1
|
Zeppillo T, Ali H, Ravichandran S, Ritter TC, Wenger S, López-Murcia FJ, Gideons E, Signorelli J, Schmeisser MJ, Wiltfang J, Rhee J, Brose N, Taschenberger H, Krueger-Burg D. Functional Neuroligin-2-MDGA1 interactions differentially regulate synaptic GABA ARs and cytosolic gephyrin aggregation. Commun Biol 2024; 7:1157. [PMID: 39284869 PMCID: PMC11405390 DOI: 10.1038/s42003-024-06789-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Neuroligin-2 (Nlgn2) is a key synaptic adhesion protein at virtually all GABAergic synapses, which recruits GABAARs by promoting assembly of the postsynaptic gephyrin scaffold. Intriguingly, loss of Nlgn2 differentially affects subsets of GABAergic synapses, indicating that synapse-specific interactors and redundancies define its function, but the nature of these interactions remain poorly understood. Here we investigated how Nlgn2 function in hippocampal area CA1 is modulated by two proposed interaction partners, MDGA1 and MDGA2. We show that loss of MDGA1 expression, but not heterozygous deletion of MDGA2, ameliorates the abnormal cytosolic gephyrin aggregation, the reduction in inhibitory synaptic transmission and the exacerbated anxiety-related behaviour characterizing Nlgn2 knockout (KO) mice. Additionally, combined Nlgn2 and MDGA1 deletion causes an exacerbated layer-specific loss of gephyrin puncta. Given that both Nlgn2 and the MDGA1 have been correlated with many psychiatric disorders, our data support the notion that cytosolic gephyrin aggregation may represent an interesting target for novel therapeutic strategies.
Collapse
Affiliation(s)
- Tommaso Zeppillo
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, 55128, Mainz, Germany
| | - Heba Ali
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany
- Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Sowbarnika Ravichandran
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, 55128, Mainz, Germany
- Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, 55128, Mainz, Germany
| | - Tamara C Ritter
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, 55128, Mainz, Germany
- Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, 55128, Mainz, Germany
| | - Sally Wenger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany
| | - Francisco J López-Murcia
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany
- Department of Pathology and Experimental Therapy, Institute of Neurosciences, University of Barcelona, and Bellvitge Biomedical Research Institute (IDIBELL), 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Erinn Gideons
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany
| | - Janetti Signorelli
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany
- Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, 1240000, Antofagasta, Chile
| | - Michael J Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, 55128, Mainz, Germany
- Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, 55128, Mainz, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center of the Georg-August-University Göttingen Mainz, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - JeongSeop Rhee
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany
| | - Dilja Krueger-Burg
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany.
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, 55128, Mainz, Germany.
- Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, 55128, Mainz, Germany.
- Department of Psychiatry and Psychotherapy, University Medical Center of the Georg-August-University Göttingen Mainz, 37075, Göttingen, Germany.
| |
Collapse
|
2
|
Ojima D, Tominaga Y, Kubota T, Tada A, Takahashi H, Kishimoto Y, Tominaga T, Yamamoto T. Impaired Hippocampal Long-Term Potentiation and Memory Deficits upon Haploinsufficiency of MDGA1 Can Be Rescued by Acute Administration of D-Cycloserine. Int J Mol Sci 2024; 25:9674. [PMID: 39273620 PMCID: PMC11394992 DOI: 10.3390/ijms25179674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
The maintenance of proper brain function relies heavily on the balance of excitatory and inhibitory neural circuits, governed in part by synaptic adhesion molecules. Among these, MDGA1 (MAM domain-containing glycosylphosphatidylinositol anchor 1) acts as a suppressor of synapse formation by interfering with Neuroligin-mediated interactions, crucial for maintaining the excitatory-inhibitory (E/I) balance. Mdga1-/- mice exhibit selectively enhanced inhibitory synapse formation in their hippocampal pyramidal neurons, leading to impaired hippocampal long-term potentiation (LTP) and hippocampus-dependent learning and memory function; however, it has not been fully investigated yet if the reduction in MDGA1 protein levels would alter brain function. Here, we examined the behavioral and synaptic consequences of reduced MDGA1 protein levels in Mdga1+/- mice. As observed in Mdga1-/- mice, Mdga1+/- mice exhibited significant deficits in hippocampus-dependent learning and memory tasks, such as the Morris water maze and contextual fear-conditioning tests, along with a significant deficit in the long-term potentiation (LTP) in hippocampal Schaffer collateral CA1 synapses. The acute administration of D-cycloserine, a co-agonist of NMDAR (N-methyl-d-aspartate receptor), significantly ameliorated memory impairments and restored LTP deficits specifically in Mdga1+/- mice, while having no such effect on Mdga1-/- mice. These results highlight the critical role of MDGA1 in regulating inhibitory synapse formation and maintaining the E/I balance for proper cognitive function. These findings may also suggest potential therapeutic strategies targeting the E/I imbalance to alleviate cognitive deficits associated with neuropsychiatric disorders.
Collapse
Grants
- 16K08237, 19K07065, 19K07337, 16H06532, 24H01497, 23K18485, 23K21755, 21H03606, 23H03488, 23K28178, 23K21713, 22H05698, 24K18267, 21K15247, 19K07337, 22K06618 the Ministry of Education, Culture, Sports, Science and Technology, Japan
Collapse
Affiliation(s)
- Daiki Ojima
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho 761-0793, Kagawa, Japan (A.T.); (H.T.)
| | - Yoko Tominaga
- Institute of Neuroscience, Tokushima Bunri University, Sanuki 769-2193, Kagawa, Japan
| | - Takashi Kubota
- Department of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Kagawa, Japan; (T.K.); (Y.K.)
| | - Atsushi Tada
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho 761-0793, Kagawa, Japan (A.T.); (H.T.)
| | - Hiroo Takahashi
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho 761-0793, Kagawa, Japan (A.T.); (H.T.)
| | - Yasushi Kishimoto
- Department of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Kagawa, Japan; (T.K.); (Y.K.)
- Laboratory of Physical Chemistry, Faculty of Pharmaceutical Sciences, Teikyo University, Itabashi-ku 173-8605, Tokyo, Japan
| | - Takashi Tominaga
- Institute of Neuroscience, Tokushima Bunri University, Sanuki 769-2193, Kagawa, Japan
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Kagawa, Japan
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho 761-0793, Kagawa, Japan (A.T.); (H.T.)
| |
Collapse
|
3
|
Guo H, Urban AE, Wong WH. Prioritizing disease-related rare variants by integrating gene expression data. PLoS Genet 2024; 20:e1011412. [PMID: 39348415 PMCID: PMC11466430 DOI: 10.1371/journal.pgen.1011412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/10/2024] [Accepted: 08/29/2024] [Indexed: 10/02/2024] Open
Abstract
Rare variants, comprising the vast majority of human genetic variations, are likely to have more deleterious impact in the context of human diseases compared to common variants. Here we present carrier statistic, a statistical framework to prioritize disease-related rare variants by integrating gene expression data. By quantifying the impact of rare variants on gene expression, carrier statistic can prioritize those rare variants that have large functional consequence in the patients. Through simulation studies and analyzing real multi-omics dataset, we demonstrated that carrier statistic is applicable in studies with limited sample size (a few hundreds) and achieves substantially higher sensitivity than existing rare variants association methods. Application to Alzheimer's disease reveals 16 rare variants within 15 genes with extreme carrier statistics. We also found strong excess of rare variants among the top prioritized genes in patients compared to that in healthy individuals. The carrier statistic method can be applied to various rare variant types and is adaptable to other omics data modalities, offering a powerful tool for investigating the molecular mechanisms underlying complex diseases.
Collapse
Affiliation(s)
- Hanmin Guo
- Department of Statistics, Stanford University, Stanford, California, United States of America
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | - Alexander Eckehart Urban
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Wing Hung Wong
- Department of Statistics, Stanford University, Stanford, California, United States of America
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
4
|
Pereira A, Diwakar J, Masserdotti G, Beşkardeş S, Simon T, So Y, Martín-Loarte L, Bergemann F, Vasan L, Schauer T, Danese A, Bocchi R, Colomé-Tatché M, Schuurmans C, Philpott A, Straub T, Bonev B, Götz M. Direct neuronal reprogramming of mouse astrocytes is associated with multiscale epigenome remodeling and requires Yy1. Nat Neurosci 2024; 27:1260-1273. [PMID: 38956165 PMCID: PMC11239498 DOI: 10.1038/s41593-024-01677-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/10/2024] [Indexed: 07/04/2024]
Abstract
Direct neuronal reprogramming is a promising approach to regenerate neurons from local glial cells. However, mechanisms of epigenome remodeling and co-factors facilitating this process are unclear. In this study, we combined single-cell multiomics with genome-wide profiling of three-dimensional nuclear architecture and DNA methylation in mouse astrocyte-to-neuron reprogramming mediated by Neurogenin2 (Ngn2) and its phosphorylation-resistant form (PmutNgn2), respectively. We show that Ngn2 drives multilayered chromatin remodeling at dynamic enhancer-gene interaction sites. PmutNgn2 leads to higher reprogramming efficiency and enhances epigenetic remodeling associated with neuronal maturation. However, the differences in binding sites or downstream gene activation cannot fully explain this effect. Instead, we identified Yy1, a transcriptional co-factor recruited by direct interaction with Ngn2 to its target sites. Upon deletion of Yy1, activation of neuronal enhancers, genes and ultimately reprogramming are impaired without affecting Ngn2 binding. Thus, our work highlights the key role of interactors of proneural factors in direct neuronal reprogramming.
