1
|
Hsu CC, Wang G, Li CF, Zhang X, Cai Z, Chen T, Pan BS, Manne RK, Deep G, Gu H, Wang Y, Peng D, Penugurti V, Zhou X, Xu Z, Chen Z, Chen M, Armstrong AJ, Huang J, Li HY, Lin HK. IMPA1-derived inositol maintains stemness in castration-resistant prostate cancer via IMPDH2 activation. J Exp Med 2024; 221:e20231832. [PMID: 39470689 PMCID: PMC11528126 DOI: 10.1084/jem.20231832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 07/09/2024] [Accepted: 08/19/2024] [Indexed: 10/30/2024] Open
Abstract
Acquisition of prostate cancer stem cells (PCSCs) manifested during androgen ablation therapy (ABT) contributes to castration-resistant prostate cancer (CRPC). However, little is known about the specific metabolites critically orchestrating this process. Here, we show that IMPA1-derived inositol enriched in PCSCs is a key metabolite crucially maintaining PCSCs for CRPC progression and ABT resistance. Notably, conditional Impa1 knockout in the prostate abrogates the pool and properties of PCSCs to orchestrate CRPC progression and prolong the survival of TRAMP mice. IMPA1-derived inositol serves as a cofactor that directly binds to and activates IMPDH2, which synthesizes guanylate nucleotides for maintaining PCSCs with ARlow/- features leading to CRPC progression and ABT resistance. IMPA1/inositol/IMPDH2 axis is upregulated in human prostate cancer, and its overexpression predicts poor survival outcomes. Genetically and pharmacologically targeting the IMPA1/inositol/IMPDH2 axis abrogates CRPC and overcomes ABT resistance in various CRPC xenografts, patient-derived xenograft (PDX) tumor models, and TRAMP mouse models. Our study identifies IMPDH2 as an inositol sensor whose activation by inositol represents a key mechanism for maintaining PCSCs for CRPC and ABT resistance.
Collapse
Affiliation(s)
- Che-Chia Hsu
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Guihua Wang
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Xian Zhang
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Zhen Cai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Tingjin Chen
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Bo-Syong Pan
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Rajesh Kumar Manne
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Haiwei Gu
- Cellular Biology and Pharmacology Department, Center for Translational Science, The Herbert Wertheim College of Medicine, Florida International University, Port St. Lucie, FL, USA
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, BC Cancer Research Institute, Vancouver, Canada
| | - Danni Peng
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Vasudevarao Penugurti
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhigang Xu
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences, Chongqing, China
| | - Zhongzhu Chen
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences, Chongqing, China
| | - Ming Chen
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
| | - Andrew J. Armstrong
- Duke Cancer Institute Center, Duke University School of Medicine, Durham, NC, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
| | - Hong-Yu Li
- Division of Pharmaceutical Science, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Hui-Kuan Lin
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| |
Collapse
|
2
|
Drainas AP, Hsu WH, Dallas AE, Poltorack CD, Kim JW, He A, Coles GL, Baron M, Bassik MC, Sage J. GCN2 is a determinant of the response to WEE1 kinase inhibition in small-cell lung cancer. Cell Rep 2024; 43:114606. [PMID: 39120974 PMCID: PMC11407228 DOI: 10.1016/j.celrep.2024.114606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/28/2024] [Accepted: 07/24/2024] [Indexed: 08/11/2024] Open
Abstract
Patients with small-cell lung cancer (SCLC) are in dire need of more effective therapeutic options. Frequent disruption of the G1 checkpoint in SCLC cells creates a dependency on the G2/M checkpoint to maintain genomic integrity. Indeed, in pre-clinical models, inhibiting the G2/M checkpoint kinase WEE1 shows promise in inhibiting SCLC growth. However, toxicity and acquired resistance limit the clinical effectiveness of this strategy. Here, using CRISPR-Cas9 knockout screens in vitro and in vivo, we identified multiple factors influencing the response of SCLC cells to the WEE1 kinase inhibitor AZD1775, including the GCN2 kinase and other members of its signaling pathway. Rapid activation of GCN2 upon AZD1775 treatment triggers a stress response in SCLC cells. Pharmacological or genetic activation of the GCN2 pathway enhances cancer cell killing by AZD1775. Thus, activation of the GCN2 pathway represents a promising strategy to increase the efficacy of WEE1 inhibitors in SCLC.
Collapse
Affiliation(s)
- Alexandros P Drainas
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Wen-Hao Hsu
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Alec E Dallas
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Carson D Poltorack
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Jun W Kim
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Andy He
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Garry L Coles
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Maya Baron
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Julien Sage
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Desai P, Takahashi N, Kumar R, Nichols S, Malin J, Hunt A, Schultz C, Cao Y, Tillo D, Nousome D, Chauhan L, Sciuto L, Jordan K, Rajapakse V, Tandon M, Lissa D, Zhang Y, Kumar S, Pongor L, Singh A, Schroder B, Sharma AK, Chang T, Vilimas R, Pinkiert D, Graham C, Butcher D, Warner A, Sebastian R, Mahon M, Baker K, Cheng J, Berger A, Lake R, Abel M, Krishnamurthy M, Chrisafis G, Fitzgerald P, Nirula M, Goyal S, Atkinson D, Bateman NW, Abulez T, Nair G, Apolo A, Guha U, Karim B, El Meskini R, Ohler ZW, Jolly MK, Schaffer A, Ruppin E, Kleiner D, Miettinen M, Brown GT, Hewitt S, Conrads T, Thomas A. Microenvironment shapes small-cell lung cancer neuroendocrine states and presents therapeutic opportunities. Cell Rep Med 2024; 5:101610. [PMID: 38897168 PMCID: PMC11228806 DOI: 10.1016/j.xcrm.2024.101610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/04/2023] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Small-cell lung cancer (SCLC) is the most fatal form of lung cancer. Intratumoral heterogeneity, marked by neuroendocrine (NE) and non-neuroendocrine (non-NE) cell states, defines SCLC, but the cell-extrinsic drivers of SCLC plasticity are poorly understood. To map the landscape of SCLC tumor microenvironment (TME), we apply spatially resolved transcriptomics and quantitative mass spectrometry-based proteomics to metastatic SCLC tumors obtained via rapid autopsy. The phenotype and overall composition of non-malignant cells in the TME exhibit substantial variability, closely mirroring the tumor phenotype, suggesting TME-driven reprogramming of NE cell states. We identify cancer-associated fibroblasts (CAFs) as a crucial element of SCLC TME heterogeneity, contributing to immune exclusion, and predicting exceptionally poor prognosis. Our work provides a comprehensive map of SCLC tumor and TME ecosystems, emphasizing their pivotal role in SCLC's adaptable nature, opening possibilities for reprogramming the TME-tumor communications that shape SCLC tumor states.
Collapse
Affiliation(s)
- Parth Desai
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Medical Oncology, Fox Chase Cancer Center, Temple University Hospital and Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Nobuyuki Takahashi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Rajesh Kumar
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Samantha Nichols
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Justin Malin
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Allison Hunt
- Women's Health Integrated Research Center, Inova Health System, Falls Church, VA, USA
| | - Christopher Schultz
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yingying Cao
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Desiree Tillo
- CCR Collaborative Bioinformatics, Resource, Office of Science and Technology Resources, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Darryl Nousome
- CCR Collaborative Bioinformatics, Resource, Office of Science and Technology Resources, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lakshya Chauhan
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Linda Sciuto
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kimberly Jordan
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Vinodh Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mayank Tandon
- CCR Collaborative Bioinformatics, Resource, Office of Science and Technology Resources, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Delphine Lissa
- Laboratory of Human Carcinogenesis, Center for Cancer Research National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yang Zhang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suresh Kumar
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lorinc Pongor
- HCEMM Cancer Genomics and Epigenetics Research Group, Szeged, Hungary
| | - Abhay Singh
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Brett Schroder
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ajit Kumar Sharma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tiangen Chang
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rasa Vilimas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Danielle Pinkiert
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chante Graham
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Donna Butcher
- Molecular Histopathology Laboratory, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Andrew Warner
- Molecular Histopathology Laboratory, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Robin Sebastian
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mimi Mahon
- Pain and Palliative care services, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Karen Baker
- Pain and Palliative care services, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Jennifer Cheng
- Pain and Palliative care services, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Ann Berger
- Pain and Palliative care services, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Ross Lake
- Laboratory of Genitourinary cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Melissa Abel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Manan Krishnamurthy
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - George Chrisafis
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter Fitzgerald
- CCR Collaborative Bioinformatics, Resource, Office of Science and Technology Resources, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Micheal Nirula
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shubhank Goyal
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Devon Atkinson
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Nicholas W Bateman
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Tamara Abulez
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Govind Nair
- National Institute of Neurological Disorders and Stroke, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Apolo
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Rajaa El Meskini
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Zoe Weaver Ohler
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Mohit Kumar Jolly
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Alejandro Schaffer
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - G Tom Brown
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen Hewitt
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Conrads
- Women's Health Integrated Research Center, Inova Health System, Falls Church, VA, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Chatterjee D, Svoboda RA, Huisman DH, Vieira HM, Rao C, Askew JW, Fisher KW, Lewis RE. KSR1 regulates small-cell lung carcinoma tumor initiation and cisplatin resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.23.581815. [PMID: 38464216 PMCID: PMC10925196 DOI: 10.1101/2024.02.23.581815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Small-cell lung cancer (SCLC) is designated a recalcitrant cancer due to its five-year relative survival rate of less than 7%. First line SCLC treatment has changed modestly in the last 40 years. The NeuroD1 subtype of SCLC (SCLC-N) commonly harbors MYC amplifications and other hallmarks of aggressive behavior. Finding novel therapeutic options that effectively eliminate residual disease observed after initial response to therapy is essential to improving SCLC patient outcome. Here we show that Kinase Suppressor of Ras 1 (KSR1), a molecular scaffold for the Raf/MEK/ERK signaling cascade is critical for clonogenicity and tumor initiation in vitro and in vivo in the highly aggressive, metastatic and therapy resistant NeuroD1 subtype of SCLC. Tumor-initiating cells (TICs) are reported as the sanctuary population within the bulk tumor responsible for therapeutic resistance and relapse. Previous studies concluded ERK activation was inhibitory to growth and tumor development. We show that signaling through KSR1 is conserved in SCLC-N and that it regulates tumor initiation through interaction with ERK. We further show that KSR1 mediates cisplatin resistance in SCLC-N cells. While 50% of control SCLC-N cells show resistance after 6 weeks of exposure to cisplatin, CRISPR/Cas9-mediated KSR1 knockout prevents resistance in >90% of SCLC-N cells. KSR1 KO also significantly enhances the ability of cisplatin to decrease SCLC-N TICs, indicating that targeting KSR1 might be selectively toxic to cells responsible for therapeutic resistance and tumor initiation. Thus, KSR1 function in SCLC-N serves as a novel model for understanding the role of KSR1-dependent signaling in normal and malignant tissues. These findings shed light on a key distinct protein responsible for regulation in SCLC-N tumors, and a potential subtype specific therapeutic target.
Collapse
|
5
|
Jimenez L, Stolzenbach V, Ozawa PMM, Ramirez-Solano M, Liu Q, Sage J, Weaver AM. Extracellular vesicles from non-neuroendocrine SCLC cells promote adhesion and survival of neuroendocrine SCLC cells. Proteomics 2024; 24:e2300030. [PMID: 37926756 DOI: 10.1002/pmic.202300030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
Small cell lung cancer (SCLC) tumors are made up of distinct cell subpopulations, including neuroendocrine (NE) and non-neuroendocrine (non-NE) cells. While secreted factors from non-NE SCLC cells have been shown to support the growth of the NE cells, the underlying molecular factors are not well understood. Here, we show that exosome-type small extracellular vesicles (SEVs) secreted from non-NE SCLC cells promote adhesion and survival of NE SCLC cells. Proteomic analysis of purified SEVs revealed that extracellular matrix (ECM) proteins and integrins are highly enriched in SEVs of non-NE cells whereas nucleic acid-binding proteins are enriched in SEVs purified from NE cells. Addition of select purified ECM proteins identified in purified extracellular vesicles (EVs), specifically fibronectin, laminin 411, and laminin 511, were able to substitute for the role of non-NE-derived SEVs in promoting adhesion and survival of NE SCLC cells. Those same proteins were differentially expressed by human SCLC subtypes. These data suggest that ECM-carrying SEVs secreted by non-NE cells play a key role in supporting the growth and survival of NE SCLC cells.
Collapse
Affiliation(s)
- Lizandra Jimenez
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Center for Extracellular Vesicle Research, Vanderbilt University, Nashville, Tennessee, USA
| | - Victor Stolzenbach
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Center for Extracellular Vesicle Research, Vanderbilt University, Nashville, Tennessee, USA
| | - Patricia M M Ozawa
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Center for Extracellular Vesicle Research, Vanderbilt University, Nashville, Tennessee, USA
| | - Marisol Ramirez-Solano
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Julien Sage
- Department of Pediatrics, Stanford Medicine, Stanford, California, USA
- Department of Genetics, Stanford Medicine, Stanford, California, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Center for Extracellular Vesicle Research, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Guo H, Li W, Guo Y, Chen N, Cui J. Molecular classification of small cell lung cancer subtypes: Characteristics, prognostic factors, and clinical translation. Chin Med J (Engl) 2024; 137:130-139. [PMID: 37660289 PMCID: PMC10798698 DOI: 10.1097/cm9.0000000000002693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Indexed: 09/04/2023] Open
Abstract
ABSTRACT Small cell lung cancer (SCLC) is a highly malignant tumor with a very poor prognosis; therefore, more effective treatments are urgently needed for patients afflicted with the disease. In recent years, emerging molecular classifications based on key transcription factors of SCLC have provided more information on the tumor pathophysiology, metastasis, immune microenvironment, and acquired therapeutic resistance and reflected the intertumoral heterogeneity of the various SCLC phenotypes. Additionally, advances in genomics and single-cell sequencing analysis have further revealed the high intratumoral heterogeneity and plasticity of the disease. Herein, we review and summarize these recent lines of evidence and discuss the possible pathogenesis of SCLC.
