1
|
Li Y, Badawi Y, Meriney SD. Age-Related Homeostatic Plasticity at Rodent Neuromuscular Junctions. Cells 2024; 13:1684. [PMID: 39451202 PMCID: PMC11506802 DOI: 10.3390/cells13201684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Motor ability decline remains a major threat to the quality of life of the elderly. Although the later stages of aging co-exist with degenerative pathologies, the long process of aging is more complicated than a simple and gradual degeneration. To combat senescence and the associated late-stage degeneration of the neuromuscular system, it is imperative to examine changes that occur during the long process of aging. Prior to late-stage degeneration, age-induced changes in the neuromuscular system trigger homeostatic plasticity. This unique phenomenon may be important for the maintenance of the neuromuscular system during the early stages of aging. In this review, we will focus on age-induced changes in neurotransmission at the neuromuscular junction, providing the potential mechanisms responsible for these changes. The goal is to highlight these key elements and their role in regulating neurotransmission, facilitating future research efforts to combat late-stage degeneration in the neuromuscular system by preserving the functional and structural integrity of these elements prior to the late stage of aging.
Collapse
Affiliation(s)
| | | | - Stephen D. Meriney
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; (Y.L.); (Y.B.)
| |
Collapse
|
2
|
Chien C, He K, Perry S, Tchitchkan E, Han Y, Li X, Dickman D. Distinct input-specific mechanisms enable presynaptic homeostatic plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612361. [PMID: 39314403 PMCID: PMC11419068 DOI: 10.1101/2024.09.10.612361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Synapses are endowed with the flexibility to change through experience, but must be sufficiently stable to last a lifetime. This tension is illustrated at the Drosophila neuromuscular junction (NMJ), where two motor inputs that differ in structural and functional properties co-innervate most muscles to coordinate locomotion. To stabilize NMJ activity, motor neurons augment neurotransmitter release following diminished postsynaptic glutamate receptor functionality, termed presynaptic homeostatic potentiation (PHP). How these distinct inputs contribute to PHP plasticity remains enigmatic. We have used a botulinum neurotoxin to selectively silence each input and resolve their roles in PHP, demonstrating that PHP is input-specific: Chronic (genetic) PHP selectively targets the tonic MN-Ib, where active zone remodeling enhances Ca2+ influx to promote increased glutamate release. In contrast, acute (pharmacological) PHP selectively increases vesicle pools to potentiate phasic MN-Is. Thus, distinct homeostatic modulations in active zone nanoarchitecture, vesicle pools, and Ca2+ influx collaborate to enable input-specific PHP expression.
Collapse
Affiliation(s)
- Chun Chien
- University of Southern California, Department of Neurobiology, Los Angeles, CA USA
- USC Neuroscience Graduate Program
| | - Kaikai He
- University of Southern California, Department of Neurobiology, Los Angeles, CA USA
- USC Neuroscience Graduate Program
| | - Sarah Perry
- University of Southern California, Department of Neurobiology, Los Angeles, CA USA
| | - Elizabeth Tchitchkan
- University of Southern California, Department of Neurobiology, Los Angeles, CA USA
| | - Yifu Han
- University of Southern California, Department of Neurobiology, Los Angeles, CA USA
- USC Neuroscience Graduate Program
| | - Xiling Li
- University of Southern California, Department of Neurobiology, Los Angeles, CA USA
- USC Neuroscience Graduate Program
| | - Dion Dickman
- University of Southern California, Department of Neurobiology, Los Angeles, CA USA
| |
Collapse
|
3
|
Wang T, Frank CA. Using Electrophysiology to Study Homeostatic Plasticity at the Drosophila Neuromuscular Junction. Cold Spring Harb Protoc 2024:pdb.top108393. [PMID: 38688539 PMCID: PMC11522024 DOI: 10.1101/pdb.top108393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The Drosophila melanogaster neuromuscular junction (NMJ) is a superb system for studying synapse function. Beyond that, the NMJ is also great for studying forms of synaptic plasticity. Over the last 25 years, Drosophila NMJ neuroscientists have pioneered understanding of a form of plasticity called homeostatic synaptic plasticity, which imparts functional stability on synaptic connections. The reason is straightforward: The NMJ has a robust capacity for stability. Moreover, many strategies that the NMJ uses to maintain appropriate levels of function are mirrored at other metazoan synapses. Here, we introduce core approaches that neurophysiologists use to study homeostatic synaptic plasticity at the peripheral Drosophila NMJ. We focus on methods to study a specific form of homeostatic plasticity termed presynaptic homeostatic potentiation (PHP), which is the most well-characterized one. Other forms such as presynaptic homeostatic depression and developmental forms of homeostasis are briefly discussed. Finally, we share lists of several dozen factors and conditions known to influence the execution of PHP.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C. 20007, USA
| | - C Andrew Frank
- Department of Anatomy and Cell Biology, Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| |
Collapse
|
4
|
Ramesh N, Escher M, Turrel O, Lützkendorf J, Matkovic T, Liu F, Sigrist SJ. An antagonism between Spinophilin and Syd-1 operates upstream of memory-promoting presynaptic long-term plasticity. eLife 2023; 12:e86084. [PMID: 37767892 PMCID: PMC10588984 DOI: 10.7554/elife.86084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
We still face fundamental gaps in understanding how molecular plastic changes of synapses intersect with circuit operation to define behavioral states. Here, we show that an antagonism between two conserved regulatory proteins, Spinophilin (Spn) and Syd-1, controls presynaptic long-term plasticity and the maintenance of olfactory memories in Drosophila. While Spn mutants could not trigger nanoscopic active zone remodeling under homeostatic challenge and failed to stably potentiate neurotransmitter release, concomitant reduction of Syd-1 rescued all these deficits. The Spn/Syd-1 antagonism converged on active zone close F-actin, and genetic or acute pharmacological depolymerization of F-actin rescued the Spn deficits by allowing access to synaptic vesicle release sites. Within the intrinsic mushroom body neurons, the Spn/Syd-1 antagonism specifically controlled olfactory memory stabilization but not initial learning. Thus, this evolutionarily conserved protein complex controls behaviorally relevant presynaptic long-term plasticity, also observed in the mammalian brain but still enigmatic concerning its molecular mechanisms and behavioral relevance.
Collapse
Affiliation(s)
- Niraja Ramesh
- Institute for Biology/Genetics, Freie Universität BerlinBerlinGermany
| | - Marc Escher
- Institute for Biology/Genetics, Freie Universität BerlinBerlinGermany
| | - Oriane Turrel
- Institute for Biology/Genetics, Freie Universität BerlinBerlinGermany
| | | | - Tanja Matkovic
- Institute for Biology/Genetics, Freie Universität BerlinBerlinGermany
| | - Fan Liu
- Leibniz-Forschungsinstitut für Molekulare PharmakologieBerlinGermany
| | - Stephan J Sigrist
- Institute for Biology/Genetics, Freie Universität BerlinBerlinGermany
| |
Collapse
|
5
|
Han Y, Goel P, Chen J, Perry S, Tran N, Nishimura S, Sanjani M, Chien C, Dickman D. Excess glutamate release triggers subunit-specific homeostatic receptor scaling. Cell Rep 2023; 42:112775. [PMID: 37436892 PMCID: PMC10529671 DOI: 10.1016/j.celrep.2023.112775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/06/2023] [Accepted: 06/25/2023] [Indexed: 07/14/2023] Open
Abstract
Ionotropic glutamate receptors (GluRs) are targets for modulation in Hebbian and homeostatic synaptic plasticity and are remodeled by development, experience, and disease. We have probed the impact of synaptic glutamate levels on the two postsynaptic GluR subtypes at the Drosophila neuromuscular junction, GluRA and GluRB. We first demonstrate that GluRA and GluRB compete to establish postsynaptic receptive fields, and that proper GluR abundance and composition can be orchestrated in the absence of any synaptic glutamate release. However, excess glutamate adaptively tunes postsynaptic GluR abundance, echoing GluR scaling observed in mammalian systems. Furthermore, when GluRA vs. GluRB competition is eliminated, GluRB becomes insensitive to glutamate modulation. In contrast, GluRA is now homeostatically regulated by excess glutamate to maintain stable miniature activity, where Ca2+ permeability through GluRA receptors is required. Thus, excess glutamate, GluR competition, and Ca2+ signaling collaborate to selectively target GluR subtypes for homeostatic regulation at postsynaptic compartments.
Collapse
Affiliation(s)
- Yifu Han
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jiawen Chen
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Nancy Tran
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Samantha Nishimura
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Manisha Sanjani
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Chun Chien
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
6
|
Wang Y, Zhang R, Huang S, Valverde PTT, Lobb-Rabe M, Ashley J, Venkatasubramanian L, Carrillo RA. Glial Draper signaling triggers cross-neuron plasticity in bystander neurons after neuronal cell death in Drosophila. Nat Commun 2023; 14:4452. [PMID: 37488133 PMCID: PMC10366216 DOI: 10.1038/s41467-023-40142-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
Neuronal cell death and subsequent brain dysfunction are hallmarks of aging and neurodegeneration, but how the nearby healthy neurons (bystanders) respond to the death of their neighbors is not fully understood. In the Drosophila larval neuromuscular system, bystander motor neurons can structurally and functionally compensate for the loss of their neighbors by increasing their terminal bouton number and activity. We term this compensation as cross-neuron plasticity, and in this study, we demonstrate that the Drosophila engulfment receptor, Draper, and the associated kinase, Shark, are required for cross-neuron plasticity. Overexpression of the Draper-I isoform boosts cross-neuron plasticity, implying that the strength of plasticity correlates with Draper signaling. In addition, we find that functional cross-neuron plasticity can be induced at different developmental stages. Our work uncovers a role for Draper signaling in cross-neuron plasticity and provides insights into how healthy bystander neurons respond to the loss of their neighboring neurons.
Collapse
Affiliation(s)
- Yupu Wang
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA.
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA.
