1
|
Zhang R, Li G, Zhang Q, Wang Z, Xiang D, Zhang X, Chen J, Hutchins A, Qin D, Su H, Pei D, Li D. c-JUN: a chromatin repressor that limits mesoderm differentiation in human pluripotent stem cells. Nucleic Acids Res 2025; 53:gkaf001. [PMID: 39876710 PMCID: PMC11760979 DOI: 10.1093/nar/gkaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/30/2025] Open
Abstract
Cell fate determination at the chromatin level is not fully comprehended. Here, we report that c-JUN acts on chromatin loci to limit mesoderm cell fate specification as cells exit pluripotency. Although c-JUN is widely expressed across various cell types in early embryogenesis, it is not essential for maintaining pluripotency. Instead, it functions as a repressor to constrain mesoderm development while having a negligible impact on ectoderm differentiation. c-JUN interacts with MBD3-NuRD complex, which helps maintain chromatin in a low accessibility state at mesoderm-related genes during the differentiation of human pluripotent stem cells into mesoderm. Furthermore, c-JUN specifically inhibits the activation of key mesoderm factors, such as EOMES and GATA4. Knocking out c-JUN or inhibiting it with a JNK inhibitor can alleviate this suppression, promoting mesoderm cell differentiation. Consistently, knockdown of MBD3 enhances mesoderm generation, whereas MBD3 overexpression impedes it. Overexpressing c-JUN redirects differentiation toward a fibroblast-like lineage. Collectively, our findings suggest that c-JUN acts as a chromatin regulator to restrict the mesoderm cell fate.
Collapse
Affiliation(s)
- Ran Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, 999078, China
| | - Guihuan Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Huangpu District, Guangzhou, Guangdong, 510799, China
| | - Qi Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Huangpu District, Guangzhou, Guangdong, 510799, China
| | - Zhenhua Wang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Huangpu District, Guangzhou, Guangdong, 510799, China
| | - Dan Xiang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong 510530, China
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong 510530, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong 510530, China
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, China
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Huangpu District, Guangzhou, Guangdong, 510799, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, 999078, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, No. 600 Dunyu Road, Xihu District, Hangzhou, 310024, China
| | - Dongwei Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Huangpu District, Guangzhou, Guangdong, 510799, China
- Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research&Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, No. 3 Xueyuan Road, Longhua District, Haikou, Hainan, 571101, China
| |
Collapse
|
2
|
Wang M, Ding H, Liu M, Gao Y, Li L, Jin C, Bao Z, Wang B, Hu J. Genome wide analysis of the sox32 gene in germline maintenance and differentiation in leopard coral grouper (Plectropomus leopardus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 54:101402. [PMID: 39742679 DOI: 10.1016/j.cbd.2024.101402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/19/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025]
Abstract
The Sox family genes, as a group of transcription factors, are widely expressed in vertebrates and play a critical role in reproduction and development. The present study reported that 26 sox genes were identified from the genome and transcriptome of P. leopardus. The phylogenetic tree construction, chromosome localization, and gene structure analysis were executed to verify the evolutionary relationships, gene duplication, and deletion variations of P. leopardus sox genes in evolution. The sequence alignment revealed the HMG-box domain was highly conserved throughout the Sox gene family. The expression profile showed expression levels of sox genes showed tissue specificity. The dimorphic expression pattern of most sox genes in intersex and adult gonads was also observed, suggesting an important role of sox genes for sex differentiation in P. leopardus. Notably, sox32 was specifically highly expressed in gonadal tissues and might play a novel role within the gonads. The fluorescent in situ hybridization (FISH) showed sox32 mRNA was detected in germ stem cells and oocytes of different stages, and lowly expressed in sertoli cells. In testis, sox32 was not detected in male germ cells. Our results provided new insights into the sox32 that might be involved in gonadal development and differentiation in P. leopardus. To sum up, this study comprehensively analyzed the Sox gene family of P. leopardus and provided new insights into the function of sox genes, which could potentially revolutionize our understanding of the mechanisms of sex determination, sex differentiation, and reproductive development in fish.
Collapse
Affiliation(s)
- Mingyi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Hui Ding
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Mingjian Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Yurui Gao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Lin Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Chaofan Jin
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China; Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China
| | - Bo Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China.
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China; Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China.
| |
Collapse
|
3
|
Liu J, Castillo-Hair SM, Du LY, Wang Y, Carte AN, Colomer-Rosell M, Yin C, Seelig G, Schier AF. Dissecting the regulatory logic of specification and differentiation during vertebrate embryogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609971. [PMID: 39253514 PMCID: PMC11383055 DOI: 10.1101/2024.08.27.609971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The interplay between transcription factors and chromatin accessibility regulates cell type diversification during vertebrate embryogenesis. To systematically decipher the gene regulatory logic guiding this process, we generated a single-cell multi-omics atlas of RNA expression and chromatin accessibility during early zebrafish embryogenesis. We developed a deep learning model to predict chromatin accessibility based on DNA sequence and found that a small number of transcription factors underlie cell-type-specific chromatin landscapes. While Nanog is well-established in promoting pluripotency, we discovered a new function in priming the enhancer accessibility of mesendodermal genes. In addition to the classical stepwise mode of differentiation, we describe instant differentiation, where pluripotent cells skip intermediate fate transitions and terminally differentiate. Reconstruction of gene regulatory interactions reveals that this process is driven by a shallow network in which maternally deposited regulators activate a small set of transcription factors that co-regulate hundreds of differentiation genes. Notably, misexpression of these transcription factors in pluripotent cells is sufficient to ectopically activate their targets. This study provides a rich resource for analyzing embryonic gene regulation and reveals the regulatory logic of instant differentiation.
