1
|
Das S, Singh A, Shah P. Evaluating single-cell variability in proteasomal decay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554358. [PMID: 37662347 PMCID: PMC10473619 DOI: 10.1101/2023.08.22.554358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Gene expression is a stochastic process that leads to variability in mRNA and protein abundances even within an isogenic population of cells grown in the same environment. This variation, often called gene-expression noise, has typically been attributed to transcriptional and translational processes while ignoring the contributions of protein decay variability across cells. Here we estimate the single-cell protein decay rates of two degron GFPs in Saccharomyces cerevisiae using time-lapse microscopy. We find substantial cell-to-cell variability in the decay rates of the degron GFPs. We evaluate cellular features that explain the variability in the proteasomal decay and find that the amount of 20s catalytic beta subunit of the proteasome marginally explains the observed variability in the degron GFP half-lives. We propose alternate hypotheses that might explain the observed variability in the decay of the two degron GFPs. Overall, our study highlights the importance of studying the kinetics of the decay process at single-cell resolution and that decay rates vary at the single-cell level, and that the decay process is stochastic. A complex model of decay dynamics must be included when modeling stochastic gene expression to estimate gene expression noise.
Collapse
Affiliation(s)
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, Biomedical Engineering, University of Delaware
| | | |
Collapse
|
2
|
Buldak L, Machnik G, Skudrzyk E, Boldys A, Maliglowka M, Kosowski M, Basiak M, Buldak RJ, Okopien B. Exenatide prevents statin-related LDL receptor increase and improves insulin secretion in pancreatic beta cells (1.1E7) in a protein kinase A-dependent manner. J Appl Biomed 2022; 20:130-140. [PMID: 36708718 DOI: 10.32725/jab.2022.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
Statins are primary drugs in the treatment of hyperlipidemias. This group of drugs is known for its beneficial pleiotropic effects (e.g., reduction of inflammatory state). However, a growing body of evidence suggests its diabetogenic properties. The culpable mechanism is not completely understood and might be related to the damage to pancreatic beta cells. Therefore, we conceived an in vitro study to explore the impact of atorvastatin on pancreatic islet beta cells line (1.1.E7). We evaluated the influence on viability, insulin, low-density lipoprotein (LDL) receptor, and proprotein convertase subtilisin/kexin type 9 (PCSK9) expression. A significant drop in mRNA for proinsulin and insulin expression was noted. Concurrently, a rise in LDL receptor at the protein level in cells exposed to atorvastatin was noted. Further experiments have shown that exenatide - belonging to glucagon-like peptide 1 (GLP-1) analogs that are used in a treatment of diabetes and known for its weight reducing properties - can alleviate the observed alterations. In this case, the mechanism of action of exenatide was dependent on a protein kinase A pathway. In conclusion, our results support the hypothesis that statin may have diabetogenic properties, which according to our study is related to reduced insulin expression. The concomitant use of GLP-1 receptor agonist seemed to successfully revert insulin expression.
Collapse
Affiliation(s)
- Lukasz Buldak
- Medical University of Silesia, School of Medicine in Katowice, Department of Internal Medicine and Clinical Pharmacology, Katowice, Poland
| | - Grzegorz Machnik
- Medical University of Silesia, School of Medicine in Katowice, Department of Internal Medicine and Clinical Pharmacology, Katowice, Poland
| | - Estera Skudrzyk
- Medical University of Silesia, School of Medicine in Katowice, Department of Internal Medicine and Clinical Pharmacology, Katowice, Poland
| | - Aleksandra Boldys
- Medical University of Silesia, School of Medicine in Katowice, Department of Internal Medicine and Clinical Pharmacology, Katowice, Poland
| | - Mateusz Maliglowka
- Medical University of Silesia, School of Medicine in Katowice, Department of Internal Medicine and Clinical Pharmacology, Katowice, Poland
| | - Michal Kosowski
- Medical University of Silesia, School of Medicine in Katowice, Department of Internal Medicine and Clinical Pharmacology, Katowice, Poland
| | - Marcin Basiak
- Medical University of Silesia, School of Medicine in Katowice, Department of Internal Medicine and Clinical Pharmacology, Katowice, Poland
| | | | - Boguslaw Okopien
- Medical University of Silesia, School of Medicine in Katowice, Department of Internal Medicine and Clinical Pharmacology, Katowice, Poland
| |
Collapse
|
3
|
Lim SA, Cox A, Tung M, Chung EJ. Clinical progress of nanomedicine-based RNA therapies. Bioact Mater 2022; 12:203-213. [PMID: 35310381 PMCID: PMC8897211 DOI: 10.1016/j.bioactmat.2021.10.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022] Open
Abstract
The clinical application of nanoparticles (NPs) to deliver RNA for therapy has progressed rapidly since the FDA approval of Onpattro® in 2018 for the treatment of polyneuropathy associated with hereditary transthyretin amyloidosis. The emergency use authorization or approval and widespread global use of two mRNA-NP based vaccines developed by Moderna Therapeutics Inc. and Pfizer-BioNTech in 2021 has highlighted the translatability of NP technology for RNA delivery. Furthermore, in clinical trials, a wide variety of NP formulations have been found to extend the half-life of RNA molecules such as microRNA, small interfering RNA, and messenger RNA, with limited safety issues. In this review, we discuss the NP formulations that are already used in the clinic to deliver therapeutic RNA and highlight examples of RNA-NPs which are currently under evaluation for human use. We also detail NP formulations that failed to progress through clinical trials, in hopes of guiding future successful translation of nanomedicine-based RNA therapeutics into the clinic.