Collapse
Affiliation(s)
| | | | | | | | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
7
|
Recuero E, Lázaro S, Lorz C, Enguita AB, Garcia-Escudero R, Santos M. Novel Mouse Cell Lines and In Vivo Models for Human High-Grade Neuroendocrine Lung Carcinoma, Small Cell Lung Carcinoma (SCLC), and Large Cell Neuroendocrine Carcinoma (LCNEC). Int J Mol Sci 2023; 24:15284. [PMID: 37894963 PMCID: PMC10607103 DOI: 10.3390/ijms242015284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
There is a clear need to expand the toolkit of adequate mouse models and cell lines available for preclinical studies of high-grade neuroendocrine lung carcinoma (small cell lung carcinoma (SCLC) and large cell neuroendocrine carcinoma (LCNEC)). SCLC and LCNEC are two highly aggressive tumor types with dismal prognoses and few therapeutic options. Currently, there is an extreme paucity of material, particularly in the case of LCNEC. Given the lack of murine cell lines and transplant models of LCNEC, the need is imperative. In this study, we generated and examined new models of LCNEC and SCLC transplantable cell lines derived from our previously developed primary mouse LCNEC and SCLC tumors. RNA-seq analysis demonstrated that our cell lines and syngeneic tumors maintained the transcriptome program from the original transgenic primary tumor and displayed strong similarities to human SCLC or LCNEC. Importantly, the SCLC transplanted cell lines showed the ability to metastasize and mimic this characteristic of the human condition. In summary, we generated mouse cell line tools that allow further basic and translational research as well as preclinical testing of new treatment strategies for SCLC and LCNEC. These tools retain important features of their human counterparts and address the lack of LCNEC disease models.
Collapse
Affiliation(s)
- Enrique Recuero
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; (E.R.); (S.L.); (C.L.); (R.G.-E.)
| | - Sara Lázaro
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; (E.R.); (S.L.); (C.L.); (R.G.-E.)
| | - Corina Lorz
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; (E.R.); (S.L.); (C.L.); (R.G.-E.)
- Institute of Biomedical Research Hospital “12 de Octubre” (imas12), 28041 Madrid, Spain
- Tumor Progression Mechanisms Program, CIBERONC, Centro de Investigación Biomédica en Red de Cáncer, 28029 Madrid, Spain
| | - Ana Belén Enguita
- Pathology Department, University Hospital “12 de Octubre”, 28041 Madrid, Spain;
| | - Ramón Garcia-Escudero
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; (E.R.); (S.L.); (C.L.); (R.G.-E.)
- Institute of Biomedical Research Hospital “12 de Octubre” (imas12), 28041 Madrid, Spain
- Tumor Progression Mechanisms Program, CIBERONC, Centro de Investigación Biomédica en Red de Cáncer, 28029 Madrid, Spain
| | - Mirentxu Santos
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; (E.R.); (S.L.); (C.L.); (R.G.-E.)
- Institute of Biomedical Research Hospital “12 de Octubre” (imas12), 28041 Madrid, Spain
- Tumor Progression Mechanisms Program, CIBERONC, Centro de Investigación Biomédica en Red de Cáncer, 28029 Madrid, Spain
| |
Collapse
|
8
|
Qu F, Brough SC, Michno W, Madubata CJ, Hartmann GG, Puno A, Drainas AP, Bhattacharya D, Tomasich E, Lee MC, Yang D, Kim J, Peiris-Pagès M, Simpson KL, Dive C, Preusser M, Toland A, Kong C, Das M, Winslow MM, Pasca AM, Sage J. Crosstalk between small-cell lung cancer cells and astrocytes mimics brain development to promote brain metastasis. Nat Cell Biol 2023; 25:1506-1519. [PMID: 37783795 PMCID: PMC11230587 DOI: 10.1038/s41556-023-01241-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/25/2023] [Indexed: 10/04/2023]
Abstract
Brain metastases represent an important clinical problem for patients with small-cell lung cancer (SCLC). However, the mechanisms underlying SCLC growth in the brain remain poorly understood. Here, using intracranial injections in mice and assembloids between SCLC aggregates and human cortical organoids in culture, we found that SCLC cells recruit reactive astrocytes to the tumour microenvironment. This crosstalk between SCLC cells and astrocytes drives the induction of gene expression programmes that are similar to those found during early brain development in neurons and astrocytes. Mechanistically, the brain development factor Reelin, secreted by SCLC cells, recruits astrocytes to brain metastases. These astrocytes in turn promote SCLC growth by secreting neuronal pro-survival factors such as SERPINE1. Thus, SCLC brain metastases grow by co-opting mechanisms involved in reciprocal neuron-astrocyte interactions during brain development. Targeting such developmental programmes activated in this cancer ecosystem may help prevent and treat brain metastases.
Collapse
Affiliation(s)
- Fangfei Qu
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Siqi C Brough
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Wojciech Michno
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Chioma J Madubata
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Griffin G Hartmann
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alyssa Puno
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexandros P Drainas
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Debadrita Bhattacharya
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Erwin Tomasich
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Myung Chang Lee
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Dian Yang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jun Kim
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Maria Peiris-Pagès
- Cancer Research UK Cancer Biomarker Centre, Manchester, UK
- Cancer Research UK Manchester Institute, Manchester, UK
| | - Kathryn L Simpson
- Cancer Research UK Cancer Biomarker Centre, Manchester, UK
- Cancer Research UK Manchester Institute, Manchester, UK
| | - Caroline Dive
- Cancer Research UK Cancer Biomarker Centre, Manchester, UK
- Cancer Research UK Manchester Institute, Manchester, UK
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Angus Toland
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Kong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Millie Das
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anca M Pasca
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Wollenzien H, Tecleab YA, Szczepaniak-Sloane R, Restaino A, Kareta MS. Single-Cell Evolutionary Analysis Reveals Drivers of Plasticity and Mediators of Chemoresistance in Small Cell Lung Cancer. Mol Cancer Res 2023; 21:892-907. [PMID: 37256926 PMCID: PMC10527088 DOI: 10.1158/1541-7786.mcr-22-0881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/11/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Small cell lung cancer (SCLC) is often a heterogeneous tumor, where dynamic regulation of key transcription factors can drive multiple populations of phenotypically different cells which contribute differentially to tumor dynamics. This tumor is characterized by a very low 2-year survival rate, high rates of metastasis, and rapid acquisition of chemoresistance. The heterogeneous nature of this tumor makes it difficult to study and to treat, as it is not clear how or when this heterogeneity arises. Here we describe temporal, single-cell analysis of SCLC to investigate tumor initiation and chemoresistance in both SCLC xenografts and an autochthonous SCLC model. We identify an early population of tumor cells with high expression of AP-1 network genes that are critical for tumor growth. Furthermore, we have identified and validated the cancer testis antigens (CTA) PAGE5 and GAGE2A as mediators of chemoresistance in human SCLC. CTAs have been successfully targeted in other tumor types and may be a promising avenue for targeted therapy in SCLC. IMPLICATIONS Understanding the evolutionary dynamics of SCLC can shed light on key mechanisms such as cellular plasticity, heterogeneity, and chemoresistance.
Collapse
Affiliation(s)
- Hannah Wollenzien
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota, USA
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, South Dakota, USA
| | | | - Robert Szczepaniak-Sloane
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Anthony Restaino
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
- Department of Pediatrics, Sanford School of Medicine, Sioux Falls, South Dakota, USA
| | - Michael S. Kareta
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota, USA
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, South Dakota, USA
- Functional Genomics & Bioinformatics Core, Sanford Research, Sioux Falls, SD, USA
- Department of Pediatrics, Sanford School of Medicine, Sioux Falls, South Dakota, USA
- Department of Biochemistry, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
10
|
Ooki A, Osumi H, Fukuda K, Yamaguchi K. Potent molecular-targeted therapies for gastro-entero-pancreatic neuroendocrine carcinoma. Cancer Metastasis Rev 2023; 42:1021-1054. [PMID: 37422534 PMCID: PMC10584733 DOI: 10.1007/s10555-023-10121-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/16/2023] [Indexed: 07/10/2023]
Abstract
Neuroendocrine neoplasms (NENs), which are characterized by neuroendocrine differentiation, can arise in various organs. NENs have been divided into well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs) based on morphological differentiation, each of which has a distinct etiology, molecular profile, and clinicopathological features. While the majority of NECs originate in the pulmonary organs, extrapulmonary NECs occur most predominantly in the gastro-entero-pancreatic (GEP) system. Although platinum-based chemotherapy is the main therapeutic option for recurrent or metastatic GEP-NEC patients, the clinical benefits are limited and associated with a poor prognosis, indicating the clinically urgent need for effective therapeutic agents. The clinical development of molecular-targeted therapies has been hampered due to the rarity of GEP-NECs and the paucity of knowledge on their biology. In this review, we summarize the biology, current treatments, and molecular profiles of GEP-NECs based on the findings of pivotal comprehensive molecular analyses; we also highlight potent therapeutic targets for future precision medicine based on the most recent results of clinical trials.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Hiroki Osumi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koshiro Fukuda
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
11
|
Beik SP, Harris LA, Kochen MA, Sage J, Quaranta V, Lopez CF. Unified tumor growth mechanisms from multimodel inference and dataset integration. PLoS Comput Biol 2023; 19:e1011215. [PMID: 37406008 DOI: 10.1371/journal.pcbi.1011215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/25/2023] [Indexed: 07/07/2023] Open
Abstract
Mechanistic models of biological processes can explain observed phenomena and predict responses to a perturbation. A mathematical model is typically constructed using expert knowledge and informal reasoning to generate a mechanistic explanation for a given observation. Although this approach works well for simple systems with abundant data and well-established principles, quantitative biology is often faced with a dearth of both data and knowledge about a process, thus making it challenging to identify and validate all possible mechanistic hypothesis underlying a system behavior. To overcome these limitations, we introduce a Bayesian multimodel inference (Bayes-MMI) methodology, which quantifies how mechanistic hypotheses can explain a given experimental datasets, and concurrently, how each dataset informs a given model hypothesis, thus enabling hypothesis space exploration in the context of available data. We demonstrate this approach to probe standing questions about heterogeneity, lineage plasticity, and cell-cell interactions in tumor growth mechanisms of small cell lung cancer (SCLC). We integrate three datasets that each formulated different explanations for tumor growth mechanisms in SCLC, apply Bayes-MMI and find that the data supports model predictions for tumor evolution promoted by high lineage plasticity, rather than through expanding rare stem-like populations. In addition, the models predict that in the presence of cells associated with the SCLC-N or SCLC-A2 subtypes, the transition from the SCLC-A subtype to the SCLC-Y subtype through an intermediate is decelerated. Together, these predictions provide a testable hypothesis for observed juxtaposed results in SCLC growth and a mechanistic interpretation for tumor treatment resistance.
Collapse
Affiliation(s)
- Samantha P Beik
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Leonard A Harris
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, United States of America
- Interdisciplinary Graduate Program in Cell & Molecular Biology, University of Arkansas, Fayetteville, Arkansas, United States of America
- Cancer Biology Program, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Michael A Kochen
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Julien Sage
- Departments of Pediatrics, Stanford University, Stanford, California, United States of America
- Departments of Genetics, Stanford University, Stanford, California, United States of America
| | - Vito Quaranta
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Carlos F Lopez
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Altos Laboratories, Redwood City, California, United States of America
| |
Collapse
|
12
|
Kim JW, Ko JH, Sage J. DLL3 regulates Notch signaling in small cell lung cancer. iScience 2022; 25:105603. [PMID: 36483011 PMCID: PMC9722452 DOI: 10.1016/j.isci.2022.105603] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
Tumor heterogeneity plays a critical role in tumor development and response to treatment. In small-cell lung cancer (SCLC), intratumoral heterogeneity is driven in part by the Notch signaling pathway, which reprograms neuroendocrine cancer cells to a less/non-neuroendocrine state. Here we investigated the atypical Notch ligand DLL3 as a biomarker of the neuroendocrine state and a regulator of cell-cell interactions in SCLC. We first built a mathematical model to predict the impact of DLL3 expression on SCLC cell populations. We next tested this model using a single-chain variable fragment (scFv) to track DLL3 expression in vivo and a new mouse model of SCLC with inducible expression of DLL3 in SCLC tumors. We found that high levels of DLL3 promote the expansion of a SCLC cell population with lower expression levels of both neuroendocrine and non-neuroendocrine markers. This work may influence how DLL3-targeting therapies are used in SCLC patients.
Collapse
Affiliation(s)
- Jun W. Kim
- Department of Pediatrics, Stanford University, 265 Campus Drive, SIM1 G2078, Stanford, CA, USA
- Department of Genetics, Stanford University, 265 Campus Drive, SIM1 G2078, Stanford, CA, USA
| | - Julie H. Ko
- Department of Pediatrics, Stanford University, 265 Campus Drive, SIM1 G2078, Stanford, CA, USA
- Department of Genetics, Stanford University, 265 Campus Drive, SIM1 G2078, Stanford, CA, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University, 265 Campus Drive, SIM1 G2078, Stanford, CA, USA
- Department of Genetics, Stanford University, 265 Campus Drive, SIM1 G2078, Stanford, CA, USA
| |
Collapse
|
13
|
Gopal P, Petty A, Rogacki K, Bera T, Bareja R, Peacock CD, Abazeed ME. Multivalent state transitions shape the intratumoral composition of small cell lung carcinoma. SCIENCE ADVANCES 2022; 8:eabp8674. [PMID: 36516249 PMCID: PMC9750150 DOI: 10.1126/sciadv.abp8674] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Studies to date have not resolved how diverse transcriptional programs contribute to the intratumoral heterogeneity of small cell lung carcinoma (SCLC), an aggressive tumor associated with a dismal prognosis. Here, we identify distinct and commutable transcriptional states that confer discrete functional attributes in individual SCLC tumors. We combine an integrative approach comprising the transcriptomes of 52,975 single cells, high-resolution measurement of cell state dynamics at the single-cell level, and functional and correlative studies using treatment naïve xenografts with associated clinical outcomes. We show that individual SCLC tumors contain distinctive proportions of stable cellular states that are governed by bidirectional cell state transitions. Using drugs that target the epigenome, we reconfigure tumor state composition in part by altering individual state transition rates. Our results reveal new insights into how single-cell transition behaviors promote cell state equilibrium in SCLC and suggest that facile plasticity underlies its resistance to therapy and lethality.