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, 20147, USA.
| | - Ruiling Zhang
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Sihao Huang
- Program in Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL, 60637, USA
| | - Parisa Tajalli Tehrani Valverde
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Meike Lobb-Rabe
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - James Ashley
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
| | | | - Robert A Carrillo
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA.
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, 60637, USA.
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
7
|
He K, Han Y, Li X, Hernandez RX, Riboul DV, Feghhi T, Justs KA, Mahneva O, Perry S, Macleod GT, Dickman D. Physiologic and Nanoscale Distinctions Define Glutamatergic Synapses in Tonic vs Phasic Neurons. J Neurosci 2023; 43:4598-4611. [PMID: 37221096 PMCID: PMC10286941 DOI: 10.1523/jneurosci.0046-23.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Neurons exhibit a striking degree of functional diversity, each one tuned to the needs of the circuitry in which it is embedded. A fundamental functional dichotomy occurs in activity patterns, with some neurons firing at a relatively constant "tonic" rate, while others fire in bursts, a "phasic" pattern. Synapses formed by tonic versus phasic neurons are also functionally differentiated, yet the bases of their distinctive properties remain enigmatic. A major challenge toward illuminating the synaptic differences between tonic and phasic neurons is the difficulty in isolating their physiological properties. At the Drosophila neuromuscular junction, most muscle fibers are coinnervated by two motor neurons: the tonic "MN-Ib" and phasic "MN-Is." Here, we used selective expression of a newly developed botulinum neurotoxin transgene to silence tonic or phasic motor neurons in Drosophila larvae of either sex. This approach highlighted major differences in their neurotransmitter release properties, including probability, short-term plasticity, and vesicle pools. Furthermore, Ca2+ imaging demonstrated ∼2-fold greater Ca2+ influx at phasic neuron release sites relative to tonic, along with an enhanced synaptic vesicle coupling. Finally, confocal and super-resolution imaging revealed that phasic neuron release sites are organized in a more compact arrangement, with enhanced stoichiometry of voltage-gated Ca2+ channels relative to other active zone scaffolds. These data suggest that distinctions in active zone nano-architecture and Ca2+ influx collaborate to differentially tune glutamate release at tonic versus phasic synaptic subtypes.SIGNIFICANCE STATEMENT "Tonic" and "phasic" neuronal subtypes, based on differential firing properties, are common across many nervous systems. Using a recently developed approach to selectively silence transmission from one of these two neurons, we reveal specialized synaptic functional and structural properties that distinguish these specialized neurons. This study provides important insights into how input-specific synaptic diversity is achieved, which could have implications for neurologic disorders that involve changes in synaptic function.
Collapse
Affiliation(s)
- Kaikai He
- Department of Neurobiology, University of Southern California, Los Angeles, California 90089
- USC Neuroscience Graduate Program, Los Angeles, California 90089
| | - Yifu Han
- Department of Neurobiology, University of Southern California, Los Angeles, California 90089
- USC Neuroscience Graduate Program, Los Angeles, California 90089
| | - Xiling Li
- Department of Neurobiology, University of Southern California, Los Angeles, California 90089
- USC Neuroscience Graduate Program, Los Angeles, California 90089
| | - Roberto X Hernandez
- Integrative Biology and Neuroscience Graduate Program, Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida 33431
- International Max Planck Research School for Brain and Behavior, Jupiter, Florida 33458
| | - Danielle V Riboul
- Integrative Biology Graduate Program, Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida 33431
| | - Touhid Feghhi
- Department of Physics, Florida Atlantic University, Boca Raton, Florida 33431
| | - Karlis A Justs
- Integrative Biology and Neuroscience Graduate Program, Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida 33431
| | - Olena Mahneva
- Wilkes Honors College, Florida Atlantic University, Jupiter, Florida 33458
| | - Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, California 90089
| | - Gregory T Macleod
- Wilkes Honors College, Florida Atlantic University, Jupiter, Florida 33458
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Jupiter, Florida 33458
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
8
|
Wang Y, Zhang R, Huang S, Valverde PTT, Lobb-Rabe M, Ashley J, Venkatasubramanian L, Carrillo RA. Glial Draper signaling triggers cross-neuron plasticity in bystander neurons after neuronal cell death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.09.536190. [PMID: 37090512 PMCID: PMC10120647 DOI: 10.1101/2023.04.09.536190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Neuronal cell death and subsequent brain dysfunction are hallmarks of aging and neurodegeneration, but how the nearby healthy neurons (bystanders) respond to the cell death of their neighbors is not fully understood. In the Drosophila larval neuromuscular system, bystander motor neurons can structurally and functionally compensate for the loss of their neighbors by increasing their axon terminal size and activity. We termed this compensation as cross-neuron plasticity, and in this study, we demonstrated that the Drosophila engulfment receptor, Draper, and the associated kinase, Shark, are required in glial cells. Surprisingly, overexpression of the Draper-I isoform boosts cross-neuron plasticity, implying that the strength of plasticity correlates with Draper signaling. Synaptic plasticity normally declines as animals age, but in our system, functional cross-neuron plasticity can be induced at different time points, whereas structural cross-neuron plasticity can only be induced at early stages. Our work uncovers a novel role for glial Draper signaling in cross-neuron plasticity that may enhance nervous system function during neurodegeneration and provides insights into how healthy bystander neurons respond to the loss of their neighboring neurons.
Collapse
|
9
|
Grasskamp AT, Jusyte M, McCarthy AW, Götz TWB, Ditlevsen S, Walter AM. Spontaneous neurotransmission at evocable synapses predicts their responsiveness to action potentials. Front Cell Neurosci 2023; 17:1129417. [PMID: 36970416 PMCID: PMC10030884 DOI: 10.3389/fncel.2023.1129417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/16/2023] [Indexed: 03/29/2023] Open
Abstract
Synaptic transmission relies on presynaptic neurotransmitter (NT) release from synaptic vesicles (SVs) and on NT detection by postsynaptic receptors. Transmission exists in two principal modes: action-potential (AP) evoked and AP-independent, "spontaneous" transmission. AP-evoked neurotransmission is considered the primary mode of inter-neuronal communication, whereas spontaneous transmission is required for neuronal development, homeostasis, and plasticity. While some synapses appear dedicated to spontaneous transmission only, all AP-responsive synapses also engage spontaneously, but whether this encodes functional information regarding their excitability is unknown. Here we report on functional interdependence of both transmission modes at individual synaptic contacts of Drosophila larval neuromuscular junctions (NMJs) which were identified by the presynaptic scaffolding protein Bruchpilot (BRP) and whose activities were quantified using the genetically encoded Ca2+ indicator GCaMP. Consistent with the role of BRP in organizing the AP-dependent release machinery (voltage-dependent Ca2+ channels and SV fusion machinery), most active BRP-positive synapses (>85%) responded to APs. At these synapses, the level of spontaneous activity was a predictor for their responsiveness to AP-stimulation. AP-stimulation resulted in cross-depletion of spontaneous activity and both transmission modes were affected by the non-specific Ca2+ channel blocker cadmium and engaged overlapping postsynaptic receptors. Thus, by using overlapping machinery, spontaneous transmission is a continuous, stimulus independent predictor for the AP-responsiveness of individual synapses.
Collapse
Affiliation(s)
| | - Meida Jusyte
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- Einstein Center for Neurosciences, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | | | - Torsten W. B. Götz
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Susanne Ditlevsen
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander M. Walter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- Einstein Center for Neurosciences, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Armstrong NS, Frank CA. The calcineurin regulator Sarah enables distinct forms of homeostatic plasticity at the Drosophila neuromuscular junction. Front Synaptic Neurosci 2023; 14:1033743. [PMID: 36685082 PMCID: PMC9846150 DOI: 10.3389/fnsyn.2022.1033743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction: The ability of synapses to maintain physiological levels of evoked neurotransmission is essential for neuronal stability. A variety of perturbations can disrupt neurotransmission, but synapses often compensate for disruptions and work to stabilize activity levels, using forms of homeostatic synaptic plasticity. Presynaptic homeostatic potentiation (PHP) is one such mechanism. PHP is expressed at the Drosophila melanogaster larval neuromuscular junction (NMJ) synapse, as well as other NMJs. In PHP, presynaptic neurotransmitter release increases to offset the effects of impairing muscle transmitter receptors. Prior Drosophila work has studied PHP using different ways to perturb muscle receptor function-either acutely (using pharmacology) or chronically (using genetics). Some of our prior data suggested that cytoplasmic calcium signaling was important for expression of PHP after genetic impairment of glutamate receptors. Here we followed up on that observation. Methods: We used a combination of transgenic Drosophila RNA interference and overexpression lines, along with NMJ electrophysiology, synapse imaging, and pharmacology to test if regulators of the calcium/calmodulin-dependent protein phosphatase calcineurin are necessary for the normal expression of PHP. Results: We found that either pre- or postsynaptic dysregulation of a Drosophila gene regulating calcineurin, sarah (sra), blocks PHP. Tissue-specific manipulations showed that either increases or decreases in sra expression are detrimental to PHP. Additionally, pharmacologically and genetically induced forms of expression of PHP are functionally separable depending entirely upon which sra genetic manipulation is used. Surprisingly, dual-tissue pre- and postsynaptic sra knockdown or overexpression can ameliorate PHP blocks revealed in single-tissue experiments. Pharmacological and genetic inhibition of calcineurin corroborated this latter finding. Discussion: Our results suggest tight calcineurin regulation is needed across multiple tissue types to stabilize peripheral synaptic outputs.