Collapse
Affiliation(s)
- Siyoung A. Lim
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Alysia Cox
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Madelynn Tung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
- Department of Medicine, Division of Nephrology and Hypertension, University of Southern California, Los Angeles, CA, USA
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Feng Z, Mabrouk I, Msuthwana P, Zhou Y, Song Y, Gong H, Li S, Min C, Ju A, Duan A, Niu J, Fu J, Yan X, Xu X, Li C, Sun Y. In ovo injection of CHIR-99021 promotes feather follicles development via activating Wnt/β-catenin signaling pathway during chick embryonic period. Poult Sci 2022; 101:101825. [PMID: 35381530 PMCID: PMC8980496 DOI: 10.1016/j.psj.2022.101825] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 01/11/2022] [Accepted: 02/23/2022] [Indexed: 11/24/2022] Open
Abstract
The Wingless-types/beta-catenin (Wnt/β-catenin) signaling pathway plays an important role in embryonic development and affects the physiological development processes of feather follicles. To investigate the role of Wnt/β-catenin pathway in regulating feather follicles morphogenesis, in ovo injection of CHIR-99021, an activator of the Wnt/β-catenin signaling pathway, was conducted in chick embryo model. Initially, a total of 40 embryos were used to assess feather follicles morphogenesis and the expression of β-catenin (E9–E17). The histological results showed that feather follicle morphogenesis was mainly completed from E9 to E17. β-catenin was involved in the processing of the appearance of dermal cell condensation (E9) and the completion of the feather follicles morphogenesis (E17). Next, a total of 160 fertilized eggs were randomly divided into 8 groups for in ovo injection at E9, including a Normal Saline injected group (CON) and the 500, 1,000, 2,000, 5,000, 10,000, 50,000, and 100,000 ng CHIR-99021 groups. Dorsal skin tissue samples were collected at E17 for investigating feather follicles morphology and expressions of β-catenin and lymphoid enhancerbinding factor-1 (LEF1) at gene and protein levels. The results showed that feather follicle diameter in the injected groups were significantly (P < 0.05) increased with limit dose-independence compared to the CON group. CHIR-99021 significantly (P < 0.05) influenced the mRNA expressions of catenin beta-1 (CTNNB1) and downstream target LEF1. In ovo injection of CHIR-99021 caused that β-catenin and LEF1 were significantly (P < 0.05) increased followed the increased doses as determined by western blotting. The immunochemical results showed that β-catenin was detected in the dermal papilla of feather follicles. Given these results, this study suggests to developmental biology that in ovo injection of CHIR-99021 promoted feather follicles morphogenesis and development via activating Wnt/β-catenin signaling pathway and upregulating downstream target LEF1 during embryonic period in chick embryo model. Moreover, CHIR-99021 may be a strong candidate to promote the animal feather/hair industry, especially as a reference for bird feather production.