Collapse
Affiliation(s)
- Priyanka Gopal
- Department of Radiation Oncology, Northwestern University, Feinberg School of Medicine, 251 E. Huron St., Galter Pavilion LC-178, Chicago, IL 60611, USA
| | - Aaron Petty
- Department of Translational Hematology Oncology Research, Cleveland Clinic, 2111 East 96th St./NE-6, Cleveland, OH 44195, USA
| | - Kevin Rogacki
- Department of Radiation Oncology, Northwestern University, Feinberg School of Medicine, 251 E. Huron St., Galter Pavilion LC-178, Chicago, IL 60611, USA
| | - Titas Bera
- Department of Radiation Oncology, Northwestern University, Feinberg School of Medicine, 251 E. Huron St., Galter Pavilion LC-178, Chicago, IL 60611, USA
| | - Rohan Bareja
- Institute for Computational Biomedicine, Weill Cornell Medicine, 1305 York Ave., New York, NY 10021, USA
| | - Craig D. Peacock
- Department of Genetics and Genome Sciences, Case Western Reserve University, 2109 Adelbert Road, Biomedical Research Building 647B, Cleveland, OH 44106, USA
| | - Mohamed E. Abazeed
- Department of Radiation Oncology, Northwestern University, Feinberg School of Medicine, 251 E. Huron St., Galter Pavilion LC-178, Chicago, IL 60611, USA
- Robert H. Lurie Cancer Center, Northwestern University, 303 E. Superior St./Lurie 7, Chicago, IL 60611, USA
| |
Collapse
|
14
|
Groves SM, Ildefonso GV, McAtee CO, Ozawa PMM, Ireland AS, Stauffer PE, Wasdin PT, Huang X, Qiao Y, Lim JS, Bader J, Liu Q, Simmons AJ, Lau KS, Iams WT, Hardin DP, Saff EB, Holmes WR, Tyson DR, Lovly CM, Rathmell JC, Marth G, Sage J, Oliver TG, Weaver AM, Quaranta V. Archetype tasks link intratumoral heterogeneity to plasticity and cancer hallmarks in small cell lung cancer. Cell Syst 2022; 13:690-710.e17. [PMID: 35981544 PMCID: PMC9615940 DOI: 10.1016/j.cels.2022.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 05/10/2022] [Accepted: 07/25/2022] [Indexed: 01/26/2023]
Abstract
Small cell lung cancer (SCLC) tumors comprise heterogeneous mixtures of cell states, categorized into neuroendocrine (NE) and non-neuroendocrine (non-NE) transcriptional subtypes. NE to non-NE state transitions, fueled by plasticity, likely underlie adaptability to treatment and dismal survival rates. Here, we apply an archetypal analysis to model plasticity by recasting SCLC phenotypic heterogeneity through multi-task evolutionary theory. Cell line and tumor transcriptomics data fit well in a five-dimensional convex polytope whose vertices optimize tasks reminiscent of pulmonary NE cells, the SCLC normal counterparts. These tasks, supported by knowledge and experimental data, include proliferation, slithering, metabolism, secretion, and injury repair, reflecting cancer hallmarks. SCLC subtypes, either at the population or single-cell level, can be positioned in archetypal space by bulk or single-cell transcriptomics, respectively, and characterized as task specialists or multi-task generalists by the distance from archetype vertex signatures. In the archetype space, modeling single-cell plasticity as a Markovian process along an underlying state manifold indicates that task trade-offs, in response to microenvironmental perturbations or treatment, may drive cell plasticity. Stifling phenotypic transitions and plasticity may provide new targets for much-needed translational advances in SCLC. A record of this paper's Transparent Peer Review process is included in the supplemental information.
Collapse
Affiliation(s)
- Sarah M Groves
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Geena V Ildefonso
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Caitlin O McAtee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Patricia M M Ozawa
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Abbie S Ireland
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Philip E Stauffer
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Perry T Wasdin
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Xiaomeng Huang
- Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Yi Qiao
- Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jing Shan Lim
- Department of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jackie Bader
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Alan J Simmons
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| | - Ken S Lau
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| | - Wade T Iams
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Doug P Hardin
- Department of Mathematics and Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37235, USA
| | - Edward B Saff
- Department of Mathematics, Vanderbilt University, Nashville, TN 37235, USA
| | - William R Holmes
- Department of Mathematics, Vanderbilt University, Nashville, TN 37235, USA; Department of Physics, Vanderbilt University, Nashville, TN 37235, USA
| | - Darren R Tyson
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Christine M Lovly
- Department of Mathematics and Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gabor Marth
- Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Julien Sage
- Department of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Trudy G Oliver
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37235, USA
| | - Vito Quaranta
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
15
|
Sun Y, Zhang Y, Schultz C, Pommier Y, Thomas A. CDK7 Inhibition Synergizes with Topoisomerase I Inhibition in Small Cell Lung Cancer Cells by Inducing Ubiquitin-Mediated Proteolysis of RNA Polymerase II. Mol Cancer Ther 2022; 21:1430-1438. [PMID: 35830858 PMCID: PMC10476602 DOI: 10.1158/1535-7163.mct-21-0891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/14/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022]
Abstract
Small cell lung cancers (SCLC) are highly aggressive, and currently there are no available targeted therapies. To identify clinically actionable drug combinations, we analyzed our previously reported chemogenomics screens and identified a synergistically cytotoxic combination of the topoisomerase I (TOP1) inhibitor topotecan and cycle-dependent kinase 7 (CDK7) inhibitor THZ1. Topotecan causes cell death by generating TOP1-induced DNA breaks and DNA-protein cross-links (TOP1-DPC) that require proteolysis by the ubiquitin-proteasome pathway for their repair. We find that inhibition of the transcriptional kinase CDK7 by THZ1 induces ubiquitin-mediated proteasomal degradation of RNA polymerase II and prevents the proteasomal degradation of TOP1-DPCs. We provide a mechanistic basis for combinatorial targeting of transcription using selective inhibitors of CDK7 and TOP1 in clinical trials to advance SCLC therapeutics.
Collapse
Affiliation(s)
- Yilun Sun
- Developmental Therapeutics Branch, Center for Cancer Research National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yang Zhang
- Developmental Therapeutics Branch, Center for Cancer Research National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Christopher Schultz
- Developmental Therapeutics Branch, Center for Cancer Research National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Jin Y, Zhao Q, Zhu W, Feng Y, Xiao T, Zhang P, Jiang L, Hou Y, Guo C, Huang H, Chen Y, Tong X, Cao J, Li F, Zhu X, Qin J, Gao D, Liu XY, Zhang H, Chen L, Thomas RK, Wong KK, Zhang L, Wang Y, Hu L, Ji H. Identification of TAZ as the essential molecular switch in orchestrating SCLC phenotypic transition and metastasis. Natl Sci Rev 2022; 9:nwab232. [PMID: 35967587 PMCID: PMC9365451 DOI: 10.1093/nsr/nwab232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Small-cell lung cancer (SCLC) is a recalcitrant cancer characterized by high metastasis. However, the exact cell type contributing to metastasis remains elusive. Using a Rb1 L/L /Trp53 L/L mouse model, we identify the NCAMhiCD44lo/- subpopulation as the SCLC metastasizing cell (SMC), which is progressively transitioned from the non-metastasizing NCAMloCD44hi cell (non-SMC). Integrative chromatin accessibility and gene expression profiling studies reveal the important role of the SWI/SNF complex, and knockout of its central component, Brg1, significantly inhibits such phenotypic transition and metastasis. Mechanistically, TAZ is silenced by the SWI/SNF complex during SCLC malignant progression, and its knockdown promotes SMC transition and metastasis. Importantly, ectopic TAZ expression reversely drives SMC-to-non-SMC transition and alleviates metastasis. Single-cell RNA-sequencing analyses identify SMC as the dominant subpopulation in human SCLC metastasis, and immunostaining data show a positive correlation between TAZ and patient prognosis. These data uncover high SCLC plasticity and identify TAZ as the key molecular switch in orchestrating SCLC phenotypic transition and metastasis.
Collapse
Affiliation(s)
- Yujuan Jin
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiqi Zhao
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weikang Zhu
- Center for Excellence in Mathematical Sciences, National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Management, Decision and Information System, Hua Loo-Keng Center for Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Feng
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tian Xiao
- Shenzhen Key Laboratory of Translational Medicine of Tumor, Department of Cell Biology and Genetics, Shenzhen University Health Sciences Center, Shenzhen 518060, China
| | - Peng Zhang
- Shanghai Pulmonary Hospital, Tongji University, Shanghai 200092, China
| | - Liyan Jiang
- Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Yingyong Hou
- Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chenchen Guo
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hsinyi Huang
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yabin Chen
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyuan Tong
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiayu Cao
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fei Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 200120, China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dong Gao
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hua Zhang
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Roman K Thomas
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne 50931, Germany
- Department of Pathology, University Hospital Cologne, Cologne 50937, Germany
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Lei Zhang
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yong Wang
- Center for Excellence in Mathematical Sciences, National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Management, Decision and Information System, Hua Loo-Keng Center for Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Liang Hu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
17
|
Li H, Zhong R, He C, Tang C, Cui H, Li R, Liu Y, Lan S, Cheng Y. Colony‑stimulating factor CSF2 mediates the phenotypic plasticity of small‑cell lung cancer by regulating the p‑STAT3/MYC pathway. Oncol Rep 2022; 48:122. [PMID: 35583004 PMCID: PMC9164265 DOI: 10.3892/or.2022.8333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
Relapse and drug resistance are the main causes of mortality in patients with small-cell lung cancer (SCLC). Intratumoral heterogeneity (ITH) is a key biological mechanism that leads to relapse and drug resistance. Phenotypic plasticity is an important factor that leads to ITH in SCLC, although its mechanisms and key regulatory factors remain to be elucidated. In the present study, cell proliferation and cell switch assay were measured using trypan blue. Alamar Blue was used to test drug sensitivity. Differential genes were screened by RNA sequencing. Reverse transcription-quantitative PCR and western blotting were performed to assess the expressions of CSF2/p-STAT3/MYC pathway related molecules, neuroendocrine (NE)/non-neuroendocrine (non-NE), transcription factors and drug-related targets. The present study found that SCLC cell line NCI-H69 exhibited adherent (H69A) and suspensive (H69S) phenotypes, which could switch back and forth. The two phenotypic cells had significant differences in cellular NE and non-NE characteristics, drug sensitivity and expression of drug-related targets. RNA sequencing showed that granulocyte-macrophage colony-stimulating factor [i.e., colony-stimulating factor 2 (CSF2)] was the main differentially expressed gene between the two phenotypes and that H69A cells highly expressed CSF2. The inhibition of CSF2 promoted the transformation from H69A to H69S, increased drug sensitivity and NE marker expression and decreased the non-NE marker expression in H69A. The STRING, Pathway Commons and Reactome databases showed a potential regulatory relationship between CSF2 and phosphorylated signal transducer and activator of transcription 3 (p-STAT3)/MYC. p-STAT3 and MYC expression was higher in H69A cells than in H69S cells and CSF2 silencing inhibited their expression. Taken together, these results indicated that CSF2 may regulate the phenotypic plasticity of SCLC through the phosphorylated STAT3/MYC pathway, thereby limiting the transformation between cell clones with different phenotypes and changing the sensitivity of specific cell clones to targeted drugs. Targeting CSF2 may be a potential therapeutic strategy to overcome drug resistance in SCLC treatment by influencing ITH.
Collapse
Affiliation(s)
- Hui Li
- Translational Cancer Research Lab, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Rui Zhong
- Translational Cancer Research Lab, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Chunying He
- Biobank, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Chenchen Tang
- Biobank, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Heran Cui
- Biobank, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Rixin Li
- Biobank, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Yan Liu
- Translational Cancer Research Lab, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Shaowei Lan
- Translational Cancer Research Lab, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Ying Cheng
- Translational Cancer Research Lab, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
18
|
Liquid Biopsies: Flowing Biomarkers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:341-368. [DOI: 10.1007/978-3-031-04039-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Voigt E, Wallenburg M, Wollenzien H, Thompson E, Kumar K, Feiner J, McNally M, Friesen H, Mukherjee M, Afeworki Y, Kareta MS. Sox2 Is an Oncogenic Driver of Small-Cell Lung Cancer and Promotes the Classic Neuroendocrine Subtype. Mol Cancer Res 2021; 19:2015-2025. [PMID: 34593608 PMCID: PMC8642303 DOI: 10.1158/1541-7786.mcr-20-1006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/02/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022]
Abstract
Although many cancer prognoses have improved in the past 50 years due to advancements in treatments, there has been little improvement in therapies for small-cell lung cancer (SCLC). One promising avenue to improve treatment for SCLC is to understand its underlying genetic alterations that drive its formation, growth, and cellular heterogeneity. RB1 loss is one key driver of SCLC, and RB1 loss has been associated with an increase in pluripotency factors such as SOX2. SOX2 is highly expressed and amplified in SCLC and has been associated with SCLC growth. Using a genetically engineered mouse model, we have shown that Sox2 is required for efficient SCLC formation. Furthermore, genome-scale binding assays have indicated that SOX2 can regulate key SCLC pathways such as NEUROD1 and MYC. These data suggest that SOX2 can be associated with the switch of SCLC from an ASCL1 subtype to a NEUROD1 subtype. Understanding this genetic switch is key to understanding such processes as SCLC progression, cellular heterogeneity, and treatment resistance. IMPLICATIONS: Understanding the molecular mechanisms of SCLC initiation and development are key to opening new potential therapeutic options for this devastating disease.