Collapse
Affiliation(s)
- Noah S. Armstrong
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
| | - C. Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States,*Correspondence: C. Andrew Frank
| |
Collapse
|
11
|
Thapliyal S, Arendt KL, Lau AG, Chen L. Retinoic acid-gated BDNF synthesis in neuronal dendrites drives presynaptic homeostatic plasticity. eLife 2022; 11:e79863. [PMID: 36515276 PMCID: PMC9797192 DOI: 10.7554/elife.79863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Homeostatic synaptic plasticity is a non-Hebbian synaptic mechanism that adjusts synaptic strength to maintain network stability while achieving optimal information processing. Among the molecular mediators shown to regulate this form of plasticity, synaptic signaling through retinoic acid (RA) and its receptor, RARα, has been shown to be critically involved in the homeostatic adjustment of synaptic transmission in both hippocampus and sensory cortices. In this study, we explore the molecular mechanism through which postsynaptic RA and RARα regulates presynaptic neurotransmitter release during prolonged synaptic inactivity at mouse glutamatertic synapses. We show that RARα binds to a subset of dendritically sorted brain-derived neurotrophic factor (Bdnf) mRNA splice isoforms and represses their translation. The RA-mediated translational de-repression of postsynaptic BDNF results in the retrograde activation of presynaptic tropomyosin receptor kinase B (TrkB) receptors, facilitating presynaptic homeostatic compensation through enhanced presynaptic release. Together, our study illustrates an RA-mediated retrograde synaptic signaling pathway through which postsynaptic protein synthesis during synaptic inactivity drives compensatory changes at the presynaptic site.
Collapse
Affiliation(s)
- Shruti Thapliyal
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Kristin L Arendt
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Anthony G Lau
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Lu Chen
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
12
|
Perry S, Han Y, Qiu C, Chien C, Goel P, Nishimura S, Sajnani M, Schmid A, Sigrist SJ, Dickman D. A glutamate receptor C-tail recruits CaMKII to suppress retrograde homeostatic signaling. Nat Commun 2022; 13:7656. [PMID: 36496500 PMCID: PMC9741633 DOI: 10.1038/s41467-022-35417-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Presynaptic homeostatic plasticity (PHP) adaptively enhances neurotransmitter release following diminished postsynaptic glutamate receptor (GluR) functionality to maintain synaptic strength. While much is known about PHP expression mechanisms, postsynaptic induction remains enigmatic. For over 20 years, diminished postsynaptic Ca2+ influx was hypothesized to reduce CaMKII activity and enable retrograde PHP signaling at the Drosophila neuromuscular junction. Here, we have interrogated inductive signaling and find that active CaMKII colocalizes with and requires the GluRIIA receptor subunit. Next, we generated Ca2+-impermeable GluRs to reveal that both CaMKII activity and PHP induction are Ca2+-insensitive. Rather, a GluRIIA C-tail domain is necessary and sufficient to recruit active CaMKII. Finally, chimeric receptors demonstrate that the GluRIIA tail constitutively occludes retrograde homeostatic signaling by stabilizing active CaMKII. Thus, the physical loss of the GluRIIA tail is sensed, rather than reduced Ca2+, to enable retrograde PHP signaling, highlighting a unique, Ca2+-independent control mechanism for CaMKII in gating homeostatic plasticity.
Collapse
Affiliation(s)
- Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Yifu Han
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Chengjie Qiu
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Chun Chien
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Samantha Nishimura
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Manisha Sajnani
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Andreas Schmid
- Institute for Biology/Genetics, Freie Universität Berlin, Takustraße 6, 14195, Berlin, Germany
- Faculty of Life Sciences, Albstadt-Sigmaringen University, Sigmaringen, Germany
| | - Stephan J Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Takustraße 6, 14195, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Mushtaq Z, Aavula K, Lasser DA, Kieweg ID, Lion LM, Kins S, Pielage J. Madm/NRBP1 mediates synaptic maintenance and neurodegeneration-induced presynaptic homeostatic potentiation. Cell Rep 2022; 41:111710. [PMID: 36450258 DOI: 10.1016/j.celrep.2022.111710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
The precise regulation of synaptic connectivity and function is essential to maintain neuronal circuits. Here, we show that the Drosophila pseudo-kinase Madm/NRBP1 (Mlf-1-adapter-molecule/nuclear-receptor-binding protein 1) is required presynaptically to maintain synaptic stability and to coordinate synaptic growth and function. Presynaptic Madm mediates these functions by controlling cap-dependent translation via the target of rapamycin (TOR) effector 4E-BP/Thor (eukaryotic initiation factor 4E binding protein/Thor). Strikingly, at degenerating neuromuscular synapses, postsynaptic Madm induces a compensatory, transsynaptic signal that utilizes the presynaptic homeostatic potentiation (PHP) machinery to offset synaptic release deficits and to delay synaptic degeneration. Madm is not required for canonical PHP but induces a neurodegeneration-specific form of PHP and acts via the regulation of the cap-dependent translation regulators 4E-BP/Thor and S6-kinase. Consistently, postsynaptic induction of canonical PHP or TOR activation can compensate for postsynaptic Madm to alleviate functional and structural synaptic defects. Our results provide insights into the molecular mechanisms underlying neurodegeneration-induced PHP with potential neurotherapeutic applications.
Collapse
Affiliation(s)
- Zeeshan Mushtaq
- Department of Zoology and Neurobiology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Kumar Aavula
- Department of Zoology and Neurobiology, University of Kaiserslautern, 67663 Kaiserslautern, Germany; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| | - Dario A Lasser
- Department of Zoology and Neurobiology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Ingrid D Kieweg
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Lena M Lion
- Department of Zoology and Neurobiology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Jan Pielage
- Department of Zoology and Neurobiology, University of Kaiserslautern, 67663 Kaiserslautern, Germany.
| |
Collapse
|
14
|
Han Y, Chien C, Goel P, He K, Pinales C, Buser C, Dickman D. Botulinum neurotoxin accurately separates tonic vs. phasic transmission and reveals heterosynaptic plasticity rules in Drosophila. eLife 2022; 11:e77924. [PMID: 35993544 PMCID: PMC9439677 DOI: 10.7554/elife.77924] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/20/2022] [Indexed: 11/13/2022] Open
Abstract
In developing and mature nervous systems, diverse neuronal subtypes innervate common targets to establish, maintain, and modify neural circuit function. A major challenge towards understanding the structural and functional architecture of neural circuits is to separate these inputs and determine their intrinsic and heterosynaptic relationships. The Drosophila larval neuromuscular junction is a powerful model system to study these questions, where two glutamatergic motor neurons, the strong phasic-like Is and weak tonic-like Ib, co-innervate individual muscle targets to coordinate locomotor behavior. However, complete neurotransmission from each input has never been electrophysiologically separated. We have employed a botulinum neurotoxin, BoNT-C, that eliminates both spontaneous and evoked neurotransmission without perturbing synaptic growth or structure, enabling the first approach that accurately isolates input-specific neurotransmission. Selective expression of BoNT-C in Is or Ib motor neurons disambiguates the functional properties of each input. Importantly, the blended values of Is+Ib neurotransmission can be fully recapitulated by isolated physiology from each input. Finally, selective silencing by BoNT-C does not induce heterosynaptic structural or functional plasticity at the convergent input. Thus, BoNT-C establishes the first approach to accurately separate neurotransmission between tonic vs. phasic neurons and defines heterosynaptic plasticity rules in a powerful model glutamatergic circuit.
Collapse
Affiliation(s)
- Yifu Han
- Department of Neurobiology, University of Southern CaliforniaLos AngelesUnited States
| | - Chun Chien
- Department of Neurobiology, University of Southern CaliforniaLos AngelesUnited States
| | - Pragya Goel
- Department of Neurobiology, University of Southern CaliforniaLos AngelesUnited States
| | - Kaikai He
- Department of Neurobiology, University of Southern CaliforniaLos AngelesUnited States
| | | | | | - Dion Dickman
- Department of Neurobiology, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
15
|
Improvement of synaptic plasticity by nanoparticles and the related mechanisms: Applications and prospects. J Control Release 2022; 347:143-163. [PMID: 35513209 DOI: 10.1016/j.jconrel.2022.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/20/2022]
Abstract
Synaptic plasticity is an important basis of learning and memory and participates in brain network remodelling after different types of brain injury (such as that caused by neurodegenerative diseases, cerebral ischaemic injury, posttraumatic stress disorder (PTSD), and psychiatric disorders). Therefore, improving synaptic plasticity is particularly important for the treatment of nervous system-related diseases. With the rapid development of nanotechnology, increasing evidence has shown that nanoparticles (NPs) can cross the blood-brain barrier (BBB) in different ways, directly or indirectly act on nerve cells, regulate synaptic plasticity, and ultimately improve nerve function. Therefore, to better elucidate the effect of NPs on synaptic plasticity, we review evidence showing that NPs can improve synaptic plasticity by regulating different influencing factors, such as neurotransmitters, receptors, presynaptic membrane proteins and postsynaptic membrane proteins, and further discuss the possible mechanism by which NPs improve synaptic plasticity. We conclude that NPs can improve synaptic plasticity and restore the function of damaged nerves by inhibiting neuroinflammation and oxidative stress, inducing autophagy, and regulating ion channels on the cell membrane. By reviewing the mechanism by which NPs regulate synaptic plasticity and the applications of NPs for the treatment of neurological diseases, we also propose directions for future research in this field and provide an important reference for follow-up research.
Collapse
|
16
|
Wenner PA, Pekala D. Homeostatic Regulation of Motoneuron Properties in Development. ADVANCES IN NEUROBIOLOGY 2022; 28:87-107. [PMID: 36066822 DOI: 10.1007/978-3-031-07167-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Homeostatic plasticity represents a set of compensatory mechanisms that are engaged following a perturbation to some feature of neuronal or network function. Homeostatic mechanisms are most robustly expressed during development, a period that is replete with various perturbations such as increased cell size and the addition/removal of synaptic connections. In this review we look at numerous studies that have advanced our understanding of homeostatic plasticity by taking advantage of the accessibility of developing motoneurons. We discuss the homeostatic regulation of embryonic movements in the living chick embryo and describe the spinal compensatory mechanisms that act to recover these movements (homeostatic intrinsic plasticity) or stabilize synaptic strength (synaptic scaling). We describe the expression and triggering mechanisms of these forms of homeostatic plasticity and thereby gain an understanding of their roles in the motor system. We then illustrate how these findings can be extended to studies of developing motoneurons in other systems including the rodents, zebrafish, and fly. Furthermore, studies in developing drosophila have been critical in identifying some of the molecular signaling cascades and expression mechanisms that underlie homeostatic intrinsic membrane excitability. This powerful model organism has also been used to study a presynaptic form of homeostatic plasticity where increases or decreases in synaptic transmission are associated with compensatory changes in probability of release at the neuromuscular junction. Further, we describe studies that demonstrate homeostatic adjustments of ion channel expression following perturbations to other kinds of ion channels. Finally, we discuss work in xenopus that shows a homeostatic regulation of neurotransmitter phenotype in developing motoneurons following activity perturbations. Together, this work illustrates the importance of developing motoneurons in elucidating the mechanisms and roles of homeostatic plasticity.