Collapse
|
5
|
EGF-SNX3-EGFR axis drives tumor progression and metastasis in triple-negative breast cancers. Oncogene 2022; 41:220-232. [PMID: 34718348 PMCID: PMC8883427 DOI: 10.1038/s41388-021-02086-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 01/14/2023]
Abstract
Epidermal growth factor receptor (EGFR) has critical roles in epithelial cell physiology. Over-expression and over-activation of EGFR have been implicated in diverse cancers, including triple-negative breast cancers (TNBCs), prompting anti-EGFR therapies. Therefore, developing potent therapies and addressing the inevitable drug resistance mechanisms necessitates deciphering of EGFR related networks. Here, we describe Sorting Nexin 3 (SNX3), a member of the recycling retromer complex, as a critical player in the epidermal growth factor (EGF) stimulated EGFR network in TNBCs. We show that SNX3 is an immediate and sustained target of EGF stimulation initially at the protein level and later at the transcriptional level, causing increased SNX3 abundance. Using a proximity labeling approach, we observed increased interaction of SNX3 and EGFR upon EGF stimulation. We also detected colocalization of SNX3 with early endosomes and endocytosed EGF. Moreover, we show that EGFR protein levels are sensitive to SNX3 loss. Transient RNAi models of SNX3 downregulation have a temporary reduction in EGFR levels. In contrast, long-term silencing forces cells to recover and overexpress EGFR mRNA and protein, resulting in increased proliferation, colony formation, migration, invasion in TNBC cells, and increased tumor growth and metastasis in syngeneic models. Consistent with these results, low SNX3 and high EGFR mRNA levels correlate with poor relapse-free survival in breast cancer patients. Overall, our results suggest that SNX3 is a critical player in the EGFR network in TNBCs with implications for other cancers dependent on EGFR activity.
Collapse
|
6
|
Giacomelli C, Jung J, Wachter A, Ibing S, Will R, Uhlmann S, Mannsperger H, Sahin Ö, Yarden Y, Beißbarth T, Korf U, Körner C, Wiemann S. Coordinated regulation of WNT/β-catenin, c-Met, and integrin signalling pathways by miR-193b controls triple negative breast cancer metastatic traits. BMC Cancer 2021; 21:1296. [PMID: 34863149 PMCID: PMC8642942 DOI: 10.1186/s12885-021-08955-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022] Open
Abstract
Background Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer (BC). Treatment options for TNBC patients are limited and further insights into disease aetiology are needed to develop better therapeutic approaches. microRNAs’ ability to regulate multiple targets could hold a promising discovery approach to pathways relevant for TNBC aggressiveness. Thus, we address the role of miRNAs in controlling three signalling pathways relevant to the biology of TNBC, and their downstream phenotypes. Methods To identify miRNAs regulating WNT/β-catenin, c-Met, and integrin signalling pathways, we performed a high-throughput targeted proteomic approach, investigating the effect of 800 miRNAs on the expression of 62 proteins in the MDA-MB-231 TNBC cell line. We then developed a novel network analysis, Pathway Coregulatory (PC) score, to detect miRNAs regulating these three pathways. Using in vitro assays for cell growth, migration, apoptosis, and stem-cell content, we validated the function of candidate miRNAs. Bioinformatic analyses using BC patients’ datasets were employed to assess expression of miRNAs as well as their pathological relevance in TNBC patients. Results We identified six candidate miRNAs coordinately regulating the three signalling pathways. Quantifying cell growth of three TNBC cell lines upon miRNA gain-of-function experiments, we characterised miR-193b as a strong and consistent repressor of proliferation. Importantly, the effects of miR-193b were stronger than chemical inhibition of the individual pathways. We further demonstrated that miR-193b induced apoptosis, repressed migration, and regulated stem-cell markers in MDA-MB-231 cells. Furthermore, miR-193b expression was the lowest in patients classified as TNBC or Basal compared to other subtypes. Gene Set Enrichment Analysis showed that miR-193b expression was significantly associated with reduced activity of WNT/β-catenin and c-Met signalling pathways in TNBC patients. Conclusions Integrating miRNA-mediated effects and protein functions on networks, we show that miRNAs predominantly act in a coordinated fashion to activate or repress connected signalling pathways responsible for metastatic traits in TNBC. We further demonstrate that our top candidate, miR-193b, regulates these phenotypes to an extent stronger than individual pathway inhibition, thus emphasizing that its effect on TNBC aggressiveness is mediated by the coordinated repression of these functionally interconnected pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08955-6.