Collapse
Affiliation(s)
- Ellen Voigt
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota
| | - Madeline Wallenburg
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota
| | - Hannah Wollenzien
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, South Dakota
| | - Ethan Thompson
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota
| | - Kirtana Kumar
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota
| | | | - Moira McNally
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota
| | - Hunter Friesen
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota
| | - Malini Mukherjee
- Functional Genomics & Bioinformatics Core, Sanford Research, Sioux Falls, South Dakota
| | - Yohannes Afeworki
- Functional Genomics & Bioinformatics Core, Sanford Research, Sioux Falls, South Dakota
| | - Michael S Kareta
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota.
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, South Dakota
- Functional Genomics & Bioinformatics Core, Sanford Research, Sioux Falls, South Dakota
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota
- Department of Chemistry Biochemistry, South Dakota State University, Brookings, South Dakota
| |
Collapse
|
20
|
Mirzapoiazova T, Xiao G, Mambetsariev B, Nasser MW, Miaou E, Singhal SS, Srivastava S, Mambetsariev I, Nelson MS, Nam A, Behal A, Arvanitis L, Atri P, Muschen M, Tissot FLH, Miser J, Kovach JS, Sattler M, Batra SK, Kulkarni P, Salgia R. Protein Phosphatase 2A as a Therapeutic Target in Small Cell Lung Cancer. Mol Cancer Ther 2021; 20:1820-1835. [PMID: 34253596 PMCID: PMC8722383 DOI: 10.1158/1535-7163.mct-21-0013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/22/2021] [Accepted: 07/07/2021] [Indexed: 01/09/2023]
Abstract
Protein phosphatase 2A (PP2A), a serine/threonine phosphatase involved in the regulation of apoptosis, proliferation, and DNA-damage response, is overexpressed in many cancers, including small cell lung cancer (SCLC). Here we report that LB100, a small molecule inhibitor of PP2A, when combined with platinum-based chemotherapy, synergistically elicited an antitumor response both in vitro and in vivo with no apparent toxicity. Using inductively coupled plasma mass spectrometry, we determined quantitatively that sensitization via LB100 was mediated by increased uptake of carboplatin in SCLC cells. Treatment with LB100 alone or in combination resulted in inhibition of cell viability in two-dimensional culture and three-dimensional spheroid models of SCLC, reduced glucose uptake, and attenuated mitochondrial and glycolytic ATP production. Combining LB100 with atezolizumab increased the capacity of T cells to infiltrate and kill tumor spheroids, and combining LB100 with carboplatin caused hyperphosphorylation of the DNA repair marker γH2AX and enhanced apoptosis while attenuating MET signaling and invasion through an endothelial cell monolayer. Taken together, these data highlight the translational potential of inhibiting PP2A with LB100 in combination with platinum-based chemotherapy and immunotherapy in SCLC.
Collapse
Affiliation(s)
- Tamara Mirzapoiazova
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Gang Xiao
- Department of Systems Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
- Institute of Immunology, Institute of Hematology, Zhejiang University School of Medicine, Zhejiang, China
| | - Bolot Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Mohd W Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Emily Miaou
- The Isotoparium, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California
| | - Sharad S Singhal
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Saumya Srivastava
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Isa Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Michael S Nelson
- The Light Microscopy and Digital Imaging Core, Beckman Research Institute, City of Hope, Duarte, California
| | - Arin Nam
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Amita Behal
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Leonidas Arvanitis
- Department of Pathology, City of Hope National Cancer Center, Duarte, California
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Markus Muschen
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - François L H Tissot
- The Isotoparium, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California
| | - James Miser
- Department of Pediatrics, City of Hope National Medical Center, Duarte, California
| | - John S Kovach
- Lixte Biotechnology Holdings, Inc., East Setauket, New York
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California.
| |
Collapse
|
21
|
Jin Y, Xiao T, Feng Y, Yang J, Guo C, Hu L, Ji H. A mesenchymal-like subpopulation in non-neuroendocrine SCLC contributes to metastasis. J Genet Genomics 2021; 48:571-581. [PMID: 34373217 DOI: 10.1016/j.jgg.2021.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/30/2021] [Indexed: 11/28/2022]
Abstract
Small cell lung cancer (SCLC) is the most aggressive lung cancer with high heterogeneity. Mouse SCLC cells derived from the Rb1L/L/Trp53L/L (RP) autochthonous mouse model grew as adhesion or suspension in cell culture, and the adhesion cells are defined as non-neuroendocrine (non-NE) SCLC cells. Here, we uncover the heterogenous subpopulations within the non-NE cells and referred to them as mesenchymal-like (Mes) and epithelial-like (Epi) SCLC cells. The Mes cells have increased capability to form colonies in soft agar and harbored stronger metastatic capability in vivo when compared with the Epi cells. Gene Set Enrichment Analysis reveals that the transforming growth factor (TGF)-β signaling is enriched in the Mes cells. Importantly, inhibition of the TGF-β signaling through ectopic expression of dominant-negative Tgfbr2 (Tgfbr2-DN) or treatment with Tgfbr1 inhibitor SD-208 consistently abrogates tumor metastasis in nude mouse allograft assays. Moreover, genetic deletion of Tgfbr2 or Smad4, the key components of the TGF-β signaling pathway, dramatically attenuates SCLC metastasis in the RP autochthonous mouse model. Collectively, our results uncover the high heterogeneity in non-NE SCLC cells and highlight an important role of TGF-β signaling in promoting SCLC metastasis.
Collapse
Affiliation(s)
- Yujuan Jin
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tian Xiao
- Shenzhen Key Laboratory of Translational Medicine of Tumor, Department of Cell Biology and Genetics, Shenzhen University Health Sciences Center, Shenzhen, Guangdong 518060, China
| | - Yan Feng
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinhua Yang
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenchen Guo
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liang Hu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
22
|
Drapkin BJ, Rudin CM. Advances in Small-Cell Lung Cancer (SCLC) Translational Research. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038240. [PMID: 32513672 DOI: 10.1101/cshperspect.a038240] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past several years, we have witnessed a resurgence of interest in the biology and therapeutic vulnerabilities of small-cell lung cancer (SCLC). This has been driven in part through the development of a more extensive array of representative models of disease, including a diverse variety of genetically engineered mouse models and human tumor xenografts. Herein, we review recent progress in SCLC model development, and consider some of the particularly active avenues of translational research in SCLC, including interrogation of intratumoral heterogeneity, insights into the cell of origin and oncogenic drivers, mechanisms of chemoresistance, and new therapeutic opportunities including biomarker-directed targeted therapies and immunotherapies. Whereas SCLC remains a highly lethal disease, these new avenues of translational research, bringing together mechanism-based preclinical and clinical research, offer new hope for patients with SCLC.
Collapse
Affiliation(s)
- Benjamin J Drapkin
- University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Charles M Rudin
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
23
|
Khan P, Siddiqui JA, Maurya SK, Lakshmanan I, Jain M, Ganti AK, Salgia R, Batra SK, Nasser MW. Epigenetic landscape of small cell lung cancer: small image of a giant recalcitrant disease. Semin Cancer Biol 2020; 83:57-76. [PMID: 33220460 PMCID: PMC8218609 DOI: 10.1016/j.semcancer.2020.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Small cell lung cancer (SCLC) is a particular subtype of lung cancer with high mortality. Recent advances in understanding SCLC genomics and breakthroughs of immunotherapy have substantially expanded existing knowledge and treatment modalities. However, challenges associated with SCLC remain enigmatic and elusive. Most of the conventional drug discovery approaches targeting altered signaling pathways in SCLC end up in the 'grave-yard of drug discovery', which mandates exploring novel approaches beyond inhibiting cell signaling pathways. Epigenetic modifications have long been documented as the key contributors to the tumorigenesis of almost all types of cancer, including SCLC. The last decade witnessed an exponential increase in our understanding of epigenetic modifications for SCLC. The present review highlights the central role of epigenetic regulations in acquiring neoplastic phenotype, metastasis, aggressiveness, resistance to chemotherapy, and immunotherapeutic approaches of SCLC. Different types of epigenetic modifications (DNA/histone methylation or acetylation) that can serve as predictive biomarkers for prognostication, treatment stratification, neuroendocrine lineage determination, and development of potential SCLC therapies are also discussed. We also review the utility of epigenetic targets/epidrugs in combination with first-line chemotherapy and immunotherapy that are currently under investigation in preclinical and clinical studies. Altogether, the information presents the inclusive landscape of SCLC epigenetics and epidrugs that will help to improve SCLC outcomes.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Apar Kishor Ganti
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Division of Oncology-Hematology, Department of Internal Medicine, VA-Nebraska Western Iowa Health Care System, Omaha, NE, 68105, USA; Division of Oncology-Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte 91010, CA, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
24
|
Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauß A, Blaudszun AR, Yevsa T, Fricke S, Kossatz-Boehlert U. Cancer Stem Cells-Origins and Biomarkers: Perspectives for Targeted Personalized Therapies. Front Immunol 2020; 11:1280. [PMID: 32849491 PMCID: PMC7426526 DOI: 10.3389/fimmu.2020.01280] [Citation(s) in RCA: 475] [Impact Index Per Article: 118.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
The use of biomarkers in diagnosis, therapy and prognosis has gained increasing interest over the last decades. In particular, the analysis of biomarkers in cancer patients within the pre- and post-therapeutic period is required to identify several types of cells, which carry a risk for a disease progression and subsequent post-therapeutic relapse. Cancer stem cells (CSCs) are a subpopulation of tumor cells that can drive tumor initiation and can cause relapses. At the time point of tumor initiation, CSCs originate from either differentiated cells or adult tissue resident stem cells. Due to their importance, several biomarkers that characterize CSCs have been identified and correlated to diagnosis, therapy and prognosis. However, CSCs have been shown to display a high plasticity, which changes their phenotypic and functional appearance. Such changes are induced by chemo- and radiotherapeutics as well as senescent tumor cells, which cause alterations in the tumor microenvironment. Induction of senescence causes tumor shrinkage by modulating an anti-tumorigenic environment in which tumor cells undergo growth arrest and immune cells are attracted. Besides these positive effects after therapy, senescence can also have negative effects displayed post-therapeutically. These unfavorable effects can directly promote cancer stemness by increasing CSC plasticity phenotypes, by activating stemness pathways in non-CSCs, as well as by promoting senescence escape and subsequent activation of stemness pathways. At the end, all these effects can lead to tumor relapse and metastasis. This review provides an overview of the most frequently used CSC markers and their implementation as biomarkers by focussing on deadliest solid (lung, stomach, liver, breast and colorectal cancers) and hematological (acute myeloid leukemia, chronic myeloid leukemia) cancers. Furthermore, it gives examples on how the CSC markers might be influenced by therapeutics, such as chemo- and radiotherapy, and the tumor microenvironment. It points out, that it is crucial to identify and monitor residual CSCs, senescent tumor cells, and the pro-tumorigenic senescence-associated secretory phenotype in a therapy follow-up using specific biomarkers. As a future perspective, a targeted immune-mediated strategy using chimeric antigen receptor based approaches for the removal of remaining chemotherapy-resistant cells as well as CSCs in a personalized therapeutic approach are discussed.
Collapse
Affiliation(s)
- Lia Walcher
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Ann-Kathrin Kistenmacher
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Huizhen Suo
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Reni Kitte
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Sarah Dluczek
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Alexander Strauß
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - André-René Blaudszun
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Tetyana Yevsa
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Stephan Fricke
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Uta Kossatz-Boehlert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
25
|
A novel multi-target tyrosine kinase inhibitor anlotinib combined with irinotecan has in-vitro anti-tumor activity against human small-cell lung cancer. Anticancer Drugs 2020; 31:1057-1064. [PMID: 32694423 DOI: 10.1097/cad.0000000000000969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Anlotinib is a multi-target tyrosine kinase inhibitor developed independently in China. Its biological effects remain unclear in small-cell lung cancer (SCLC). The current study aimed to evaluate the effects of anlotinib in combination with irinotecan on H446 and H2227 SCLC cell lines and provide new treatment strategy for SCLC. Cell growth of two cell lines was inhibited by anlotinib, irinotecan and the combination in a dose-dependent manner. After 72 h incubation, the inhibition rate was greater in the combination group than all single drug group. A similar result was found when apoptosis was assessed after 12 h, but not after 6 h of treatment. Compared with single drug, combination drug suppressed the migration and invasion abilities in two cell lines; however, there was no difference between individual anlotinib or irinotecan. The colony formation rate was obviously lower in the combination group. Vascular endothelial growth factor receptor, fibroblast growth factor receptor (FGFR) and platelet-derived growth factor receptor were expressed in two cell lines after treatment regardless single or combination, but FGFR was expressed more after combination treatment than anlotinib. The expression of phosphorylated (p) ERK was decreased with anlotinib alone or combination treatment and pAKT expression was impaired with combination treatment, but not with anlotinib or irinotecan alone. The biological function of anlotinib and irinotecan may be mediated through the AKT/ERK signaling pathway. Additional investigations on biomarker-guided patient-stratification and elucidating individualized targets in patients anlotinib are urgently needed.
