylori was the main contributor to the decreased microbial composition and diversity in the gastric mucosa and had little influence on the microbiota of gastric juice and feces. The gastric mucosal genera Gemella, Veillonella, Streptococcus, Actinobacillus, and Hemophilus had the higher degree of centrality across the progression of gastric precancerous lesions. And Acinetobacter may contribute to the occurrence of intraepithelial neoplasia. In addition, the microbial model of H. pylori-positive gastric biopsies and feces showed value in the prediction of gastric precancerous lesions. Conclusions This study identified associations between gastric precancerous lesions and gastric microbiota, as well as the changes in intestinal microbiota, and explored their values in the prediction of gastric precancerous lesions.
Collapse
Affiliation(s)
- Dehua Liu
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Si Chen
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yawen Gou
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenyong Yu
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hangcheng Zhou
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Rutong Zhang
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jinghao Wang
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fei Ye
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yingling Liu
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Baolin Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Kaiguang Zhang
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
41
|
Wen J, Lau HCH, Peppelenbosch M, Yu J. Gastric Microbiota beyond H. pylori: An Emerging Critical Character in Gastric Carcinogenesis. Biomedicines 2021; 9:1680. [PMID: 34829909 PMCID: PMC8615612 DOI: 10.3390/biomedicines9111680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
Gastric cancer (GC) is one of the global leading causes of cancer death. The association between Helicobacter pylori, which is a predominant risk factor for GC, with GC development has been well-studied. Recently, accumulating evidence has demonstrated the presence of a large population of microorganisms other than H. pylori in the human stomach. Existing sequencing studies have revealed microbial compositional and functional alterations in patients with GC and highlighted a progressive shift in the gastric microbiota in gastric carcinogenesis with marked enrichments of oral or intestinal commensals. Moreover, using a combination of gastric bacterial signatures, GC patients could be significantly distinguished from patients with gastritis. These findings, therefore, emphasize the importance of a collective microbial community in gastric carcinogenesis. Here, we provide an overview of non-H. pylori gastric microbes in gastric carcinogenesis. The molecular mechanisms of gastric microbes-related carcinogenesis and potential clinical applications of gastric microbiota as biomarkers of GC are also explored.
Collapse
Affiliation(s)
- Jun Wen
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; (J.W.); (H.C.-H.L.)
| | - Harry Cheuk-Hay Lau
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; (J.W.); (H.C.-H.L.)
| | - Maikel Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The Netherlands;
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; (J.W.); (H.C.-H.L.)
- Institute of Digestive Disease, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| |
Collapse
|
42
|
Helicobacter pylori and Respiratory Diseases: 2021 Update. Microorganisms 2021; 9:microorganisms9102033. [PMID: 34683354 PMCID: PMC8537719 DOI: 10.3390/microorganisms9102033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium involved in the development of gastritis, peptic ulcer disease, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue. Unexplained iron deficiency anemia, idiopathic thrombocytopenic purpura and vitamin B12 deficiency have also been related to H. pylori infection, whereas for other extra-gastric diseases, the debate is still open. In this review, we evaluate and discuss the potential involvement of H. pylori infection in the pathogenesis of several respiratory diseases. A MEDLINE search of all studies published in English from 1965 to 2021 was carried out. Controversial findings have been reported in patients with bronchial asthma, chronic obstructive pulmonary disease, bronchiectasis, lung cancer, tuberculosis, cystic fibrosis, and sarcoidosis. Most of the available literature is concerned with case-control studies based on seroprevalence, with a small sample size and low consideration of confounders, which represents a potential issue. So far, there is no clear evidence of a causal association between H. pylori infection and respiratory diseases, and larger studies with appropriate epidemiological design are required.