Collapse
Affiliation(s)
- Allwyn Pereira
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
- Nantes Université, CHU Nantes, INSERM, TaRGeT - Translational Research in Gene Therapy, UMR 1089, Nantes, France
| | - Jeisimhan Diwakar
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Helmholtz Pioneer Campus, Helmholtz Center Munich, Neuherberg, Germany
| | - Giacomo Masserdotti
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
| | - Sude Beşkardeş
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Helmholtz Pioneer Campus, Helmholtz Center Munich, Neuherberg, Germany
| | - Tatiana Simon
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
| | - Younju So
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
| | - Lucía Martín-Loarte
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
| | - Franziska Bergemann
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
| | - Lakshmy Vasan
- Biological Science Platform, Sunnybrook Research Institute; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Tamas Schauer
- Biomedical Center Munich (BMC), Bioinformatic Core Facility, Faculty of Medicine, LMU Munich, Planegg, Germany
- Institute of Stem Cells and Epigenetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Anna Danese
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
| | - Riccardo Bocchi
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Maria Colomé-Tatché
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- Biomedical Center Munich (BMC), Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg, Germany
| | - Carol Schuurmans
- Biological Science Platform, Sunnybrook Research Institute; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Anna Philpott
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Tobias Straub
- Biological Science Platform, Sunnybrook Research Institute; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Boyan Bonev
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany.
- Helmholtz Pioneer Campus, Helmholtz Center Munich, Neuherberg, Germany.
| | - Magdalena Götz
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany.
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany.
- Excellence Cluster of Systems Neurology (SYNERGY), Munich, Germany.
| |
Collapse
|
5
|
Wang X, Lin D, Jiang J, Liu Y, Dong X, Fan J, Gong L, Shen W, Zeng L, Xu T, Jiang K, Connor SA, Xie Y. MDGA2 Constrains Glutamatergic Inputs Selectively onto CA1 Pyramidal Neurons to Optimize Neural Circuits for Plasticity, Memory, and Social Behavior. Neurosci Bull 2024; 40:887-904. [PMID: 38321347 PMCID: PMC11250762 DOI: 10.1007/s12264-023-01171-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/08/2023] [Indexed: 02/08/2024] Open
Abstract
Synapse organizers are essential for the development, transmission, and plasticity of synapses. Acting as rare synapse suppressors, the MAM domain containing glycosylphosphatidylinositol anchor (MDGA) proteins contributes to synapse organization by inhibiting the formation of the synaptogenic neuroligin-neurexin complex. A previous analysis of MDGA2 mice lacking a single copy of Mdga2 revealed upregulated glutamatergic synapses and behaviors consistent with autism. However, MDGA2 is expressed in diverse cell types and is localized to both excitatory and inhibitory synapses. Differentiating the network versus cell-specific effects of MDGA2 loss-of-function requires a cell-type and brain region-selective strategy. To address this, we generated mice harboring a conditional knockout of Mdga2 restricted to CA1 pyramidal neurons. Here we report that MDGA2 suppresses the density and function of excitatory synapses selectively on pyramidal neurons in the mature hippocampus. Conditional deletion of Mdga2 in CA1 pyramidal neurons of adult mice upregulated miniature and spontaneous excitatory postsynaptic potentials, vesicular glutamate transporter 1 intensity, and neuronal excitability. These effects were limited to glutamatergic synapses as no changes were detected in miniature and spontaneous inhibitory postsynaptic potential properties or vesicular GABA transporter intensity. Functionally, evoked basal synaptic transmission and AMPAR receptor currents were enhanced at glutamatergic inputs. At a behavioral level, memory appeared to be compromised in Mdga2 cKO mice as both novel object recognition and contextual fear conditioning performance were impaired, consistent with deficits in long-term potentiation in the CA3-CA1 pathway. Social affiliation, a behavioral analog of social deficits in autism, was similarly compromised. These results demonstrate that MDGA2 confines the properties of excitatory synapses to CA1 neurons in mature hippocampal circuits, thereby optimizing this network for plasticity, cognition, and social behaviors.
Collapse
Affiliation(s)
- Xuehui Wang
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Donghui Lin
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Jie Jiang
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Yuhua Liu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Xinyan Dong
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Jianchen Fan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Lifen Gong
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Weida Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Tonghui Xu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Kewen Jiang
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| | - Steven A Connor
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| | - Yicheng Xie
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| |
Collapse
|
6
|
Kim S, Jang G, Kim H, Lim D, Han KA, Um JW, Ko J. MDGAs perform activity-dependent synapse type-specific suppression via distinct extracellular mechanisms. Proc Natl Acad Sci U S A 2024; 121:e2322978121. [PMID: 38900791 PMCID: PMC11214077 DOI: 10.1073/pnas.2322978121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
MDGA (MAM domain containing glycosylphosphatidylinositol anchor) family proteins were previously identified as synaptic suppressive factors. However, various genetic manipulations have yielded often irreconcilable results, precluding precise evaluation of MDGA functions. Here, we found that, in cultured hippocampal neurons, conditional deletion of MDGA1 and MDGA2 causes specific alterations in synapse numbers, basal synaptic transmission, and synaptic strength at GABAergic and glutamatergic synapses, respectively. Moreover, MDGA2 deletion enhanced both N-methyl-D-aspartate (NMDA) receptor- and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor-mediated postsynaptic responses. Strikingly, ablation of both MDGA1 and MDGA2 abolished the effect of deleting individual MDGAs that is abrogated by chronic blockade of synaptic activity. Molecular replacement experiments further showed that MDGA1 requires the meprin/A5 protein/PTPmu (MAM) domain, whereas MDGA2 acts via neuroligin-dependent and/or MAM domain-dependent pathways to regulate distinct postsynaptic properties. Together, our data demonstrate that MDGA paralogs act as unique negative regulators of activity-dependent postsynaptic organization at distinct synapse types, and cooperatively contribute to adjustment of excitation-inhibition balance.
Collapse
Affiliation(s)
- Seungjoon Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
- Center for Synapse Diversity and Specificity, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
| | - Gyubin Jang
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
- Center for Synapse Diversity and Specificity, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
| | - Hyeonho Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
- Center for Synapse Diversity and Specificity, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
| | - Dongseok Lim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
| | - Kyung Ah Han
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
- Center for Synapse Diversity and Specificity, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
| | - Ji Won Um
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
- Center for Synapse Diversity and Specificity, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
| | - Jaewon Ko
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
- Center for Synapse Diversity and Specificity, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
| |
Collapse
|
7
|
Guo H, Urban AE, Wong WH. Prioritizing disease-related rare variants by integrating gene expression data. RESEARCH SQUARE 2024:rs.3.rs-4355589. [PMID: 38766095 PMCID: PMC11100897 DOI: 10.21203/rs.3.rs-4355589/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Rare variants, comprising a vast majority of human genetic variations, are likely to have more deleterious impact on human diseases compared to common variants. Here we present carrier statistic, a statistical framework to prioritize disease-related rare variants by integrating gene expression data. By quantifying the impact of rare variants on gene expression, carrier statistic can prioritize those rare variants that have large functional consequence in the diseased patients. Through simulation studies and analyzing real multi-omics dataset, we demonstrated that carrier statistic is applicable in studies with limited sample size (a few hundreds) and achieves substantially higher sensitivity than existing rare variants association methods. Application to Alzheimer's disease reveals 16 rare variants within 15 genes with extreme carrier statistics. We also found strong excess of rare variants among the top prioritized genes in diseased patients compared to that in healthy individuals. The carrier statistic method can be applied to various rare variant types and is adaptable to other omics data modalities, offering a powerful tool for investigating the molecular mechanisms underlying complex diseases.