Collapse
Affiliation(s)
- Peter A Wenner
- Department of Cell Biology, Whitehead Biomedical Research Building, Emory University School of Medicine, Atlanta, GA, USA.
| | - Dobromila Pekala
- Department of Cell Biology, Whitehead Biomedical Research Building, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
17
|
Nair AG, Muttathukunnel P, Müller M. Distinct molecular pathways govern presynaptic homeostatic plasticity. Cell Rep 2021; 37:110105. [PMID: 34910905 PMCID: PMC8692748 DOI: 10.1016/j.celrep.2021.110105] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 10/05/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022] Open
Abstract
Presynaptic homeostatic plasticity (PHP) stabilizes synaptic transmission by counteracting impaired neurotransmitter receptor function through neurotransmitter release potentiation. PHP is thought to be triggered by impaired receptor function and to involve a stereotypic signaling pathway. However, here we demonstrate that different receptor perturbations that similarly reduce synaptic transmission result in different responses at the Drosophila neuromuscular junction. While receptor inhibition by the glutamate receptor (GluR) antagonist γ-D-glutamylglycine (γDGG) is not compensated by PHP, the GluR inhibitors Philanthotoxin-433 (PhTx) and Gyki-53655 (Gyki) induce compensatory PHP. Intriguingly, PHP triggered by PhTx and Gyki involve separable signaling pathways, including inhibition of distinct GluR subtypes, differential modulation of the active-zone scaffold Bruchpilot, and short-term plasticity. Moreover, while PHP upon Gyki treatment does not require genes promoting PhTx-induced PHP, it involves presynaptic protein kinase D. Thus, synapses not only respond differentially to similar activity impairments, but achieve homeostatic compensation via distinct mechanisms, highlighting the diversity of homeostatic signaling.
Collapse
Affiliation(s)
- Anu G Nair
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Paola Muttathukunnel
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich/ETH Zurich, 8057 Zurich, Switzerland
| | - Martin Müller
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich/ETH Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
18
|
Mrestani A, Pauli M, Kollmannsberger P, Repp F, Kittel RJ, Eilers J, Doose S, Sauer M, Sirén AL, Heckmann M, Paul MM. Active zone compaction correlates with presynaptic homeostatic potentiation. Cell Rep 2021; 37:109770. [PMID: 34610300 DOI: 10.1016/j.celrep.2021.109770] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/14/2021] [Accepted: 09/07/2021] [Indexed: 12/30/2022] Open
Abstract
Neurotransmitter release is stabilized by homeostatic plasticity. Presynaptic homeostatic potentiation (PHP) operates on timescales ranging from minute- to life-long adaptations and likely involves reorganization of presynaptic active zones (AZs). At Drosophila melanogaster neuromuscular junctions, earlier work ascribed AZ enlargement by incorporating more Bruchpilot (Brp) scaffold protein a role in PHP. We use localization microscopy (direct stochastic optical reconstruction microscopy [dSTORM]) and hierarchical density-based spatial clustering of applications with noise (HDBSCAN) to study AZ plasticity during PHP at the synaptic mesoscale. We find compaction of individual AZs in acute philanthotoxin-induced and chronic genetically induced PHP but unchanged copy numbers of AZ proteins. Compaction even occurs at the level of Brp subclusters, which move toward AZ centers, and in Rab3 interacting molecule (RIM)-binding protein (RBP) subclusters. Furthermore, correlative confocal and dSTORM imaging reveals how AZ compaction in PHP translates into apparent increases in AZ area and Brp protein content, as implied earlier.
Collapse
Affiliation(s)
- Achmed Mrestani
- Institute for Physiology, Department of Neurophysiology, Julius Maximilians University Würzburg, 97070 Würzburg, Germany; Department of Neurology, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Martin Pauli
- Institute for Physiology, Department of Neurophysiology, Julius Maximilians University Würzburg, 97070 Würzburg, Germany; Department of Neurosurgery, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Philip Kollmannsberger
- Center for Computational and Theoretical Biology, Julius Maximilians University Würzburg, 97074 Würzburg, Germany
| | - Felix Repp
- Institute for Physiology, Department of Neurophysiology, Julius Maximilians University Würzburg, 97070 Würzburg, Germany; Center for Computational and Theoretical Biology, Julius Maximilians University Würzburg, 97074 Würzburg, Germany; Department of Neurosurgery, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Robert J Kittel
- Institute for Physiology, Department of Neurophysiology, Julius Maximilians University Würzburg, 97070 Würzburg, Germany; Institute of Biology, Department of Animal Physiology, Leipzig University, 04103 Leipzig, Germany; Carl-Ludwig-Institute for Physiology, Leipzig University, 04103 Leipzig, Germany
| | - Jens Eilers
- Carl-Ludwig-Institute for Physiology, Leipzig University, 04103 Leipzig, Germany
| | - Sören Doose
- Department of Biotechnology and Biophysics, Julius Maximilians University Würzburg, 97074 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Julius Maximilians University Würzburg, 97074 Würzburg, Germany
| | - Anna-Leena Sirén
- Institute for Physiology, Department of Neurophysiology, Julius Maximilians University Würzburg, 97070 Würzburg, Germany; Department of Neurosurgery, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Manfred Heckmann
- Institute for Physiology, Department of Neurophysiology, Julius Maximilians University Würzburg, 97070 Würzburg, Germany.
| | - Mila M Paul
- Institute for Physiology, Department of Neurophysiology, Julius Maximilians University Würzburg, 97070 Würzburg, Germany; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
19
|
Han TH, Vicidomini R, Ramos CI, Wang Q, Nguyen P, Jarnik M, Lee CH, Stawarski M, Hernandez RX, Macleod GT, Serpe M. Neto-α Controls Synapse Organization and Homeostasis at the Drosophila Neuromuscular Junction. Cell Rep 2021; 32:107866. [PMID: 32640231 PMCID: PMC7484471 DOI: 10.1016/j.celrep.2020.107866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/27/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Glutamate receptor auxiliary proteins control receptor distribution and function, ultimately controlling synapse assembly, maturation, and plasticity. At the Drosophila neuromuscular junction (NMJ), a synapse with both pre- and postsynaptic kainate-type glutamate receptors (KARs), we show that the auxiliary protein Neto evolved functionally distinct isoforms to modulate synapse development and homeostasis. Using genetics, cell biology, and electrophysiology, we demonstrate that Neto-α functions on both sides of the NMJ. In muscle, Neto-α limits the size of the postsynaptic receptor field. In motor neurons (MNs), Neto-α controls neurotransmitter release in a KAR-dependent manner. In addition, Neto-α is both required and sufficient for the presynaptic increase in neurotransmitter release in response to reduced postsynaptic sensitivity. This KAR-independent function of Neto-α is involved in activity-induced cytomatrix remodeling. We propose that Drosophila ensures NMJ functionality by acquiring two Neto isoforms with differential expression patterns and activities.
Collapse
Affiliation(s)
- Tae Hee Han
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Rosario Vicidomini
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Cathy Isaura Ramos
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA; Institute of Functional Genomics of Lyon, Lyon, France
| | - Qi Wang
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Peter Nguyen
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Michal Jarnik
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Chi-Hon Lee
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Michal Stawarski
- Wilkes Honors College and Department of Biology, Florida Atlantic University, Jupiter, FL, USA; Biomedical Department, University of Basel, Basel, Switzerland
| | - Roberto X Hernandez
- Wilkes Honors College and Department of Biology, Florida Atlantic University, Jupiter, FL, USA
| | - Gregory T Macleod
- Wilkes Honors College and Department of Biology, Florida Atlantic University, Jupiter, FL, USA
| | - Mihaela Serpe
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA.
| |
Collapse
|
20
|
Goel P, Dickman D. Synaptic homeostats: latent plasticity revealed at the Drosophila neuromuscular junction. Cell Mol Life Sci 2021; 78:3159-3179. [PMID: 33449150 PMCID: PMC8044042 DOI: 10.1007/s00018-020-03732-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
Homeostatic signaling systems are fundamental forms of biological regulation that maintain stable functionality in a changing environment. In the nervous system, synapses are crucial substrates for homeostatic modulation, serving to establish, maintain, and modify the balance of excitation and inhibition. Synapses must be sufficiently flexible to enable the plasticity required for learning and memory but also endowed with the stability to last a lifetime. In response to the processes of development, growth, remodeling, aging, and disease that challenge synapses, latent forms of adaptive plasticity become activated to maintain synaptic stability. In recent years, new insights into the homeostatic control of synaptic function have been achieved using the powerful Drosophila neuromuscular junction (NMJ). This review will focus on work over the past 10 years that has illuminated the cellular and molecular mechanisms of five homeostats that operate at the fly NMJ. These homeostats adapt to loss of postsynaptic neurotransmitter receptor functionality, glutamate imbalance, axonal injury, as well as aberrant synaptic growth and target innervation. These diverse homeostats work independently yet can be simultaneously expressed to balance neurotransmission. Growing evidence from this model glutamatergic synapse suggests these ancient homeostatic signaling systems emerged early in evolution and are fundamental forms of plasticity that also function to stabilize mammalian cholinergic NMJs and glutamatergic central synapses.