Collapse
|
43
|
Öztekin M, Yılmaz B, Ağagündüz D, Capasso R. Overview of Helicobacter pylori Infection: Clinical Features, Treatment, and Nutritional Aspects. Diseases 2021; 9:66. [PMID: 34698140 PMCID: PMC8544542 DOI: 10.3390/diseases9040066] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/11/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a 0.5-1 µm wide, 2-4 µm long, short helical, S-shaped Gram-negative microorganism. It is mostly found in the pyloric region of the stomach and causes chronic gastric infection. It is estimated that these bacteria infect more than half of the world's population. The mode of transmission and infection of H. pylori is still not known exactly, but the faecal-oral and oral-oral routes via water or food consumption are thought to be a very common cause. In the last three decades, research interest has increased regarding the pathogenicity, microbial activity, genetic predisposition, and clinical treatments to understand the severity of gastric atrophy and gastric cancer caused by H. pylori. Studies have suggested a relationship between H. pylori infection and malabsorption of essential micronutrients, and noted that H. pylori infection may affect the prevalence of malnutrition in some risk groups. On the other hand, dietary factors may play a considerably important role in H. pylori infection, and it has been reported that an adequate and balanced diet, especially high fruit and vegetable consumption and low processed salty food consumption, has a protective effect against the outcomes of H. pylori infection. The present review provides an overview of all aspects of H. pylori infection, such as clinical features, treatment, and nutrition.
Collapse
Affiliation(s)
- Merve Öztekin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey; (M.Ö.); (B.Y.)
| | - Birsen Yılmaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey; (M.Ö.); (B.Y.)
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Çukurova University, Sarıçam, Adana 01330, Turkey
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey; (M.Ö.); (B.Y.)
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
44
|
White B, Sterrett JD, Grigoryan Z, Lally L, Heinze JD, Alikhan H, Lowry CA, Perez LJ, DeSipio J, Phadtare S. Characterization of gut microbiome and metabolome in Helicobacter pylori patients in an underprivileged community in the United States. World J Gastroenterol 2021; 27:5575-5594. [PMID: 34588753 PMCID: PMC8433610 DOI: 10.3748/wjg.v27.i33.5575] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/02/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori), a bacterium that infects approximately half of the world’s population, is associated with various gastrointestinal diseases, including peptic ulcers, non-ulcer dyspepsia, gastric adenocarcinoma, and gastric lymphoma. As the burden of antibiotic resistance increases, the need for new adjunct therapies designed to facilitate H. pylori eradication and reduce negative distal outcomes associated with infection has become more pressing. Characterization of the interactions between H. pylori, the fecal microbiome, and fecal fatty acid metabolism, as well as the mechanisms underlying these interactions, may offer new therapeutic approaches.
AIM To characterize the gut microbiome and metabolome in H. pylori patients in a socioeconomically challenged and underprivileged inner-city community.
METHODS Stool samples from 19 H. pylori patients and 16 control subjects were analyzed. 16S rRNA gene sequencing was performed on normalized pooled amplicons using the Illumina MiSeq System using a MiSeq reagent kit v2. Alpha and beta diversity analyses were performed in QIIME 2. Non-targeted fatty acid analysis of the samples was carried out using gas chromatography-mass spectrometry, which measures the total content of 30 fatty acids in stool after conversion into their corresponding fatty acid methyl esters. Multi-dimensional scaling (MDS) was performed on Bray-Curtis distance matrices created from both the metabolomics and microbiome datasets and a Procrustes test was performed on the metabolomics and microbiome MDS coordinates.
RESULTS Fecal microbiome analysis showed that alpha diversity was lowest in H. pylori patients over 40 years of age compared to control subjects of similar age group. Beta diversity analysis of the samples revealed significant differences in microbial community structure between H. pylori patients and control subjects across all ages. Thirty-eight and six taxa had lower and higher relative abundance in H. pylori patients, respectively. Taxa that were enriched in H. pylori patients included Atopobium, Gemellaceae, Micrococcaceae, Gemellales and Rothia (R. mucilaginosa). Notably, relative abundance of the phylum Verrucomicrobia was decreased in H. pylori patients compared to control subjects. Procrustes analysis showed a significant relationship between the microbiome and metabolome datasets. Stool samples from H. pylori patients showed increases in several fatty acids including the polyunsaturated fatty acids (PUFAs) 22:4n6, 22:5n3, 20:3n6 and 22:2n6, while decreases were noted in other fatty acids including the PUFA 18:3n6. The pattern of changes in fatty acid concentration correlated to the Bacteroidetes:Firmicutes ratio determined by 16S rRNA gene analysis.