Collapse
|
8
|
Guo H, Urban AE, Wong WH. Prioritizing disease-related rare variants by integrating gene expression data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585836. [PMID: 38562756 PMCID: PMC10983955 DOI: 10.1101/2024.03.19.585836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Rare variants, comprising a vast majority of human genetic variations, are likely to have more deleterious impact on human diseases compared to common variants. Here we present carrier statistic, a statistical framework to prioritize disease-related rare variants by integrating gene expression data. By quantifying the impact of rare variants on gene expression, carrier statistic can prioritize those rare variants that have large functional consequence in the diseased patients. Through simulation studies and analyzing real multi-omics dataset, we demonstrated that carrier statistic is applicable in studies with limited sample size (a few hundreds) and achieves substantially higher sensitivity than existing rare variants association methods. Application to Alzheimer's disease reveals 16 rare variants within 15 genes with extreme carrier statistics. The carrier statistic method can be applied to various rare variant types and is adaptable to other omics data modalities, offering a powerful tool for investigating the molecular mechanisms underlying complex diseases.
Collapse
Affiliation(s)
- Hanmin Guo
- Department of Statistics, Stanford University, Stanford, California 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Alexander Eckehart Urban
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Wing Hung Wong
- Department of Statistics, Stanford University, Stanford, California 94305, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
9
|
Li HL, Guo RJ, Ai ZR, Han S, Guan Y, Li JF, Wang Y. Upregulation of Spinal MDGA1 in Rats After Nerve Injury Alters Interactions Between Neuroligin-2 and Postsynaptic Scaffolding Proteins and Increases GluR1 Subunit Surface Delivery in the Spinal Cord Dorsal Horn. Neurochem Res 2024; 49:507-518. [PMID: 37955815 DOI: 10.1007/s11064-023-04049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023]
Abstract
Previous studies suggested that postsynaptic neuroligin-2 may shift from inhibitory toward excitatory function under pathological pain conditions. We hypothesize that nerve injury may increase the expression of spinal MAM-domain GPI-anchored molecule 1 (MDGA1), which can bind to neuroligin-2 and thereby, alter its interactions with postsynaptic scaffolding proteins and increase spinal excitatory synaptic transmission, leading to neuropathic pain. Western blot, immunofluorescence staining, and co-immunoprecipitation studies were conducted to examine the critical role of MDGA1 in the lumbar spinal cord dorsal horn in rats after spinal nerve ligation (SNL). Small interfering ribonucleic acids (siRNAs) targeting MDGA1 were used to examine the functional roles of MDGA1 in neuropathic pain. Protein levels of MDGA1 in the ipsilateral dorsal horn were significantly upregulated at day 7 post-SNL, as compared to that in naïve or sham rats. The increased levels of GluR1 in the synaptosomal membrane fraction of the ipsilateral dorsal horn tissues at day 7 post-SNL was normalized to near sham level by pretreatment with intrathecal MDGA1 siRNA2308, but not scrambled siRNA or vehicle. Notably, knocking down MDGA1 with siRNAs reduced the mechanical and thermal pain hypersensitivities, and inhibited the increased excitatory synaptic interaction between neuroligin-2 with PSD-95, and prevented the decreased inhibitory postsynaptic interactions between neuroligin-2 and Gephyrin. Our findings suggest that SNL upregulated MDGA1 expression in the dorsal horn, which contributes to the pain hypersensitivity through increasing the net excitatory interaction mediated by neuroligin-2 and surface delivery of GluR1 subunit in dorsal horn neurons.
Collapse
Affiliation(s)
- Hui-Li Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yongan Road, Xicheng District, Beijing, 100050, China
| | - Rui-Juan Guo
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yongan Road, Xicheng District, Beijing, 100050, China
| | - Zhang-Ran Ai
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Song Han
- Department of Neurobiology, Capital Medical University, Beijing, 100069, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jun-Fa Li
- Department of Neurobiology, Capital Medical University, Beijing, 100069, China
| | - Yun Wang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yongan Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
10
|
Connor SA, Siddiqui TJ. Synapse organizers as molecular codes for synaptic plasticity. Trends Neurosci 2023; 46:971-985. [PMID: 37652840 DOI: 10.1016/j.tins.2023.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Synapse organizing proteins are multifaceted molecules that coordinate the complex processes of brain development and plasticity at the level of individual synapses. Their importance is demonstrated by the major brain disorders that emerge when their function is compromised. The mechanisms whereby the various families of organizers govern synapses are diverse, but converge on the structure, function, and plasticity of synapses. Therefore, synapse organizers regulate how synapses adapt to ongoing activity, a process central for determining the developmental trajectory of the brain and critical to all forms of cognition. Here, we explore how synapse organizers set the conditions for synaptic plasticity and the associated molecular events, which eventually link to behavioral features of neurodevelopmental and neuropsychiatric disorders. We also propose central questions on how synapse organizers influence network function through integrating nanoscale and circuit-level organization of the brain.
Collapse
Affiliation(s)
- Steven A Connor
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Tabrez J Siddiqui
- PrairieNeuro Research Centre, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 0Z3, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; The Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; Program in Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
11
|
Ulloa Severino FP, Lawal OO, Sakers K, Wang S, Kim N, Friedman AD, Johnson SA, Sriworarat C, Hughes RH, Soderling SH, Kim IH, Yin HH, Eroglu C. Training-induced circuit-specific excitatory synaptogenesis in mice is required for effort control. Nat Commun 2023; 14:5522. [PMID: 37684234 PMCID: PMC10491649 DOI: 10.1038/s41467-023-41078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Synaptogenesis is essential for circuit development; however, it is unknown whether it is critical for the establishment and performance of goal-directed voluntary behaviors. Here, we show that operant conditioning via lever-press for food reward training in mice induces excitatory synapse formation onto a subset of anterior cingulate cortex neurons projecting to the dorsomedial striatum (ACC→DMS). Training-induced synaptogenesis is controlled by the Gabapentin/Thrombospondin receptor α2δ-1, which is an essential neuronal protein for proper intracortical excitatory synaptogenesis. Using germline and conditional knockout mice, we found that deletion of α2δ-1 in the adult ACC→DMS circuit diminishes training-induced excitatory synaptogenesis. Surprisingly, this manipulation does not impact learning but results in a significant increase in effort exertion without affecting sensitivity to reward value or changing contingencies. Bidirectional optogenetic manipulation of ACC→DMS neurons rescues or phenocopies the behaviors of the α2δ-1 cKO mice, highlighting the importance of synaptogenesis within this cortico-striatal circuit in regulating effort exertion.
Collapse
Affiliation(s)
- Francesco Paolo Ulloa Severino
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27710, USA.
- Cajal Institute (CSIC), Madrid, 28001, Spain.
| | | | - Kristina Sakers
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Shiyi Wang
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Namsoo Kim
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27710, USA
| | | | - Sarah Anne Johnson
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | | | - Ryan H Hughes
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27710, USA
| | - Scott H Soderling
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Institute for Brain Sciences (DIBS), Durham, NC, 27710, USA
| | - Il Hwan Kim
- Department of Anatomy & Neurobiology, University of Tennessee Health and Science Center, Memphis, TN, 38103, USA
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA.
- Duke Institute for Brain Sciences (DIBS), Durham, NC, 27710, USA.
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA.
- Duke Institute for Brain Sciences (DIBS), Durham, NC, 27710, USA.
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
12
|
Bemben MA, Sandoval M, Le AA, Won S, Chau VN, Lauterborn JC, Incontro S, Li KH, Burlingame AL, Roche KW, Gall CM, Nicoll RA, Diaz-Alonso J. Contrastsing synaptic roles of MDGA1 and MDGA2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542333. [PMID: 37720016 PMCID: PMC10503827 DOI: 10.1101/2023.05.25.542333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Neurodevelopmental disorders are frequently linked to mutations in synaptic organizing molecules. MAM domain containing glycosylphosphatidylinositol anchor 1 and 2 (MDGA1 and MDGA2) are a family of synaptic organizers suggested to play an unusual role as synaptic repressors, but studies offer conflicting evidence for their localization. Using epitope-tagged MDGA1 and MDGA2 knock-in mice, we found that native MDGAs are expressed throughout the brain, peaking early in postnatal development. Surprisingly, endogenous MDGA1 was enriched at excitatory, but not inhibitory, synapses. Both shRNA knockdown and CRISPR/Cas9 knockout of MDGA1 resulted in cell-autonomous, specific impairment of AMPA receptor-mediated synaptic transmission, without affecting GABAergic transmission. Conversely, MDGA2 knockdown/knockout selectively depressed NMDA receptor-mediated transmission but enhanced inhibitory transmission. Our results establish that MDGA2 acts as a synaptic repressor, but only at inhibitory synapses, whereas both MDGAs are required for excitatory transmission. This nonoverlapping division of labor between two highly conserved synaptic proteins is unprecedented.
