1
|
Akyuz E, Arulsamy A, Aslan FS, Sarisözen B, Guney B, Hekimoglu A, Yilmaz BN, Retinasamy T, Shaikh MF. An Expanded Narrative Review of Neurotransmitters on Alzheimer's Disease: The Role of Therapeutic Interventions on Neurotransmission. Mol Neurobiol 2024:10.1007/s12035-024-04333-y. [PMID: 39012443 DOI: 10.1007/s12035-024-04333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease. The accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles are the key players responsible for the pathogenesis of the disease. The accumulation of Aβ plaques and tau affect the balance in chemical neurotransmitters in the brain. Thus, the current review examined the role of neurotransmitters in the pathogenesis of Alzheimer's disease and discusses the alterations in the neurochemical activity and cross talk with their receptors and transporters. In the presence of Aβ plaques and neurofibrillary tangles, changes may occur in the expression of neuronal receptors which in turn triggers excessive release of glutamate into the synaptic cleft contributing to cell death and neuronal damage. The GABAergic system may also be affected by AD pathology in a similar way. In addition, decreased receptors in the cholinergic system and dysfunction in the dopamine neurotransmission of AD pathology may also contribute to the damage to cognitive function. Moreover, the presence of deficiencies in noradrenergic neurons within the locus coeruleus in AD suggests that noradrenergic stimulation could be useful in addressing its pathophysiology. The regulation of melatonin, known for its effectiveness in enhancing cognitive function and preventing Aβ accumulation, along with the involvement of the serotonergic system and histaminergic system in cognition and memory, becomes remarkable for promoting neurotransmission in AD. Additionally, nitric oxide and adenosine-based therapeutic approaches play a protective role in AD by preventing neuroinflammation. Overall, neurotransmitter-based therapeutic strategies emerge as pivotal for addressing neurotransmitter homeostasis and neurotransmission in the context of AD. This review discussed the potential for neurotransmitter-based drugs to be effective in slowing and correcting the neurodegenerative processes in AD by targeting the neurochemical imbalance in the brain. Therefore, neurotransmitter-based drugs could serve as a future therapeutic strategy to tackle AD.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, International School of Medicine, University of Health Sciences, Istanbul, Turkey
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
| | | | - Bugra Sarisözen
- School of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Beyzanur Guney
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | | | - Beyza Nur Yilmaz
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, New South Wales, 2800, Australia.
| |
Collapse
|
2
|
Asim M, Wang H, Waris A, Qianqian G, Chen X. Cholecystokinin neurotransmission in the central nervous system: Insights into its role in health and disease. Biofactors 2024. [PMID: 38777339 DOI: 10.1002/biof.2081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Cholecystokinin (CCK) plays a key role in various brain functions, including both health and disease states. Despite the extensive research conducted on CCK, there remain several important questions regarding its specific role in the brain. As a result, the existing body of literature on the subject is complex and sometimes conflicting. The primary objective of this review article is to provide a comprehensive overview of recent advancements in understanding the central nervous system role of CCK, with a specific emphasis on elucidating CCK's mechanisms for neuroplasticity, exploring its interactions with other neurotransmitters, and discussing its significant involvement in neurological disorders. Studies demonstrate that CCK mediates both inhibitory long-term potentiation (iLTP) and excitatory long-term potentiation (eLTP) in the brain. Activation of the GPR173 receptor could facilitate iLTP, while the Cholecystokinin B receptor (CCKBR) facilitates eLTP. CCK receptors' expression on different neurons regulates activity, neurotransmitter release, and plasticity, emphasizing CCK's role in modulating brain function. Furthermore, CCK plays a pivotal role in modulating emotional states, Alzheimer's disease, addiction, schizophrenia, and epileptic conditions. Targeting CCK cell types and circuits holds promise as a therapeutic strategy for alleviating these brain disorders.
