1
|
Başar Kılıç Ş, Taheri S, Mehmetbeyoğlu Duman E, Öksüm Solak E, Yılmaz Şükranlı Z, Rassoulzadegan M, Borlu M. Psoriatic skin transcript phenotype: androgen/estrogen and cortisone/cortisol imbalance with increasing DNA damage response. Mol Biol Rep 2024; 51:933. [PMID: 39180588 DOI: 10.1007/s11033-024-09782-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/04/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Patients prone to psoriasis suffer after a breakdown of the epidermal barrier and develop poorly healing lesions with abnormal proliferation of keratinocytes. Strong inflammatory reactions with genotoxicity (short telomeres) suggest impaired immune defenses with DNA damage repair response (DDR) in patients with psoriasis. Recent evidence indicates the existence of crosstalk mechanisms linking the DDR machinery and hormonal signaling pathways that cooperate to influence both progressions of many diseases and responses to treatment. The aim of this study was to clarify whether steroid biosynthesis and genomic stability markers are altered in parallel during the formation of psoriatic skin. Understanding the interaction of the steroid pathway and DNA damage response is crucial to addressing underlying fundamental issues and managing resulting epidermal barrier disruption in psoriasis. METHODS Skin (Lesional, non-lesional) and blood samples from twenty psoriasis patients and fifteen healthy volunteers were collected. Real-Time-PCR study was performed to assess levels of known transcripts such as: estrogen (ESR1, ESR2), androgen (AR), glucocorticoid/mineralocorticoid receptors (NR3C1, NR3C2), HSD11B1/HSD11B2, and DNA damage sensors (SMC1A, TREX1, TREX2, SSBP3, RAD1, RAD18, EXO1, POLH, HUS1). RESULTS We found that ESR1, ESR2, HSD11B1, NR3C1, NR3C2, POLH, and SMC1A transcripts were significantly decreased and AR, TREX1, RAD1, and SSBP3 transcripts were increased dramatically in the lesional skin compared to skin samples of controls. CONCLUSION We found that the regulation of the steroidogenic pathway was disrupted in the lesional tissue of psoriasis patients and that a sufficient glucocorticoid and mineralocorticoid response did not form and the estrogen/androgen balance was altered in favour of androgens. We suggest that an increased androgen response in the presence of DDR increases the risk of developing psoriasis. Although this situation may be the cause or the consequence of a disruption of the epidermal barrier, our data suggest developing new therapeutic strategies.
Collapse
Affiliation(s)
- Şeyma Başar Kılıç
- Dermatology and Venereology Department, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Serpil Taheri
- Medical Biology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Ecmel Mehmetbeyoğlu Duman
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
- Department of Cancer and Genetics, Cardiff University, Cardiff, CF14 4XN, UK
| | - Eda Öksüm Solak
- Dermatology and Venereology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | | | - Minoo Rassoulzadegan
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Murat Borlu
- Dermatology and Venereology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
2
|
Mendoza H, Siddon AJ. Molecular Techniques and Gene Mutations in Myelodysplastic Syndromes. Clin Lab Med 2023; 43:549-563. [PMID: 37865502 DOI: 10.1016/j.cll.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
Sequencing technology, particularly next-generation sequencing, has highlighted the importance of gene mutations in myelodysplastic syndromes (MDSs). Mutations affecting DNA methylation, chromatin modification, RNA splicing, cohesin complex, and other pathways are present in most MDS cases and often have prognostic and clinical implications. Updated international diagnostic guidelines as well as the new International Prognostic Scoring System-Molecular incorporate molecular data into the diagnosis and prognostication of MDS. With whole-genome sequencing predicted to become the future standard of genetic evaluation, it is likely that MDS diagnosis and management will become increasingly personalized based on an individual's clinical and genomic profile.