Collapse
Affiliation(s)
- Michael A. Bemben
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Matthew Sandoval
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Aliza A. Le
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Sehoon Won
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Vivian N. Chau
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Julie C. Lauterborn
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Salvatore Incontro
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA 94158, USA
- Present address: Unité de Neurobiologie des canaux Ioniques et de la Synapse (UNIS), UMR1072, INSERM, Aix-Marseille University, Marseille, 13015, France
| | - Kathy H. Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Katherine W. Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Christine M. Gall
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Roger A. Nicoll
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA 94158, USA
- Department of Physiology, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Javier Diaz-Alonso
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| |
Collapse
|
13
|
Lee H, Chofflet N, Liu J, Fan S, Lu Z, Resua Rojas M, Penndorf P, Bailey AO, Russell WK, Machius M, Ren G, Takahashi H, Rudenko G. Designer molecules of the synaptic organizer MDGA1 reveal 3D conformational control of biological function. J Biol Chem 2023; 299:104586. [PMID: 36889589 PMCID: PMC10131064 DOI: 10.1016/j.jbc.2023.104586] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
MDGAs (MAM domain-containing glycosylphosphatidylinositol anchors) are synaptic cell surface molecules that regulate the formation of trans-synaptic bridges between neurexins (NRXNs) and neuroligins (NLGNs), which promote synaptic development. Mutations in MDGAs are implicated in various neuropsychiatric diseases. MDGAs bind NLGNs in cis on the postsynaptic membrane and physically block NLGNs from binding to NRXNs. In crystal structures, the six immunoglobulin (Ig) and single fibronectin III domains of MDGA1 reveal a striking compact, triangular shape, both alone and in complex with NLGNs. Whether this unusual domain arrangement is required for biological function or other arrangements occur with different functional outcomes is unknown. Here, we show that WT MDGA1 can adopt both compact and extended 3D conformations that bind NLGN2. Designer mutants targeting strategic molecular elbows in MDGA1 alter the distribution of 3D conformations while leaving the binding affinity between soluble ectodomains of MDGA1 and NLGN2 intact. In contrast, in a cellular context, these mutants result in unique combinations of functional consequences, including altered binding to NLGN2, decreased capacity to conceal NLGN2 from NRXN1β, and/or suppressed NLGN2-mediated inhibitory presynaptic differentiation, despite the mutations being located far from the MDGA1-NLGN2 interaction site. Thus, the 3D conformation of the entire MDGA1 ectodomain appears critical for its function, and its NLGN-binding site on Ig1-Ig2 is not independent of the rest of the molecule. As a result, global 3D conformational changes to the MDGA1 ectodomain via strategic elbows may form a molecular mechanism to regulate MDGA1 action within the synaptic cleft.
Collapse
Affiliation(s)
- Hubert Lee
- Deptartment of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Nicolas Chofflet
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Shanghua Fan
- Deptartment of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Zhuoyang Lu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Martin Resua Rojas
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Quebec, Canada
| | - Patrick Penndorf
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Quebec, Canada
| | - Aaron O Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mischa Machius
- Deptartment of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Hideto Takahashi
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montréal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada.
| | - Gabby Rudenko
- Deptartment of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
14
|
RNAseq Analysis of FABP4 Knockout Mouse Hippocampal Transcriptome Suggests a Role for WNT/β-Catenin in Preventing Obesity-Induced Cognitive Impairment. Int J Mol Sci 2023; 24:ijms24043381. [PMID: 36834799 PMCID: PMC9961923 DOI: 10.3390/ijms24043381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Microglial fatty-acid binding protein 4 (FABP4) is a regulator of neuroinflammation. We hypothesized that the link between lipid metabolism and inflammation indicates a role for FABP4 in regulating high fat diet (HFD)-induced cognitive decline. We have previously shown that obese FABP4 knockout mice exhibit decreased neuroinflammation and cognitive decline. FABP4 knockout and wild type mice were fed 60% HFD for 12 weeks starting at 15 weeks old. Hippocampal tissue was dissected and RNA-seq was performed to measure differentially expressed transcripts. Reactome molecular pathway analysis was utilized to examine differentially expressed pathways. Results showed that HFD-fed FABP4 knockout mice have a hippocampal transcriptome consistent with neuroprotection, including associations with decreased proinflammatory signaling, ER stress, apoptosis, and cognitive decline. This is accompanied by an increase in transcripts upregulating neurogenesis, synaptic plasticity, long-term potentiation, and spatial working memory. Pathway analysis revealed that mice lacking FABP4 had changes in metabolic function that support reduction in oxidative stress and inflammation, and improved energy homeostasis and cognitive function. Analysis suggested a role for WNT/β-Catenin signaling in the protection against insulin resistance, alleviating neuroinflammation and cognitive decline. Collectively, our work shows that FABP4 represents a potential target in alleviating HFD-induced neuroinflammation and cognitive decline and suggests a role for WNT/β-Catenin in this protection.
Collapse
|
15
|
Kim J, Wulschner LEG, Oh WC, Ko J. Trans
‐synaptic mechanisms orchestrated by mammalian synaptic cell adhesion molecules. Bioessays 2022; 44:e2200134. [DOI: 10.1002/bies.202200134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jinhu Kim
- Department of Brain Sciences Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu Korea
- Center for Synapse Diversity and Specificity DGIST Daegu Korea
| | | | - Won Chan Oh
- Department of Pharmacology University of Colorado School of Medicine Aurora Colorado USA
| | - Jaewon Ko
- Department of Brain Sciences Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu Korea
- Center for Synapse Diversity and Specificity DGIST Daegu Korea
| |
Collapse
|
16
|
Li H, Guo R, Guan Y, Li J, Wang Y. Modulation of Trans-Synaptic Neurexin-Neuroligin Interaction in Pathological Pain. Cells 2022; 11:cells11121940. [PMID: 35741069 PMCID: PMC9222181 DOI: 10.3390/cells11121940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Synapses serve as the interface for the transmission of information between neurons in the central nervous system. The structural and functional characteristics of synapses are highly dynamic, exhibiting extensive plasticity that is shaped by neural activity and regulated primarily by trans-synaptic cell-adhesion molecules (CAMs). Prototypical trans-synaptic CAMs, such as neurexins (Nrxs) and neuroligins (Nlgs), directly regulate the assembly of presynaptic and postsynaptic molecules, including synaptic vesicles, active zone proteins, and receptors. Therefore, the trans-synaptic adhesion mechanisms mediated by Nrx-Nlg interaction can contribute to a range of synaptopathies in the context of pathological pain and other neurological disorders. The present review provides an overview of the current understanding of the roles of Nrx-Nlg interaction in the regulation of trans-synaptic connections, with a specific focus on Nrx and Nlg structures, the dynamic shaping of synaptic function, and the dysregulation of Nrx-Nlg in pathological pain. Additionally, we discuss a range of proteins capable of modulating Nrx-Nlg interactions at the synaptic cleft, with the objective of providing a foundation to guide the future development of novel therapeutic agents for managing pathological pain.
Collapse
Affiliation(s)
- Huili Li
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China;
| | - Ruijuan Guo
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100030, China;
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Junfa Li
- Department of Neurobiology, Capital Medical University, Beijing 100069, China;
| | - Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China;
- Correspondence: ; Tel.: +86-10-85231463
| |
Collapse
|
17
|
Toledo A, Letellier M, Bimbi G, Tessier B, Daburon S, Favereaux A, Chamma I, Vennekens K, Vanderlinden J, Sainlos M, de Wit J, Choquet D, Thoumine O. MDGAs are fast-diffusing molecules that delay excitatory synapse development by altering neuroligin behavior. eLife 2022; 11:75233. [PMID: 35532105 PMCID: PMC9084894 DOI: 10.7554/elife.75233] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/11/2022] [Indexed: 12/28/2022] Open
Abstract
MDGA molecules can bind neuroligins and interfere with trans-synaptic interactions to neurexins, thereby impairing synapse development. However, the subcellular localization and dynamics of MDGAs, or their specific action mode in neurons remain unclear. Here, surface immunostaining of endogenous MDGAs and single molecule tracking of recombinant MDGAs in dissociated hippocampal neurons reveal that MDGAs are homogeneously distributed and exhibit fast membrane diffusion, with a small reduction in mobility across neuronal maturation. Knocking-down/out MDGAs using shRNAs and CRISPR/Cas9 strategies increases the density of excitatory synapses, the membrane confinement of neuroligin-1, and the phosphotyrosine level of neuroligins associated with excitatory post-synaptic differentiation. Finally, MDGA silencing reduces the mobility of AMPA receptors, increases the frequency of miniature EPSCs (but not IPSCs), and selectively enhances evoked AMPA-receptor-mediated EPSCs in CA1 pyramidal neurons. Overall, our results support a mechanism by which interactions between MDGAs and neuroligin-1 delays the assembly of functional excitatory synapses containing AMPA receptors.