Collapse
Affiliation(s)
- Jialin Liu
- Biozentrum, University of Basel, Basel, 4056, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA, 98195, USA
| | | | - Lucia Y. Du
- Biozentrum, University of Basel, Basel, 4056, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA, 98195, USA
| | - Yiqun Wang
- Biozentrum, University of Basel, Basel, 4056, Switzerland
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, UCSD, La Jolla, CA, 92037, USA
| | - Adam N. Carte
- Biozentrum, University of Basel, Basel, 4056, Switzerland
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, 02115, USA
| | - Mariona Colomer-Rosell
- Biozentrum, University of Basel, Basel, 4056, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA, 98195, USA
| | - Christopher Yin
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Georg Seelig
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, 98195, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Alexander F. Schier
- Biozentrum, University of Basel, Basel, 4056, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
4
|
Richardson L, Wilcockson SG, Guglielmi L, Hill CS. Context-dependent TGFβ family signalling in cell fate regulation. Nat Rev Mol Cell Biol 2023; 24:876-894. [PMID: 37596501 DOI: 10.1038/s41580-023-00638-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/20/2023]
Abstract
The transforming growth factor-β (TGFβ) family are a large group of evolutionarily conserved cytokines whose signalling modulates cell fate decision-making across varying cellular contexts at different stages of life. Here we discuss new findings in early embryos that reveal how, in contrast to our original understanding of morphogen interpretation, robust cell fate specification can originate from a noisy combination of signalling inputs and a broad range of signalling levels. We compare this evidence with novel findings on the roles of TGFβ family signalling in tissue maintenance and homeostasis during juvenile and adult life, spanning the skeletal, haemopoietic and immune systems. From these comparisons, it emerges that in contrast to robust developing systems, relatively small perturbations in TGFβ family signalling have detrimental effects at later stages in life, leading to aberrant cell fate specification and disease, for example in cancer or congenital disorders. Finally, we highlight novel strategies to target and amend dysfunction in signalling and discuss how gleaning knowledge from different fields of biology can help in the development of therapeutics for aberrant TGFβ family signalling in disease.
Collapse
Affiliation(s)
- Louise Richardson
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Scott G Wilcockson
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Luca Guglielmi
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
5
|
Lin X, Yang X, Chen C, Ma W, Wang Y, Li X, Zhao K, Deng Q, Feng W, Ma Y, Wang H, Zhu L, Sahu SK, Chen F, Zhang X, Dong Z, Liu C, Liu L, Liu C. Single-nucleus chromatin landscapes during zebrafish early embryogenesis. Sci Data 2023; 10:464. [PMID: 37468546 PMCID: PMC10356945 DOI: 10.1038/s41597-023-02373-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
Vertebrate embryogenesis is a remarkable process, during which numerous cell types of different lineages arise within a short time frame. An overwhelming challenge to understand this process is the lack of dynamic chromatin accessibility information to correlate cis-regulatory elements (CREs) and gene expression within the hierarchy of cell fate decisions. Here, we employed single-nucleus ATAC-seq to generate a chromatin accessibility dataset on the first day of zebrafish embryogenesis, including 3.3 hpf, 5.25 hpf, 6 hpf, 10 hpf, 12 hpf, 18 hpf and 24 hpf, obtained 51,620 high-quality nuclei and 23 clusters. Furthermore, by integrating snATAC-seq data with single-cell RNA-seq data, we described the dynamics of chromatin accessibility and gene expression across developmental time points, which validates the accuracy of the chromatin landscape data. Together, our data could serve as a fundamental resource for revealing the epigenetic regulatory mechanisms of zebrafish embryogenesis.
Collapse
Affiliation(s)
- Xiumei Lin
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Xueqian Yang
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | | | - Wen Ma
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Yiqi Wang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xuerong Li
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Kaichen Zhao
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qiuting Deng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Weimin Feng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Yuting Ma
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Hui Wang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lveming Zhu
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | | | - Fengzhen Chen
- China National GeneBank, Shenzhen, Guangdong, 518120, China
| | | | - Zhiqiang Dong
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Chuanyu Liu
- BGI Research, Shenzhen, 518083, China.
- Shenzhen Bay Laboratory, Shenzhen, 518000, China.
| | - Longqi Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- BGI Research, Shenzhen, 518083, China.
- BGI Research, Hangzhou, 310030, China.