Collapse
Affiliation(s)
- Hadrian Mendoza
- Department of Internal Medicine, Yale School of Medicine, PO Box 208030, New Haven, CT 06520, USA
| | - Alexa J Siddon
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Koh YE, Choi EH, Kim JW, Kim KP. The Kleisin Subunits of Cohesin are Involved in the Fate Determination of Embryonic Stem Cells. Mol Cells 2022; 45:820-832. [PMID: 36172976 PMCID: PMC9676991 DOI: 10.14348/molcells.2022.2042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/20/2022] [Accepted: 07/24/2022] [Indexed: 11/27/2022] Open
Abstract
As a potential candidate to generate an everlasting cell source to treat various diseases, embryonic stem cells are regarded as a promising therapeutic tool in the regenerative medicine field. Cohesin, a multi-functional complex that controls various cellular activities, plays roles not only in organizing chromosome dynamics but also in controlling transcriptional activities related to self-renewal and differentiation of stem cells. Here, we report a novel role of the α-kleisin subunits of cohesin (RAD21 and REC8) in the maintenance of the balance between these two stem-cell processes. By knocking down REC8, RAD21, or the non-kleisin cohesin subunit SMC3 in mouse embryonic stem cells, we show that reduction in cohesin level impairs their self-renewal. Interestingly, the transcriptomic analysis revealed that knocking down each cohesin subunit enables the differentiation of embryonic stem cells into specific lineages. Specifically, embryonic stem cells in which cohesin subunit RAD21 were knocked down differentiated into cells expressing neural alongside germline lineage markers. Thus, we conclude that cohesin appears to control the fate determination of embryonic stem cells.
Collapse
Affiliation(s)
- Young Eun Koh
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
- Genexine Inc., Bio Innovation Park, Seoul 07789, Korea
| | - Eui-Hwan Choi
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Jung-Woong Kim
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Keun Pil Kim
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
4
|
Li J, Tiwari M, Chen Y, Luanpitpong S, Sen GL. CDK12 Is Necessary to Promote Epidermal Differentiation Through Transcription Elongation. Stem Cells 2022; 40:435-445. [PMID: 35325240 PMCID: PMC9199850 DOI: 10.1093/stmcls/sxac002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/17/2021] [Indexed: 01/30/2023]
Abstract
Proper differentiation of the epidermis is essential to prevent water loss and to protect the body from the outside environment. Perturbations in this process can lead to a variety of skin diseases that impacts 1 in 5 people. While transcription factors that control epidermal differentiation have been well characterized, other aspects of transcription control such as elongation are poorly understood. Here we show that of the two cyclin-dependent kinases (CDK12 and CDK13), that are known to regulate transcription elongation, only CDK12 is necessary for epidermal differentiation. Depletion of CDK12 led to loss of differentiation gene expression and absence of skin barrier formation in regenerated human epidermis. CDK12 binds to genes that code for differentiation promoting transcription factors (GRHL3, KLF4, and OVOL1) and is necessary for their elongation. CDK12 is necessary for elongation by promoting Ser2 phosphorylation on the C-terminal domain of RNA polymerase II and the stabilization of binding of the elongation factor SPT6 to target genes. Our results suggest that control of transcription elongation by CDK12 plays a prominent role in adult cell fate decisions.