Collapse
Affiliation(s)
- Chiara Giacomelli
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Present address: CRUK Beatson Institute, Bearsden, Glasgow, UK.
| | - Janine Jung
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Astrid Wachter
- Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany
| | - Susanne Ibing
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer Will
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Uhlmann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heiko Mannsperger
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Özgür Sahin
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Present address: Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, USA
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Tim Beißbarth
- Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany
| | - Ulrike Korf
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cindy Körner
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
7
|
Gorin G, Pachter L. Special function methods for bursty models of transcription. Phys Rev E 2020; 102:022409. [PMID: 32942485 DOI: 10.1103/physreve.102.022409] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/10/2020] [Indexed: 11/07/2022]
Abstract
We explore a Markov model used in the analysis of gene expression, involving the bursty production of pre-mRNA, its conversion to mature mRNA, and its consequent degradation. We demonstrate that the integration used to compute the solution of the stochastic system can be approximated by the evaluation of special functions. Furthermore, the form of the special function solution generalizes to a broader class of burst distributions. In light of the broader goal of biophysical parameter inference from transcriptomics data, we apply the method to simulated data, demonstrating effective control of precision and runtime. Finally, we propose and validate a non-Bayesian approach for parameter estimation based on the characteristic function of the target joint distribution of pre-mRNA and mRNA.
Collapse
Affiliation(s)
- Gennady Gorin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Lior Pachter
- Division of Biology and Biological Engineering & Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
8
|
Koltun B, Ironi S, Gershoni-Emek N, Barrera I, Hleihil M, Nanguneri S, Sasmal R, Agasti SS, Nair D, Rosenblum K. Measuring mRNA translation in neuronal processes and somata by tRNA-FRET. Nucleic Acids Res 2020; 48:e32. [PMID: 31974573 PMCID: PMC7102941 DOI: 10.1093/nar/gkaa042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 12/04/2019] [Accepted: 01/15/2020] [Indexed: 01/12/2023] Open
Abstract
In neurons, the specific spatial and temporal localization of protein synthesis is of great importance for function and survival. Here, we visualized tRNA and protein synthesis events in fixed and live mouse primary cortical culture using fluorescently-labeled tRNAs. We were able to characterize the distribution and transport of tRNAs in different neuronal sub-compartments and to study their association with the ribosome. We found that tRNA mobility in neural processes is lower than in somata and corresponds to patterns of slow transport mechanisms, and that larger tRNA puncta co-localize with translational machinery components and are likely the functional fraction. Furthermore, chemical induction of long-term potentiation (LTP) in culture revealed up-regulation of mRNA translation with a similar effect in dendrites and somata, which appeared to be GluR-dependent 6 h post-activation. Importantly, measurement of protein synthesis in neurons with high resolutions offers new insights into neuronal function in health and disease states.
Collapse
Affiliation(s)
- Bella Koltun
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Sivan Ironi
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | | | - Iliana Barrera
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Mohammad Hleihil
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | | | - Ranjan Sasmal
- New Chemistry Unit and Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka, India
| | - Sarit S Agasti
- New Chemistry Unit and Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka, India
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
9
|
Gorin G, Svensson V, Pachter L. Protein velocity and acceleration from single-cell multiomics experiments. Genome Biol 2020; 21:39. [PMID: 32070398 PMCID: PMC7029606 DOI: 10.1186/s13059-020-1945-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/24/2020] [Indexed: 12/26/2022] Open
Abstract
The simultaneous quantification of protein and RNA makes possible the inference of past, present, and future cell states from single experimental snapshots. To enable such temporal analysis from multimodal single-cell experiments, we introduce an extension of the RNA velocity method that leverages estimates of unprocessed transcript and protein abundances to extrapolate cell states. We apply the model to six datasets and demonstrate consistency among cell landscapes and phase portraits. The analysis software is available as the protaccel Python package.
Collapse
Affiliation(s)
- Gennady Gorin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, USA
| | - Valentine Svensson
- Division of Biology and Biological Engineering & Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, USA.
| | - Lior Pachter
- Division of Biology and Biological Engineering & Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, USA.
| |
Collapse
|
10
|
Wang L, Romano MC, Davidson FA. Translational control of gene expression via interacting feedback loops. Phys Rev E 2019; 100:050402. [PMID: 31869996 DOI: 10.1103/physreve.100.050402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 11/07/2022]
Abstract
Translation is a key step in the synthesis of proteins. Accordingly, cells have evolved an intricate array of control mechanisms to regulate this process. By constructing a multicomponent mathematical framework we uncover how translation may be controlled via interacting feedback loops. Our results reveal that this interplay gives rise to a remarkable range of protein synthesis dynamics, including oscillations, step change, and bistability. This suggests that cells may have recourse to a much richer set of control mechanisms than was previously understood.