Collapse
Affiliation(s)
- Muhammad Asim
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Pak Shek Kok, Hong Kong
| | - Huajie Wang
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Abdul Waris
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Gao Qianqian
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Xi Chen
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Pak Shek Kok, Hong Kong
| |
Collapse
|
3
|
Hou G, Hao M, Duan J, Han MH. The Formation and Function of the VTA Dopamine System. Int J Mol Sci 2024; 25:3875. [PMID: 38612683 PMCID: PMC11011984 DOI: 10.3390/ijms25073875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
The midbrain dopamine system is a sophisticated hub that integrates diverse inputs to control multiple physiological functions, including locomotion, motivation, cognition, reward, as well as maternal and reproductive behaviors. Dopamine is a neurotransmitter that binds to G-protein-coupled receptors. Dopamine also works together with other neurotransmitters and various neuropeptides to maintain the balance of synaptic functions. The dysfunction of the dopamine system leads to several conditions, including Parkinson's disease, Huntington's disease, major depression, schizophrenia, and drug addiction. The ventral tegmental area (VTA) has been identified as an important relay nucleus that modulates homeostatic plasticity in the midbrain dopamine system. Due to the complexity of synaptic transmissions and input-output connections in the VTA, the structure and function of this crucial brain region are still not fully understood. In this review article, we mainly focus on the cell types, neurotransmitters, neuropeptides, ion channels, receptors, and neural circuits of the VTA dopamine system, with the hope of obtaining new insight into the formation and function of this vital brain region.
Collapse
Affiliation(s)
- Guoqiang Hou
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (M.H.); (J.D.)
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mei Hao
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (M.H.); (J.D.)
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiawen Duan
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (M.H.); (J.D.)
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ming-Hu Han
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (M.H.); (J.D.)
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
4
|
Ryvkin J, Omesi L, Kim YK, Levi M, Pozeilov H, Barak-Buchris L, Agranovich B, Abramovich I, Gottlieb E, Jacob A, Nässel DR, Heberlein U, Shohat-Ophir G. Failure to mate enhances investment in behaviors that may promote mating reward and impairs the ability to cope with stressors via a subpopulation of Neuropeptide F receptor neurons. PLoS Genet 2024; 20:e1011054. [PMID: 38236837 PMCID: PMC10795991 DOI: 10.1371/journal.pgen.1011054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/06/2023] [Indexed: 01/22/2024] Open
Abstract
Living in dynamic environments such as the social domain, where interaction with others determines the reproductive success of individuals, requires the ability to recognize opportunities to obtain natural rewards and cope with challenges that are associated with achieving them. As such, actions that promote survival and reproduction are reinforced by the brain reward system, whereas coping with the challenges associated with obtaining these rewards is mediated by stress-response pathways, the activation of which can impair health and shorten lifespan. While much research has been devoted to understanding mechanisms underlying the way by which natural rewards are processed by the reward system, less attention has been given to the consequences of failure to obtain a desirable reward. As a model system to study the impact of failure to obtain a natural reward, we used the well-established courtship suppression paradigm in Drosophila melanogaster as means to induce repeated failures to obtain sexual reward in male flies. We discovered that beyond the known reduction in courtship actions caused by interaction with non-receptive females, repeated failures to mate induce a stress response characterized by persistent motivation to obtain the sexual reward, reduced male-male social interaction, and enhanced aggression. This frustrative-like state caused by the conflict between high motivation to obtain sexual reward and the inability to fulfill their mating drive impairs the capacity of rejected males to tolerate stressors such as starvation and oxidative stress. We further show that sensitivity to starvation and enhanced social arousal is mediated by the disinhibition of a small population of neurons that express receptors for the fly homologue of neuropeptide Y. Our findings demonstrate for the first time the existence of social stress in flies and offers a framework to study mechanisms underlying the crosstalk between reward, stress, and reproduction in a simple nervous system that is highly amenable to genetic manipulation.