Collapse
Affiliation(s)
- Jingting Li
- Institute of Precision Medicine, Department of Burns, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Manisha Tiwari
- Department of Dermatology and Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Yifang Chen
- Department of Dermatology and Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok, Thailand
| | - George L Sen
- Department of Dermatology and Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Tian GG, Zhao X, Hou C, Xie W, Li X, Wang Y, Wang L, Li H, Zhao X, Li J, Wu J. Integrative analysis of the 3D genome structure reveals that CTCF maintains the properties of mouse female germline stem cells. Cell Mol Life Sci 2022; 79:22. [PMID: 34981210 PMCID: PMC8724064 DOI: 10.1007/s00018-021-04107-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022]
Abstract
The three-dimensional configuration of the genome ensures cell type-specific gene expression profiles by placing genes and regulatory elements in close spatial proximity. Here, we used in situ high-throughput chromosome conformation (in situ Hi-C), RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) to characterize the high-order chromatin structure signature of female germline stem cells (FGSCs) and identify its regulating key factor based on the data-driven of multiple omics data. By comparison with pluripotent stem cells (PSCs), adult stem cells (ASCs), and somatic cells at three major levels of chromatin architecture, A/B compartments, topologically associating domains, and chromatin loops, the chromatin architecture of FGSCs was most similar to that of other ASCs and largely different from that of PSCs and somatic cells. After integrative analysis of the three-dimensional chromatin structure, active compartment-associating loops (aCALs) were identified as a signature of high-order chromatin organization in FGSCs, which revealed that CCCTC-binding factor was a major factor to maintain the properties of FGSCs through regulation of aCALs. We found FGSCs belong to ASCs at chromatin structure level and characterized aCALs as the high-order chromatin structure signature of FGSCs. Furthermore, CTCF was identified to play a key role in regulating aCALS to maintain the biological functions of FGSCs. These data provide a valuable resource for future studies of the features of chromatin organization in mammalian stem cells and further understanding of the fundamental characteristics of FGSCs.
Collapse
Affiliation(s)
- Geng G Tian
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinyan Zhao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Changliang Hou
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenhai Xie
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Xiaoyong Li
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yinjuan Wang
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lijuan Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hua Li
- State Key Laboratory for Oncogenes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaodong Zhao
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Li
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ji Wu
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
6
|
Li J, Chen Y, Tiwari M, Bansal V, Sen GL. Regulation of integrin and extracellular matrix genes by HNRNPL is necessary for epidermal renewal. PLoS Biol 2021; 19:e3001378. [PMID: 34543262 PMCID: PMC8452081 DOI: 10.1371/journal.pbio.3001378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/30/2021] [Indexed: 01/05/2023] Open
Abstract
Stratified epithelia such as the epidermis require coordinated regulation of stem and progenitor cell proliferation, survival, and differentiation to maintain homeostasis. Integrin-mediated anchorage of the basal layer stem cells of the epidermis to the underlying dermis through extracellular matrix (ECM) proteins is crucial for this process. It is currently unknown how the expression of these integrins and ECM genes are regulated. Here, we show that the RNA-binding protein (RBP) heterogeneous nuclear ribonucleoprotein L (HNRNPL) binds to these genes on chromatin to promote their expression. HNRNPL recruits RNA polymerase II (Pol II) to integrin/ECM genes and is required for stabilizing Pol II transcription through those genes. In the absence of HNRNPL, the basal layer of the epidermis where the stem cells reside prematurely differentiates and detaches from the underlying dermis due to diminished integrin/ECM expression. Our results demonstrate a critical role for RBPs on chromatin to maintain stem and progenitor cell fate by dictating the expression of specific classes of genes.
Collapse
Affiliation(s)
- Jingting Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yifang Chen
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California San Diego, La Jolla, California, United States of America
| | - Manisha Tiwari
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California San Diego, La Jolla, California, United States of America
| | - Varun Bansal
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California San Diego, La Jolla, California, United States of America
| | - George L. Sen
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
7
|
Genetics of Myelodysplastic Syndromes. Cancers (Basel) 2021; 13:cancers13143380. [PMID: 34298596 PMCID: PMC8304604 DOI: 10.3390/cancers13143380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
Myelodysplastic syndrome (MDS) describes a heterogeneous group of bone marrow diseases, now understood to reflect numerous germline and somatic drivers, characterized by recurrent cytogenetic abnormalities and gene mutations. Precursor conditions including clonal hematopoiesis of indeterminate potential and clonal cytopenia of undetermined significance confer risk for MDS as well as other hematopoietic malignancies and cardiovascular complications. The future is likely to bring an understanding of those individuals who are at the highest risk of progression to MDS and preventive strategies to prevent malignant transformation.