Collapse
|
26
|
Coles GL, Cristea S, Webber JT, Levin RS, Moss SM, He A, Sangodkar J, Hwang YC, Arand J, Drainas AP, Mooney NA, Demeter J, Spradlin JN, Mauch B, Le V, Shue YT, Ko JH, Lee MC, Kong C, Nomura DK, Ohlmeyer M, Swaney DL, Krogan NJ, Jackson PK, Narla G, Gordan JD, Shokat KM, Sage J. Unbiased Proteomic Profiling Uncovers a Targetable GNAS/PKA/PP2A Axis in Small Cell Lung Cancer Stem Cells. Cancer Cell 2020; 38:129-143.e7. [PMID: 32531271 PMCID: PMC7363571 DOI: 10.1016/j.ccell.2020.05.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 02/18/2020] [Accepted: 05/04/2020] [Indexed: 12/23/2022]
Abstract
Using unbiased kinase profiling, we identified protein kinase A (PKA) as an active kinase in small cell lung cancer (SCLC). Inhibition of PKA activity genetically, or pharmacologically by activation of the PP2A phosphatase, suppresses SCLC expansion in culture and in vivo. Conversely, GNAS (G-protein α subunit), a PKA activator that is genetically activated in a small subset of human SCLC, promotes SCLC development. Phosphoproteomic analyses identified many PKA substrates and mechanisms of action. In particular, PKA activity is required for the propagation of SCLC stem cells in transplantation studies. Broad proteomic analysis of recalcitrant cancers has the potential to uncover targetable signaling networks, such as the GNAS/PKA/PP2A axis in SCLC.
Collapse
Affiliation(s)
- Garry L Coles
- Department of Pediatrics, Stanford University, 265 Campus Drive, Stanford, CA 94305-5457, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Sandra Cristea
- Department of Pediatrics, Stanford University, 265 Campus Drive, Stanford, CA 94305-5457, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - James T Webber
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Rebecca S Levin
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Steven M Moss
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Andy He
- Department of Pediatrics, Stanford University, 265 Campus Drive, Stanford, CA 94305-5457, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jaya Sangodkar
- Division of Genetic Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yeonjoo C Hwang
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Julia Arand
- Department of Pediatrics, Stanford University, 265 Campus Drive, Stanford, CA 94305-5457, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Alexandros P Drainas
- Department of Pediatrics, Stanford University, 265 Campus Drive, Stanford, CA 94305-5457, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Nancie A Mooney
- Baxter Laboratory, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, Stanford University, Stanford, CA 94305, USA
| | - Janos Demeter
- Baxter Laboratory, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, Stanford University, Stanford, CA 94305, USA
| | - Jessica N Spradlin
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Brandon Mauch
- Department of Pediatrics, Stanford University, 265 Campus Drive, Stanford, CA 94305-5457, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Vicky Le
- Department of Pediatrics, Stanford University, 265 Campus Drive, Stanford, CA 94305-5457, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Yan Ting Shue
- Department of Pediatrics, Stanford University, 265 Campus Drive, Stanford, CA 94305-5457, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Julie H Ko
- Department of Pediatrics, Stanford University, 265 Campus Drive, Stanford, CA 94305-5457, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Myung Chang Lee
- Department of Pediatrics, Stanford University, 265 Campus Drive, Stanford, CA 94305-5457, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Christina Kong
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Daniel K Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael Ohlmeyer
- Icahn School of Medicine at Mount Sinai, New York, NY, USA; Atux Iskay LLC, Plainsboro, New Jersey, NJ 08536, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; David J. Gladstone Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; David J. Gladstone Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Peter K Jackson
- Baxter Laboratory, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Goutham Narla
- Division of Genetic Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - John D Gordan
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA
| | - Kevan M Shokat
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University, 265 Campus Drive, Stanford, CA 94305-5457, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
27
|
Pham T, Robinson K, Vleeshouwer-Neumann T, Annis JE, Chen EY. Characterization of GRK5 as a novel regulator of rhabdomyosarcoma tumor cell growth and self-renewal. Oncotarget 2020; 11:1448-1461. [PMID: 32363002 PMCID: PMC7185065 DOI: 10.18632/oncotarget.27562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/03/2020] [Indexed: 12/24/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft-tissue pediatric sarcoma. Clinical outcomes for RMS patients with relapsed or metastatic disease remain poor. Treatment options remain limited, presenting an urgent need for novel therapeutic targets. Using a high-throughput siRNA screen against the human kinome, we identified GRK5, a G-protein receptor kinase, as a novel regulator of RMS tumor cell growth and self-renewal. Through functional assays in vitro and in vivo, we show that GRK5 regulates cell cycle in a kinase-independent manner to promote RMS tumor cell growth. NFAT1 expression is regulated by GRK5 in a kinase independent manner, and loss of NFAT1 phenocopies GRK5 loss-of-function effects on the cell cycle alterations. Self-renewal of tumor propagating cells (TPCs) is thought to give rise to tumor relapse. We show that loss of GRK5 results in a significant reduction of RMS self-renewal capacity in part due to increased cell death. Treatment of human RMS xenografts in mice with CCG-215022, a GRK5-selective inhibitor, results in reduced tumor growth and self-renewal in both major subtypes of RMS. GRK5 represents a novel therapeutic target for the treatment of RMS.
Collapse
Affiliation(s)
- Thao Pham
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Kristin Robinson
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | - James E. Annis
- Quellos HTS Core, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Eleanor Y. Chen
- Department of Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
28
|
Simpson KL, Stoney R, Frese KK, Simms N, Rowe W, Pearce SP, Humphrey S, Booth L, Morgan D, Dynowski M, Trapani F, Catozzi A, Revill M, Helps T, Galvin M, Girard L, Nonaka D, Carter L, Krebs MG, Cook N, Carter M, Priest L, Kerr A, Gazdar AF, Blackhall F, Dive C. A biobank of small cell lung cancer CDX models elucidates inter- and intratumoral phenotypic heterogeneity. NATURE CANCER 2020; 1:437-451. [PMID: 35121965 DOI: 10.1038/s43018-020-0046-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/26/2020] [Indexed: 12/17/2022]
Abstract
Although small cell lung cancer (SCLC) is treated as a homogeneous disease, biopsies and preclinical models reveal heterogeneity in transcriptomes and morphology. SCLC subtypes were recently defined by neuroendocrine transcription factor (NETF) expression. Circulating-tumor-cell-derived explant models (CDX) recapitulate donor patients' tumor morphology, diagnostic NE marker expression and chemotherapy responses. We describe a biobank of 38 CDX models, including six CDX pairs generated pretreatment and at disease progression revealing complex intra- and intertumoral heterogeneity. Transcriptomic analysis confirmed three of four previously described subtypes based on ASCL1, NEUROD1 and POU2F3 expression and identified a previously unreported subtype based on another NETF, ATOH1. We document evolution during disease progression exemplified by altered MYC and NOTCH gene expression, increased 'variant' cell morphology, and metastasis without strong evidence of epithelial to mesenchymal transition. This CDX biobank provides a research resource to facilitate SCLC personalized medicine.
Collapse
Affiliation(s)
- Kathryn L Simpson
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Ruth Stoney
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Kristopher K Frese
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Nicole Simms
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - William Rowe
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Simon P Pearce
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Sam Humphrey
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Laura Booth
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Derrick Morgan
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Marek Dynowski
- Scientific Computing Core Facility, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Francesca Trapani
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Alessia Catozzi
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Mitchell Revill
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Thomas Helps
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Melanie Galvin
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Louise Carter
- The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Matthew G Krebs
- The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Natalie Cook
- The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Mathew Carter
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Lynsey Priest
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Alastair Kerr
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Adi F Gazdar
- Hamon Center for Therapeutic Oncology Research, Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Fiona Blackhall
- The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, UK
| | - Caroline Dive
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, UK.
| |
Collapse
|
29
|
Stewart CA, Gay CM, Xi Y, Sivajothi S, Sivakamasundari V, Fujimoto J, Bolisetty M, Hartsfield PM, Balasubramaniyan V, Chalishazar MD, Moran C, Kalhor N, Stewart J, Tran H, Swisher SG, Roth JA, Zhang J, de Groot J, Glisson B, Oliver TG, Heymach JV, Wistuba I, Robson P, Wang J, Byers LA. Single-cell analyses reveal increased intratumoral heterogeneity after the onset of therapy resistance in small-cell lung cancer. NATURE CANCER 2020; 1:423-436. [PMID: 33521652 PMCID: PMC7842382 DOI: 10.1038/s43018-019-0020-z] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/12/2019] [Indexed: 01/10/2023]
Abstract
The natural history of small cell lung cancer (SCLC) includes rapid evolution from chemosensitivity to chemoresistance, although mechanisms underlying this evolution remain obscure due to scarcity of post-relapse tissue samples. We generated circulating tumor cell (CTC)-derived xenografts (CDXs) from SCLC patients to study intratumoral heterogeneity (ITH) via single-cell RNAseq of chemo-sensitive and -resistant CDXs and patient CTCs. We found globally increased ITH including heterogeneous expression of therapeutic targets and potential resistance pathways, such as EMT, between cellular subpopulations following treatment-resistance. Similarly, serial profiling of patient CTCs directly from blood confirmed increased ITH post-relapse. These data suggest that treatment-resistance in SCLC is characterized by coexisting subpopulations of cells with heterogeneous gene expression leading to multiple, concurrent resistance mechanisms. These findings emphasize the need for clinical efforts to focus on rational combination therapies for treatment-naïve SCLC tumors to maximize initial responses and counteract the emergence of ITH and diverse resistance mechanisms.
Collapse
Affiliation(s)
- C Allison Stewart
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carl M Gay
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohan Bolisetty
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Patrice M Hartsfield
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Milind D Chalishazar
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Cesar Moran
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neda Kalhor
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Stewart
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hai Tran
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John de Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bonnie Glisson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Trudy G Oliver
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren Averett Byers
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
30
|
Sui JSY, Martin P, Gray SG. Pre-clinical models of small cell lung cancer and the validation of therapeutic targets. Expert Opin Ther Targets 2020; 24:187-204. [PMID: 32068452 DOI: 10.1080/14728222.2020.1732353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Small-cell lung cancer (SCLC) is an aggressive form of lung cancer that has a dismal prognosis. One of the factors hindering therapeutic developments for SCLC is that most SCLC is not surgically resected resulting in a paucity of material for analysis. To address this, significant efforts have been made by investigators to develop pre-clinical models of SCLC allowing for downstream target identification in this difficult to treat cancer.Areas covered: In this review, we describe the current pre-clinical models that have been developed to interrogate SCLC, and outline the benefits and limitations associated with each. Using examples we show how each has been used to (i) improve our knowledge of this intractable cancer, and (ii) identify and validate potential therapeutic targets that (iii) are currently under development and testing within the clinic.Expert opinion: The large numbers of preclinical models that have been developed have dramatically improved the ways in which we can examine SCLC and test therapeutic targets/interventions. The newer models are rapidly providing novel avenues for the design and testing of new therapeutics. Despite this many of these models have inherent flaws that limit the possibility of their use for individualized therapy decision-making for SCLC.
Collapse
Affiliation(s)
- Jane S Y Sui
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, Ireland.,Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Petra Martin
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, Ireland
| | - Steven G Gray
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, Ireland.,Labmed Directorate, St. James's Hospital, Dublin, Ireland.,School of Biological Sciences, Dublin Institute of Technology, Dublin, Ireland
| |
Collapse
|
31
|
Abstract
Cancer arises from a single cell through a series of acquired mutations and epigenetic alterations. Tumors gradually develop into a complex tissue comprised of phenotypically heterogeneous cancer cell populations, as well as noncancer cells that make up the tumor microenvironment. The phenotype, or state, of each cancer and stromal cell is influenced by a plethora of cell-intrinsic and cell-extrinsic factors. The diversity of these cellular states promotes tumor progression, enables metastasis, and poses a challenge for effective cancer treatments. Thus, the identification of strategies for the therapeutic manipulation of tumor heterogeneity would have significant clinical implications. A major barrier in the field is the difficulty in functionally investigating heterogeneity in tumors in cancer patients. Here we review how mouse models of human cancer can be leveraged to interrogate tumor heterogeneity and to help design better therapeutic strategies.
Collapse
Affiliation(s)
- Tuomas Tammela
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julien Sage
- Department of Pediatrics and Department of Genetics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
32
|
Li L, Ng SR, Colón CI, Drapkin BJ, Hsu PP, Li Z, Nabel CS, Lewis CA, Romero R, Mercer KL, Bhutkar A, Phat S, Myers DT, Muzumdar MD, Westcott PMK, Beytagh MC, Farago AF, Vander Heiden MG, Dyson NJ, Jacks T. Identification of DHODH as a therapeutic target in small cell lung cancer. Sci Transl Med 2019; 11:eaaw7852. [PMID: 31694929 PMCID: PMC7401885 DOI: 10.1126/scitranslmed.aaw7852] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/18/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022]
Abstract
Small cell lung cancer (SCLC) is an aggressive lung cancer subtype with extremely poor prognosis. No targetable genetic driver events have been identified, and the treatment landscape for this disease has remained nearly unchanged for over 30 years. Here, we have taken a CRISPR-based screening approach to identify genetic vulnerabilities in SCLC that may serve as potential therapeutic targets. We used a single-guide RNA (sgRNA) library targeting ~5000 genes deemed to encode "druggable" proteins to perform loss-of-function genetic screens in a panel of cell lines derived from autochthonous genetically engineered mouse models (GEMMs) of SCLC, lung adenocarcinoma (LUAD), and pancreatic ductal adenocarcinoma (PDAC). Cross-cancer analyses allowed us to identify SCLC-selective vulnerabilities. In particular, we observed enhanced sensitivity of SCLC cells toward disruption of the pyrimidine biosynthesis pathway. Pharmacological inhibition of dihydroorotate dehydrogenase (DHODH), a key enzyme in this pathway, reduced the viability of SCLC cells in vitro and strongly suppressed SCLC tumor growth in human patient-derived xenograft (PDX) models and in an autochthonous mouse model. These results indicate that DHODH inhibition may be an approach to treat SCLC.