Collapse
Affiliation(s)
- Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
21
|
Bridi JC, Bereczki E, Smith SK, Poças GM, Kottler B, Domingos PM, Elliott CJ, Aarsland D, Hirth F. Presynaptic accumulation of α-synuclein causes synaptopathy and progressive neurodegeneration in Drosophila. Brain Commun 2021; 3:fcab049. [PMID: 33997781 PMCID: PMC8111063 DOI: 10.1093/braincomms/fcab049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Alpha-synuclein (α-syn) mislocalization and accumulation in intracellular inclusions is the major pathological hallmark of degenerative synucleinopathies, including Parkinson's disease, Parkinson's disease with dementia and dementia with Lewy bodies. Typical symptoms are behavioural abnormalities including motor deficits that mark disease progression, while non-motor symptoms and synaptic deficits are already apparent during the early stages of disease. Synucleinopathies have therefore been considered synaptopathies that exhibit synaptic dysfunction prior to neurodegeneration. However, the mechanisms and events underlying synaptopathy are largely unknown. Here we investigated the cascade of pathological events underlying α-syn accumulation and toxicity in a Drosophila model of synucleinopathy by employing a combination of histological, biochemical, behavioural and electrophysiological assays. Our findings demonstrate that targeted expression of human α-syn leads to its accumulation in presynaptic terminals that caused downregulation of synaptic proteins, cysteine string protein, synapsin, and syntaxin 1A, and a reduction in the number of Bruchpilot puncta, the core component of the presynaptic active zone essential for its structural integrity and function. These α-syn-mediated presynaptic alterations resulted in impaired neuronal function, which triggered behavioural deficits in ageing Drosophila that occurred prior to progressive degeneration of dopaminergic neurons. Comparable alterations in presynaptic active zone protein were found in patient brain samples of dementia with Lewy bodies. Together, these findings demonstrate that presynaptic accumulation of α-syn impairs the active zone and neuronal function, which together cause synaptopathy that results in behavioural deficits and the progressive loss of dopaminergic neurons. This sequence of events resembles the cytological and behavioural phenotypes that characterise the onset and progression of synucleinopathies, suggesting that α-syn-mediated synaptopathy is an initiating cause of age-related neurodegeneration.
Collapse
Affiliation(s)
- Jessika C Bridi
- Department of Basic & Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RX, UK
| | - Erika Bereczki
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Novum, Stockholm 171 77, Sweden
| | - Saffron K Smith
- Department of Biology and York Biomedical Research Institute, University of York, York YO1 5DD, UK
| | - Gonçalo M Poças
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Lisbon 2780-157, Portugal
- School of Biological Sciences, Monash University, Melbourne, VIC 34QP+JV, Australia
| | - Benjamin Kottler
- Department of Basic & Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RX, UK
| | - Pedro M Domingos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Lisbon 2780-157, Portugal
| | - Christopher J Elliott
- Department of Biology and York Biomedical Research Institute, University of York, York YO1 5DD, UK
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, UK
- Centre for Age-Related Diseases, Stavanger University Hospital, Stavanger 4068, Norway
| | - Frank Hirth
- Department of Basic & Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RX, UK
| |
Collapse
|
22
|
The auxiliary glutamate receptor subunit dSol-1 promotes presynaptic neurotransmitter release and homeostatic potentiation. Proc Natl Acad Sci U S A 2020; 117:25830-25839. [PMID: 32973097 DOI: 10.1073/pnas.1915464117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Presynaptic glutamate receptors (GluRs) modulate neurotransmitter release and are physiological targets for regulation during various forms of plasticity. Although much is known about the auxiliary subunits associated with postsynaptic GluRs, far less is understood about presynaptic auxiliary GluR subunits and their functions. At the Drosophila neuromuscular junction, a presynaptic GluR, DKaiR1D, localizes near active zones and operates as an autoreceptor to tune baseline transmission and enhance presynaptic neurotransmitter release in response to diminished postsynaptic GluR functionality, a process referred to as presynaptic homeostatic potentiation (PHP). Here, we identify an auxiliary subunit that collaborates with DKaiR1D to promote these synaptic functions. This subunit, dSol-1, is the homolog of the Caenorhabditis elegans CUB (Complement C1r/C1s, Uegf, Bmp1) domain protein Sol-1. We find that dSol-1 functions in neurons to facilitate baseline neurotransmission and to enable PHP expression, properties shared with DKaiR1D Intriguingly, presynaptic overexpression of dSol-1 is sufficient to enhance neurotransmitter release through a DKaiR1D-dependent mechanism. Furthermore, dSol-1 is necessary to rapidly increase the abundance of DKaiR1D receptors near active zones during homeostatic signaling. Together with recent work showing the CUB domain protein Neto2 is necessary for the homeostatic modulation of postsynaptic GluRs in mammals, our data demonstrate that dSol-1 is required for the homeostatic regulation of presynaptic GluRs. Thus, we propose that CUB domain proteins are fundamental homeostatic modulators of GluRs on both sides of the synapse.
Collapse
|
23
|
Goel P, Nishimura S, Chetlapalli K, Li X, Chen C, Dickman D. Distinct Target-Specific Mechanisms Homeostatically Stabilize Transmission at Pre- and Post-synaptic Compartments. Front Cell Neurosci 2020; 14:196. [PMID: 32676010 PMCID: PMC7333441 DOI: 10.3389/fncel.2020.00196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/05/2020] [Indexed: 12/28/2022] Open
Abstract
Neurons must establish and stabilize connections made with diverse targets, each with distinct demands and functional characteristics. At Drosophila neuromuscular junctions (NMJs), synaptic strength remains stable in a manipulation that simultaneously induces hypo-innervation on one target and hyper-innervation on the other. However, the expression mechanisms that achieve this exquisite target-specific homeostatic control remain enigmatic. Here, we identify the distinct target-specific homeostatic expression mechanisms. On the hypo-innervated target, an increase in postsynaptic glutamate receptor (GluR) abundance is sufficient to compensate for reduced innervation, without any apparent presynaptic adaptations. In contrast, a target-specific reduction in presynaptic neurotransmitter release probability is reflected by a decrease in active zone components restricted to terminals of hyper-innervated targets. Finally, loss of postsynaptic GluRs on one target induces a compartmentalized, homeostatic enhancement of presynaptic neurotransmitter release called presynaptic homeostatic potentiation (PHP) that can be precisely balanced with the adaptations required for both hypo- and hyper-innervation to maintain stable synaptic strength. Thus, distinct anterograde and retrograde signaling systems operate at pre- and post-synaptic compartments to enable target-specific, homeostatic control of neurotransmission.
Collapse
|
24
|
Synapse elimination activates a coordinated homeostatic presynaptic response in an autaptic circuit. Commun Biol 2020; 3:260. [PMID: 32444808 PMCID: PMC7244710 DOI: 10.1038/s42003-020-0963-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/21/2020] [Indexed: 01/27/2023] Open
Abstract
The number of synapses present in a neuronal circuit is not fixed. Neurons must compensate for changes in connectivity caused by synaptic pruning, learning processes or pathological conditions through the constant adjustment of the baseline level of neurotransmission. Here, we show that cholinergic neurons grown in an autaptic circuit in the absence of glia sense the loss of half of their synaptic contacts triggered by exposure to peptide p4.2, a C-terminal fragment of SPARC. Synaptic elimination is driven by a reorganization of the periodic F-actin cytoskeleton present along neurites, and occurs without altering the density of postsynaptic receptors. Neurons recover baseline neurotransmission through a homeostatic presynaptic response that consists of the coordinated activation of rapid synapse formation and an overall potentiation of presynaptic calcium influx. These results demonstrate that neurons establishing autaptic connections continuously sense and adjust their synaptic output by tweaking the number of functional contacts and neurotransmitter release probability. Cecilia Velasco and Artur Llobet study how autapses respond to synapse elimination. They employ microisland cultures free of glial cells, treat with a SPARC-derived peptide and show that neurons forming autaptic circuits continuously sense and regulate the number of contacts and neurotransmitter release.
Collapse
|
25
|
Perry S, Goel P, Tran NL, Pinales C, Buser C, Miller DL, Ganetzky B, Dickman D. Developmental arrest of Drosophila larvae elicits presynaptic depression and enables prolonged studies of neurodegeneration. Development 2020; 147:dev.186312. [PMID: 32345746 DOI: 10.1242/dev.186312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/18/2020] [Indexed: 12/18/2022]
Abstract
Synapses exhibit an astonishing degree of adaptive plasticity in healthy and disease states. We have investigated whether synapses also adjust to life stages imposed by novel developmental programs for which they were never molded by evolution. Under conditions in which Drosophila larvae are terminally arrested, we have characterized synaptic growth, structure and function at the neuromuscular junction (NMJ). Although wild-type larvae transition to pupae after 5 days, arrested third instar (ATI) larvae persist for 35 days, during which time NMJs exhibit extensive overgrowth in muscle size, presynaptic release sites and postsynaptic glutamate receptors. Remarkably, despite this exuberant growth, stable neurotransmission is maintained throughout the ATI lifespan through a potent homeostatic reduction in presynaptic neurotransmitter release. Arrest of the larval stage in stathmin mutants also reveals a degree of progressive instability and neurodegeneration that was not apparent during the typical larval period. Hence, an adaptive form of presynaptic depression stabilizes neurotransmission during an extended developmental period of unconstrained synaptic growth. More generally, the ATI manipulation provides a powerful system for studying neurodegeneration and plasticity across prolonged developmental timescales.