Collapse
Affiliation(s)
- Liang Wang
- Division of Mathematics, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, United Kingdom
| | - M Carmen Romano
- SUPA, Institute for Complex Systems and Mathematical Biology, Department of Physics, Aberdeen AB24 3UE, United Kingdom and Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB24 3FX, United Kingdom
| | - Fordyce A Davidson
- Division of Mathematics, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, United Kingdom
| |
Collapse
|
11
|
Pascolutti R, Algisi V, Conte A, Raimondi A, Pasham M, Upadhyayula S, Gaudin R, Maritzen T, Barbieri E, Caldieri G, Tordonato C, Confalonieri S, Freddi S, Malabarba MG, Maspero E, Polo S, Tacchetti C, Haucke V, Kirchhausen T, Di Fiore PP, Sigismund S. Molecularly Distinct Clathrin-Coated Pits Differentially Impact EGFR Fate and Signaling. Cell Rep 2019; 27:3049-3061.e6. [PMID: 31167147 PMCID: PMC6581797 DOI: 10.1016/j.celrep.2019.05.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/04/2019] [Accepted: 05/02/2019] [Indexed: 12/22/2022] Open
Abstract
Adaptor protein 2 (AP2) is a major constituent of clathrin-coated pits (CCPs). Whether it is essential for all forms of clathrin-mediated endocytosis (CME) in mammalian cells is an open issue. Here, we demonstrate, by live TIRF microscopy, the existence of a subclass of relatively short-lived CCPs lacking AP2 under physiological, unperturbed conditions. This subclass is retained in AP2-knockout cells and is able to support the internalization of epidermal growth factor receptor (EGFR) but not of transferrin receptor (TfR). The AP2-independent internalization mechanism relies on the endocytic adaptors eps15, eps15L1, and epsin1. The absence of AP2 impairs the recycling of the EGFR to the cell surface, thereby augmenting its degradation. Accordingly, under conditions of AP2 ablation, we detected dampening of EGFR-dependent AKT signaling and cell migration, arguing that distinct classes of CCPs could provide specialized functions in regulating EGFR recycling and signaling.
Collapse
Affiliation(s)
- Roberta Pascolutti
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Veronica Algisi
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Alexia Conte
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Andrea Raimondi
- Experimental Imaging Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | - Mithun Pasham
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Srigokul Upadhyayula
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Raphael Gaudin
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Institut de Recherche en Infectiologie de Montpellier, UMR 9004, CNRS/UM, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Tanja Maritzen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, 13125 Berlin, Germany
| | - Elisa Barbieri
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Giusi Caldieri
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy; Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Via Santa Sofia 9/1, 20122 Milan, Italy
| | - Chiara Tordonato
- Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Stefano Confalonieri
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Stefano Freddi
- Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Maria Grazia Malabarba
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy; Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Via Santa Sofia 9/1, 20122 Milan, Italy
| | - Elena Maspero
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Simona Polo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Via Santa Sofia 9/1, 20122 Milan, Italy
| | - Carlo Tacchetti
- Experimental Imaging Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, 13125 Berlin, Germany
| | - Tom Kirchhausen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Pier Paolo Di Fiore
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy; Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Via Santa Sofia 9/1, 20122 Milan, Italy
| | - Sara Sigismund
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy; Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Via Santa Sofia 9/1, 20122 Milan, Italy.