Collapse
Affiliation(s)
- Julia Ryvkin
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center and the Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Liora Omesi
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center and the Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Yong-Kyu Kim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Mali Levi
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center and the Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Hadar Pozeilov
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center and the Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Lital Barak-Buchris
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center and the Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Bella Agranovich
- Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Ifat Abramovich
- Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Eyal Gottlieb
- Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Avi Jacob
- The Kanbar scientific equipment center. The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Ulrike Heberlein
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Galit Shohat-Ophir
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center and the Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
5
|
dos-Santos RC, Sweeten BLW, Stelly CE, Tasker JG. The Neuroendocrine Impact of Acute Stress on Synaptic Plasticity. Endocrinology 2023; 164:bqad149. [PMID: 37788632 PMCID: PMC11046011 DOI: 10.1210/endocr/bqad149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Stress induces changes in nervous system function on different signaling levels, from molecular signaling to synaptic transmission to neural circuits to behavior-and on different time scales, from rapid onset and transient to delayed and long-lasting. The principal effectors of stress plasticity are glucocorticoids, steroid hormones that act with a broad range of signaling competency due to the expression of multiple nuclear and membrane receptor subtypes in virtually every tissue of the organism. Glucocorticoid and mineralocorticoid receptors are localized to each of the cellular compartments of the receptor-expressing cells-the membrane, cytosol, and nucleus. In this review, we cover the neuroendocrine effects of stress, focusing mainly on the rapid actions of acute stress-induced glucocorticoids that effect changes in synaptic transmission and neuronal excitability by modulating synaptic and intrinsic neuronal properties via activation of presumed membrane glucocorticoid and mineralocorticoid receptors. We describe the synaptic plasticity that occurs in 4 stress-associated brain structures, the hypothalamus, hippocampus, amygdala, and prefrontal cortex, in response to single or short-term stress exposure. The rapid transformative impact of glucocorticoids makes this stress signal a particularly potent effector of acute neuronal plasticity.
Collapse
Affiliation(s)
- Raoni Conceição dos-Santos
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Brook L W Sweeten
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Claire E Stelly
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
6
|
Bagosi Z, Megyesi K, Ayman J, Rudersdorf H, Ayaz MK, Csabafi K. The Role of Corticotropin-Releasing Factor (CRF) and CRF-Related Peptides in the Social Behavior of Rodents. Biomedicines 2023; 11:2217. [PMID: 37626714 PMCID: PMC10452353 DOI: 10.3390/biomedicines11082217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Since the corticotropin-releasing factor (CRF) was isolated from an ovine brain, a growing family of CRF-related peptides has been discovered. Today, the mammalian CRF system consists of four ligands (CRF, urocortin 1 (Ucn1), urocortin 2 (Ucn2), and urocortin 3 (Ucn3)); two receptors (CRF receptor type 1 (CRF1) and CRF receptor type 2 (CRF2)); and a CRF-binding protein (CRF-BP). Besides the regulation of the neuroendocrine, autonomic, and behavioral responses to stress, CRF and CRF-related peptides are also involved in different aspects of social behavior. In the present study, we review the experiments that investigated the role of CRF and the urocortins involved in the social behavior of rats, mice, and voles, with a special focus on sociability and preference for social novelty, as well as the ability for social recognition, discrimination, and memory. In general, these experiments demonstrate that CRF, Ucn1, Ucn2, and Ucn3 play important, but distinct roles in the social behavior of rodents, and that they are mediated by CRF1 and/or CRF2. In addition, we suggest the possible brain regions and pathways that express CRF and CRF-related peptides and that might be involved in social interactions. Furthermore, we also emphasize the differences between the species, strains, and sexes that make translation of these roles from rodents to humans difficult.
Collapse
Affiliation(s)
- Zsolt Bagosi
- Department of Pathophysiology, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary; (H.R.); (M.K.A.); (K.C.)
| | - Kíra Megyesi
- Interdisciplinary Center for Excellence, Clinical Research Competence Center, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - Jázmin Ayman
- Department of Obstetrics and Gynecology, Albert Szent-Györgyi Albert School of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - Hanna Rudersdorf
- Department of Pathophysiology, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary; (H.R.); (M.K.A.); (K.C.)
| | - Maieda Khan Ayaz
- Department of Pathophysiology, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary; (H.R.); (M.K.A.); (K.C.)
| | - Krisztina Csabafi
- Department of Pathophysiology, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary; (H.R.); (M.K.A.); (K.C.)