- Shenzhen Bay Laboratory, Shenzhen, 518000, China.
| | - Chang Liu
- BGI Research, Shenzhen, 518083, China.
| |
Collapse
|
6
|
Economou AD, Guglielmi L, East P, Hill CS. Nodal signaling establishes a competency window for stochastic cell fate switching. Dev Cell 2022; 57:2604-2622.e5. [PMID: 36473458 PMCID: PMC7615190 DOI: 10.1016/j.devcel.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 09/12/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022]
Abstract
Specification of the germ layers by Nodal signaling has long been regarded as an archetype of how graded morphogens induce different cell fates. However, this deterministic model cannot explain why only a subset of cells at the early zebrafish embryo margin adopt the endodermal fate, whereas their immediate neighbours, experiencing a similar signaling environment, become mesoderm. Combining pharmacology, quantitative imaging and single cell transcriptomics, we demonstrate that sustained Nodal signaling establishes a bipotential progenitor state from which cells can switch to an endodermal fate or differentiate into mesoderm. Switching is a random event, the likelihood of which is modulated by Fgf signaling. This inherently imprecise mechanism nevertheless leads to robust endoderm formation because of buffering at later stages. Thus, in contrast to previous deterministic models of morphogen action, Nodal signaling establishes a temporal window when cells are competent to undergo a stochastic cell fate switch, rather than determining fate itself.
Collapse
Affiliation(s)
- Andrew D Economou
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Luca Guglielmi
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Philip East
- Bioinformatics and Biostatistics Facility, The Francis Crick Institute, London, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
7
|
Talbot CD, Walsh MD, Cutty SJ, Elsayed R, Vlachaki E, Bruce AEE, Wardle FC, Nelson AC. Eomes function is conserved between zebrafish and mouse and controls left-right organiser progenitor gene expression via interlocking feedforward loops. Front Cell Dev Biol 2022; 10:982477. [PMID: 36133924 PMCID: PMC9483813 DOI: 10.3389/fcell.2022.982477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The T-box family transcription factor Eomesodermin (Eomes) is present in all vertebrates, with many key roles in the developing mammalian embryo and immune system. Homozygous Eomes mutant mouse embryos exhibit early lethality due to defects in both the embryonic mesendoderm and the extraembryonic trophoblast cell lineage. In contrast, zebrafish lacking the predominant Eomes homologue A (Eomesa) do not suffer complete lethality and can be maintained. This suggests fundamental differences in either the molecular function of Eomes orthologues or the molecular configuration of processes in which they participate. To explore these hypotheses we initially analysed the expression of distinct Eomes isoforms in various mouse cell types. Next we compared the functional capabilities of these murine isoforms to zebrafish Eomesa. These experiments provided no evidence for functional divergence. Next we examined the functions of zebrafish Eomesa and other T-box family members expressed in early development, as well as its paralogue Eomesb. Though Eomes is a member of the Tbr1 subfamily we found evidence for functional redundancy with the Tbx6 subfamily member Tbx16, known to be absent from eutherians. However, Tbx16 does not appear to synergise with Eomesa cofactors Mixl1 and Gata5. Finally, we analysed the ability of Eomesa and other T-box factors to induce zebrafish left-right organiser progenitors (known as dorsal forerunner cells) known to be positively regulated by vgll4l, a gene we had previously shown to be repressed by Eomesa. Here we demonstrate that Eomesa indirectly upregulates vgll4l expression via interlocking feedforward loops, suggesting a role in establishment of left-right asymmetry. Conversely, other T-box factors could not similarly induce left-right organiser progenitors. Overall these findings demonstrate conservation of Eomes molecular function and participation in similar processes, but differential requirements across evolution due to additional co-expressed T-box factors in teleosts, albeit with markedly different molecular capabilities. Our analyses also provide insights into the role of Eomesa in left-right organiser formation in zebrafish.
Collapse
Affiliation(s)
- Conor D. Talbot
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| | - Mark D. Walsh
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| | - Stephen J. Cutty
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London, United Kingdom
| | - Randa Elsayed
- Warwick Medical School, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| | - Eirini Vlachaki
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| | - Ashley E. E. Bruce
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Fiona C. Wardle
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London, United Kingdom
| | - Andrew C. Nelson
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
8
|
Hill CS. Establishment and interpretation of NODAL and BMP signaling gradients in early vertebrate development. Curr Top Dev Biol 2022; 149:311-340. [PMID: 35606059 DOI: 10.1016/bs.ctdb.2021.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transforming growth factor β (TGF-β) family ligands play crucial roles in orchestrating early embryonic development. Most significantly, two family members, NODAL and BMP form signaling gradients and indeed in fish, frogs and sea urchins these two opposing gradients are sufficient to organize a complete embryonic axis. This review focuses on how these gradients are established and interpreted during early vertebrate development. The review highlights key principles that are emerging, in particular the importance of signaling duration as well as ligand concentration in both gradient generation and their interpretation. Feedforward and feedback loops involving other signaling pathways are also essential for providing spatial and temporal information downstream of the NODAL and BMP signaling pathways. Finally, new data suggest the existence of buffering mechanisms, whereby early signaling defects can be readily corrected downstream later in development, suggesting that signaling gradients do not have to be as precise as previously thought.