Collapse
|
8
|
Antony J, Chin CV, Horsfield JA. Cohesin Mutations in Cancer: Emerging Therapeutic Targets. Int J Mol Sci 2021; 22:6788. [PMID: 34202641 PMCID: PMC8269296 DOI: 10.3390/ijms22136788] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
The cohesin complex is crucial for mediating sister chromatid cohesion and for hierarchal three-dimensional organization of the genome. Mutations in cohesin genes are present in a range of cancers. Extensive research over the last few years has shown that cohesin mutations are key events that contribute to neoplastic transformation. Cohesin is involved in a range of cellular processes; therefore, the impact of cohesin mutations in cancer is complex and can be cell context dependent. Candidate targets with therapeutic potential in cohesin mutant cells are emerging from functional studies. Here, we review emerging targets and pharmacological agents that have therapeutic potential in cohesin mutant cells.
Collapse
Affiliation(s)
- Jisha Antony
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Chue Vin Chin
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
| | - Julia A. Horsfield
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
9
|
Abstract
Myelodysplastic syndromes (MDS) are clonal hematological disorders arising from hematopoietic stem cells that have accumulated various genetic abnormalities. MDS are heterogeneous in nature but uniformly characterized by chronic and progressive cytopenia from ineffective hematopoiesis, dysplasia in single or multiple lineages, and transformation to acute leukemia in a subset of patients. The genomic landscape revealed by next-generation sequencing has provided a comprehensive picture of the molecular pathways involved in MDS pathogenesis. Recurrent mutational targets in MDS are the genes involved in RNA splicing, DNA methylation, histone modification, transcription, signal transduction, cohesin complex and DNA repair. Sequential acquisition of mutations in these sets of genes serves as a driver for the initiation, clonal evolution and progression of MDS. Based on these findings, novel agents targeting driver mutations of MDS are currently under development and expected to improve the clinical outcome of MDS in the coming decades.
Collapse
Affiliation(s)
- Hideaki Nakajima
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Japan
| |
Collapse
|
10
|
Li J, Bansal V, Tiwari M, Chen Y, Sen GL. ELL Facilitates RNA Polymerase II-Mediated Transcription of Human Epidermal Proliferation Genes. J Invest Dermatol 2020; 141:1352-1356.e3. [PMID: 33157094 DOI: 10.1016/j.jid.2020.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Jingting Li
- Department of Dermatology, University of California, San Diego, La Jolla, California, USA; Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, California, USA
| | - Varun Bansal
- Department of Dermatology, University of California, San Diego, La Jolla, California, USA; Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, California, USA
| | - Manisha Tiwari
- Department of Dermatology, University of California, San Diego, La Jolla, California, USA; Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, California, USA
| | - Yifang Chen
- Department of Dermatology, University of California, San Diego, La Jolla, California, USA; Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, California, USA
| | - George L Sen
- Department of Dermatology, University of California, San Diego, La Jolla, California, USA; Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
11
|
Lin Z, Jin S, Chen J, Li Z, Lin Z, Tang L, Nie Q, Andersen B. Murine interfollicular epidermal differentiation is gradualistic with GRHL3 controlling progression from stem to transition cell states. Nat Commun 2020; 11:5434. [PMID: 33116143 PMCID: PMC7595230 DOI: 10.1038/s41467-020-19234-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 09/24/2020] [Indexed: 02/08/2023] Open
Abstract
The interfollicular epidermis (IFE) forms a water-tight barrier that is often disrupted in inflammatory skin diseases. During homeostasis, the IFE is replenished by stem cells in the basal layer that differentiate as they migrate toward the skin surface. Conventionally, IFE differentiation is thought to be stepwise as reflected in sharp boundaries between its basal, spinous, granular and cornified layers. The transcription factor GRHL3 regulates IFE differentiation by transcriptionally activating terminal differentiation genes. Here we use single cell RNA-seq to show that murine IFE differentiation is best described as a single step gradualistic process with a large number of transition cells between the basal and spinous layer. RNA-velocity analysis identifies a commitment point that separates the plastic basal and transition cell state from unidirectionally differentiating cells. We also show that in addition to promoting IFE terminal differentiation, GRHL3 is essential for suppressing epidermal stem cell expansion and the emergence of an abnormal stem cell state by suppressing Wnt signaling in stem cells.