CONCLUSION This exploratory study demonstrates H. pylori-associated changes to the fecal microbiome and fecal fatty acid metabolism. Such changes may have implications for improving eradication rates and minimizing associated negative distal outcomes.
Collapse
Affiliation(s)
- Brian White
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, United States
| | - John D Sterrett
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Zoya Grigoryan
- Department of Internal Medicine, Lenox Hill Hospital, NYC, NY 10075, United States
| | - Lauren Lally
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, United States
| | - Jared D Heinze
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Hyder Alikhan
- Department of Biological Sciences, Rowan University, Glassboro, NJ 08028, United States
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Lark J Perez
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, United States
| | - Joshua DeSipio
- Department of Gastroenterology, Cooper University Hospital, Camden, NJ 08103, United States
| | - Sangita Phadtare
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, United States
| |
Collapse
|
45
|
Alexander SM, Retnakumar RJ, Chouhan D, Devi TNB, Dharmaseelan S, Devadas K, Thapa N, Tamang JP, Lamtha SC, Chattopadhyay S. Helicobacter pylori in Human Stomach: The Inconsistencies in Clinical Outcomes and the Probable Causes. Front Microbiol 2021; 12:713955. [PMID: 34484153 PMCID: PMC8416104 DOI: 10.3389/fmicb.2021.713955] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Pathogenic potentials of the gastric pathogen, Helicobacter pylori, have been proposed, evaluated, and confirmed by many laboratories for nearly 4 decades since its serendipitous discovery in 1983 by Barry James Marshall and John Robin Warren. Helicobacter pylori is the first bacterium to be categorized as a definite carcinogen by the International Agency for Research on Cancer (IARC) of the World Health Organization (WHO). Half of the world’s population carries H. pylori, which may be responsible for severe gastric diseases like peptic ulcer and gastric cancer. These two gastric diseases take more than a million lives every year. However, the role of H. pylori as sole pathogen in gastric diseases is heavily debated and remained controversial. It is still not convincingly understood, why most (80–90%) H. pylori infected individuals remain asymptomatic, while some (10–20%) develop such severe gastric diseases. Moreover, several reports indicated that colonization of H. pylori has positive and negative associations with several other gastrointestinal (GI) and non-GI diseases. In this review, we have discussed the state of the art knowledge on “H. pylori factors” and several “other factors,” which have been claimed to have links with severe gastric and duodenal diseases. We conclude that H. pylori infection alone does not satisfy the “necessary and sufficient” condition for developing aggressive clinical outcomes. Rather, the cumulative effect of a number of factors like the virulence proteins of H. pylori, local geography and climate, genetic background and immunity of the host, gastric and intestinal microbiota, and dietary habit and history of medicine usage together determine whether the H. pylori infected person will remain asymptomatic or will develop one of the severe gastric diseases.
Collapse
Affiliation(s)
| | | | - Deepak Chouhan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, India.,Centre for Doctoral Studies, Manipal Academy of Higher Education, Manipal, India
| | | | | | - Krishnadas Devadas
- Department of Gastroenterology, Government Medical College, Trivandrum, India
| | - Namrata Thapa
- Biotech Hub, Department of Zoology, Nar Bahadur Bhandari Degree College, Gangtok, India
| | | | | | | |
Collapse
|
46
|
Varon C, Azzi-Martin L, Khalid S, Seeneevassen L, Ménard A, Spuul P. Helicobacters and cancer, not only gastric cancer? Semin Cancer Biol 2021; 86:1138-1154. [PMID: 34425210 DOI: 10.1016/j.semcancer.2021.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
The Helicobacter genus actually comprises 46 validly published species divided into two main clades: gastric and enterohepatic Helicobacters. These bacteria colonize alternative sites of the digestive system in animals and humans, and contribute to inflammation and cancers. In humans, Helicobacter infection is mainly related to H. pylori, a gastric pathogen infecting more than half of the world's population, leading to chronic inflammation of the gastric mucosa that can evolve into two types of gastric cancers: gastric adenocarcinomas and gastric MALT lymphoma. In addition, H. pylori but also non-H. pylori Helicobacter infection has been associated with many extra-gastric malignancies. This review focuses on H. pylori and its role in gastric cancers and extra-gastric diseases, as well as malignancies induced by non-H. pylori Helicobacters. Their different virulence factors and their involvement in carcinogenesis is discussed. This review highlights the importance of both gastric and enterohepatic Helicobacters in gastrointestinal and liver cancers.