Collapse
Affiliation(s)
- Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
9
|
Pluripotency factors determine gene expression repertoire at zygotic genome activation. Nat Commun 2022; 13:788. [PMID: 35145080 PMCID: PMC8831532 DOI: 10.1038/s41467-022-28434-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 01/24/2022] [Indexed: 12/28/2022] Open
Abstract
Awakening of zygotic transcription in animal embryos relies on maternal pioneer transcription factors. The interplay of global and specific functions of these proteins remains poorly understood. Here, we analyze chromatin accessibility and time-resolved transcription in single and double mutant zebrafish embryos lacking pluripotency factors Pou5f3 and Sox19b. We show that two factors modify chromatin in a largely independent manner. We distinguish four types of direct enhancers by differential requirements for Pou5f3 or Sox19b. We demonstrate that changes in chromatin accessibility of enhancers underlie the changes in zygotic expression repertoire in the double mutants. Pou5f3 or Sox19b promote chromatin accessibility of enhancers linked to the genes involved in gastrulation and ventral fate specification. The genes regulating mesendodermal and dorsal fates are primed for activation independently of Pou5f3 and Sox19b. Strikingly, simultaneous loss of Pou5f3 and Sox19b leads to premature expression of genes, involved in regulation of organogenesis and differentiation. Zygotic genome activation in zebrafish relies on pluripotency transcription factors Pou5f3 and Sox19b. Here the authors investigate how these factors interact in vivo by analyzing the changes in chromatin state and time-resolved transcription in Pou5f3 and Sox19b single and double mutant embryos.
Collapse
|
10
|
Figiel DM, Elsayed R, Nelson AC. Investigating the molecular guts of endoderm formation using zebrafish. Brief Funct Genomics 2021:elab013. [PMID: 33754635 DOI: 10.1093/bfgp/elab013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/27/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
The vertebrate endoderm makes major contributions to the respiratory and gastrointestinal tracts and all associated organs. Zebrafish and humans share a high degree of genetic homology and strikingly similar endodermal organ systems. Combined with a multitude of experimental advantages, zebrafish are an attractive model organism to study endoderm development and disease. Recent functional genomics studies have shed considerable light on the gene regulatory programs governing early zebrafish endoderm development, while advances in biological and technological approaches stand to further revolutionize our ability to investigate endoderm formation, function and disease. Here, we discuss the present understanding of endoderm specification in zebrafish compared to other vertebrates, how current and emerging methods will allow refined and enhanced analysis of endoderm formation, and how integration with human data will allow modeling of the link between non-coding sequence variants and human disease.
Collapse
Affiliation(s)
- Daniela M Figiel
- Medical Research Council Doctoral Training Partnership in Interdisciplinary Biomedical Research at Warwick Medical School
| | - Randa Elsayed
- Medical Research Council Doctoral Training Partnership in Interdisciplinary Biomedical Research at Warwick Medical School
| | | |
Collapse
|
11
|
Bergo V, Trompouki E. New tools for 'ZEBRA-FISHING'. Brief Funct Genomics 2021:elab001. [PMID: 33605988 DOI: 10.1093/bfgp/elab001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 11/14/2022] Open
Abstract
Zebrafish has been established as a classical model for developmental studies, yet in the past years, with the explosion of novel technological methods, the use of zebrafish as a model has expanded. One of the prominent fields that took advantage of zebrafish as a model organism early on is hematopoiesis, the process of blood cell generation from hematopoietic stem and progenitor cells (HSPCs). In zebrafish, HSPCs are born early during development in the aorta-gonad-mesonephros region and then translocate to the caudal hematopoietic tissue, where they expand and finally take residence in the kidney marrow. This journey is tightly regulated at multiple levels from extracellular signals to chromatin. In order to delineate the mechanistic underpinnings of this process, next-generation sequencing techniques could be an important ally. Here, we describe genome-wide approaches that have been undertaken to delineate zebrafish hematopoiesis.
Collapse
|
12
|
Lin X, Zhou Q, Lin G, Zhao C, Wen Z. Endoderm-Derived Myeloid-like Metaphocytes in Zebrafish Gill Mediate Soluble Antigen-Induced Immunity. Cell Rep 2020; 33:108227. [PMID: 33027664 DOI: 10.1016/j.celrep.2020.108227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/29/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Immune cells in the mucosal barriers of vertebrates are highly heterogeneous in their origin and function. This heterogeneity is further exemplified by the recent discovery of ectoderm-derived immune cells-metaphocytes in zebrafish epidermis. Yet, whether non-hematopoiesis-derived immune cells generally exist in barrier tissues remains obscured. Here, we report the identification and characterization of an endoderm-derived immune cell population in the gill and intestine of zebrafish. Transcriptome analysis reveals that the endoderm-derived immune cells are myeloid-like cells with high similarities to the ectoderm-derived metaphocytes in epidermis. Like metaphocytes in epidermis, the endoderm-derived immune cells are non-phagocytic but professional in external soluble antigen uptake. Depletion of the endoderm-derived immune cells in gill hinder the local immune response to external soluble stimulants. This study demonstrates a general existence of non-hematopoiesis-derived immune cells in zebrafish mucosal barriers and challenges the prevalent view that resident immune cells in mucosal barriers arise exclusively from hematopoiesis.