Collapse
Affiliation(s)
- Ziguang Lin
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, USA
| | - Suoqin Jin
- Department of Mathematics, University of California, Irvine, CA, USA.,Department of Developmental & Cell Biology, School of Biological Sciences, University of California, Irvine, CA, USA.,NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, USA
| | - Jefferson Chen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, USA
| | - Zhuorui Li
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, USA
| | - Zhongqi Lin
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, USA
| | - Li Tang
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, CA, USA. .,Department of Developmental & Cell Biology, School of Biological Sciences, University of California, Irvine, CA, USA. .,NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, USA.
| | - Bogi Andersen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, USA. .,Department of Medicine, School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
12
|
Jones J, Chen Y, Tiwari M, Li J, Ling J, Sen GL. KLF3 Mediates Epidermal Differentiation through the Epigenomic Writer CBP. iScience 2020; 23:101320. [PMID: 32659720 PMCID: PMC7358749 DOI: 10.1016/j.isci.2020.101320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/02/2020] [Accepted: 06/24/2020] [Indexed: 12/24/2022] Open
Abstract
Impairments in the differentiation process can lead to skin diseases that can afflict ∼20% of the population. Thus, it is of utmost importance to understand the factors that promote the differentiation process. Here we identify the transcription factor KLF3 as a regulator of epidermal differentiation. Knockdown of KLF3 results in reduced differentiation gene expression and increased cell cycle gene expression. Over half of KLF3's genomic binding sites occur at active enhancers. KLF3 binds to active enhancers proximal to differentiation genes that are dependent upon KLF3 for expression. KLF3's genomic binding sites also highly overlaps with CBP, a histone acetyltransferase necessary for activating enhancers. Depletion of KLF3 causes reduced CBP localization at enhancers proximal to differentiation gene clusters, which leads to loss of enhancer activation but not priming. Our results suggest that KLF3 is necessary to recruit CBP to activate enhancers and drive epidermal differentiation gene expression.
Collapse
Affiliation(s)
- Jackson Jones
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0869, USA
| | - Yifang Chen
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0869, USA
| | - Manisha Tiwari
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0869, USA
| | - Jingting Li
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0869, USA
| | - Ji Ling
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0869, USA
| | - George L Sen
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0869, USA.
| |
Collapse
|
13
|
Jones J, Chen Y, Tiwari M, Li J, Ling J, Sen GL. BRD4 Is Necessary for Differentiation Downstream of Epidermal Lineage-Determining Transcription Factors. J Invest Dermatol 2020; 140:2077-2081.e5. [PMID: 32142793 DOI: 10.1016/j.jid.2020.01.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Jackson Jones
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, California, USA
| | - Yifang Chen
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, California, USA
| | - Manisha Tiwari
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, California, USA
| | - Jingting Li
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, California, USA
| | - Ji Ling
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, California, USA
| | - George L Sen
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
14
|
Khaminets A, Ronnen-Oron T, Baldauf M, Meier E, Jasper H. Cohesin controls intestinal stem cell identity by maintaining association of Escargot with target promoters. eLife 2020; 9:e48160. [PMID: 32022682 PMCID: PMC7002041 DOI: 10.7554/elife.48160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 01/18/2020] [Indexed: 12/27/2022] Open
Abstract
Intestinal stem cells (ISCs) maintain regenerative capacity of the intestinal epithelium. Their function and activity are regulated by transcriptional changes, yet how such changes are coordinated at the genomic level remains unclear. The Cohesin complex regulates transcription globally by generating topologically-associated DNA domains (TADs) that link promotor regions with distant enhancers. We show here that the Cohesin complex prevents premature differentiation of Drosophila ISCs into enterocytes (ECs). Depletion of the Cohesin subunit Rad21 and the loading factor Nipped-B triggers an ISC to EC differentiation program that is independent of Notch signaling, but can be rescued by over-expression of the ISC-specific escargot (esg) transcription factor. Using damID and transcriptomic analysis, we find that Cohesin regulates Esg binding to promoters of differentiation genes, including a group of Notch target genes involved in ISC differentiation. We propose that Cohesin ensures efficient Esg-dependent gene repression to maintain stemness and intestinal homeostasis.