Collapse
Affiliation(s)
- Christine Varon
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Lamia Azzi-Martin
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France; Univ. Bordeaux, UFR des Sciences Médicales, Bordeaux, France
| | - Sadia Khalid
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia RD 15, 12618, Tallinn, Estonia
| | - Lornella Seeneevassen
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Armelle Ménard
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Pirjo Spuul
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia RD 15, 12618, Tallinn, Estonia.
| |
Collapse
|
47
|
Miller AK, Williams SM. Helicobacter pylori infection causes both protective and deleterious effects in human health and disease. Genes Immun 2021; 22:218-226. [PMID: 34244666 PMCID: PMC8390445 DOI: 10.1038/s41435-021-00146-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Infection with Helicobacter pylori (H. pylori) is necessary but not sufficient for the development of gastric cancer, the third leading cause of cancer death globally. H. pylori infection affects over half of people globally; however, it does not affect populations uniformly. H. pylori infection rates are declining in western industrialized countries but are plateauing in developing and newly industrialized countries where gastric cancer is most prevalent. Despite H. pylori infection being the primary causative agent for gastric cancer, H. pylori infection can also cause other effects, detrimental or beneficial, throughout an individual's life, with the beneficial effects often being seen in childhood and the deleterious effects in adulthood. H. pylori is an ancient bacterium and its likelihood of affecting disease or health is dependent on both human and bacterial genetics that have co-evolved over millennia. In this review, we focus on the impact of infection and its genetic bases in different populations and diseases throughout an individual's lifespan, highlighting the benefits of individualized treatment and argue that universal eradication of H. pylori in its host may cause more harm than good for those infected with H. pylori.
Collapse
Affiliation(s)
- Anna K Miller
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH
| | - Scott M Williams
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH,Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
48
|
Effect of Helicobacter pylori and Helminth Coinfection on the Immune Response to Mycobacterium tuberculosis. Curr Microbiol 2021; 78:3351-3371. [PMID: 34251513 DOI: 10.1007/s00284-021-02604-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023]
Abstract
Tuberculosis remains one of the main causes of morbidity and mortality worldwide despite decades of efforts to eradicate the disease. Although the immune response controls the infection in most infected individuals (90%), the ability of the bacterium to persist throughout the host's life leads to a risk of reactivation. Underlying conditions including human immunodeficiency virus (HIV) infection, organ transplantation, and immunosuppressive therapies are considered risk factors for progression to active disease. However, many individuals infected with Mycobacterium tuberculosis may develop clinical disease in the absence of underlying immunosuppression. It is also possible that unknown conditions may drive the progression to disease. The human microbiota can be an important modulator of the immune system; it can not only trigger inflammatory disorders, but also drive the response to other infectious diseases. In developing countries, chronic mucosal infections with Helicobacter pylori and helminths may be particularly important, as these infections frequently coexist throughout the host's life. However, little is known about the interactions of these pathogens with the immune system and their effects on M. tuberculosis clinical disease, if any. In this review, we discuss the potential effects of H. pylori and helminth co-infections on the immune response to M. tuberculosis. This may contribute to our understanding of host-pathogen interactions and in designing new strategies for the prevention and control of tuberculosis.