| |
Collapse
|
7
|
Lutzu S, Alviña K, Puente N, Grandes P, Castillo PE. Target cell-specific plasticity rules of NMDA receptor-mediated synaptic transmission in the hippocampus. Front Cell Neurosci 2023; 17:1068472. [PMID: 37091922 PMCID: PMC10113460 DOI: 10.3389/fncel.2023.1068472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Long-term potentiation and depression of NMDA receptor-mediated synaptic transmission (NMDAR LTP/LTD) can significantly impact synapse function and information transfer in several brain areas. However, the mechanisms that determine the direction of NMDAR plasticity are poorly understood. Here, using physiologically relevant patterns of presynaptic and postsynaptic burst activities, whole-cell patch clamp recordings, 2-photon laser calcium imaging in acute rat hippocampal slices and immunoelectron microscopy, we tested whether distinct calcium dynamics and group I metabotropic glutamate receptor (I-mGluR) subtypes control the sign of NMDAR plasticity. We found that postsynaptic calcium transients (CaTs) in response to hippocampal MF stimulation were significantly larger during the induction of NMDAR-LTP compared to NMDAR-LTD at the MF-to-CA3 pyramidal cell (MF-CA3) synapse. This difference was abolished by pharmacological blockade of mGluR5 and was significantly reduced by depletion of intracellular calcium stores, whereas blocking mGluR1 had no effect on these CaTs. In addition, we discovered that MF to hilar mossy cell (MF-MC) synapses, which share several structural and functional commonalities with MF-CA3 synapses, also undergoes NMDAR plasticity. To our surprise, however, we found that the postsynaptic distribution of I-mGluR subtypes at these two synapses differ, and the same induction protocol that induces NMDAR-LTD at MF-CA3 synapses, only triggered NMDAR-LTP at MF-MC synapses, despite a comparable calcium dynamics. Thus, postsynaptic calcium dynamics alone cannot predict the sign of NMDAR plasticity, indicating that both postsynaptic calcium rise and the relative contribution of I-mGluR subtypes likely determine the learning rules of NMDAR plasticity.
Collapse
Affiliation(s)
- Stefano Lutzu
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Karina Alviña
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Pablo E. Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
- *Correspondence: Pablo E. Castillo,
| |
Collapse
|
8
|
Kielbinski M, Bernacka J, Zajda K, Wawrzczak-Bargieła A, Maćkowiak M, Przewlocki R, Solecki W. Acute stress modulates noradrenergic signaling in the ventral tegmental area-amygdalar circuit. J Neurochem 2023; 164:598-612. [PMID: 36161462 DOI: 10.1111/jnc.15698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022]
Abstract
Noradrenergic neurotransmission is a critical mediator of stress responses. In turn, exposure to stress induces noradrenergic system adaptations, some of which are implicated in the etiology of stress-related disorders. Adrenergic receptors (ARs) in the ventral tegmental area (VTA) have been demonstrated to regulate phasic dopamine (DA) release in the forebrain, necessary for behavioral responses to conditional cues. However, the impact of stress on noradrenergic modulation of the VTA has not been previously explored. We demonstrate that ARs in the VTA regulate dopaminergic activity in the VTA-BLA (basolateral amygdala) circuit, a key system for processing stress-related stimuli; and that such control is altered by acute stress. We utilized fast-scan cyclic voltammetry to assess the effects of intra-VTA microinfusion of α1 -AR and α2 -AR antagonists (terazosin and RX-821002, respectively), on electrically evoked phasic DA release in the BLA in stress-naïve and stressed (unavoidable electric shocks - UES) anesthetized male Sprague-Dawley rats. In addition, we used western blotting to explore UES-induced alterations in AR protein level in the VTA. Intra-VTA terazosin or RX-821002 dose-dependently attenuated DA release in the BLA. Interestingly, UES decreased the effects of intra-VTA α2 -AR blockade on DA release (24 h but not 7 days after stress), while the effects of terazosin were unchanged. Despite changes in α2 -AR physiological function in the VTA, UES did not alter α2 -AR protein levels in either intracellular or membrane fractions. These findings demonstrate that NA-ergic modulation of the VTA-BLA circuit undergoes significant alterations in response to acute stress, with α2 -AR signaling indicated as a key target.