Collapse
Affiliation(s)
| | | | - Maik Baldauf
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Elke Meier
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Heinrich Jasper
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
- Buck Institute for Research on AgingNovatoUnited States
- Immunology DiscoveryGenentech, IncSouth San FranciscoUnited States
| |
Collapse
|
15
|
OGAWA S. Genetic basis of myelodysplastic syndromes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:107-121. [PMID: 32161209 PMCID: PMC7167367 DOI: 10.2183/pjab.96.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/15/2020] [Indexed: 05/06/2023]
Abstract
During the past decade, substantial progress has been made in the field of the genetics of myelodysplastic syndromes (MDS). These comprise a group of chronic myeloid neoplasms with abnormal cell morphology and progression to acute myeloid leukemia (AML), where revolutionary sequencing technologies have played a major role. Through extensive sequencing of a large number of MDS genomes, a comprehensive registry of driver mutations involved in the pathogenesis of MDS has been revealed, along with their impacts on clinical phenotype and prognosis. The most frequently affected molecules are involved in DNA methylations, chromatin modification, RNA splicing, transcription, signal transduction, cohesin regulation, and DNA repair. These mutations show strong positive and negative correlations with each other, suggesting the presence of functional interactions between mutations, which dictate disease progression. Because these mutations are associated with disease phenotype, drug response, and clinical outcomes, it is essential to be familiar with MDS genetics not only for better understanding of MDS pathogenesis but also for management of patients.
Collapse
Affiliation(s)
- Seishi OGAWA
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Spaulding TP, Stockton SS, Savona MR. The evolving role of next generation sequencing in myelodysplastic syndromes. Br J Haematol 2019; 188:224-239. [PMID: 31571207 DOI: 10.1111/bjh.16212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 12/11/2022]
Abstract
Myelodysplastic syndromes (MDS) are clonal haematological disorders characterized by haematopoietic cell dysplasia, peripheral blood cytopenias, and a predisposition for developing acute myeloid leukaemia (AML). Cytogenetics have historically been important in diagnosis and prognosis in MDS, but the growing accessibility of next generation sequencing (NGS) has led to growing research in the roles of molecular genetic variation on clinical decision-making in these disorders. Multiple genes have been previously studied and found to be associated with specific outcomes or disease types within MDS and knowledge of mutations in these genes provides insight into previously defined MDS subtypes. Knowledge of these mutations also informs development of novel therapies in the treatment of MDS. The precise role of NGS in the diagnosis, prognosis and monitoring of MDS remains unclear but the improvements in NGS technology and accessibility affords clinicians an additional practice tool to provide the best care for patients.