Collapse
Affiliation(s)
- Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Nancy L Tran
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | - Daniel L Miller
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA.,National Institute of Neurological Disease and Stroke, NIH, Bethesda, MD 20824, USA
| | - Barry Ganetzky
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
26
|
Structural Remodeling of Active Zones Is Associated with Synaptic Homeostasis. J Neurosci 2020; 40:2817-2827. [PMID: 32122953 DOI: 10.1523/jneurosci.2002-19.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 02/16/2020] [Accepted: 02/22/2020] [Indexed: 02/07/2023] Open
Abstract
Perturbations to postsynaptic glutamate receptors (GluRs) trigger retrograde signaling to precisely increase presynaptic neurotransmitter release, maintaining stable levels of synaptic strength, a process referred to as homeostatic regulation. However, the structural change of homeostatic regulation remains poorly defined. At wild-type Drosophila neuromuscular junction synapse, there is one Bruchpilot (Brp) ring detected by superresolution microscopy at active zones (AZs). In the present study, we report multiple Brp rings (i.e., multiple T-bars seen by electron microscopy) at AZs of both male and female larvae when GluRs are reduced. At GluRIIC-deficient neuromuscular junctions, quantal size was reduced but quantal content was increased, indicative of homeostatic presynaptic potentiation. Consistently, multiple Brp rings at AZs were observed in the two classic synaptic homeostasis models (i.e., GluRIIA mutant and pharmacological blockade of GluRIIA activity). Furthermore, postsynaptic overexpression of the cell adhesion protein Neuroligin 1 partially rescued multiple Brp rings phenotype. Our study thus supports that the formation of multiple Brp rings at AZs might be a structural basis for synaptic homeostasis.SIGNIFICANCE STATEMENT Synaptic homeostasis is a conserved fundamental mechanism to maintain efficient neurotransmission of neural networks. Active zones (AZs) are characterized by an electron-dense cytomatrix, which is largely composed of Bruchpilot (Brp) at the Drosophila neuromuscular junction synapses. It is not clear how the structure of AZs changes during homeostatic regulation. To address this question, we examined the structure of AZs by superresolution microscopy and electron microscopy during homeostatic regulation. Our results reveal multiple Brp rings at AZs of glutamate receptor-deficient neuromuscular junction synapses compared with single Brp ring at AZs in wild type (WT). We further show that Neuroligin 1-mediated retrograde signaling regulates multiple Brp ring formation at glutamate receptor-deficient synapses. This study thus reveals a regulatory mechanism for synaptic homeostasis.
Collapse
|
27
|
Li X, Goel P, Wondolowski J, Paluch J, Dickman D. A Glutamate Homeostat Controls the Presynaptic Inhibition of Neurotransmitter Release. Cell Rep 2019; 23:1716-1727. [PMID: 29742428 PMCID: PMC5973541 DOI: 10.1016/j.celrep.2018.03.130] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/24/2018] [Accepted: 03/28/2018] [Indexed: 02/07/2023] Open
Abstract
We have interrogated the synaptic dialog that enables the bi-directional, homeostatic control of pre-synaptic efficacy at the glutamatergic Drosophila neuromuscular junction (NMJ). We find that homeo-static depression and potentiation use disparate genetic, induction, and expression mechanisms. Specifically, homeostatic potentiation is achieved through reduced CaMKII activity postsynaptically and increased abundance of active zone material presynaptically at one of the two neuronal subtypes innervating the NMJ, while homeostatic depression occurs without alterations in CaMKII activity and is expressed at both neuronal subtypes. Furthermore, homeostatic depression is only induced through excess presynaptic glutamate release and operates with disregard to the postsynaptic response. We propose that two independent homeostats modulate presynaptic efficacy at the Drosophila NMJ: one is an intercellular signaling system that potentiates synaptic strength following diminished postsynaptic excitability, while the other adaptively modulates presynaptic glutamate release through an autocrine mechanism without feedback from the postsynaptic compartment.
Collapse
Affiliation(s)
- Xiling Li
- Department of Neurobiology, University of Southern California, Los Angeles, CA; USC Neuroscience Graduate Program, University of Southern California, Los Angeles, CA
| | - Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA; USC Graduate Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA
| | - Joyce Wondolowski
- Department of Neurobiology, University of Southern California, Los Angeles, CA
| | - Jeremy Paluch
- Department of Neurobiology, University of Southern California, Los Angeles, CA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA.
| |
Collapse
|
28
|
Frank CA, James TD, Müller M. Homeostatic control of Drosophila neuromuscular junction function. Synapse 2019; 74:e22133. [PMID: 31556149 PMCID: PMC6817395 DOI: 10.1002/syn.22133] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/05/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023]
Abstract
The ability to adapt to changing internal and external conditions is a key feature of biological systems. Homeostasis refers to a regulatory process that stabilizes dynamic systems to counteract perturbations. In the nervous system, homeostatic mechanisms control neuronal excitability, neurotransmitter release, neurotransmitter receptors, and neural circuit function. The neuromuscular junction (NMJ) of Drosophila melanogaster has provided a wealth of molecular information about how synapses implement homeostatic forms of synaptic plasticity, with a focus on the transsynaptic, homeostatic modulation of neurotransmitter release. This review examines some of the recent findings from the Drosophila NMJ and highlights questions the field will ponder in coming years.
Collapse
Affiliation(s)
- C Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Interdisciplinary Programs in Neuroscience, Genetics, and Molecular Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Thomas D James
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
| | - Martin Müller
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Kikuma K, Li X, Perry S, Li Q, Goel P, Chen C, Kim D, Stavropoulos N, Dickman D. Cul3 and insomniac are required for rapid ubiquitination of postsynaptic targets and retrograde homeostatic signaling. Nat Commun 2019; 10:2998. [PMID: 31278365 PMCID: PMC6611771 DOI: 10.1038/s41467-019-10992-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 06/14/2019] [Indexed: 01/05/2023] Open
Abstract
At the Drosophila neuromuscular junction, inhibition of postsynaptic glutamate receptors activates retrograde signaling that precisely increases presynaptic neurotransmitter release to restore baseline synaptic strength. However, the nature of the underlying postsynaptic induction process remains enigmatic. Here, we design a forward genetic screen to discover factors in the postsynaptic compartment necessary to generate retrograde homeostatic signaling. This approach identified insomniac (inc), a putative adaptor for the Cullin-3 (Cul3) ubiquitin ligase complex, which together with Cul3 is essential for normal sleep regulation. Interestingly, we find that Inc and Cul3 rapidly accumulate at postsynaptic compartments following acute receptor inhibition and are required for a local increase in mono-ubiquitination. Finally, we show that Peflin, a Ca2+-regulated Cul3 co-adaptor, is necessary for homeostatic communication, suggesting a relationship between Ca2+ signaling and control of Cul3/Inc activity in the postsynaptic compartment. Our study suggests that Cul3/Inc-dependent mono-ubiquitination, compartmentalized at postsynaptic densities, gates retrograde signaling and provides an intriguing molecular link between the control of sleep and homeostatic plasticity at synapses. The authors use a forward genetic screen to discover postsynaptic factors required for homeostatic synaptic plasticity at the Drosophila neuromuscular junction. They identify insomniac and the ubiquitin ligase Cul3, genes involved in sleep regulation, to be necessary for retrograde homeostatic signalling at this synapse.
Collapse
Affiliation(s)
- Koto Kikuma
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Xiling Li
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Qiuling Li
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, 10016, USA
| | - Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Catherine Chen
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Daniel Kim
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Nicholas Stavropoulos
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, 10016, USA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
30
|
James TD, Zwiefelhofer DJ, Frank CA. Maintenance of homeostatic plasticity at the Drosophila neuromuscular synapse requires continuous IP 3-directed signaling. eLife 2019; 8:39643. [PMID: 31180325 PMCID: PMC6557630 DOI: 10.7554/elife.39643] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 05/27/2019] [Indexed: 12/18/2022] Open
Abstract
Synapses and circuits rely on neuroplasticity to adjust output and meet physiological needs. Forms of homeostatic synaptic plasticity impart stability at synapses by countering destabilizing perturbations. The Drosophila melanogaster larval neuromuscular junction (NMJ) is a model synapse with robust expression of homeostatic plasticity. At the NMJ, a homeostatic system detects impaired postsynaptic sensitivity to neurotransmitter and activates a retrograde signal that restores synaptic function by adjusting neurotransmitter release. This process has been separated into temporally distinct phases, induction and maintenance. One prevailing hypothesis is that a shared mechanism governs both phases. Here, we show the two phases are separable. Combining genetics, pharmacology, and electrophysiology, we find that a signaling system consisting of PLCβ, inositol triphosphate (IP3), IP3 receptors, and Ryanodine receptors is required only for the maintenance of homeostatic plasticity. We also find that the NMJ is capable of inducing homeostatic signaling even when its sustained maintenance process is absent. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Thomas D James
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, United States.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, United States
| | - Danielle J Zwiefelhofer
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, United States
| | - C Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, United States.,Interdisciplinary Programs in Neuroscience, Genetics and Molecular Medicine, University of Iowa, Iowa City, United States
| |
Collapse
|
31
|
Goel P, Dufour Bergeron D, Böhme MA, Nunnelly L, Lehmann M, Buser C, Walter AM, Sigrist SJ, Dickman D. Homeostatic scaling of active zone scaffolds maintains global synaptic strength. J Cell Biol 2019; 218:1706-1724. [PMID: 30914419 PMCID: PMC6504899 DOI: 10.1083/jcb.201807165] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/14/2018] [Accepted: 03/06/2019] [Indexed: 12/23/2022] Open
Abstract
Synaptic terminals grow and retract throughout life, yet synaptic strength is maintained within stable physiological ranges. To study this process, we investigated Drosophila endophilin (endo) mutants. Although active zone (AZ) number is doubled in endo mutants, a compensatory reduction in their size homeostatically adjusts global neurotransmitter output to maintain synaptic strength. We find an inverse adaptation in rab3 mutants. Additional analyses using confocal, STED, and electron microscopy reveal a stoichiometric tuning of AZ scaffolds and nanoarchitecture. Axonal transport of synaptic cargo via the lysosomal kinesin adapter Arl8 regulates AZ abundance to modulate global synaptic output and sustain the homeostatic potentiation of neurotransmission. Finally, we find that this AZ scaling can interface with two independent homeostats, depression and potentiation, to remodel AZ structure and function, demonstrating a robust balancing of separate homeostatic adaptations. Thus, AZs are pliable substrates with elastic and modular nanostructures that can be dynamically sculpted to stabilize and tune both local and global synaptic strength.