Collapse
Affiliation(s)
- Andrea Toledo
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Mathieu Letellier
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Giorgia Bimbi
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Béatrice Tessier
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Sophie Daburon
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Alexandre Favereaux
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Ingrid Chamma
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Kristel Vennekens
- VIB Center for Brain & Disease Research and KU Leuven, Department of Neurosciences, Leuven Brain Institute
| | - Jeroen Vanderlinden
- VIB Center for Brain & Disease Research and KU Leuven, Department of Neurosciences, Leuven Brain Institute
| | - Matthieu Sainlos
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Joris de Wit
- VIB Center for Brain & Disease Research and KU Leuven, Department of Neurosciences, Leuven Brain Institute
| | - Daniel Choquet
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
- University of Bordeaux, CNRS UAR 3420, INSERM, Bordeaux Imaging Center
| | - Olivier Thoumine
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| |
Collapse
|
18
|
Kim J, Kim S, Kim H, Hwang IW, Bae S, Karki S, Kim D, Ogelman R, Bang G, Kim JY, Kajander T, Um JW, Oh WC, Ko J. MDGA1 negatively regulates amyloid precursor protein-mediated synapse inhibition in the hippocampus. Proc Natl Acad Sci U S A 2022; 119:e2115326119. [PMID: 35074912 PMCID: PMC8795569 DOI: 10.1073/pnas.2115326119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/05/2021] [Indexed: 12/20/2022] Open
Abstract
Balanced synaptic inhibition, controlled by multiple synaptic adhesion proteins, is critical for proper brain function. MDGA1 (meprin, A-5 protein, and receptor protein-tyrosine phosphatase mu [MAM] domain-containing glycosylphosphatidylinositol anchor protein 1) suppresses synaptic inhibition in mammalian neurons, yet the molecular mechanisms underlying MDGA1-mediated negative regulation of GABAergic synapses remain unresolved. Here, we show that the MDGA1 MAM domain directly interacts with the extension domain of amyloid precursor protein (APP). Strikingly, MDGA1-mediated synaptic disinhibition requires the MDGA1 MAM domain and is prominent at distal dendrites of hippocampal CA1 pyramidal neurons. Down-regulation of APP in presynaptic GABAergic interneurons specifically suppressed GABAergic, but not glutamatergic, synaptic transmission strength and inputs onto both the somatic and dendritic compartments of hippocampal CA1 pyramidal neurons. Moreover, APP deletion manifested differential effects in somatostatin- and parvalbumin-positive interneurons in the hippocampal CA1, resulting in distinct alterations in inhibitory synapse numbers, transmission, and excitability. The infusion of MDGA1 MAM protein mimicked postsynaptic MDGA1 gain-of-function phenotypes that involve the presence of presynaptic APP. The overexpression of MDGA1 wild type or MAM, but not MAM-deleted MDGA1, in the hippocampal CA1 impaired novel object-recognition memory in mice. Thus, our results establish unique roles of APP-MDGA1 complexes in hippocampal neural circuits, providing unprecedented insight into trans-synaptic mechanisms underlying differential tuning of neuronal compartment-specific synaptic inhibition.
Collapse
Affiliation(s)
- Jinhu Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Seungjoon Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Hyeonho Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - In-Wook Hwang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Sungwon Bae
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Sudeep Karki
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Dongwook Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Roberto Ogelman
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang 305-732, Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang 305-732, Korea
| | - Tommi Kajander
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Won Chan Oh
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045;
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea;
| |
Collapse
|
19
|
Zhang Z, Hou M, Ou H, Wang D, Li Z, Zhang H, Lu J. Expression and structural analysis of human neuroligin 2 and neuroligin 3 implicated in autism spectrum disorders. Front Endocrinol (Lausanne) 2022; 13:1067529. [PMID: 36479216 PMCID: PMC9719943 DOI: 10.3389/fendo.2022.1067529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
The development of autism spectrum disorders (ASDs) involves both environmental factors such as maternal diabetes and genetic factors such as neuroligins (NLGNs). NLGN2 and NLGN3 are two members of NLGNs with distinct distributions and functions in synapse development and plasticity. The relationship between maternal diabetes and NLGNs, and the distinct working mechanisms of different NLGNs currently remain unclear. Here, we first analyzed the expression levels of NLGN2 and NLGN3 in a streptozotocin-induced ASD mouse model and different brain regions to reveal their differences and similarities. Then, cryogenic electron microscopy (cryo-EM) structures of human NLGN2 and NLGN3 were determined. The overall structures are similar to their homologs in previous reports. However, structural comparisons revealed the relative rotations of two protomers in the homodimers of NLGN2 and NLGN3. Taken together with the previously reported NLGN2-MDGA1 complex, we speculate that the distinct assembly adopted by NLGN2 and NLGN3 may affect their interactions with MDGAs. Our results provide structural insights into the potential distinct mechanisms of NLGN2 and NLGN3 implicated in the development of ASD.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Mengzhuo Hou
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Huaxing Ou
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Daping Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhifang Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Jianping Lu, ; Huawei Zhang, ; Zhifang Li,
| | - Huawei Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Jianping Lu, ; Huawei Zhang, ; Zhifang Li,
| | - Jianping Lu
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
- *Correspondence: Jianping Lu, ; Huawei Zhang, ; Zhifang Li,
| |
Collapse
|
20
|
Lie E, Yeo Y, Lee EJ, Shin W, Kim K, Han KA, Yang E, Choi TY, Bae M, Lee S, Um SM, Choi SY, Kim H, Ko J, Kim E. SALM4 negatively regulates NMDA receptor function and fear memory consolidation. Commun Biol 2021; 4:1138. [PMID: 34588597 PMCID: PMC8481232 DOI: 10.1038/s42003-021-02656-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Many synaptic adhesion molecules positively regulate synapse development and function, but relatively little is known about negative regulation. SALM4/Lrfn3 (synaptic adhesion-like molecule 4/leucine rich repeat and fibronectin type III domain containing 3) inhibits synapse development by suppressing other SALM family proteins, but whether SALM4 also inhibits synaptic function and specific behaviors remains unclear. Here we show that SALM4-knockout (Lrfn3-/-) male mice display enhanced contextual fear memory consolidation (7-day post-training) but not acquisition or 1-day retention, and exhibit normal cued fear, spatial, and object-recognition memory. The Lrfn3-/- hippocampus show increased currents of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors (GluN2B-NMDARs), but not α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors (AMPARs), which requires the presynaptic receptor tyrosine phosphatase PTPσ. Chronic treatment of Lrfn3-/- mice with fluoxetine, a selective serotonin reuptake inhibitor used to treat excessive fear memory that directly inhibits GluN2B-NMDARs, normalizes NMDAR function and contextual fear memory consolidation in Lrfn3-/- mice, although the GluN2B-specific NMDAR antagonist ifenprodil was not sufficient to reverse the enhanced fear memory consolidation. These results suggest that SALM4 suppresses excessive GluN2B-NMDAR (not AMPAR) function and fear memory consolidation (not acquisition).
Collapse
Affiliation(s)
- Eunkyung Lie
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea ,grid.255168.d0000 0001 0671 5021Department of Chemistry, Dongguk University, Seoul, 04620 Korea
| | - Yeji Yeo
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Eun-Jae Lee
- grid.267370.70000 0004 0533 4667Department of Neurology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, 05505 Korea
| | - Wangyong Shin
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea
| | - Kyungdeok Kim
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea
| | - Kyung Ah Han
- grid.417736.00000 0004 0438 6721Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988 Korea
| | - Esther Yang
- grid.222754.40000 0001 0840 2678Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, 02841 Korea
| | - Tae-Yong Choi
- grid.31501.360000 0004 0470 5905Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080 Korea
| | - Mihyun Bae
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea
| | - Suho Lee
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea
| | - Seung Min Um
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Se-Young Choi
- grid.31501.360000 0004 0470 5905Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080 Korea
| | - Hyun Kim
- grid.222754.40000 0001 0840 2678Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, 02841 Korea
| | - Jaewon Ko
- grid.417736.00000 0004 0438 6721Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988 Korea
| | - Eunjoon Kim
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea ,grid.267370.70000 0004 0533 4667Department of Neurology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, 05505 Korea
| |
Collapse
|
21
|
Matsumura M, Sato K, Kubota T, Kishimoto Y. Spatial and latent memory data in PS2Tg2576 alzheimer's disease mouse model after memantine treatment. Data Brief 2021; 36:107131. [PMID: 34095380 PMCID: PMC8166749 DOI: 10.1016/j.dib.2021.107131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/02/2021] [Accepted: 05/03/2021] [Indexed: 11/02/2022] Open
Abstract
We herein present behavioral data on whether memantine, an adamantane derivative and medical NMDA-receptor antagonist, improves spatial and latent learning deficits in amyloid precursor protein/presenilin 2 double-transgenic mice (PS2Tg2576 mice). In PS2Tg2576 mice, early amyloid-β protein (Aβ) deposition at 2-3 months of age and progressive accumulation at about 5 months of age has been shown. Thus, PS2Tg2576 mice were subjected to Morris water maze (MWM) test for spatial memory and the water-finding test for latent memory testing at ages 3 and 5-6 months. In addition, memantine (30 mg/kg/day, p.o.) was administered 3-4 weeks before commencing the behavioral tasks to check for effects on cognitive function. The information provided in this paper adds to the literature and can be used for the selection of animal models and behavioral paradigms for Alzheimer's disease (AD) research.