Collapse
Affiliation(s)
- Leanne Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sheng Rong Ng
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Caterina I Colón
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Peggy P Hsu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Zhaoqi Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher S Nabel
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Rodrigo Romero
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kim L Mercer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arjun Bhutkar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sarah Phat
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - David T Myers
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Mandar Deepak Muzumdar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter M K Westcott
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mary Clare Beytagh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anna F Farago
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Matthew G Vander Heiden
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
33
|
Harris LA, Beik S, Ozawa PMM, Jimenez L, Weaver AM. Modeling heterogeneous tumor growth dynamics and cell-cell interactions at single-cell and cell-population resolution. CURRENT OPINION IN SYSTEMS BIOLOGY 2019; 17:24-34. [PMID: 32642602 PMCID: PMC7343346 DOI: 10.1016/j.coisb.2019.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cancer is a complex, dynamic disease that despite recent advances remains mostly incurable. Inter- and intratumoral heterogeneity are generally considered major drivers of therapy resistance, metastasis, and treatment failure. Recent advances in high-throughput experimentation have produced a wealth of data on tumor heterogeneity and researchers are increasingly turning to mathematical modeling to aid in the interpretation of these complex datasets. In this mini-review, we discuss three important classes of approaches for modeling cellular dynamics within heterogeneous tumors: agent-based models, population dynamics, and multiscale models. An important new focus, for which we provide an example, is the role of intratumoral cell-cell interactions.
Collapse
Affiliation(s)
- Leonard A. Harris
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Samantha Beik
- Cancer Biology Graduate Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Patricia M. M. Ozawa
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Lizandra Jimenez
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alissa M. Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
34
|
Wooten DJ, Groves SM, Tyson DR, Liu Q, Lim JS, Albert R, Lopez CF, Sage J, Quaranta V. Systems-level network modeling of Small Cell Lung Cancer subtypes identifies master regulators and destabilizers. PLoS Comput Biol 2019; 15:e1007343. [PMID: 31671086 PMCID: PMC6860456 DOI: 10.1371/journal.pcbi.1007343] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 11/18/2019] [Accepted: 08/19/2019] [Indexed: 01/15/2023] Open
Abstract
Adopting a systems approach, we devise a general workflow to define actionable subtypes in human cancers. Applied to small cell lung cancer (SCLC), the workflow identifies four subtypes based on global gene expression patterns and ontologies. Three correspond to known subtypes (SCLC-A, SCLC-N, and SCLC-Y), while the fourth is a previously undescribed ASCL1+ neuroendocrine variant (NEv2, or SCLC-A2). Tumor deconvolution with subtype gene signatures shows that all of the subtypes are detectable in varying proportions in human and mouse tumors. To understand how multiple stable subtypes can arise within a tumor, we infer a network of transcription factors and develop BooleaBayes, a minimally-constrained Boolean rule-fitting approach. In silico perturbations of the network identify master regulators and destabilizers of its attractors. Specific to NEv2, BooleaBayes predicts ELF3 and NR0B1 as master regulators of the subtype, and TCF3 as a master destabilizer. Since the four subtypes exhibit differential drug sensitivity, with NEv2 consistently least sensitive, these findings may lead to actionable therapeutic strategies that consider SCLC intratumoral heterogeneity. Our systems-level approach should generalize to other cancer types.
Collapse
Affiliation(s)
- David J. Wooten
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Sarah M. Groves
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Darren R. Tyson
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Qi Liu
- Departments of Biomedical Informatics and Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jing S. Lim
- Departments of Pediatrics and Genetics, Stanford University, Stanford, California, United States of America
| | - Réka Albert
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Carlos F. Lopez
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Julien Sage
- Departments of Pediatrics and Genetics, Stanford University, Stanford, California, United States of America
| | - Vito Quaranta
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
35
|
Deneka AY, Boumber Y, Beck T, Golemis EA. Tumor-Targeted Drug Conjugates as an Emerging Novel Therapeutic Approach in Small Cell Lung Cancer (SCLC). Cancers (Basel) 2019; 11:E1297. [PMID: 31484422 PMCID: PMC6769513 DOI: 10.3390/cancers11091297] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/25/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023] Open
Abstract
There are few effective therapies for small cell lung cancer (SCLC), a highly aggressive disease representing 15% of total lung cancers. With median survival <2 years, SCLC is one of the most lethal cancers. At present, chemotherapies and radiation therapy are commonly used for SCLC management. Few protein-targeted therapies have shown efficacy in improving overall survival; immune checkpoint inhibitors (ICIs) are promising agents, but many SCLC tumors do not express ICI targets such as PD-L1. This article presents an alternative approach to the treatment of SCLC: the use of drug conjugates, where a targeting moiety concentrates otherwise toxic agents in the vicinity of tumors, maximizing the differential between tumor killing and the cytotoxicity of normal tissues. Several tumor-targeted drug conjugate delivery systems exist and are currently being actively tested in the setting of SCLC. These include antibody-drug conjugates (ADCs), radioimmunoconjugates (RICs), small molecule-drug conjugates (SMDCs), and polymer-drug conjugates (PDCs). We summarize the basis of action for these targeting compounds, discussing principles of construction and providing examples of effective versus ineffective compounds, as established by preclinical and clinical testing. Such agents may offer new therapeutic options for the clinical management of this challenging disease in the future.
Collapse
Affiliation(s)
- Alexander Y Deneka
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
- Department of Biochemistry, Kazan Federal University, 420000 Kazan, Russia.
| | - Yanis Boumber
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Department of Biochemistry, Kazan Federal University, 420000 Kazan, Russia
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Tim Beck
- Cleveland Clinic, Cleveland, OH 44195, USA
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
36
|
Jin Y, Ma D, Gramyk T, Guo C, Fang R, Ji H, Shi YG. Kdm1a promotes SCLC progression by transcriptionally silencing the tumor suppressor Rest. Biochem Biophys Res Commun 2019; 515:214-221. [DOI: 10.1016/j.bbrc.2019.05.118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 05/18/2019] [Indexed: 01/22/2023]
|
37
|
Schulze AB, Evers G, Kerkhoff A, Mohr M, Schliemann C, Berdel WE, Schmidt LH. Future Options of Molecular-Targeted Therapy in Small Cell Lung Cancer. Cancers (Basel) 2019; 11:E690. [PMID: 31108964 PMCID: PMC6562929 DOI: 10.3390/cancers11050690] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/29/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. With a focus on histology, there are two major subtypes: Non-small cell lung cancer (NSCLC) (the more frequent subtype), and small cell lung cancer (SCLC) (the more aggressive one). Even though SCLC, in general, is a chemosensitive malignancy, relapses following induction therapy are frequent. The standard of care treatment of SCLC consists of platinum-based chemotherapy in combination with etoposide that is subsequently enhanced by PD-L1-inhibiting atezolizumab in the extensive-stage disease, as the addition of immune-checkpoint inhibition yielded improved overall survival. Although there are promising molecular pathways with potential therapeutic impacts, targeted therapies are still not an integral part of routine treatment. Against this background, we evaluated current literature for potential new molecular candidates such as surface markers (e.g., DLL3, TROP-2 or CD56), apoptotic factors (e.g., BCL-2, BET), genetic alterations (e.g., CREBBP, NOTCH or PTEN) or vascular markers (e.g., VEGF, FGFR1 or CD13). Apart from these factors, the application of so-called 'poly-(ADP)-ribose polymerases' (PARP) inhibitors can influence tumor repair mechanisms and thus offer new perspectives for future treatment. Another promising therapeutic concept is the inhibition of 'enhancer of zeste homolog 2' (EZH2) in the loss of function of tumor suppressors or amplification of (proto-) oncogenes. Considering the poor prognosis of SCLC patients, new molecular pathways require further investigation to augment our therapeutic armamentarium in the future.
Collapse
Affiliation(s)
- Arik Bernard Schulze
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Georg Evers
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Andrea Kerkhoff
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Michael Mohr
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Christoph Schliemann
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Wolfgang E Berdel
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Lars Henning Schmidt
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| |
Collapse
|
38
|
Lallo A, Gulati S, Schenk MW, Khandelwal G, Berglund UW, Pateras IS, Chester CPE, Pham TM, Kalderen C, Frese KK, Gorgoulis VG, Miller C, Blackhall F, Helleday T, Dive C. Ex vivo culture of cells derived from circulating tumour cell xenograft to support small cell lung cancer research and experimental therapeutics. Br J Pharmacol 2019; 176:436-450. [PMID: 30427531 PMCID: PMC6329630 DOI: 10.1111/bph.14542] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Small cell lung cancer (SCLC) is an aggressive disease with median survival of <2 years. Tumour biopsies for research are scarce, especially from extensive-stage patients, with repeat sampling at disease progression rarely performed. We overcame this limitation for relevant preclinical models by developing SCLC circulating tumour cell derived explants (CDX), which mimic the donor tumour pathology and chemotherapy response. To facilitate compound screening and identification of clinically relevant biomarkers, we developed short-term ex vivo cultures of CDX tumour cells. EXPERIMENTAL APPROACH CDX tumours were disaggregated, and the human tumour cells derived were cultured for a maximum of 5 weeks. Phenotypic, transcriptomic and pharmacological characterization of these cells was performed. KEY RESULTS CDX cultures maintained a neuroendocrine phenotype, and most changes in the expression of protein-coding genes observed in cultures, for up to 4 weeks, were reversible when the cells were re-implanted in vivo. Moreover, the CDX cultures exhibited a similar sensitivity to chemotherapy compared to the corresponding CDX tumour in vivo and were able to predict in vivo responses to therapeutic candidates. CONCLUSIONS AND IMPLICATIONS Short-term cultures of CDX provide a tractable platform to screen new treatments, identify predictive and pharmacodynamic biomarkers and investigate mechanisms of resistance to better understand the progression of this recalcitrant tumour.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Drug Evaluation, Preclinical
- Drug Screening Assays, Antitumor
- Humans
- Indazoles/chemistry
- Indazoles/pharmacology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Mice
- Mice, Inbred Strains
- Mice, SCID
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Neoplastic Cells, Circulating/drug effects
- Neoplastic Cells, Circulating/pathology
- Small Cell Lung Carcinoma/drug therapy
- Small Cell Lung Carcinoma/pathology
- Structure-Activity Relationship
- Sulfonamides/chemistry
- Sulfonamides/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Alice Lallo
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester InstituteUniversity of ManchesterMacclesfieldUK
| | - Sakshi Gulati
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester InstituteUniversity of ManchesterMacclesfieldUK
| | - Maximilian W Schenk
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester InstituteUniversity of ManchesterMacclesfieldUK
| | - Garima Khandelwal
- RNA Biology Group, Cancer Research UK Manchester InstituteUniversity of ManchesterManchesterUK
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineUniversity of AthensAthensGreece
| | - Christopher P E Chester
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester InstituteUniversity of ManchesterMacclesfieldUK
| | - Therese M Pham
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Christina Kalderen
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Kristopher K Frese
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester InstituteUniversity of ManchesterMacclesfieldUK
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineUniversity of AthensAthensGreece
- Biomedical Research Foundation of the Academy of AthensAthensGreece
- Faculty of Biology, Medicine and Health Manchester Cancer Research Centre, Manchester Academic Health Sciences CentreUniversity of ManchesterManchesterUK
| | - Crispin Miller
- RNA Biology Group, Cancer Research UK Manchester InstituteUniversity of ManchesterManchesterUK
| | - Fiona Blackhall
- Institute of Cancer SciencesUniversity of Manchester and Christie NHS Foundation TrustManchesterUK
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Caroline Dive
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester InstituteUniversity of ManchesterMacclesfieldUK
- Cancer Research UK Lung Cancer Centre of ExcellenceManchesterUK
| |
Collapse
|
39
|
Optofluidic real-time cell sorter for longitudinal CTC studies in mouse models of cancer. Proc Natl Acad Sci U S A 2019; 116:2232-2236. [PMID: 30674677 PMCID: PMC6369805 DOI: 10.1073/pnas.1814102116] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Circulating tumor cells (CTCs) play a fundamental role in cancer progression. However, in mice, limited blood volume and the rarity of CTCs in the bloodstream preclude longitudinal, in-depth studies of these cells using existing liquid biopsy techniques. Here, we present an optofluidic system that continuously collects fluorescently labeled CTCs from a genetically engineered mouse model (GEMM) for several hours per day over multiple days or weeks. The system is based on a microfluidic cell sorting chip connected serially to an unanesthetized mouse via an implanted arteriovenous shunt. Pneumatically controlled microfluidic valves capture CTCs as they flow through the device, and CTC-depleted blood is returned back to the mouse via the shunt. To demonstrate the utility of our system, we profile CTCs isolated longitudinally from animals over 4 days of treatment with the BET inhibitor JQ1 using single-cell RNA sequencing (scRNA-Seq) and show that our approach eliminates potential biases driven by intermouse heterogeneity that can occur when CTCs are collected across different mice. The CTC isolation and sorting technology presented here provides a research tool to help reveal details of how CTCs evolve over time, allowing studies to credential changes in CTCs as biomarkers of drug response and facilitating future studies to understand the role of CTCs in metastasis.
Collapse
|
40
|
Tièche CC, Gao Y, Bührer ED, Hobi N, Berezowska SA, Wyler K, Froment L, Weis S, Peng RW, Bruggmann R, Schär P, Amrein MA, Hall SRR, Dorn P, Kocher G, Riether C, Ochsenbein A, Schmid RA, Marti TM. Tumor Initiation Capacity and Therapy Resistance Are Differential Features of EMT-Related Subpopulations in the NSCLC Cell Line A549. Neoplasia 2018; 21:185-196. [PMID: 30591423 PMCID: PMC6309124 DOI: 10.1016/j.neo.2018.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 11/23/2022]
Abstract
Cell lines are essential tools to standardize and compare experimental findings in basic and translational cancer research. The current dogma states that cancer stem cells feature an increased tumor initiation capacity and are also chemoresistant. Here, we identified and comprehensively characterized three morphologically distinct cellular subtypes in the non–small cell lung cancer cell line A549 and challenge the current cancer stem cell dogma. Subtype-specific cellular morphology is maintained during short-term culturing, resulting in the formation of holoclonal, meroclonal, and paraclonal colonies. A549 holoclone cells were characterized by an epithelial and stem-like phenotype, paraclone cells featured a mesenchymal phenotype, whereas meroclone cells were phenotypically intermediate. Cell-surface marker expression of subpopulations changed over time, indicating an active epithelial-to-mesenchymal transition (EMT), in vitro and in vivo. EMT has been associated with the overexpression of the immunomodulators PD-L1 and PD-L2, which were 37- and 235-fold overexpressed in para- versus holoclone cells, respectively. We found that DNA methylation is involved in epigenetic regulation of marker expression. Holoclone cells were extremely sensitive to cisplatin and radiotherapy in vitro, whereas paraclone cells were highly resistant. However, inhibition of the receptor tyrosine kinase AXL, whose expression is associated with an EMT, specifically targeted the otherwise highly resistant paraclone cells. Xenograft tumor formation capacity was 24- and 269-fold higher in holo- than mero- and paraclone cells, respectively. Our results show that A549 subpopulations might serve as a unique system to explore the network of stemness, cellular plasticity, tumor initiation capacity, invasive and metastatic potential, and chemo/radiotherapy resistance.