Collapse
Affiliation(s)
- Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA
| | | | - Mathias A Böhme
- Neurocure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Luke Nunnelly
- Department of Neurobiology, University of Southern California, Los Angeles, CA
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Alexander M Walter
- Neurocure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | | | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA
| |
Collapse
|
32
|
A Screen for Synaptic Growth Mutants Reveals Mechanisms That Stabilize Synaptic Strength. J Neurosci 2019; 39:4051-4065. [PMID: 30902873 DOI: 10.1523/jneurosci.2601-18.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 01/28/2023] Open
Abstract
Synapses grow, prune, and remodel throughout development, experience, and disease. This structural plasticity can destabilize information transfer in the nervous system. However, neural activity remains stable throughout life, implying that adaptive countermeasures exist that maintain neurotransmission within proper physiological ranges. Aberrant synaptic structure and function have been associated with a variety of neural diseases, including Fragile X syndrome, autism, and intellectual disability. We have screened 300 mutants in Drosophila larvae of both sexes for defects in synaptic growth at the neuromuscular junction, identifying 12 mutants with severe reductions or enhancements in synaptic growth. Remarkably, electrophysiological recordings revealed that synaptic strength was unchanged in all but one of these mutants compared with WT. We used a combination of genetic, anatomical, and electrophysiological analyses to illuminate three mechanisms that stabilize synaptic strength despite major disparities in synaptic growth. These include compensatory changes in (1) postsynaptic neurotransmitter receptor abundance, (2) presynaptic morphology, and (3) active zone structure. Together, this characterization identifies new mutants with defects in synaptic growth and the adaptive strategies used by synapses to homeostatically stabilize neurotransmission in response.SIGNIFICANCE STATEMENT This study reveals compensatory mechanisms used by synapses to ensure stable functionality during severe alterations in synaptic growth using the neuromuscular junction of Drosophila melanogaster as a model system. Through a forward genetic screen, we identify mutants that exhibit dramatic undergrown or overgrown synapses yet express stable levels of synaptic strength, with three specific compensatory mechanisms discovered. Thus, this study reveals novel insights into the adaptive strategies that constrain neurotransmission within narrow physiological ranges while allowing considerable flexibility in overall synapse number. More broadly, these findings provide insights into how stable synaptic function may be maintained in the nervous system during periods of intensive synaptic growth, pruning, and remodeling.
Collapse
|
33
|
Böhme MA, McCarthy AW, Grasskamp AT, Beuschel CB, Goel P, Jusyte M, Laber D, Huang S, Rey U, Petzoldt AG, Lehmann M, Göttfert F, Haghighi P, Hell SW, Owald D, Dickman D, Sigrist SJ, Walter AM. Rapid active zone remodeling consolidates presynaptic potentiation. Nat Commun 2019; 10:1085. [PMID: 30842428 PMCID: PMC6403334 DOI: 10.1038/s41467-019-08977-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/07/2019] [Indexed: 01/22/2023] Open
Abstract
Neuronal communication across synapses relies on neurotransmitter release from presynaptic active zones (AZs) followed by postsynaptic transmitter detection. Synaptic plasticity homeostatically maintains functionality during perturbations and enables memory formation. Postsynaptic plasticity targets neurotransmitter receptors, but presynaptic mechanisms regulating the neurotransmitter release apparatus remain largely enigmatic. By studying Drosophila neuromuscular junctions (NMJs) we show that AZs consist of nano-modular release sites and identify a molecular sequence that adds modules within minutes of inducing homeostatic plasticity. This requires cognate transport machinery and specific AZ-scaffolding proteins. Structural remodeling is not required for immediate potentiation of neurotransmitter release, but necessary to sustain potentiation over longer timescales. Finally, mutations in Unc13 disrupting homeostatic plasticity at the NMJ also impair short-term memory when central neurons are targeted, suggesting that both plasticity mechanisms utilize Unc13. Together, while immediate synaptic potentiation capitalizes on available material, it triggers the coincident incorporation of modular release sites to consolidate synaptic potentiation.
Collapse
Affiliation(s)
- Mathias A Böhme
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117, Berlin, Germany.,Institute for Biology/Genetics, Freie Universität Berlin, 14195, Berlin, Germany
| | - Anthony W McCarthy
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Andreas T Grasskamp
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117, Berlin, Germany
| | - Christine B Beuschel
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117, Berlin, Germany.,Institute for Biology/Genetics, Freie Universität Berlin, 14195, Berlin, Germany
| | - Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Meida Jusyte
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Desiree Laber
- Institut für Neurophysiologie, Charité Universitätsmedizin, 10117, Berlin, Germany
| | - Sheng Huang
- Institute for Biology/Genetics, Freie Universität Berlin, 14195, Berlin, Germany
| | - Ulises Rey
- Institute for Biology/Genetics, Freie Universität Berlin, 14195, Berlin, Germany.,Department of Theory and Bio-systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
| | - Astrid G Petzoldt
- Institute for Biology/Genetics, Freie Universität Berlin, 14195, Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Fabian Göttfert
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | | | - Stefan W Hell
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - David Owald
- Institut für Neurophysiologie, Charité Universitätsmedizin, 10117, Berlin, Germany
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Stephan J Sigrist
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117, Berlin, Germany. .,Institute for Biology/Genetics, Freie Universität Berlin, 14195, Berlin, Germany.
| | - Alexander M Walter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany.
| |
Collapse
|
34
|
Delvendahl I, Müller M. Homeostatic plasticity—a presynaptic perspective. Curr Opin Neurobiol 2019; 54:155-162. [DOI: 10.1016/j.conb.2018.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/04/2018] [Indexed: 01/05/2023]
|
35
|
Endogenous Tagging Reveals Differential Regulation of Ca 2+ Channels at Single Active Zones during Presynaptic Homeostatic Potentiation and Depression. J Neurosci 2019; 39:2416-2429. [PMID: 30692227 PMCID: PMC6435823 DOI: 10.1523/jneurosci.3068-18.2019] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
Neurons communicate through Ca2+-dependent neurotransmitter release at presynaptic active zones (AZs). Neurotransmitter release properties play a key role in defining information flow in circuits and are tuned during multiple forms of plasticity. Despite their central role in determining neurotransmitter release properties, little is known about how Ca2+ channel levels are modulated to calibrate synaptic function. We used CRISPR to tag the Drosophila CaV2 Ca2+ channel Cacophony (Cac) and, in males in which all Cac channels are tagged, investigated the regulation of endogenous Ca2+ channels during homeostatic plasticity. We found that heterogeneously distributed Cac is highly predictive of neurotransmitter release probability at individual AZs and differentially regulated during opposing forms of presynaptic homeostatic plasticity. Specifically, AZ Cac levels are increased during chronic and acute presynaptic homeostatic potentiation (PHP), and live imaging during acute expression of PHP reveals proportional Ca2+ channel accumulation across heterogeneous AZs. In contrast, endogenous Cac levels do not change during presynaptic homeostatic depression (PHD), implying that the reported reduction in Ca2+ influx during PHD is achieved through functional adaptions to pre-existing Ca2+ channels. Thus, distinct mechanisms bidirectionally modulate presynaptic Ca2+ levels to maintain stable synaptic strength in response to diverse challenges, with Ca2+ channel abundance providing a rapidly tunable substrate for potentiating neurotransmitter release over both acute and chronic timescales. SIGNIFICANCE STATEMENT Presynaptic Ca2+ dynamics play an important role in establishing neurotransmitter release properties. Presynaptic Ca2+ influx is modulated during multiple forms of homeostatic plasticity at Drosophila neuromuscular junctions to stabilize synaptic communication. However, it remains unclear how this dynamic regulation is achieved. We used CRISPR gene editing to endogenously tag the sole Drosophila Ca2+ channel responsible for synchronized neurotransmitter release, and found that channel abundance is regulated during homeostatic potentiation, but not homeostatic depression. Through live imaging experiments during the adaptation to acute homeostatic challenge, we visualize the accumulation of endogenous Ca2+ channels at individual active zones within 10 min. We propose that differential regulation of Ca2+ channels confers broad capacity for tuning neurotransmitter release properties to maintain neural communication.
Collapse
|
36
|
Goel P, Li X, Dickman D. Estimation of the Readily Releasable Synaptic Vesicle Pool at the Drosophila Larval Neuromuscular Junction. Bio Protoc 2019; 9:e3127. [PMID: 30761328 DOI: 10.21769/bioprotoc.3127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Presynaptic boutons at nerve terminals are densely packed with synaptic vesicles, specialized organelles for rapid and regulated neurotransmitter secretion. Upon depolarization of the nerve terminal, synaptic vesicles fuse at specializations called active zones that are localized at discrete compartments in the plasma membrane to initiate synaptic transmission. A small proportion of synaptic vesicles are docked and primed for immediate fusion upon synaptic stimulation, which together comprise the readily releasable pool. The size of the readily releasable pool is an important property of synapses, which influences release probability and can dynamically change during various forms of plasticity. Here we describe a detailed protocol for estimating the readily releasable pool at a model glutamatergic synapse, the Drosophila neuromuscular junction. This synapse is experimentally robust and amenable to sophisticated genetic, imaging, electrophysiological, and pharmacological approaches. We detail the experimental design, electrophysiological recording procedure, and quantitative analysis necessary to determine the readily releasable pool size. This technique requires the use of a two-electrode voltage-clamp recording configuration in elevated external Ca2+ with high frequency stimulation. We have used this assay to measure the readily releasable pool size and reveal that a form of homeostatic plasticity modulates this pool with synapse-specific and compartmentalized precision. This powerful approach can be utilized to illuminate the dynamics of synaptic vesicle trafficking and plasticity and determine how synaptic function adapts and deteriorates during states of altered development, stress and neuromuscular disease.