Collapse
Affiliation(s)
- Xi Lin
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Qiuxia Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Guanzhen Lin
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Changlong Zhao
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zilong Wen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen 518055, China.
| |
Collapse
|
13
|
Bruce AEE, Winklbauer R. Brachyury in the gastrula of basal vertebrates. Mech Dev 2020; 163:103625. [PMID: 32526279 DOI: 10.1016/j.mod.2020.103625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/11/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022]
Abstract
The Brachyury gene encodes a transcription factor that is conserved across all animals. In non-chordate metazoans, brachyury is primarily expressed in ectoderm regions that are added to the endodermal gut during development, and often form a ring around the site of endoderm internalization in the gastrula, the blastopore. In chordates, this brachyury ring is conserved, but the gene has taken on a new role in the formation of the mesoderm. In this phylum, a novel type of mesoderm that develops into notochord and somites has been added to the ancestral lateral plate mesoderm. Brachyury contributes to a shift in cell fate from neural ectoderm to posterior notochord and somites during a major lineage segregation event that in Xenopus and in the zebrafish takes place in the early gastrula. In the absence of this brachyury function, impaired formation of posterior mesoderm indirectly affects the gastrulation movements of peak involution and convergent extension. These movements are confined to specific regions and stages, leaving open the question why brachyury expression in an extensive, coherent ring, before, during and after gastrulation, is conserved in the two species whose gastrulation modes differ considerably, and also in many other metazoan gastrulae of diverse structure.
Collapse
Affiliation(s)
- Ashley E E Bruce
- Department of Cell and Systems Biology, University of Toronto, Canada
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Canada.
| |
Collapse
|
14
|
Osborn DPS, Li K, Cutty SJ, Nelson AC, Wardle FC, Hinits Y, Hughes SM. Fgf-driven Tbx protein activities directly induce myf5 and myod to initiate zebrafish myogenesis. Development 2020; 147:147/8/dev184689. [PMID: 32345657 PMCID: PMC7197714 DOI: 10.1242/dev.184689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/14/2020] [Indexed: 01/02/2023]
Abstract
Skeletal muscle derives from dorsal mesoderm formed during vertebrate gastrulation. Fibroblast growth factor (Fgf) signalling cooperates with Tbx transcription factors to promote dorsal mesoderm formation, but their role in myogenesis has been unclear. Using zebrafish, we show that dorsally derived Fgf signals act through Tbx16 and Tbxta to induce slow and fast trunk muscle precursors at distinct dorsoventral positions. Tbx16 binds to and directly activates the myf5 and myod genes, which are required for commitment to myogenesis. Tbx16 activity depends on Fgf signalling from the organiser. In contrast, Tbxta is not required for myf5 expression, but binds a specific site upstream of myod that is not bound by Tbx16 and drives (dependent on Fgf signals) myod expression in adaxial slow precursors, thereby initiating trunk myogenesis. After gastrulation, when similar muscle cell populations in the post-anal tail are generated from tailbud, declining Fgf signalling is less effective at initiating adaxial myogenesis, which is instead initiated by Hedgehog signalling from the notochord. Our findings suggest a hypothesis for ancestral vertebrate trunk myogenic patterning and how it was co-opted during tail evolution to generate similar muscle by new mechanisms. This article has an associated ‘The people behind the papers’ interview. Highlighted Article: Tbx16 and Tbxta activate myf5 and myod directly during the earliest myogenesis in zebrafish, and Fgf signalling acts through Tbx16 to drive myogenesis in trunk but not tail.
Collapse
Affiliation(s)
- Daniel P S Osborn
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Kuoyu Li
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Stephen J Cutty
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Andrew C Nelson
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Fiona C Wardle
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Yaniv Hinits
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| |
Collapse
|
15
|
Pálfy M, Schulze G, Valen E, Vastenhouw NL. Chromatin accessibility established by Pou5f3, Sox19b and Nanog primes genes for activity during zebrafish genome activation. PLoS Genet 2020; 16:e1008546. [PMID: 31940339 PMCID: PMC6986763 DOI: 10.1371/journal.pgen.1008546] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 01/28/2020] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
In many organisms, early embryonic development is driven by maternally provided factors until the controlled onset of transcription during zygotic genome activation. The regulation of chromatin accessibility and its relationship to gene activity during this transition remain poorly understood. Here, we generated chromatin accessibility maps with ATAC-seq from genome activation until the onset of lineage specification. During this period, chromatin accessibility increases at regulatory elements. This increase is independent of RNA polymerase II-mediated transcription, with the exception of the hypertranscribed miR-430 locus. Instead, accessibility often precedes the transcription of associated genes. Loss of the maternal transcription factors Pou5f3, Sox19b, and Nanog, which are known to be required for zebrafish genome activation, results in decreased accessibility at regulatory elements. Importantly, the accessibility of regulatory regions, especially when established by Pou5f3, Sox19b and Nanog, is predictive for future transcription. Our results show that the maternally provided transcription factors Pou5f3, Sox19b, and Nanog open up chromatin and prime genes for activity during zygotic genome activation in zebrafish.