Collapse
Affiliation(s)
- Colin Charles Tièche
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department of BioMedical Research (DBMR), University of Bern, Switzerland
| | - Yanyun Gao
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department of BioMedical Research (DBMR), University of Bern, Switzerland
| | - Elias Daniel Bührer
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Nina Hobi
- ARTORG Center for Biomedical Engineering Research, Organs-on-Chip Technologies, University of Bern, Switzerland, Institute of General Physiology, University of Ulm, Germany
| | | | - Kurt Wyler
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Switzerland
| | - Laurène Froment
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department of BioMedical Research (DBMR), University of Bern, Switzerland
| | - Stefan Weis
- Department of Biomedicine, University of Basel, Switzerland
| | - Ren-Wang Peng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department of BioMedical Research (DBMR), University of Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Switzerland
| | - Primo Schär
- Department of Biomedicine, University of Basel, Switzerland
| | - Michael Alex Amrein
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Sean Ralph Robert Hall
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department of BioMedical Research (DBMR), University of Bern, Switzerland
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department of BioMedical Research (DBMR), University of Bern, Switzerland
| | - Gregor Kocher
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department of BioMedical Research (DBMR), University of Bern, Switzerland
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Adrian Ochsenbein
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Ralph Alexander Schmid
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department of BioMedical Research (DBMR), University of Bern, Switzerland.
| | - Thomas Michael Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department of BioMedical Research (DBMR), University of Bern, Switzerland.
| |
Collapse
|
41
|
Gahete MD, Jimenez-Vacas JM, Alors-Perez E, Herrero-Aguayo V, Fuentes-Fayos AC, Pedraza-Arevalo S, Castaño JP, Luque RM. Mouse models in endocrine tumors. J Endocrinol 2018; 240:JOE-18-0571.R1. [PMID: 30475226 DOI: 10.1530/joe-18-0571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022]
Abstract
Endocrine and neuroendocrine tumors comprise a highly heterogeneous group of neoplasms that can arise from (neuro)endocrine cells, either from endocrine glands or from the widespread diffuse neuroendocrine system, and, consequently, are widely distributed throughout the body. Due to their diversity, heterogeneity and limited incidence, studying in detail the molecular and genetic alterations that underlie their development and progression is still a highly elusive task. This, in turn, hinders the discovery of novel therapeutic options for these tumors. To circumvent these limitations, numerous mouse models of endocrine and neuroendocrine tumors have been developed, characterized and used in pre-clinical, co-clinical (implemented in mouse models and patients simultaneously) and post-clinical studies, for they represent powerful and necessary tools in basic and translational tumor biology research. Indeed, different in vivo mouse models, including cell line-based xenografts (CDXs), patient-derived xenografts (PDXs) and genetically engineered mouse models (GEMs), have been used to delineate the development, progression and behavior of human tumors. Results gained with these in vivo models have facilitated the clinical application in patients of diverse breakthrough discoveries made in this field. Herein, we review the generation, characterization and translatability of the most prominent mouse models of endocrine and neuroendocrine tumors reported to date, as well as the most relevant clinical implications obtained for each endocrine and neuroendocrine tumor type.
Collapse
Affiliation(s)
- Manuel D Gahete
- M Gahete, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, 14011, Spain
| | - Juan M Jimenez-Vacas
- J Jimenez-Vacas, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Emilia Alors-Perez
- E Alors-Perez, Department of Cell Biology, Physiology and Inmunology, Maimonides Institute for Biomedical Research of Cordoba (IMIBIC) / University of Cordoba, Cordoba, Spain
| | - Vicente Herrero-Aguayo
- V Herrero-Aguayo, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- A Fuentes-Fayos, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Sergio Pedraza-Arevalo
- S Pedraza-Arevalo, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Justo P Castaño
- J Castaño, Dpt. of Cell Biology-University of Córdoba, IMIBIC-Maimonides Biomedical Research Institute of Cordoba, Cordoba, E-14004, Spain
| | - Raul M Luque
- R Luque, Dept of Cell Biology, Phisiology and Inmunology, Section of Cell Biology, University of Cordoba, Cordoba, Spain, Cordoba, 14014, Spain
| |
Collapse
|
42
|
Yang D, Denny SK, Greenside PG, Chaikovsky AC, Brady JJ, Ouadah Y, Granja JM, Jahchan NS, Lim JS, Kwok S, Kong CS, Berghoff AS, Schmitt A, Reinhardt HC, Park KS, Preusser M, Kundaje A, Greenleaf WJ, Sage J, Winslow MM. Intertumoral Heterogeneity in SCLC Is Influenced by the Cell Type of Origin. Cancer Discov 2018; 8:1316-1331. [PMID: 30228179 DOI: 10.1158/2159-8290.cd-17-0987] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 05/14/2018] [Accepted: 08/09/2018] [Indexed: 12/15/2022]
Abstract
The extent to which early events shape tumor evolution is largely uncharacterized, even though a better understanding of these early events may help identify key vulnerabilities in advanced tumors. Here, using genetically defined mouse models of small cell lung cancer (SCLC), we uncovered distinct metastatic programs attributable to the cell type of origin. In one model, tumors gain metastatic ability through amplification of the transcription factor NFIB and a widespread increase in chromatin accessibility, whereas in the other model, tumors become metastatic in the absence of NFIB-driven chromatin alterations. Gene-expression and chromatin accessibility analyses identify distinct mechanisms as well as markers predictive of metastatic progression in both groups. Underlying the difference between the two programs was the cell type of origin of the tumors, with NFIB-independent metastases arising from mature neuroendocrine cells. Our findings underscore the importance of the identity of cell type of origin in influencing tumor evolution and metastatic mechanisms.Significance: We show that SCLC can arise from different cell types of origin, which profoundly influences the eventual genetic and epigenetic changes that enable metastatic progression. Understanding intertumoral heterogeneity in SCLC, and across cancer types, may illuminate mechanisms of tumor progression and uncover how the cell type of origin affects tumor evolution. Cancer Discov; 8(10); 1316-31. ©2018 AACR. See related commentary by Pozo et al., p. 1216 This article is highlighted in the In This Issue feature, p. 1195.
Collapse
Affiliation(s)
- Dian Yang
- Cancer Biology Program, Stanford University, Stanford, California.,Department of Genetics, Stanford University, Stanford, California.,Department of Pediatrics, Stanford University, Stanford, California
| | - Sarah K Denny
- Department of Genetics, Stanford University, Stanford, California.,Biophysics Program, Stanford University, Stanford, California
| | - Peyton G Greenside
- Program in Biomedical Informatics, Stanford University, Stanford, California
| | - Andrea C Chaikovsky
- Cancer Biology Program, Stanford University, Stanford, California.,Department of Genetics, Stanford University, Stanford, California.,Department of Pediatrics, Stanford University, Stanford, California
| | - Jennifer J Brady
- Department of Genetics, Stanford University, Stanford, California
| | - Youcef Ouadah
- Cancer Biology Program, Stanford University, Stanford, California.,Department of Biochemistry, Stanford University, Stanford, California
| | - Jeffrey M Granja
- Department of Genetics, Stanford University, Stanford, California.,Biophysics Program, Stanford University, Stanford, California
| | - Nadine S Jahchan
- Department of Genetics, Stanford University, Stanford, California.,Department of Pediatrics, Stanford University, Stanford, California
| | - Jing Shan Lim
- Cancer Biology Program, Stanford University, Stanford, California.,Department of Genetics, Stanford University, Stanford, California.,Department of Pediatrics, Stanford University, Stanford, California
| | - Shirley Kwok
- Department of Pathology, Stanford University, Stanford, California
| | - Christina S Kong
- Department of Pathology, Stanford University, Stanford, California
| | - Anna S Berghoff
- Institute of Neurology, Medical University of Vienna, Vienna, Austria.,Department of Medicine I, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center CNS Tumors Unit, Medical University of Vienna, Vienna, Austria
| | - Anna Schmitt
- Department of Internal Medicine I, University Hospital of Cologne, Cologne, Germany
| | - H Christian Reinhardt
- Department of Internal Medicine I, University Hospital of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Kwon-Sik Park
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Matthias Preusser
- Department of Medicine I, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center CNS Tumors Unit, Medical University of Vienna, Vienna, Austria
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, California.,Department of Computer Science, Stanford University, Stanford, California
| | | | - Julien Sage
- Cancer Biology Program, Stanford University, Stanford, California. .,Department of Genetics, Stanford University, Stanford, California.,Department of Pediatrics, Stanford University, Stanford, California
| | - Monte M Winslow
- Cancer Biology Program, Stanford University, Stanford, California. .,Department of Genetics, Stanford University, Stanford, California.,Department of Pathology, Stanford University, Stanford, California
| |
Collapse
|
43
|
Blackhall F, Frese KK, Simpson K, Kilgour E, Brady G, Dive C. Will liquid biopsies improve outcomes for patients with small-cell lung cancer? Lancet Oncol 2018; 19:e470-e481. [PMID: 30191851 DOI: 10.1016/s1470-2045(18)30455-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/17/2018] [Accepted: 06/12/2018] [Indexed: 01/08/2023]
Abstract
Small-cell lung cancer (SCLC) is an aggressive tumour that seeds metastases early with dismal outcomes. As expected from a disease that is closely associated with smoking, mutation burden in SCLC is high. Intratumoral and intertumoral heterogeneity is a substantial obstacle to successful treatment and the SCLC genomic landscape reveals few targets that are readily druggable. Chemotherapy elicits responses in most patients with SCLC, but their effects are short lived. Multiple clinical trials have been unsuccessful in showing positive survival outcomes and biomarkers to select patients and monitor responses to novel targeted treatments have been lacking, not least because acquisition of tumour biopsies, especially during relapse after chemotherapy, is a substantial challenge. Liquid biopsies via blood sampling in SCLC, notably circulating tumour cells and circulating free tumour DNA can be readily and repeatedly accessed, and are beginning to yield promising data to inform SCLC biology and patient treatment. Primary cell cultures and preclinical mouse models can also be derived from the relatively plentiful SCLC circulating tumour cells providing a tractable platform for SCLC translational research and drug development.
Collapse
Affiliation(s)
- Fiona Blackhall
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Department of Medical Oncology, The Christie National Health Service Foundation Trust, Manchester, UK; Cancer Research UK Lung Cancer Centre of Excellence at University College London, London, UK; University of Manchester, Manchester, UK
| | - Kristopher K Frese
- Clinical and Experimental Pharmacology Group and Manchester Centre for Cancer Biomarker Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK; Cancer Research UK Lung Cancer Centre of Excellence at University College London, London, UK; University of Manchester, Manchester, UK
| | - Kathryn Simpson
- Clinical and Experimental Pharmacology Group and Manchester Centre for Cancer Biomarker Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK; Cancer Research UK Lung Cancer Centre of Excellence at University College London, London, UK; University of Manchester, Manchester, UK
| | - Elaine Kilgour
- Clinical and Experimental Pharmacology Group and Manchester Centre for Cancer Biomarker Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK; Cancer Research UK Lung Cancer Centre of Excellence at University College London, London, UK; University of Manchester, Manchester, UK
| | - Ged Brady
- Clinical and Experimental Pharmacology Group and Manchester Centre for Cancer Biomarker Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK; Cancer Research UK Lung Cancer Centre of Excellence at University College London, London, UK; University of Manchester, Manchester, UK
| | - Caroline Dive
- Clinical and Experimental Pharmacology Group and Manchester Centre for Cancer Biomarker Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK; Cancer Research UK Lung Cancer Centre of Excellence at University College London, London, UK; University of Manchester, Manchester, UK.