Collapse
Affiliation(s)
- Michal Kielbinski
- Department of Neurobiology and Neuropsychology, Jagiellonian University, Institute of Applied Psychology, Krakow, Poland
| | - Joanna Bernacka
- Department of Neurobiology and Neuropsychology, Jagiellonian University, Institute of Applied Psychology, Krakow, Poland.,Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Zajda
- Department of Neurobiology and Neuropsychology, Jagiellonian University, Institute of Applied Psychology, Krakow, Poland
| | - Agnieszka Wawrzczak-Bargieła
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Marzena Maćkowiak
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ryszard Przewlocki
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wojciech Solecki
- Department of Neurobiology and Neuropsychology, Jagiellonian University, Institute of Applied Psychology, Krakow, Poland
| |
Collapse
|
9
|
Mantsch JR. Corticotropin releasing factor and drug seeking in substance use disorders: Preclinical evidence and translational limitations. ADDICTION NEUROSCIENCE 2022; 4:100038. [PMID: 36531188 PMCID: PMC9757758 DOI: 10.1016/j.addicn.2022.100038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The neuropeptide, corticotropin releasing factor (CRF), has been an enigmatic target for the development of medications aimed at treating stress-related disorders. Despite a large body of evidence from preclinical studies in rodents demonstrating that CRF receptor antagonists prevent stressor-induced drug seeking, medications targeting the CRF-R1 have failed in clinical trials. Here, we provide an overview of the abundant findings from preclinical rodent studies suggesting that CRF signaling is involved in stressor-induced relapse. The scientific literature that has defined the receptors, mechanisms and neurocircuits through which CRF contributes to stressor-induced reinstatement of drug seeking following self-administration and conditioned place preference in rodents is reviewed. Evidence that CRF signaling is recruited with repeated drug use in a manner that heightens susceptibility to stressor-induced drug seeking in rodents is presented. Factors that may determine the influence of CRF signaling in substance use disorders, including developmental windows, biological sex, and genetics are examined. Finally, we discuss the translational failure of medications targeting CRF signaling as interventions for substance use disorders and other stress-related conditions. We conclude that new perspectives and research directions are needed to unravel the mysterious role of CRF in substance use disorders.
Collapse
Affiliation(s)
- John R Mantsch
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, United States
| |
Collapse
|
10
|
Lowes DC, Harris AZ. Stressed and wired: The effects of stress on the VTA circuits underlying motivated behavior. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 26:100388. [PMID: 36406203 PMCID: PMC9674332 DOI: 10.1016/j.coemr.2022.100388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Stress affects many brain regions, including the ventral tegmental area (VTA), which is critically involved in reward processing. Excessive stress can reduce reward-seeking behaviors but also exacerbate substance use disorders, two seemingly contradictory outcomes. Recent research has revealed that the VTA is a heterogenous structure with diverse populations of efferents and afferents serving different functions. Stress has correspondingly diverse effects on VTA neuron activity, tending to decrease lateral VTA dopamine (DA) neuron activity, while increasing medial VTA DA and GABA neuron activity. Here we review the differential effects of stress on the activity of these distinct VTA neuron populations and how they contribute to decreases in reward-seeking behavior or increases in drug self-administration.
Collapse
Affiliation(s)
- Daniel C. Lowes
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Alexander Z. Harris
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA,Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| |
Collapse
|
11
|
Joanna B, Michal K, Agnieszka WB, Katarzyna Z, Marzena M, Ryszard P, Wojciech S. Alpha-2A but not 2B/C noradrenergic receptors in ventral tegmental area regulate phasic dopamine release in nucleus accumbens core. Neuropharmacology 2022; 220:109258. [PMID: 36116534 DOI: 10.1016/j.neuropharm.2022.109258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/20/2022]
Abstract
Adrenergic receptors (AR) in the ventral tegmental area (VTA) modulate local neuronal activity and, as a consequence, dopamine (DA) release in the mesolimbic forebrain. Such modulation has functional significance: intra-VTA blockade of α1-AR attenuates behavioral responses to salient environmental stimuli in rat models of drug seeking and conditioned fear as well as phasic DA release in the nucleus accumbens (NAc). In contrast, α2-AR in the VTA has been suggested to act primarily as autoreceptors, limiting local noradrenergic input. The regulation of noradrenaline efflux by α2-AR could be of clinical interest, as α2-AR agonists are proposed as promising pharmacological tools in the treatment of PTSD and substance use disorder. Thus, the aim of our study was to determine the subtype-specificity of α2-ARs in the VTA capable of modulating phasic DA release. We used fast scan cyclic voltammetry (FSCV) in anaesthetized male rats to measure DA release in the NAc after combined electrical stimulation and infusion of selected α2-AR antagonists into the VTA. Intra-VTA microinfusion of idazoxan - a non-subtype-specific α2-AR antagonist, as well as BRL-44408 - a selective α2A-AR antagonist, attenuated electrically-evoked DA in the NAc. In contrast, local administration of JP-1302 or imiloxan (α2B- and α2C-AR antagonists, respectively) had no effect. The effect of BRL-44408 on DA release was attenuated by intra-VTA DA D2 antagonist (raclopride) pre-administration. Finally, we confirmed the presence of α2A-AR protein in the VTA using western blotting. In conclusion, these data specify α2A-, but not α2B- or α2C-AR as the receptor subtype controlling NA release in the VTA.