Collapse
Affiliation(s)
- Máté Pálfy
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Gunnar Schulze
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | | |
Collapse
|
16
|
Economou AD, Hill CS. Temporal dynamics in the formation and interpretation of Nodal and BMP morphogen gradients. Curr Top Dev Biol 2019; 137:363-389. [PMID: 32143749 DOI: 10.1016/bs.ctdb.2019.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
One of the most powerful ideas in developmental biology has been that of the morphogen gradient. In the classical view, a signaling molecule is produced at a local source from where it diffuses, resulting in graded levels across the tissue. This gradient provides positional information, with thresholds in the level of the morphogen determining the position of different cell fates. While experimental studies have uncovered numerous potential morphogens in biological systems, it is becoming increasingly apparent that one important feature, not captured in the simple model, is the role of time in both the formation and interpretation of morphogen gradients. We will focus on two members of the transforming growth factor-β family that are known to play a vital role as morphogens in early vertebrate development: the Nodals and the bone morphogenetic proteins (BMPs). Primarily drawing on the early zebrafish embryo, we will show how recent studies have demonstrated the importance of feedback and other interactions that evolve through time, in shaping morphogen gradients. We will further show how rather than simply reading out levels of a morphogen, the duration of ligand exposure can be a crucial determinant of how cells interpret morphogens, in particular through the unfolding of downstream transcriptional events and in their interactions with other pathways.
Collapse
Affiliation(s)
- Andrew D Economou
- Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
17
|
2-Amino-4-(1-piperidine) pyridine exhibits inhibitory effect on colon cancer through suppression of FOXA2 expression. 3 Biotech 2019; 9:384. [PMID: 31656722 DOI: 10.1007/s13205-019-1915-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/21/2019] [Indexed: 12/27/2022] Open
Abstract
The present study was aimed to investigate the effect of 2-amino-4-(1-piperidine) pyridine on migration and invasion of colon cancer cells. Treatment of colon cancer cells with 2-amino-4-(1-piperidine) pyridine reduced viability in concentration-based manner. The migration potential of HCT116 and HT29 cells was also suppressed on treatment with 2-amino-4-(1-piperidine) pyridine. In HCT116 and HT29 cells, apoptotic cell proportion was increased significantly by 2-amino-4-(1-piperidine) pyridine treatment. The expression of EMT and Vimentin in HCT116 and HT29 cells was reduced markedly on treatment with 2-amino-4-(1-piperidine) pyridine. The expression of E-cadherin was increased in HCT116 and HT29 cells by 2-amino-4-(1-piperidine) pyridine treatment. Treatment with 2-amino-4-(1-piperidine) pyridine reduced the expression of FOXA2 in HCT116 and HT29 cells. The 2-amino-4-(1-piperidine) pyridine treatment reduced growth of tumor in vivo in mice model. In summary, 2-amino-4-(1-piperidine) pyridine treatment inhibits colon cancer cell proliferation through down-regulation of FOXA2 expression. Therefore, 2-amino-4-(1-piperidine) pyridine can be used for the treatment of colon cancer.
Collapse
|
18
|
Prummel KD, Hess C, Nieuwenhuize S, Parker HJ, Rogers KW, Kozmikova I, Racioppi C, Brombacher EC, Czarkwiani A, Knapp D, Burger S, Chiavacci E, Shah G, Burger A, Huisken J, Yun MH, Christiaen L, Kozmik Z, Müller P, Bronner M, Krumlauf R, Mosimann C. A conserved regulatory program initiates lateral plate mesoderm emergence across chordates. Nat Commun 2019; 10:3857. [PMID: 31451684 PMCID: PMC6710290 DOI: 10.1038/s41467-019-11561-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/22/2019] [Indexed: 01/06/2023] Open
Abstract
Cardiovascular lineages develop together with kidney, smooth muscle, and limb connective tissue progenitors from the lateral plate mesoderm (LPM). How the LPM initially emerges and how its downstream fates are molecularly interconnected remain unknown. Here, we isolate a pan-LPM enhancer in the zebrafish-specific draculin (drl) gene that provides specific LPM reporter activity from early gastrulation. In toto live imaging and lineage tracing of drl-based reporters captures the dynamic LPM emergence as lineage-restricted mesendoderm field. The drl pan-LPM enhancer responds to the transcription factors EomesoderminA, FoxH1, and MixL1 that combined with Smad activity drive LPM emergence. We uncover specific activity of zebrafish-derived drl reporters in LPM-corresponding territories of several chordates including chicken, axolotl, lamprey, Ciona, and amphioxus, revealing a universal upstream LPM program. Altogether, our work provides a mechanistic framework for LPM emergence as defined progenitor field, possibly representing an ancient mesodermal cell state that predates the primordial vertebrate embryo. Numerous tissues are derived from the lateral plate mesoderm (LPM) but how this is specified is unclear. Here, the authors identify a pan-LPM reporter activity found in the zebrafish draculin (drl) gene that also shows transgenic activity in LPM-corresponding territories of several chordates, including chicken, axolotl, lamprey, Ciona, and amphioxus.