Collapse
Affiliation(s)
- Masahisa Matsumura
- Laboratory of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University
| | - Kana Sato
- Laboratory of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University
| | - Takashi Kubota
- Laboratory of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University
| | - Yasushi Kishimoto
- Laboratory of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University.,Laboratory of Physical Chemistry, Faculty of Pharma-Science, Teikyo University
| |
Collapse
|
22
|
Ali H, Marth L, Krueger-Burg D. Neuroligin-2 as a central organizer of inhibitory synapses in health and disease. Sci Signal 2020; 13:13/663/eabd8379. [DOI: 10.1126/scisignal.abd8379] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Postsynaptic organizational protein complexes play central roles both in orchestrating synapse formation and in defining the functional properties of synaptic transmission that together shape the flow of information through neuronal networks. A key component of these organizational protein complexes is the family of synaptic adhesion proteins called neuroligins. Neuroligins form transsynaptic bridges with presynaptic neurexins to regulate various aspects of excitatory and inhibitory synaptic transmission. Neuroligin-2 (NLGN2) is the only member that acts exclusively at GABAergic inhibitory synapses. Altered expression and mutations in NLGN2 and several of its interacting partners are linked to cognitive and psychiatric disorders, including schizophrenia, autism, and anxiety. Research on NLGN2 has fundamentally shaped our understanding of the molecular architecture of inhibitory synapses. Here, we discuss the current knowledge on the molecular and cellular functions of mammalian NLGN2 and its role in the neuronal circuitry that regulates behavior in rodents and humans.
Collapse
Affiliation(s)
- Heba Ali
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
- Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, University of Göttingen, 37077 Göttingen, Germany
| | - Lena Marth
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Dilja Krueger-Burg
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
23
|
Kuboyama K, Shirakawa Y, Kawada K, Fujii N, Ojima D, Kishimoto Y, Yamamoto T, Yamada MK. Visually cued fear conditioning test for memory impairment related to cortical function. Neuropsychopharmacol Rep 2020; 40:371-375. [PMID: 33089673 PMCID: PMC7722643 DOI: 10.1002/npr2.12146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/26/2020] [Accepted: 09/15/2020] [Indexed: 11/10/2022] Open
Abstract
AIM Fear conditioning tests are intended to elucidate a subject's ability to associate a conditioned stimulus with an aversive, unconditioned stimulus, such as footshock. Among these tests, a paradigm related to precise cortical functions would be increasingly important in drug screening for disorders such as schizophrenia and dementia. Therefore, we established a new fear conditioning paradigm using a visual cue in mice. In addition, the validity of the test was evaluated using a genetically engineered mouse, heterozygous deficient in Mdga1 (Mdga1+/-), which is related to schizophrenia. RESULTS Mice were given footshocks associated with a visual cue of moving gratings at training in 25-minute sessions. The mice showed the conditioned response of freezing behavior to the visual stimulus at testing 24 hours after the footshocks. In the test for validation, the Mdga1+/- deficient mice showed significantly less freezing than wild-type mice. CONCLUSION The visually cued fear conditioning paradigm with moving gratings has been established, which is experimentally useful to evaluate animal cortical functions. The validity of the test was confirmed for Mdga1-deficient mice with possible deficiency in cortical functions.
Collapse
Affiliation(s)
- Kazuya Kuboyama
- Department of Neuropharmacology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki city, Kagawa, Japan
| | - Yuki Shirakawa
- Department of Neuropharmacology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki city, Kagawa, Japan
| | - Koji Kawada
- Department of Neuropharmacology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki city, Kagawa, Japan
| | - Naoki Fujii
- Department of Neuropharmacology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki city, Kagawa, Japan
| | - Daiki Ojima
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| | - Yasushi Kishimoto
- Department of Biophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki city, Kagawa, Japan
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| | - Maki K Yamada
- Department of Neuropharmacology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki city, Kagawa, Japan
| |
Collapse
|
24
|
Kishimoto Y, Hirono M, Atarashi R, Sakaguchi S, Yoshioka T, Katamine S, Kirino Y. Impairment of cerebellar long-term depression and GABAergic transmission in prion protein deficient mice ectopically expressing PrPLP/Dpl. Sci Rep 2020; 10:15900. [PMID: 32985542 PMCID: PMC7522223 DOI: 10.1038/s41598-020-72753-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022] Open
Abstract
Prion protein (PrPC) knockout mice, named as the “Ngsk” strain (Ngsk Prnp0/0 mice), show late-onset cerebellar Purkinje cell (PC) degeneration because of ectopic overexpression of PrPC-like protein (PrPLP/Dpl). Our previous study indicated that the mutant mice also exhibited alterations in cerebellum-dependent delay eyeblink conditioning, even at a young age (16 weeks of age) when neurological changes had not occurred. Thus, this electrophysiological study was designed to examine the synaptic function of the cerebellar cortex in juvenile Ngsk Prnp0/0 mice. We showed that Ngsk Prnp0/0 mice exhibited normal paired-pulse facilitation but impaired long-term depression of excitatory synaptic transmission at synapses between parallel fibres and PCs. GABAA-mediated inhibitory postsynaptic currents recorded from PCs were also weakened in Ngsk Prnp0/0 mice. Furthermore, we confirmed that Ngsk Prnp0/0 mice (7–8-week-old) exhibited abnormalities in delay eyeblink conditioning. Our findings suggest that these alterations in both excitatory and inhibitory synaptic transmission to PCs caused deficits in delay eyeblink conditioning of Ngsk Prnp0/0 mice. Therefore, the Ngsk Prnp0/0 mouse model can contribute to study underlying mechanisms for impairments of synaptic transmission and neural plasticity, and cognitive deficits in the central nervous system.
Collapse
Affiliation(s)
- Yasushi Kishimoto
- Laboratory of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, 769-2193, Japan.
| | - Moritoshi Hirono
- Department of Physiology, Faculty of Medicine, Wakayama Medical University School of Medicine, Wakayama, 641-8509, Japan.
| | - Ryuichiro Atarashi
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Suehiro Sakaguchi
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, 770-8501, Japan
| | - Tohru Yoshioka
- Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shigeru Katamine
- Center for International Collaborative Research, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Yutaka Kirino
- Laboratory of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, 769-2193, Japan
| |
Collapse
|
25
|
Fertan E, Wong AA, Purdon MK, Weaver ICG, Brown RE. The effect of background strain on the behavioral phenotypes of the MDGA2 +/- mouse model of autism spectrum disorder. GENES BRAIN AND BEHAVIOR 2020; 20:e12696. [PMID: 32808443 DOI: 10.1111/gbb.12696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/27/2020] [Accepted: 08/14/2020] [Indexed: 12/26/2022]
Abstract
The membrane-associated mucin (MAM) domain containing glycosylphosphatidylinositol anchor 2 protein single knock-out mice (MDGA2+/- ) are models of ASD. We examined the behavioral phenotypes of male and female MDGA2+/- and wildtype mice on C57BL6/NJ and C57BL6/N backgrounds at 2 months of age and measured MDGA2, neuroligin 1 and neuroligin 2 levels at 7 months. Mice on the C57BL6/NJ background performed better than those on the C57BL6/N background in visual ability and in learning and memory performance in the Morris water maze and differed in measures of motor behavior and anxiety. Mice with the MDGA2+/- genotype differed from WT mice in motor, social and repetitive behavior and anxiety, but most of these effects involved interactions between MDGA2+/- genotype and background strain. The background strain also influenced MDGA2 levels and NLGN2 association in MDGA2+/- mice. Our findings emphasize the importance of the background strain used in studies of genetically modified mice.