| |
Collapse
|
12
|
Nava M, Dutta P, Zemke NR, Farias-Eisner R, Vadgama JV, Wu Y. Transcriptomic and ChIP-sequence interrogation of EGFR signaling in HER2+ breast cancer cells reveals a dynamic chromatin landscape and S100 genes as targets. BMC Med Genomics 2019; 12:32. [PMID: 30736768 PMCID: PMC6368760 DOI: 10.1186/s12920-019-0477-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 01/29/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The Human Epidermal Growth Factor Receptor (EGFR/HER1) can be activated by several ligands including Transforming Growth Factor alpha (TGF-α) and Epidermal Growth Factor (EGF). Following ligand binding, EGFR heterodimerizes with other HER family members, such as HER2 (human epidermal growth factor receptor-2). Previously, we showed that the EGFR is upregulated in trastuzumab resistant HER2 positive (HER2+) breast cancer cells. This study is aimed to determine the downstream effects on transcription following EGFR upregulation in HER2+ breast cancer cells. METHODS RNA-sequence and ChIP-sequence for H3K18ac and H3K27ac (Histone H3 lysine K18 and K27 acetylation) were conducted following an Epidermal Growth Factor (EGF) treatment time course in HER2+ breast cancer cells, SKBR3. The levels of several proteins of interest were confirmed by western blot analysis. The cellular localization of proteins of interest was examined using biochemically fractionated lysates followed by western blot analysis. RESULTS Over the course of 24 h, EGFR stimulation resulted in the modulation of over 4000 transcripts. Moreover, our data demonstrates that EGFR/HER2 signaling regulates the epigenome, with global H3K18ac and H3K27ac oscillating as a function of time following EGF treatment. RNA-sequence data demonstrates the activation of immediate early genes (IEGs) and delayed early genes (DEGs) within 1 h of EGF treatment. More importantly, we have identified members of the S100 (S100 Calcium Binding Protein) gene family as likely direct targets of EGFR signaling as H3K18ac, H3K27ac and pol2 (RNA polymerase II) increase near the transcription start sites of some of these genes. CONCLUSIONS Our data suggests that S100 proteins, which act as Ca2+ sensors, could play a role in EGF induced tumor cell growth and metastasis, contribute to trastuzumab resistance and cell migration and that they are likely drug targets in HER2+ breast cancer.
Collapse
Affiliation(s)
- Miguel Nava
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, CA 90059 USA
- Jonsson Comprehensive Cancer Center and David Geffen School of Medicine, University of California, Los Angeles, CA USA
| | - Pranabananda Dutta
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, CA 90059 USA
| | - Nathan R. Zemke
- Molecular Biology Institute, University of California, Los Angeles, USA
| | - Robin Farias-Eisner
- Jonsson Comprehensive Cancer Center and David Geffen School of Medicine, University of California, Los Angeles, CA USA
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, CA 90059 USA
- Jonsson Comprehensive Cancer Center and David Geffen School of Medicine, University of California, Los Angeles, CA USA
| | - Yanyuan Wu
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, CA 90059 USA
- Jonsson Comprehensive Cancer Center and David Geffen School of Medicine, University of California, Los Angeles, CA USA
| |
Collapse
|
13
|
Rothenberg DA, Taliaferro JM, Huber SM, Begley TJ, Dedon PC, White FM. A Proteomics Approach to Profiling the Temporal Translational Response to Stress and Growth. iScience 2018; 9:367-381. [PMID: 30466063 PMCID: PMC6249402 DOI: 10.1016/j.isci.2018.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/19/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023] Open
Abstract
To quantify dynamic protein synthesis rates, we developed MITNCAT, a method combining multiplexed isobaric mass tagging with pulsed SILAC (pSILAC) and bio-orthogonal non-canonical amino acid tagging (BONCAT) to label newly synthesized proteins with azidohomoalanine (Aha), thus enabling high temporal resolution across multiple conditions in a single analysis. MITNCAT quantification of protein synthesis rates following induction of the unfolded protein response revealed global down-regulation of protein synthesis, with stronger down-regulation of glycolytic and protein synthesis machinery proteins, but up-regulation of several key chaperones. Waves of temporally distinct protein synthesis were observed in response to epidermal growth factor, with altered synthesis detectable in the first 15 min. Comparison of protein synthesis with mRNA sequencing and ribosome footprinting distinguished protein synthesis driven by increased transcription versus increased translational efficiency. Temporal delays between ribosome occupancy and protein synthesis were observed and found to correlate with altered codon usage in significantly delayed proteins. MITNCAT combines BONCAT, pSILAC, and TMT to quantify protein synthesis rates MITNCAT quantified up-regulation of protein folding chaperones during the UPR MITNCAT revealed EGF-driven protein synthesis in four distinct temporal waves MITNCAT identified delayed synthesis proteins with enriched rare codons
Collapse
Affiliation(s)
- Daniel A Rothenberg
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J Matthew Taliaferro
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sabrina M Huber
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Thomas J Begley
- College of Nanoscale Science and Engineering, State University of New York, Albany, NY 12203, USA
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Infectious Disease IRG, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Forest M White
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|