Collapse
Affiliation(s)
- Karin D Prummel
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Christopher Hess
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Susan Nieuwenhuize
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Hugo J Parker
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, 66160, USA.,Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Katherine W Rogers
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, 72076, Germany
| | - Iryna Kozmikova
- Institute of Molecular Genetics of the ASCR, Prague, 142 20, Czech Republic
| | - Claudia Racioppi
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, 10003, USA
| | - Eline C Brombacher
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Anna Czarkwiani
- TUD-CRTD Center for Regenerative Therapies Dresden, Dresden, 01307, Germany
| | - Dunja Knapp
- TUD-CRTD Center for Regenerative Therapies Dresden, Dresden, 01307, Germany
| | - Sibylle Burger
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Elena Chiavacci
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Gopi Shah
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Alexa Burger
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Jan Huisken
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany.,Morgridge Institute for Research, Madison, WI, 53715, USA
| | - Maximina H Yun
- TUD-CRTD Center for Regenerative Therapies Dresden, Dresden, 01307, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, 10003, USA
| | - Zbynek Kozmik
- Institute of Molecular Genetics of the ASCR, Prague, 142 20, Czech Republic
| | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, 72076, Germany
| | - Marianne Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Robb Krumlauf
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, 66160, USA.,Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland.
| |
Collapse
|
19
|
Fischer P, Chen H, Pacho F, Rieder D, Kimmel RA, Meyer D. FoxH1 represses miR-430 during early embryonic development of zebrafish via non-canonical regulation. BMC Biol 2019; 17:61. [PMID: 31362746 PMCID: PMC6664792 DOI: 10.1186/s12915-019-0683-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND FoxH1 is a forkhead transcription factor with conserved key functions in vertebrate mesoderm induction and left-right patterning downstream of the TGF-beta/Nodal signaling pathway. Binding of the forkhead domain (FHD) of FoxH1 to a highly conserved proximal sequence motif was shown to regulate target gene expression. RESULTS We identify the conserved microRNA-430 family (miR-430) as a novel target of FoxH1. miR-430 levels are increased in foxH1 mutants, resulting in a reduced expression of transcripts that are targeted by miR-430 for degradation. To determine the underlying mechanism of miR-430 repression, we performed chromatin immunoprecipitation studies and overexpression experiments with mutant as well as constitutive active and repressive forms of FoxH1. Our studies reveal a molecular interaction of FoxH1 with miR-430 loci independent of the FHD. Furthermore, we show that previously described mutant forms of FoxH1 that disrupt DNA binding or that lack the C-terminal Smad Interaction Domain (SID) dominantly interfere with miR-430 repression, but not with the regulation of previously described FoxH1 targets. CONCLUSIONS We were able to identify the distinct roles of protein domains of FoxH1 in the regulation process of miR-430. We provide evidence that the indirect repression of miR-430 loci depends on the connection to a distal repressive chromosome environment via a non-canonical mode. The widespread distribution of such non-canonical binding sites of FoxH1, found not only in our study, argues against a function restricted to regulating miR-430 and for a more global role of FoxH1 in chromatin folding.
Collapse
Affiliation(s)
- Patrick Fischer
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Hao Chen
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Frederic Pacho
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Dietmar Rieder
- Division of Bioinformatics, Biocenter, Innsbruck Medical University, Innrain 80, 6020, Innsbruck, Austria
| | - Robin A Kimmel
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Dirk Meyer
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria.
| |
Collapse
|
20
|
An Ectoderm-Derived Myeloid-like Cell Population Functions as Antigen Transporters for Langerhans Cells in Zebrafish Epidermis. Dev Cell 2019; 49:605-617.e5. [DOI: 10.1016/j.devcel.2019.03.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/24/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
|
21
|
de Pater E, Trompouki E. Bloody Zebrafish: Novel Methods in Normal and Malignant Hematopoiesis. Front Cell Dev Biol 2018; 6:124. [PMID: 30374440 PMCID: PMC6196227 DOI: 10.3389/fcell.2018.00124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
Hematopoiesis is an optimal system for studying stem cell maintenance and lineage differentiation under physiological and pathological conditions. In vertebrate organisms, billions of differentiated hematopoietic cells need to be continuously produced to replenish the blood cell pool. Disruptions in this process have immediate consequences for oxygen transport, responses against pathogens, maintenance of hemostasis and vascular integrity. Zebrafish is a widely used and well-established model for studying the hematopoietic system. Several new hematopoietic regulators were identified in genetic and chemical screens using the zebrafish model. Moreover, zebrafish enables in vivo imaging of hematopoietic stem cell generation and differentiation during embryogenesis, and adulthood. Finally, zebrafish has been used to model hematopoietic diseases. Recent technological advances in single-cell transcriptome analysis, epigenetic regulation, proteomics, metabolomics, and processing of large data sets promise to transform the current understanding of normal, abnormal, and malignant hematopoiesis. In this perspective, we discuss how the zebrafish model has proven beneficial for studying physiological and pathological hematopoiesis and how these novel technologies are transforming the field.