Collapse
Affiliation(s)
- Emre Fertan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Aimée A Wong
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michaela K Purdon
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ian C G Weaver
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Brain Repair Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Brain Repair Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
26
|
Qin L, Guo S, Han Y, Wang X, Zhang B. Functional mosaic organization of neuroligins in neuronal circuits. Cell Mol Life Sci 2020; 77:3117-3127. [PMID: 32077971 PMCID: PMC11104838 DOI: 10.1007/s00018-020-03478-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 11/30/2022]
Abstract
Complex brain circuitry with feedforward and feedback systems regulates neuronal activity, enabling neural networks to process and drive the entire spectrum of cognitive, behavioral, sensory, and motor functions. Simultaneous orchestration of distinct cells and interconnected neural circuits is underpinned by hundreds of synaptic adhesion molecules that span synaptic junctions. Dysfunction of a single molecule or molecular interaction at synapses can lead to disrupted circuit activity and brain disorders. Neuroligins, a family of cell adhesion molecules, were first identified as postsynaptic-binding partners of presynaptic neurexins and are essential for synapse specification and maturation. Here, we review recent advances in our understanding of how this family of adhesion molecules controls neuronal circuit assembly by acting in a synapse-specific manner.
Collapse
Affiliation(s)
- Liming Qin
- School of Chemical Biology and Biotechnology, Shenzhen Bay Laboratory, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Sile Guo
- School of Chemical Biology and Biotechnology, Shenzhen Bay Laboratory, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ying Han
- School of Chemical Biology and Biotechnology, Shenzhen Bay Laboratory, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xiankun Wang
- School of Chemical Biology and Biotechnology, Shenzhen Bay Laboratory, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Bo Zhang
- School of Chemical Biology and Biotechnology, Shenzhen Bay Laboratory, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
27
|
Hossain MR, Jamal M, Tanoue Y, Ojima D, Takahashi H, Kubota T, Ansary TM, Ito A, Tanaka N, Kinoshita H, Kishimoto Y, Yamamoto T. MDGA1-deficiency attenuates prepulse inhibition with alterations of dopamine and serotonin metabolism: An ex vivo HPLC-ECD analysis. Neurosci Lett 2020; 716:134677. [PMID: 31812551 DOI: 10.1016/j.neulet.2019.134677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Abstract
MDGA1 (MAM domain-containing glycosylphosphatidylinositol anchor) has recently been linked to schizophrenia and bipolar disorder. Dysregulation of dopamine (DA) and serotonin (5-HT) systems has long been associated with schizophrenia and other neuropsychiatric disorders. Here, we measured prepulse inhibition (PPI) of the startle response and ex vivo tissue content of monoamines and their metabolites in the frontal cortex, striatum and hippocampus of Mdga1 homozygous (Mdga1-KO), Mdga1 heterozygous (Mdga1-HT) and wild-type (WT) male mice. We found that Mdga1-KO mice exhibited statistically significant impairment of PPI, and had higher levels of homovanillic acid in all three brain regions studied compared with Mdga1-HT and WT mice (P < 0.05), while levels of norepinephrine, DA and its metabolites 3,4-dihydroxyphenylacetic acid and 3-methoxytyramine remained unchanged. Mdga1-KO mice also had a lower 5-hydroxyindoleacetic acid level in the striatum (P < 0.05) compared with WT mice. 5-HT levels remained unchanged with the exception of a significant increase in the level in the cortex. These data are the first evidence suggesting that MDGA1 deficiency leads to a pronounced deficit in PPI and plays an important role in perturbation of DA and 5-HT metabolism in mouse brain; such changes may contribute to a range of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Md Razib Hossain
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Mostofa Jamal
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | - Yu Tanoue
- Department of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, Japan
| | - Daiki Ojima
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hiroo Takahashi
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Kubota
- Department of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, Japan
| | - Tuba M Ansary
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Asuka Ito
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Naoko Tanaka
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hiroshi Kinoshita
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yasushi Kishimoto
- Department of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, Japan
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| |
Collapse
|
28
|
Rudan Njavro J, Klotz J, Dislich B, Wanngren J, Shmueli MD, Herber J, Kuhn PH, Kumar R, Koeglsperger T, Conrad M, Wurst W, Feederle R, Vlachos A, Michalakis S, Jedlicka P, Müller SA, Lichtenthaler SF. Mouse brain proteomics establishes MDGA1 and CACHD1 as in vivo substrates of the Alzheimer protease BACE1. FASEB J 2019; 34:2465-2482. [PMID: 31908000 DOI: 10.1096/fj.201902347r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 01/18/2023]
Abstract
The protease beta-site APP cleaving enzyme 1 (BACE1) has fundamental functions in the nervous system. Its inhibition is a major therapeutic approach in Alzheimer's disease, because BACE1 cleaves the amyloid precursor protein (APP), thereby catalyzing the first step in the generation of the pathogenic amyloid beta (Aβ) peptide. Yet, BACE1 cleaves numerous additional membrane proteins besides APP. Most of these substrates have been identified in vitro, but only few were further validated or characterized in vivo. To identify BACE1 substrates with in vivo relevance, we used isotope label-based quantitative proteomics of wild type and BACE1-deficient (BACE1 KO) mouse brains. This approach identified known BACE1 substrates, including Close homolog of L1 and contactin-2, which were found to be enriched in the membrane fraction of BACE1 KO brains. VWFA and cache domain-containing protein 1 (CACHD)1 and MAM domain-containing glycosylphosphatidylinositol anchor protein 1 (MDGA1), which have functions in synaptic transmission, were identified and validated as new BACE1 substrates in vivo by immunoblots using primary neurons and mouse brains. Inhibition or deletion of BACE1 from primary neurons resulted in a pronounced inhibition of substrate cleavage and a concomitant increase in full-length protein levels of CACHD1 and MDGA1. The BACE1 cleavage site in both proteins was determined to be located within the juxtamembrane domain. In summary, this study identifies and validates CACHD1 and MDGA1 as novel in vivo substrates for BACE1, suggesting that cleavage of both proteins may contribute to the numerous functions of BACE1 in the nervous system.
Collapse
Affiliation(s)
- Jasenka Rudan Njavro
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jakob Klotz
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bastian Dislich
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute of Pathology, University of Bern, Switzerland
| | - Johanna Wanngren
- Division of Neurogeriatrics, Department of NVS, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Merav D Shmueli
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Julia Herber
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Peer-Hendrik Kuhn
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Rohit Kumar
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Thomas Koeglsperger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Neurology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Genome Engineering, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Developmental Genetics, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Regina Feederle
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,German Research Center for Environmental Health, Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Helmholtz Zentrum München, Neuherberg, Germany.,Core Facility Monoclonal Antibodies, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Germany.,Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Peter Jedlicka
- Faculty of Medicine, ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Justus-Liebig-University, Giessen, Germany.,Neuroscience Center, Institute of Clinical Neuroanatomy, Goethe University, Frankfurt am Main, Germany.,Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
29
|
A negative regulator of synaptic development: MDGA and its links to neurodevelopmental disorders. World J Pediatr 2019; 15:415-421. [PMID: 30997654 DOI: 10.1007/s12519-019-00253-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/28/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Formation of protein complexes across synapses is a critical process in neurodevelopment, having direct implications on brain function and animal behavior. Here, we present the understanding, importance, and potential impact of a newly found regulator of such a key interaction. DATA SOURCES A systematic search of the literature was conducted on PubMed (Medline), Embase, and Central-Cochrane Database. RESULTS Membrane-associated mucin domain-containing glycosylphosphatidylinositol anchor proteins (MDGAs) were recently discovered to regulate synaptic development and transmission via suppression of neurexins-neuroligins trans-synaptic complex formation. MDGAs also regulate axonal migration and outgrowth. In the context of their physiological role, we begin to consider the potential links to the etiology of certain neurodevelopmental disorders. We present the gene expression and protein structure of MDGAs and discuss recent progress in our understanding of the neurobiological role of MDGAs to explore its potential as a therapeutic target. CONCLUSION MDGAs play a key role in neuron migration, axon guidance and synapse development, as well as in regulating brain excitation and inhibition balance.