Collapse
|
49
|
Rueda-Robles A, Rubio-Tomás T, Plaza-Diaz J, Álvarez-Mercado AI. Impact of Dietary Patterns on H. pylori Infection and the Modulation of Microbiota to Counteract Its Effect. A Narrative Review. Pathogens 2021; 10:875. [PMID: 34358024 PMCID: PMC8308520 DOI: 10.3390/pathogens10070875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium that colonizes the stomach and can induce gastric disease and intra-gastric lesions, including chronic gastritis, peptic ulcers, gastric adenocarcinoma, and mucosa-associated lymphoid tissue lymphoma. This bacterium is responsible for long-term complications of gastric disease. The conjunction of host genetics, immune response, bacterial virulence expression, diet, micronutrient availability, and microbiome structure influence the disease outcomes related to chronic H. pylori infection. In this regard, the consumption of unhealthy and unbalanced diets can induce microbial dysbiosis, which infection with H. pylori may contribute to. However, to date, clinical trials have reported controversial results and current knowledge in this field is inconclusive. Here, we review preclinical studies concerning the changes produced in the microbiota that may be related to H. pylori infection, as well as the involvement of diet. We summarize and discuss the last approaches based on the modulation of the microbiota to improve the negative impact of H. pylori infection and their potential translation from bench to bedside.
Collapse
Affiliation(s)
- Ascensión Rueda-Robles
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., Armilla, 18016 Granada, Spain;
| | - Teresa Rubio-Tomás
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- School of Medicine, University of Crete, 70013 Heraklion, Crete, Greece
| | - Julio Plaza-Diaz
- Children’s Hospital Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Ana I. Álvarez-Mercado
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., Armilla, 18016 Granada, Spain;
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| |
Collapse
|
50
|
Park JM, Lee WH, Seo H, Oh JY, Lee DY, Kim SJ, Hahm KB. Microbiota changes with fermented kimchi contributed to either the amelioration or rejuvenation of Helicobacter pylori-associated chronic atrophic gastritis. J Clin Biochem Nutr 2021; 69:98-110. [PMID: 34376919 PMCID: PMC8325762 DOI: 10.3164/jcbn.20-123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/25/2020] [Indexed: 12/21/2022] Open
Abstract
Korean fermented kimchi is probiotic food preventing Helicobacter pylori (H. pylori)-associated atrophic gastritis in both animal and human trial. In order to reveal the effect of fermented kimchi against H. pylori infection, we performed clinical trial to document the changes of fecal microbiota in 32 volunteers (H. pylori (-) chronic superficial gastritis (CSG), H. pylori (+) CSG, and H. pylori (+) chronic atrophic gastritis (CAG) with 10 weeks kimchi. Each amplicon is sequenced on MiSeq of Illumina and the sequence reads were clustered into operational taxonomic units using VSEARCH and the Chao, Simpson, and Shannon Indices. Though significant difference in α- or β-diversity was not seen in three groups, kimchi intake led to significant diversity of fecal microbiome. As results, Klebsiella, Enterococcus, Ruminococcaceae, Streptococcus, Roseburia, and Clostirdiumsensu were significantly increased in H. pylori (+) CAG, while Akkermansia, Citrobacter, and Lactobacillus were significantly decreased in H. pylori (+) CAG. With 10 weeks of kimchi administration, Bifidobacterium, Lactobacillus, and Ruminococcus were significantly increased in H. pylori (+) CAG, whereas Bacteroides, Subdoligranulum, and Eubacterium coprostanolines were significantly decreased in H. pylori (-) CAG. 10 weeks of kimchi intake significantly improved pepsinogen I/II ratio (p<0.01) with significant decreases in interleukin-1β. Conclusively, fermented kimchi significantly changed fecal microbiota to mitigate H. pylori-associated atrophic gastritis.
Collapse
Affiliation(s)
- Jong Min Park
- Daejeon University School of Oriental Medicine, Daehak-ro 62, Dong-gu, Daejeon 34520, Korea
| | | | | | | | | | - Seong Jin Kim
- Medpacto Research Institute, Medpacto, Myungdal-ro 92, Seocho-gu, Seoul 06668, Korea
| | - Ki Baik Hahm
- Medpacto Research Institute, Medpacto, Myungdal-ro 92, Seocho-gu, Seoul 06668, Korea
- CHA Cancer Preventive Research Center, CHA Bio Complex, 330 Pangyo-ro, Bundang-gu, Seongnam 13497, Korea
| |
Collapse
|