| |
Collapse
|
44
|
Testa U, Castelli G, Pelosi E. Lung Cancers: Molecular Characterization, Clonal Heterogeneity and Evolution, and Cancer Stem Cells. Cancers (Basel) 2018; 10:E248. [PMID: 30060526 PMCID: PMC6116004 DOI: 10.3390/cancers10080248] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/21/2022] Open
Abstract
Lung cancer causes the largest number of cancer-related deaths in the world. Most (85%) of lung cancers are classified as non-small-cell lung cancer (NSCLC) and small-cell lung cancer (15%) (SCLC). The 5-year survival rate for NSCLC patients remains very low (about 16% at 5 years). The two predominant NSCLC histological phenotypes are adenocarcinoma (ADC) and squamous cell carcinoma (LSQCC). ADCs display several recurrent genetic alterations, including: KRAS, BRAF and EGFR mutations; recurrent mutations and amplifications of several oncogenes, including ERBB2, MET, FGFR1 and FGFR2; fusion oncogenes involving ALK, ROS1, Neuregulin1 (NRG1) and RET. In LSQCC recurrent mutations of TP53, FGFR1, FGFR2, FGFR3, DDR2 and genes of the PI3K pathway have been detected, quantitative gene abnormalities of PTEN and CDKN2A. Developments in the characterization of lung cancer molecular abnormalities provided a strong rationale for new therapeutic options and for understanding the mechanisms of drug resistance. However, the complexity of lung cancer genomes is particularly high, as shown by deep-sequencing studies supporting the heterogeneity of lung tumors at cellular level, with sub-clones exhibiting different combinations of mutations. Molecular studies performed on lung tumors during treatment have shown the phenomenon of clonal evolution, thus supporting the occurrence of a temporal tumor heterogeneity.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
45
|
Petersburg J, Shen J, Csizmar CM, Murphy KA, Spanier J, Gabrielse K, Griffith TS, Fife B, Wagner CR. Eradication of Established Tumors by Chemically Self-Assembled Nanoring Labeled T Cells. ACS NANO 2018; 12:6563-6576. [PMID: 29792808 PMCID: PMC6506352 DOI: 10.1021/acsnano.8b01308] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Our laboratory has developed chemically self-assembled nanorings (CSANs) as prosthetic antigen receptors (PARs) for the nongenetic modification of T cell surfaces. PARs have been successfully employed in vitro to activate T cells for the selective killing of leukemia cells. However, PAR efficacy has yet to be evaluated in vivo or against solid tumors. Therefore, we developed bispecific PARs that selectively target the human CD3 receptor and human epithelial cell adhesion molecule (EpCAM), which is overexpressed on multiple carcinomas and cancer stem cells. The αEpCAM/αCD3 PARs were found to stably bind T cells for >4 days, and treating EpCAM+ MCF-7 breast cancer cells with αEpCAM/αCD3 PAR-functionalized T cells resulted in the induction of IL-2, IFN-γ, and MCF-7 cytotoxicity. Furthermore, an orthotopic breast cancer model validated the ability of αEpCAM/αCD3 PAR therapy to direct T cell lytic activity toward EpCAM+ breast cancer cells in vivo, leading to tumor eradication. In vivo biodistribution studies demonstrated that PAR-T cells were formed in vivo and persist for over 48 h with rapid accumulation in tumor tissue. Following PAR treatment, the production of IL-2, IFN-γ, IL-6, and TNF-α could be significantly reduced by an infusion of clinically relevant concentrations of the FDA-approved antibiotic, trimethoprim, signaling pharmacologic PAR deactivation. Importantly, CSANs did not induce naïve T cell activation and thus exhibit a limited potential to induce naïve T cell anergy. In addition, murine immunogenicity studies demonstrated that CSANs do not induce a significant antibody response nor do they activate splenic cells. Collectively, our results demonstrate that bispecific CSANs are able to nongenetically generate reversibly modified T cells that are capable of eradicating targeted solid tumors.
Collapse
Affiliation(s)
- Jacob Petersburg
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Jingjing Shen
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Clifford M Csizmar
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Katherine A Murphy
- Department of Urology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Justin Spanier
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Kari Gabrielse
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Brian Fife
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Carston R. Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Address correspondence to: , University of Minnesota, Department of Medicinal Chemistry, 2231 6th Street S.E., Cancer & Cardiovascular Research Building, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
46
|
Chen R, Dong X, Gleave M. Molecular model for neuroendocrine prostate cancer progression. BJU Int 2018; 122:560-570. [DOI: 10.1111/bju.14207] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ruiqi Chen
- Department of Urologic Sciences; Vancouver Prostate Centre; University of British Columbia; Vancouver BC Canada
- Faculty of Medicine; University of Toronto; Toronto ON Canada
| | - Xuesen Dong
- Department of Urologic Sciences; Vancouver Prostate Centre; University of British Columbia; Vancouver BC Canada
| | - Martin Gleave
- Department of Urologic Sciences; Vancouver Prostate Centre; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
47
|
Li H, Liu Y, Liu Y, Liu J, Zhao D, Wang Y, Cheng Y. [Distribution and Clinical Significance of CTLA-4, PD-1 and PD-L1 in Peripheral Blood of Patients with Small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2018; 20:755-760. [PMID: 29167005 PMCID: PMC5973273 DOI: 10.3779/j.issn.1009-3419.2017.11.06] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND The aim of this study is to explore cytotoxic T lymphocyte associated antigen 4 (CTLA-4), programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1) distribution and clinical value in liquid biopsy (such as blood) of small cell lung cancer (SCLC) patients. METHODS A total of 60 healthy and 290 chemotherapy-naive patients with SCLC were recruited. Venous blood samples were collected prior to chemotherapy (baseline) and after the second cycle of chemotherapy (2nd cycle), and flow cytometry was used to analyze the level of CTLA-4, PD-1 or PD-L1 with or without CD3, CD4, CD8 or CD25. Immunocytochemical method was used to detect PD-L1 expression in SCLC cell line H446. RESULTS Cells of CTLA-4+ and PD-1+ in SCLC peripheral blood were (1.56±1.24)% and (8.07±3.97)%; there is no significant difference between CD3+CTLA-4+ and CD4+CTLA-4+, (4.87±5.18)% and (3.85±2.60)%, but show lower expression than CD3+PD-1+ and CD4+PD-1+ (26.63±9.04)% and (20.79±9.41)%, respectively. However, the level of CD4+CD25+CTLA-4+ cells were remarkably higher in SCLC than that in control, (7.09±5.09)% vs (1.91±1.27)%, P<0.001 and CD8+PD-1+ cells were less in SCLC than that in control, (11.47±5.85)% vs (22.56±4.21)%, P<0.001, both of which were not associated with age, sex, smoke or disease stage. Level of CD4+CD25+CTLA-4+ cells and CD8+PD-1+ cells was dropped (5.11±2.60)% vs (6.94±4.91)% and (8.74±3.39)% vs (11.48±5.91)% after 2nd cycle compare to that at baseline (P<0.000,1). Neither the level of CD4+CD25+CTLA-4+ nor CD8+PD-1+ cells before or after treatment was related to progression-free disease or overall survival of patients. Although PD-L1 was highly expressed in H446 cell cytoplasm and membrane, it was rarely found in peripheral blood. CONCLUSIONS The data we presented here showed that CTLA-4 was highly expressed in regulatory T cells and PD-1 decreased in CD8+ T cells in peripheral blood of SCLC patients, suggesting their unique mechanisms involved in immune regulation. CD4+CD25+CTLA-4+ level changed after treatment implies its potential role in predicting treatment efficacy.
.
Collapse
Affiliation(s)
- Hui Li
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital,
Changchun 130012, China
| | - Yan Liu
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital,
Changchun 130012, China
| | - Ying Liu
- Department of Medical Thoracic Oncology, Jilin Cancer Hospital,
Changchun 130012, China
| | - Jingjing Liu
- Department of Medical Thoracic Oncology, Jilin Cancer Hospital,
Changchun 130012, China
| | - Dandan Zhao
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital,
Changchun 130012, China
| | - Ying Wang
- Department of Medical Thoracic Oncology, Jilin Cancer Hospital,
Changchun 130012, China
| | - Ying Cheng
- Department of Medical Thoracic Oncology, Jilin Cancer Hospital,
Changchun 130012, China
| |
Collapse
|
48
|
Allison Stewart C, Tong P, Cardnell RJ, Sen T, Li L, Gay CM, Masrorpour F, Fan Y, Bara RO, Feng Y, Ru Y, Fujimoto J, Kundu ST, Post LE, Yu K, Shen Y, Glisson BS, Wistuba I, Heymach JV, Gibbons DL, Wang J, Byers LA. Dynamic variations in epithelial-to-mesenchymal transition (EMT), ATM, and SLFN11 govern response to PARP inhibitors and cisplatin in small cell lung cancer. Oncotarget 2018; 8:28575-28587. [PMID: 28212573 PMCID: PMC5438673 DOI: 10.18632/oncotarget.15338] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 01/19/2017] [Indexed: 12/16/2022] Open
Abstract
Small cell lung cancer (SCLC) is one of the most aggressive forms of cancer, with a 5-year survival <7%. A major barrier to progress is the absence of predictive biomarkers for chemotherapy and novel targeted agents such as PARP inhibitors. Using a high-throughput, integrated proteomic, transcriptomic, and genomic analysis of SCLC patient-derived xenografts (PDXs) and profiled cell lines, we identified biomarkers of drug sensitivity and determined their prevalence in patient tumors. In contrast to breast and ovarian cancer, PARP inhibitor response was not associated with mutations in homologous recombination (HR) genes (e.g., BRCA1/2) or HRD scores. Instead, we found several proteomic markers that predicted PDX response, including high levels of SLFN11 and E-cadherin and low ATM. SLFN11 and E-cadherin were also significantly associated with in vitro sensitivity to cisplatin and topoisomerase1/2 inhibitors (all commonly used in SCLC). Treatment with cisplatin or PARP inhibitors downregulated SLFN11 and E-cadherin, possibly explaining the rapid development of therapeutic resistance in SCLC. Supporting their functional role, silencing SLFN11 reduced in vitro sensitivity and drug-induced DNA damage; whereas ATM knockdown or pharmacologic inhibition enhanced sensitivity. Notably, SCLC with mesenchymal phenotypes (i.e., loss of E-cadherin and high epithelial-to-mesenchymal transition (EMT) signature scores) displayed striking alterations in expression of miR200 family and key SCLC genes (e.g., NEUROD1, ASCL1, ALDH1A1, MYCL1). Thus, SLFN11, EMT, and ATM mediate therapeutic response in SCLC and warrant further clinical investigation as predictive biomarkers.
Collapse
Affiliation(s)
- C Allison Stewart
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pan Tong
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert J Cardnell
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Triparna Sen
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lerong Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carl M Gay
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fatemah Masrorpour
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - You Fan
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rasha O Bara
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ying Feng
- BioMarin Pharmaceutical, San Rafael, CA 94901, USA
| | - Yuanbin Ru
- BioMarin Pharmaceutical, San Rafael, CA 94901, USA
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samrat T Kundu
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Karen Yu
- BioMarin Pharmaceutical, San Rafael, CA 94901, USA
| | - Yuqiao Shen
- BioMarin Pharmaceutical, San Rafael, CA 94901, USA
| | - Bonnie S Glisson
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John V Heymach
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Don L Gibbons
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lauren Averett Byers
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
49
|
Ni Z, Wang X, Zhang T, Li L, Li J. Comprehensive analysis of differential expression profiles reveals potential biomarkers associated with the cell cycle and regulated by p53 in human small cell lung cancer. Exp Ther Med 2018; 15:3273-3282. [PMID: 29545845 PMCID: PMC5841087 DOI: 10.3892/etm.2018.5833] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
Small cell lung cancer (SCLC) is the subtype of lung cancer with the highest degree of malignancy and the lowest degree of differentiation. The purpose of this study was to investigate the molecular mechanisms of SCLC using bioinformatics analysis, and to provide new ideas for the early diagnosis and targeted therapy of SCLC. Microarray data were downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) in SCLC were compared with the normal lung samples and identified. Gene Ontology (GO) function and pathway analysis of DEGs was performed through the DAVID database. Furthermore, microarray data was analyzed by using the clustering analysis tool GoMiner. Protein-protein interaction (PPI) networks of DEGs were constructed using the STRING online database. Protein expression was determined from the Human Protein Atlas, and SCLC gene expression was determined using Oncomine. In total, 153 DEGs were obtained. Functional enrichment analysis suggested that the majority of DEGs were associated with the cell cycle. CCNB1, CCNB2, MAD2L1 and CDK1 were identified to contribute to the progression of SCLC through combined use of GO, Kyoto Encyclopedia of Genes and Genomes enrichment analysis and a PPI network. mRNA and protein expression were also validated in an integrative database. The present study indicated that the formation of SCLC may be associated with cell cycle regulation. In addition, the four crucial genes CCNB1, CCNB2, MAD2L1 and CDK1, which are downstream of p53, may have important roles in the occurrence and progression of SCLC, and thus may be promising potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Zhong Ni
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiting Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Tianchen Zhang
- Institute of Reproduction and Development, Fudan University, Shanghai 200032, P.R. China.,China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, Shanghai Institute of Planned Parenthood Research (SIPPR), Shanghai 200032, P.R. China
| | - Linlin Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jianxue Li
- Department of Stomatology, Lanzhou General Hospital, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
50
|
Sen T, Gay CM, Byers LA. Targeting DNA damage repair in small cell lung cancer and the biomarker landscape. Transl Lung Cancer Res 2018. [PMID: 29535912 DOI: 10.21037/tlcr.2018.02.03] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Small cell lung cancer (SCLC) is an aggressive malignancy that accounts for 14% of all lung cancer diagnoses. Despite decades of active research, treatment options for SCLC are limited and resistance to the few Food and Drug Administration (FDA) approved therapies develops rapidly. With no approved targeted agents to date, new therapeutic strategies are desperately needed. SCLC is characterized by high mutation burden, ubiquitous loss of TP53 and RB1, mutually exclusive amplification of MYC family members, thereby, high genomic instability. Studies in the past few years have demonstrated the potential of targeting the DNA damage response (DDR) pathway as a promising therapeutic strategy for SCLC. Inhibitors targeting DDR proteins have shown promise in preclinical models, and are under clinical investigation as single agents and in combination with cytotoxic therapies. Recent efforts to expand the therapeutic arsenal toward SCLC have focused in part on immune checkpoint inhibitors, such as agents targeting the receptor-ligand pair programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1). Clinical trials have confirmed activity of these agents in extensive stage (ES)-SCLC. However, while several patients had dramatic responses, overall response rates to immune checkpoint blockade (ICB) remain poor. As a result, there is an urgent need to develop rational combination therapies to enhance response rates to immunotherapy in SCLC. Identification of predictive biomarkers for patient stratification, identifying effective combinations to overcome adaptive resistance to DDR-targeted therapies and identifying strategies to enhance response to immunotherapy are areas of active investigation in SCLC.
Collapse
Affiliation(s)
- Triparna Sen
- Department of Thoracic and Head & Neck Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Carl M Gay
- Department of Thoracic and Head & Neck Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren Averett Byers
- Department of Thoracic and Head & Neck Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|