Collapse
|
30
|
John J, Kukshal P, Bhatia T, Nimgaonkar VL, Deshpande SN, Thelma BK. Rare variant based evidence for oligogenic contribution of neurodevelopmental pathway genes to schizophrenia. Schizophr Res 2019; 210:296-298. [PMID: 30612842 PMCID: PMC7018639 DOI: 10.1016/j.schres.2018.12.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/23/2018] [Accepted: 12/25/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Jibin John
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | - Prachi Kukshal
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | - Triptish Bhatia
- Department of Psychiatry, PGIMER-Dr. RML Hospital, New Delhi 110 001, India
| | - V L Nimgaonkar
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, 3811 O'Hara Street, Pittsburgh, PA 15213, USA; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, DeSoto St., Pittsburgh, PA 15213, USA
| | - S N Deshpande
- Department of Psychiatry, PGIMER-Dr. RML Hospital, New Delhi 110 001, India
| | - B K Thelma
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India.
| |
Collapse
|
31
|
Traumatic Brain Injury by Weight-Drop Method Causes Transient Amyloid- β Deposition and Acute Cognitive Deficits in Mice. Behav Neurol 2019; 2019:3248519. [PMID: 30944661 PMCID: PMC6421814 DOI: 10.1155/2019/3248519] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/11/2018] [Accepted: 01/09/2019] [Indexed: 11/17/2022] Open
Abstract
There has been growing awareness of the correlation between an episode of traumatic brain injury (TBI) and the development of Alzheimer's disease (AD) later in life. It has been reported that TBI accelerated amyloid-β (Aβ) pathology and cognitive decline in the several lines of AD model mice. However, the short-term and long-term effects of TBI by the weight-drop method on amyloid-β pathology and cognitive performance are unclear in wild-type (WT) mice. Hence, we examined AD-related histopathological changes and cognitive impairment after TBI in wild-type C57BL6J mice. Five- to seven-month-old WT mice were subjected to either TBI by the weight-drop method or a sham treatment. Seven days after TBI, the WT mice exhibited significantly lower spatial learning than the sham-treated WT mice. However, 28 days after TBI, the cognitive impairment in the TBI-treated WT mice recovered. Correspondingly, while significant amyloid-β (Aβ) plaques and amyloid precursor protein (APP) accumulation were observed in the TBI-treated mouse hippocampus 7 days after TBI, the Aβ deposition was no longer apparent 28 days after TBI. Thus, TBI induced transient amyloid-β deposition and acute cognitive impairments in the WT mice. The present study suggests that the TBI could be a risk factor for acute cognitive impairment even when genetic and hereditary predispositions are not involved. The system might be useful for evaluating and developing a pharmacological treatment for the acute cognitive deficits.
Collapse
|
32
|
Chamma I, Sainlos M, Thoumine O. Biophysical mechanisms underlying the membrane trafficking of synaptic adhesion molecules. Neuropharmacology 2019; 169:107555. [PMID: 30831159 DOI: 10.1016/j.neuropharm.2019.02.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/14/2019] [Accepted: 02/27/2019] [Indexed: 01/13/2023]
Abstract
Adhesion proteins play crucial roles at synapses, not only by providing a physical trans-synaptic linkage between axonal and dendritic membranes, but also by connecting to functional elements including the pre-synaptic neurotransmitter release machinery and post-synaptic receptors. To mediate these functions, adhesion proteins must be organized on the neuronal surface in a precise and controlled manner. Recent studies have started to describe the mobility, nanoscale organization, and turnover rate of key synaptic adhesion molecules including cadherins, neurexins, neuroligins, SynCAMs, and LRRTMs, and show that some of these proteins are highly mobile in the plasma membrane while others are confined at sub-synaptic compartments, providing evidence for different regulatory pathways. In this review article, we provide a biophysical view of the diffusional trapping of adhesion molecules at synapses, involving both extracellular and intracellular protein interactions. We review the methodology underlying these measurements, including biomimetic systems with purified adhesion proteins, means to perturb protein expression or function, single molecule imaging in cultured neurons, and analytical models to interpret the data. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.
Collapse
Affiliation(s)
- Ingrid Chamma
- Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000, Bordeaux, France; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000, Bordeaux, France
| | - Matthieu Sainlos
- Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000, Bordeaux, France; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000, Bordeaux, France
| | - Olivier Thoumine
- Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000, Bordeaux, France; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000, Bordeaux, France.
| |
Collapse
|
33
|
MicroRNA-186-5p controls GluA2 surface expression and synaptic scaling in hippocampal neurons. Proc Natl Acad Sci U S A 2019; 116:5727-5736. [PMID: 30808806 DOI: 10.1073/pnas.1900338116] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homeostatic synaptic scaling is a negative feedback response to fluctuations in synaptic strength induced by developmental or learning-related processes, which maintains neuronal activity stable. Although several components of the synaptic scaling apparatus have been characterized, the intrinsic regulatory mechanisms promoting scaling remain largely unknown. MicroRNAs may contribute to posttranscriptional control of mRNAs implicated in different stages of synaptic scaling, but their role in these mechanisms is still undervalued. Here, we report that chronic blockade of glutamate receptors of the AMPA and NMDA types in hippocampal neurons in culture induces changes in the neuronal mRNA and miRNA transcriptomes, leading to synaptic upscaling. Specifically, we show that synaptic activity blockade persistently down-regulates miR-186-5p. Moreover, we describe a conserved miR-186-5p-binding site within the 3'UTR of the mRNA encoding the AMPA receptor GluA2 subunit, and demonstrate that GluA2 is a direct target of miR-186-5p. Overexpression of miR-186 decreased GluA2 surface levels, increased synaptic expression of GluA2-lacking AMPA receptors, and blocked synaptic scaling, whereas inhibition of miR-186-5p increased GluA2 surface levels and the amplitude and frequency of AMPA receptor-mediated currents, and mimicked excitatory synaptic scaling induced by synaptic inactivity. Our findings elucidate an activity-dependent miRNA-mediated mechanism for regulation of AMPA receptor expression.
Collapse
|
34
|
Connor SA, Elegheert J, Xie Y, Craig AM. Pumping the brakes: suppression of synapse development by MDGA-neuroligin interactions. Curr Opin Neurobiol 2019; 57:71-80. [PMID: 30771697 DOI: 10.1016/j.conb.2019.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 12/22/2022]
Abstract
Synapse development depends on a dynamic balance between synapse promoters and suppressors. MDGAs, immunoglobulin superfamily proteins, negatively regulate synapse development through blocking neuroligin-neurexin interactions. Recent analyses of MDGA-neuroligin complexes revealed the structural basis of this activity and indicate that MDGAs interact with all neuroligins with differential affinities. Surprisingly, analyses of mouse mutants revealed a functional divergence, with targeted mutation of Mdga1 and Mdga2 elevating inhibitory and excitatory synapses, respectively, on hippocampal pyramidal neurons. Further research is needed to determine the synapse-specific organizing properties of MDGAs in neural circuits, which may depend on relative levels and subcellular distributions of each MDGA, neuroligin and neurexin. Behavioral deficits in Mdga mutant mice support genetic links to schizophrenia and autism spectrum disorders and raise the possibility of harnessing these interactions for therapeutic purposes.
Collapse
Affiliation(s)
- Steven A Connor
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| | - Jonathan Elegheert
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 and University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Yicheng Xie
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada.
| |
Collapse
|
35
|
IgSF9b regulates anxiety behaviors through effects on centromedial amygdala inhibitory synapses. Nat Commun 2018; 9:5400. [PMID: 30573727 PMCID: PMC6302093 DOI: 10.1038/s41467-018-07762-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023] Open
Abstract
Abnormalities in synaptic inhibition play a critical role in psychiatric disorders, and accordingly, it is essential to understand the molecular mechanisms linking components of the inhibitory postsynapse to psychiatrically relevant neural circuits and behaviors. Here we study the role of IgSF9b, an adhesion protein that has been associated with affective disorders, in the amygdala anxiety circuitry. We show that deletion of IgSF9b normalizes anxiety-related behaviors and neural processing in mice lacking the synapse organizer Neuroligin-2 (Nlgn2), which was proposed to complex with IgSF9b. This normalization occurs through differential effects of Nlgn2 and IgSF9b at inhibitory synapses in the basal and centromedial amygdala (CeM), respectively. Moreover, deletion of IgSF9b in the CeM of adult Nlgn2 knockout mice has a prominent anxiolytic effect. Our data place IgSF9b as a key regulator of inhibition in the amygdala and indicate that IgSF9b-expressing synapses in the CeM may represent a target for anxiolytic therapies. IgSF9b is a synaptic adhesion protein that has been linked to psychiatric disorders. Here the authors show that deletion of IgSF9b regulates anxiety-like behaviour in mice by increasing inhibitory synaptic transmission in the centromedial amygdala.
Collapse
|
36
|
Dynamics, nanoscale organization, and function of synaptic adhesion molecules. Mol Cell Neurosci 2018; 91:95-107. [DOI: 10.1016/j.mcn.2018.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 12/13/2022] Open
|