Collapse
Affiliation(s)
- Bernacka Joanna
- Jagiellonian University, Institute of Applied Psychology, Department of Neurobiology and Neuropsychology, Łojasiewicza Str. 4, 30-348, Krakow, Poland; Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343, Krakow, Poland
| | - Kielbinski Michal
- Jagiellonian University, Institute of Applied Psychology, Department of Neurobiology and Neuropsychology, Łojasiewicza Str. 4, 30-348, Krakow, Poland
| | - Wawrzczak-Bargieła Agnieszka
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343, Krakow, Poland
| | - Zajda Katarzyna
- Jagiellonian University, Institute of Applied Psychology, Department of Neurobiology and Neuropsychology, Łojasiewicza Str. 4, 30-348, Krakow, Poland
| | - Maćkowiak Marzena
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343, Krakow, Poland
| | - Przewlocki Ryszard
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Molecular Neuropharmacology, Smętna Str. 12, 31-343, Krakow, Poland
| | - Solecki Wojciech
- Jagiellonian University, Institute of Applied Psychology, Department of Neurobiology and Neuropsychology, Łojasiewicza Str. 4, 30-348, Krakow, Poland.
| |
Collapse
|
12
|
Downs AM, McElligott ZA. Noradrenergic circuits and signaling in substance use disorders. Neuropharmacology 2022; 208:108997. [PMID: 35176286 PMCID: PMC9498225 DOI: 10.1016/j.neuropharm.2022.108997] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/06/2022] [Accepted: 02/08/2022] [Indexed: 12/20/2022]
Abstract
The central noradrenergic system innervates almost all regions of the brain and, as such, is well positioned to modulate many neural circuits implicated in behaviors and physiology underlying substance use disorders. Ample pharmacological evidence demonstrates that α1, α2, and β adrenergic receptors may serve as therapeutic targets to reduce drug -seeking behavior and drug withdrawal symptoms. Further, norepinephrine is a key modulator of the stress response, and stress has been heavily implicated in reinstatement of drug taking. In this review, we discuss recent advances in our understanding of noradrenergic circuitry and noradrenergic receptor signaling in the context of opioid, alcohol, and psychostimulant use disorders.
Collapse
Affiliation(s)
- Anthony M Downs
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Zoe A McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
13
|
Pomrenze MB, Paliarin F, Maiya R. Friend of the Devil: Negative Social Influences Driving Substance Use Disorders. Front Behav Neurosci 2022; 16:836996. [PMID: 35221948 PMCID: PMC8866771 DOI: 10.3389/fnbeh.2022.836996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
Abstract
Substance use disorders in humans have significant social influences, both positive and negative. While prosocial behaviors promote group cooperation and are naturally rewarding, distressing social encounters, such as aggression exhibited by a conspecific, are aversive and can enhance the sensitivity to rewarding substances, promote the acquisition of drug-taking, and reinstate drug-seeking. On the other hand, withdrawal and prolonged abstinence from drugs of abuse can promote social avoidance and suppress social motivation, accentuating drug cravings and facilitating relapse. Understanding how complex social states and experiences modulate drug-seeking behaviors as well as the underlying circuit dynamics, such as those interacting with mesolimbic reward systems, will greatly facilitate progress on understanding triggers of drug use, drug relapse and the chronicity of substance use disorders. Here we discuss some of the common circuit mechanisms underlying social and addictive behaviors that may underlie their antagonistic functions. We also highlight key neurochemicals involved in social influences over addiction that are frequently identified in comorbid psychiatric conditions. Finally, we integrate these data with recent findings on (±)3,4-methylenedioxymethamphetamine (MDMA) that suggest functional segregation and convergence of social and reward circuits that may be relevant to substance use disorder treatment through the competitive nature of these two types of reward. More studies focused on the relationship between social behavior and addictive behavior we hope will spur the development of treatment strategies aimed at breaking vicious addiction cycles.