Collapse
Affiliation(s)
- Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, USA
| | - Xiling Li
- Department of Neurobiology, University of Southern California, Los Angeles, USA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, USA
| |
Collapse
|
37
|
Harris KP, Littleton JT, Stewart BA. Postsynaptic Syntaxin 4 negatively regulates the efficiency of neurotransmitter release. J Neurogenet 2018; 32:221-229. [PMID: 30175640 PMCID: PMC6317344 DOI: 10.1080/01677063.2018.1501372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022]
Abstract
Signaling from the postsynaptic compartment regulates multiple aspects of synaptic development and function. Syntaxin 4 (Syx4) is a plasma membrane t-SNARE that promotes the growth and plasticity of Drosophila neuromuscular junctions (NMJs) by regulating the localization of key synaptic proteins in the postsynaptic compartment. Here, we describe electrophysiological analyses and report that loss of Syx4 leads to enhanced neurotransmitter release, despite a decrease in the number of active zones. We describe a requirement for postsynaptic Syx4 in regulating several presynaptic parameters, including Ca2+ cooperativity and the abundance of the presynaptic calcium channel Cacophony (Cac) at active zones. These findings indicate Syx4 negatively regulates presynaptic neurotransmitter release through a retrograde signaling mechanism from the postsynaptic compartment.
Collapse
Affiliation(s)
- Kathryn P Harris
- a Department of Biology , University of Toronto Mississauga , Mississauga , ON, Canada
- b Department of Cell and Systems Biology , University of Toronto , Toronto , ON, Canada
| | - J Troy Littleton
- c The Picower Institute for Learning and Memory , Massachusetts Institute of Technology , Cambridge , MA , USA
- d Department of Biology , Massachusetts Institute of Technology , Cambridge , MA , USA
- e Department of Brain and Cognitive Sciences , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Bryan A Stewart
- a Department of Biology , University of Toronto Mississauga , Mississauga , ON, Canada
- b Department of Cell and Systems Biology , University of Toronto , Toronto , ON, Canada
| |
Collapse
|
38
|
Distinct homeostatic modulations stabilize reduced postsynaptic receptivity in response to presynaptic DLK signaling. Nat Commun 2018; 9:1856. [PMID: 29748610 PMCID: PMC5945772 DOI: 10.1038/s41467-018-04270-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 04/16/2018] [Indexed: 11/08/2022] Open
Abstract
Synapses are constructed with the stability to last a lifetime, yet sufficiently flexible to adapt during injury. Although fundamental pathways that mediate intrinsic responses to neuronal injury have been defined, less is known about how synaptic partners adapt. We have investigated responses in the postsynaptic cell to presynaptic activation of the injury-related Dual Leucine Zipper Kinase pathway at the Drosophila neuromuscular junction. We find that the postsynaptic compartment reduces neurotransmitter receptor levels, thus depressing synaptic strength. Interestingly, this diminished state is stabilized through distinct modulations to two postsynaptic homeostatic signaling systems. First, a retrograde response normally triggered by reduced receptor levels is silenced, preventing a compensatory enhancement in presynaptic neurotransmitter release. However, when global presynaptic release is attenuated, a postsynaptic receptor scaling mechanism persists to adaptively stabilize this diminished neurotransmission state. Thus, the homeostatic set point of synaptic strength is recalibrated to a reduced state as synapses acclimate to injury.
Collapse
|
39
|
Li X, Goel P, Chen C, Angajala V, Chen X, Dickman DK. Synapse-specific and compartmentalized expression of presynaptic homeostatic potentiation. eLife 2018; 7:34338. [PMID: 29620520 PMCID: PMC5927770 DOI: 10.7554/elife.34338] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/04/2018] [Indexed: 01/23/2023] Open
Abstract
Postsynaptic compartments can be specifically modulated during various forms of synaptic plasticity, but it is unclear whether this precision is shared at presynaptic terminals. Presynaptic homeostatic plasticity (PHP) stabilizes neurotransmission at the Drosophila neuromuscular junction, where a retrograde enhancement of presynaptic neurotransmitter release compensates for diminished postsynaptic receptor functionality. To test the specificity of PHP induction and expression, we have developed a genetic manipulation to reduce postsynaptic receptor expression at one of the two muscles innervated by a single motor neuron. We find that PHP can be induced and expressed at a subset of synapses, over both acute and chronic time scales, without influencing transmission at adjacent release sites. Further, homeostatic modulations to CaMKII, vesicle pools, and functional release sites are compartmentalized and do not spread to neighboring pre- or post-synaptic structures. Thus, both PHP induction and expression mechanisms are locally transmitted and restricted to specific synaptic compartments. Everything we think and do is the result of communication between neurons. This communication takes place at junctions called synapses. When two nerve cells or neurons communicate at a synapse, the output terminal of the first cell releases a chemical called a neurotransmitter. This binds to receiver proteins, or receptors, on the second cell. When this communication is interrupted, synapses can adapt to maintain a stable dialogue between them. This can occur in two ways. Either the first neuron starts to release more neurotransmitter from its output terminal, or the second neuron produces extra receptors with which to detect the neurotransmitter. But how specific are these changes? The brain contains far more synapses than neurons because each neuron can form synapses with many other cells. Can a neuron adjust how much of the neurotransmitter it releases at some of its synapses while leaving the others unchanged? Li et al. have now addressed this question by studying a special type of synapse that forms between neurons and muscles, known as a neuromuscular junction. At one particular neuromuscular junction in fruit flies, a single neuron splits into two output terminals, each of which forms a synapse with a different muscle. Li et al. show that when the number of neurotransmitter receptors in one of the muscles is artificially reduced, the associated output terminal compensates by increasing its neurotransmitter release. By contrast, the other output terminal remains unaffected. This suggests that a neuron can induce remarkably specific changes in a subset of its synapses. This discovery paves the way towards identifying the smallest possible unit of change that can occur in the neurons’ ability to communicate. This unit may in turn be the smallest change that can support learning. Such knowledge will help us understand how the nervous system processes and stabilizes information transfer, both in health and after injury or disease.
Collapse
Affiliation(s)
- Xiling Li
- Department of Neurobiology, University of Southern California, Los Angeles, United States.,Neuroscience Graduate Program, University of Southern California, California, United States
| | - Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, United States.,Graduate Program in Molecular and Computational Biology, University of Southern California, California, United States
| | - Catherine Chen
- Department of Neurobiology, University of Southern California, Los Angeles, United States
| | | | - Xun Chen
- Neuroscience Graduate Program, University of Southern California, California, United States
| | | |
Collapse
|
40
|
Abstract
Age-dependent declines in muscle function are observed across species. The loss of mobility resulting from the decline in muscle function represents an important health issue and a key determinant of quality of life for the elderly. It is believed that changes in the structure and function of the neuromuscular junction are important contributors to the observed declines in motor function with increased age. Numerous studies indicate that the aging muscle is an important contributor to the deterioration of the neuromuscular junction but the cellular and molecular mechanisms driving the degeneration of the synapse remain incompletely described. Importantly, growing data from both animal models and humans indicate that exercise can rejuvenate the neuromuscular junction and improve motor function. In this review we will focus on the role of muscle-derived neurotrophin signaling in the rejuvenation of the aged neuromuscular junction in response to exercise.
Collapse
Affiliation(s)
- Tabita Kreko-Pierce
- Department of Cellular and Integrative Physiology, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas, USA.,Barshoph Institute of Longevity and Aging Studies, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas, USA
| | - Benjamin A Eaton
- Department of Cellular and Integrative Physiology, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas, USA.,Barshoph Institute of Longevity and Aging Studies, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
41
|
Chen X, Dickman D. Development of a tissue-specific ribosome profiling approach in Drosophila enables genome-wide evaluation of translational adaptations. PLoS Genet 2017; 13:e1007117. [PMID: 29194454 PMCID: PMC5728580 DOI: 10.1371/journal.pgen.1007117] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/13/2017] [Accepted: 11/16/2017] [Indexed: 01/19/2023] Open
Abstract
Recent advances in next-generation sequencing approaches have revolutionized our understanding of transcriptional expression in diverse systems. However, measurements of transcription do not necessarily reflect gene translation, the process of ultimate importance in understanding cellular function. To circumvent this limitation, biochemical tagging of ribosome subunits to isolate ribosome-associated mRNA has been developed. However, this approach, called TRAP, lacks quantitative resolution compared to a superior technology, ribosome profiling. Here, we report the development of an optimized ribosome profiling approach in Drosophila. We first demonstrate successful ribosome profiling from a specific tissue, larval muscle, with enhanced resolution compared to conventional TRAP approaches. We next validate the ability of this technology to define genome-wide translational regulation. This technology is leveraged to test the relative contributions of transcriptional and translational mechanisms in the postsynaptic muscle that orchestrate the retrograde control of presynaptic function at the neuromuscular junction. Surprisingly, we find no evidence that significant changes in the transcription or translation of specific genes are necessary to enable retrograde homeostatic signaling, implying that post-translational mechanisms ultimately gate instructive retrograde communication. Finally, we show that a global increase in translation induces adaptive responses in both transcription and translation of protein chaperones and degradation factors to promote cellular proteostasis. Together, this development and validation of tissue-specific ribosome profiling enables sensitive and specific analysis of translation in Drosophila. Recent advances in next-generation sequencing approaches have revolutionized our understanding of transcriptional expression in diverse systems. However, transcriptional expression alone does not necessarily report gene translation, the process of ultimate importance in understanding cellular function. Ribosome profiling is a powerful approach to quantify the number of ribosomes associated with each mRNA to determine rates of gene translation. However, ribosome profiling requires large quantities of starting material, limiting progress in developing tissue-specific approaches. Here, we have developed the first tissue-specific ribosome profiling system in Drosophila to reveal genome-wide changes in translation. We first demonstrate successful ribosome profiling from muscle cells that exhibit superior resolution compared to other translational profiling methods. We then use transcriptional and ribosome profiling to define whether transcriptional or translational mechanisms are necessary for synaptic signaling at the neuromuscular junction. Finally, we utilize ribosome profiling to reveal adaptive changes in cellular translation following cellular stress to muscle tissue. Together, this now enables the power of Drosophila genetics to be leveraged with ribosome profiling in specific tissues.
Collapse
Affiliation(s)
- Xun Chen
- Department of Neurobiology, University of Southern California, Los Angeles, California, United States of America
- USC Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States of America
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|