Collapse
Affiliation(s)
- Emma de Pater
- Department of Hematology, Erasmus MC, Rotterdam, Netherlands
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| |
Collapse
|
22
|
Wang B, Liu G, Ding L, Zhao J, Lu Y. FOXA2 promotes the proliferation, migration and invasion, and epithelial mesenchymal transition in colon cancer. Exp Ther Med 2018; 16:133-140. [PMID: 29896233 PMCID: PMC5995056 DOI: 10.3892/etm.2018.6157] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 04/24/2018] [Indexed: 12/30/2022] Open
Abstract
The present study determined the expression and biological functions of FOXA2 gene in colon cancer in tissues, cells and animals. A total of 66 patients with colon cancer were included in the present study. Using The Human Protein Atlas database, expression and distribution of FOXA2 in colon cancer tissues were analyzed. Using immunohistochemistry, the expression and distribution of FOXA2 in colon cancer cells were studied. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to determine the expression of FOXA2 mRNA in colon cancer tissues. Following in vitro transfection with FOXA2 interference sequence (siR-FOXA2), the proliferation, cell cycle, migration and invasion of colon cancer HCT116 and HT29 cells were investigated using Cell Counting Kit-8 assay, flow cytometry, and Transwell assay, respectively. Furthermore, flow cytometry was used to determine apoptosis of HCT116 and HT29 cells. Western blotting was used to determine the expression of epithelial mesenchymal transition (EMT) proteins, E-Cadherin and Vimentin. Laser scanning confocal microscopy was performed to observe the cytoskeleton in HCT116 and HT29 cells. Results indicated tumorigenesis of colon cancer cells in nude mice. In addition, the expression of FOXA2 in colon cancer tissues was elevated and associated with the metastasis and clinical staging of colon cancer. Notably, inhibition of FOXA2 reduced the proliferation of colon cancer cells in vitro and reduced expression of FOXA2 was able to decrease the migration and invasion abilities of colon cancer cells. Furthermore, FOXA2 promoted EMT, inhibited apoptosis and enhanced the invasion ability of colon cancer cells. Decreased expression of FOXA2 inhibited tumorigenesis of colon cancer cells in nude mice. To conclude, the present study demonstrated that the expression of FOXA2 in colon cancer tissues was elevated and associated with the metastasis and clinical staging of colon cancer. As an oncogene, FOXA2 may promote the proliferation, migration and invasion and EMT in colon cancer.
Collapse
Affiliation(s)
- Baolei Wang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266555, P.R. China
| | - Guangwei Liu
- Emergency Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Lei Ding
- Medical Administration Division, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jun Zhao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yun Lu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266555, P.R. China
| |
Collapse
|
23
|
David CJ, Massagué J. Contextual determinants of TGFβ action in development, immunity and cancer. Nat Rev Mol Cell Biol 2018; 19:419-435. [PMID: 29643418 DOI: 10.1038/s41580-018-0007-0] [Citation(s) in RCA: 562] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Few cell signals match the impact of the transforming growth factor-β (TGFβ) family in metazoan biology. TGFβ cytokines regulate cell fate decisions during development, tissue homeostasis and regeneration, and are major players in tumorigenesis, fibrotic disorders, immune malfunctions and various congenital diseases. The effects of the TGFβ family are mediated by a combinatorial set of ligands and receptors and by a common set of receptor-activated mothers against decapentaplegic homologue (SMAD) transcription factors, yet the effects can differ dramatically depending on the cell type and the conditions. Recent progress has illuminated a model of TGFβ action in which SMADs bind genome-wide in partnership with lineage-determining transcription factors and additionally integrate inputs from other pathways and the chromatin to trigger specific cellular responses. These new insights clarify the operating logic of the TGFβ pathway in physiology and disease.
Collapse
Affiliation(s)
- Charles J David
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Tsinghua University School of Medicine, Department of Basic Sciences, Beijing, China
| | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
24
|
Hill CS. Spatial and temporal control of NODAL signaling. Curr Opin Cell Biol 2018; 51:50-57. [PMID: 29153705 DOI: 10.1016/j.ceb.2017.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022]
Abstract
Embryonic development is orchestrated by the activity of signal transduction pathways, amongst which are those downstream of the transforming growth factor β (TGF-β) family. Here I focus on signalling by one of these ligands, NODAL, which is essential for early embryonic axis patterning. I review recent advances in our understanding of how NODAL signalling is transduced from the plasma membrane to the nucleus to regulate the transcription of target genes, and how domains of NODAL activity are established and refined during embryonic development. The duration of signalling is emerging as a key determinant of the specificity of downstream responses in terms of cell fate decisions and I will discuss what is currently known about the underlying mechanisms.
Collapse
Affiliation(s)
- Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
25
|
van Boxtel AL, Economou AD, Heliot C, Hill CS. Long-Range Signaling Activation and Local Inhibition Separate the Mesoderm and Endoderm Lineages. Dev Cell 2018; 44:179-191.e5. [PMID: 29275993 PMCID: PMC5791662 DOI: 10.1016/j.devcel.2017.11.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/20/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022]
Abstract
Specification of the three germ layers by graded Nodal signaling has long been seen as a paradigm for patterning through a single morphogen gradient. However, by exploiting the unique properties of the zebrafish embryo to capture the dynamics of signaling and cell fate allocation, we now demonstrate that Nodal functions in an incoherent feedforward loop, together with Fgf, to determine the pattern of endoderm and mesoderm specification. We show that Nodal induces long-range Fgf signaling while simultaneously inducing the cell-autonomous Fgf signaling inhibitor Dusp4 within the first two cell tiers from the margin. The consequent attenuation of Fgf signaling in these cells allows specification of endoderm progenitors, while the cells further from the margin, which receive Nodal and/or Fgf signaling, are specified as mesoderm. This elegant model demonstrates the necessity of feedforward and feedback interactions between multiple signaling pathways for providing cells with temporal and positional information.
Collapse
Affiliation(s)
- Antonius L van Boxtel
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andrew D Economou
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Claire Heliot
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|