Collapse
Affiliation(s)
- Matthew B. Pomrenze
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
- *Correspondence: Matthew B. Pomrenze Rajani Maiya
| | - Franciely Paliarin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Rajani Maiya
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- *Correspondence: Matthew B. Pomrenze Rajani Maiya
| |
Collapse
|
14
|
Drug-Evoked Synaptic Plasticity of Excitatory Transmission in the Ventral Tegmental Area. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a039701. [PMID: 32341062 DOI: 10.1101/cshperspect.a039701] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cocaine leads to a strong euphoria, which is at the origin of its recreational use. Past the acute effects, the drug leaves traces in the brain that persist long after it has been cleared from the body. These traces eventually shape behavior such that drug use may become compulsive, and addiction develops. Here, we discuss cocaine-evoked synaptic plasticity of glutamatergic transmission onto dopamine (DA) neurons of the ventral tegmental area (VTA) as one of the earliest traces after a first injection of cocaine. We review the literature that has examined the induction requirements, as well as the expression mechanism of this form of plasticity, and ask the question about its functional significance.
Collapse
|
15
|
Autophagy status as a gateway for stress-induced catecholamine interplay in neurodegeneration. Neurosci Biobehav Rev 2021; 123:238-256. [PMID: 33497785 DOI: 10.1016/j.neubiorev.2021.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
The catecholamine-containing brainstem nuclei locus coeruleus (LC) and ventral tegmental area (VTA) are critically involved in stress responses. Alterations of catecholamine systems during chronic stress may contribute to neurodegeneration, including cognitive decline. Stress-related catecholamine alterations, while contributing to anxiety and depression, might accelerate neuronal degeneration by increasing the formation of toxic dopamine and norepinephrine by-products. These, in turn, may impair proteostasis within a variety of cortical and subcortical areas. In particular, the molecular events governing neurotransmission, neuroplasticity, and proteostasis within LC and VTA affect a variety of brain areas. Therefore, we focus on alterations of autophagy machinery in these nuclei as a relevant trigger in this chain of events. In fact, these catecholamine-containing areas are mostly prone to autophagy-dependent neurodegeneration. Thus, we propose a dynamic hypothesis according to which stress-induced autophagy alterations within the LC-VTA network foster a cascade towards early neurodegeneration within these nuclei.
Collapse
|
16
|
Oliva I, Donate MM, Lefner MJ, Wanat MJ. Cocaine experience abolishes the motivation suppressing effect of CRF in the ventral midbrain. Addict Biol 2021; 26:e12837. [PMID: 31714675 DOI: 10.1111/adb.12837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/22/2019] [Accepted: 09/08/2019] [Indexed: 11/29/2022]
Abstract
Stress affects dopamine-dependent behaviors in part through the actions of corticotropin releasing factor (CRF) in the ventral tegmental area (VTA). For example, acute stress engages CRF signaling in the VTA to suppress the motivation to work for food rewards. In contrast, acute stress promotes drug-seeking behavior through the actions of CRF in the VTA. These diverging behavioral effects in food- and drug-based tasks could indicate that CRF modulates goal-directed actions in a reinforcer-specific manner. Alternatively, prior drug experience could functionally alter how CRF in the VTA regulates dopamine-dependent behavior. To address these possibilities, we examined how intra-VTA injections of CRF influenced cocaine intake and whether prior drug experience alters how CRF modulates the motivation for food rewards. Our results demonstrate that intra-VTA injections of CRF had no effect on drug intake when self-administering cocaine under a progressive ratio reinforcement schedule. We also found that a prior history of either contingent or noncontingent cocaine infusions abolished the capacity for CRF to reduce the motivation for food rewards. Furthermore, voltammetry recordings in the nucleus accumbens illustrate that CRF in the VTA had no effect on cocaine-evoked dopamine release. These results collectively illustrate that exposure to abused substances functionally alters how neuropeptides act within the VTA to influence motivated behavior.