Collapse
Affiliation(s)
- Travis P Spaulding
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shannon S Stockton
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael R Savona
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.,Cancer Biology Program, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
17
|
HNRNPK maintains epidermal progenitor function through transcription of proliferation genes and degrading differentiation promoting mRNAs. Nat Commun 2019; 10:4198. [PMID: 31519929 PMCID: PMC6744489 DOI: 10.1038/s41467-019-12238-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 08/16/2019] [Indexed: 01/08/2023] Open
Abstract
Maintenance of high-turnover tissues such as the epidermis requires a balance between stem cell proliferation and differentiation. The molecular mechanisms governing this process are an area of investigation. Here we show that HNRNPK, a multifunctional protein, is necessary to prevent premature differentiation and sustains the proliferative capacity of epidermal stem and progenitor cells. To prevent premature differentiation of progenitor cells, HNRNPK is necessary for DDX6 to bind a subset of mRNAs that code for transcription factors that promote differentiation. Upon binding, these mRNAs such as GRHL3, KLF4, and ZNF750 are degraded through the mRNA degradation pathway, which prevents premature differentiation. To sustain the proliferative capacity of the epidermis, HNRNPK is necessary for RNA Polymerase II binding to proliferation/self-renewal genes such as MYC, CYR61, FGFBP1, EGFR, and cyclins to promote their expression. Our study establishes a prominent role for HNRNPK in maintaining adult tissue self-renewal through both transcriptional and post-transcriptional mechanisms. Maintenance of high turnover in tissues such as epidermis requires balance between proliferation and differentiation. Here the authors show that HNRNPK promotes RNA Polymerase II binding to proliferation and self-renewal genes as well as degradation of differentiation promoting mRNAs together with DDX6 in epidermis.
Collapse
|
18
|
Miroshnikova YA, Cohen I, Ezhkova E, Wickström SA. Epigenetic gene regulation, chromatin structure, and force-induced chromatin remodelling in epidermal development and homeostasis. Curr Opin Genet Dev 2019; 55:46-51. [PMID: 31112907 DOI: 10.1016/j.gde.2019.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/05/2019] [Accepted: 04/15/2019] [Indexed: 01/14/2023]
Abstract
The skin epidermis is a constantly renewing stratified epithelium that provides essential protective barrier functions throughout life. Epidermal stratification is governed by a step-wise differentiation program that requires precise spatiotemporal control of gene expression. How epidermal self-renewal and differentiation are regulated remains a fundamental open question. Cell-intrinsic and cell-extrinsic mechanisms that modify chromatin structure and interactions have been identified as key regulators of epidermal differentiation and stratification. Here, we will review the recent advances in our understanding of how chromatin modifiers, tissue-specific transcription factors, and force-induced nuclear remodeling processes function to shape chromatin and to control epidermal tissue development and homeostasis.
Collapse
Affiliation(s)
- Yekaterina A Miroshnikova
- Helsinki Institute of Life Science, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Finland; Wihuri Research Institute, University of Helsinki, Finland; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland; Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Idan Cohen
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| | - Sara A Wickström
- Helsinki Institute of Life Science, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Finland; Wihuri Research Institute, University of Helsinki, Finland; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland; Max Planck Institute for Biology of Ageing, Cologne, Germany.
| |
Collapse
|
19
|
Abstract
Our knowledge about the genetics of myelodysplastic syndromes (MDS) and related myeloid disorders has been dramatically improved during the past decade, in which revolutionized sequencing technologies have played a major role. Through intensive efforts of sequencing of a large number of MDS genomes, a comprehensive registry of driver mutations recurrently found in a recognizable fraction of MDS patients has been revealed, and ongoing efforts are being made to clarify their impacts on clinical phenotype and prognosis, as well as their role in the pathogenesis of MDS. Among major mutational targets in MDS are the molecules involved in DNA methylations, chromatin modification, RNA splicing, transcription, signal transduction, cohesin regulation, and DNA repair. Showing substantial overlaps with driver mutations seen in acute myeloid leukemia (AML), as well as age-related clonal hematopoiesis in healthy individuals, these mutations are presumed to have a common clonal origin. Mutations are thought to be acquired and positively selected in a well-organized manner to allow for expansion of the initiating clone to compromise normal hematopoiesis, ultimately giving rise to MDS and subsequent transformation to AML in many patients. Significant correlations between mutations suggest the presence of functional interactions between mutations, which dictate disease progression. Mutations are frequently associated with specific disease phenotype, drug response, and clinical outcomes, and thus, it is essential to be familiar with MDS genetics for better management of patients. This review aims to provide a brief overview of the recent progresses in MDS genetics.
Collapse
|