Collapse
Affiliation(s)
- Idaira Oliva
- Neurosciences Institute and Department of Biology University of Texas at San Antonio San Antonio Texas USA
| | - Melissa M. Donate
- Neurosciences Institute and Department of Biology University of Texas at San Antonio San Antonio Texas USA
| | - Merridee J. Lefner
- Neurosciences Institute and Department of Biology University of Texas at San Antonio San Antonio Texas USA
| | - Matthew J. Wanat
- Neurosciences Institute and Department of Biology University of Texas at San Antonio San Antonio Texas USA
| |
Collapse
|
17
|
Perez DM. α 1-Adrenergic Receptors in Neurotransmission, Synaptic Plasticity, and Cognition. Front Pharmacol 2020; 11:581098. [PMID: 33117176 PMCID: PMC7553051 DOI: 10.3389/fphar.2020.581098] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
α1-adrenergic receptors are G-Protein Coupled Receptors that are involved in neurotransmission and regulate the sympathetic nervous system through binding and activating the neurotransmitter, norepinephrine, and the neurohormone, epinephrine. There are three α1-adrenergic receptor subtypes (α1A, α1B, α1D) that are known to play various roles in neurotransmission and cognition. They are related to two other adrenergic receptor families that also bind norepinephrine and epinephrine, the β- and α2-, each with three subtypes (β1, β2, β3, α2A, α2B, α2C). Previous studies assessing the roles of α1-adrenergic receptors in neurotransmission and cognition have been inconsistent. This was due to the use of poorly-selective ligands and many of these studies were published before the characterization of the cloned receptor subtypes and the subsequent development of animal models. With the availability of more-selective ligands and the development of animal models, a clearer picture of their role in cognition and neurotransmission can be assessed. In this review, we highlight the significant role that the α1-adrenergic receptor plays in regulating synaptic efficacy, both short and long-term synaptic plasticity, and its regulation of different types of memory. We will also present evidence that the α1-adrenergic receptors, and particularly the α1A-adrenergic receptor subtype, are a potentially good target to treat a wide variety of neurological conditions with diminished cognition.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
18
|
Pomrenze MB, Giovanetti SM, Maiya R, Gordon AG, Kreeger LJ, Messing RO. Dissecting the Roles of GABA and Neuropeptides from Rat Central Amygdala CRF Neurons in Anxiety and Fear Learning. Cell Rep 2020; 29:13-21.e4. [PMID: 31577943 PMCID: PMC6879108 DOI: 10.1016/j.celrep.2019.08.083] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/25/2019] [Accepted: 08/27/2019] [Indexed: 11/26/2022] Open
Abstract
Central amygdala (CeA) neurons that produce corticotropin-releasing factor (CRF) regulate anxiety and fear learning. These CeACRF neurons release GABA and several neuropeptides predicted to play important yet opposing roles in these behaviors. We dissected the relative roles of GABA, CRF, dynorphin, and neurotensin in CeACRF neurons in anxiety and fear learning by disrupting their expression using RNAi in male rats. GABA, but not CRF, dynorphin, or neurotensin, regulates baseline anxiety-like behavior. In contrast, chemogenetic stimulation of CeACRF neurons evokes anxiety-like behavior dependent on CRF and dynorphin, but not neurotensin. Finally, knockdown of CRF and dynorphin impairs fear learning, whereas knockdown of neurotensin enhances it. Our results demonstrate distinct behavioral roles for GABA, CRF, dynorphin, and neurotensin in a subpopulation of CeA neurons. These results highlight the importance of considering the repertoire of signaling molecules released from a given neuronal population when studying the circuit basis of behavior. Pomrenze et al. demonstrate that CRF neurons of the central amygdala differentially regulate fear and anxiety through the release of GABA and different neuropeptides.
Collapse
Affiliation(s)
- Matthew B Pomrenze
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA.
| | - Simone M Giovanetti
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA
| | - Rajani Maiya
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA
| | - Adam G Gordon
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA
| | - Lauren J Kreeger
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | - Robert O Messing
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Department of Neurology, University of Texas at Austin, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
19
|
Social interaction reward: A resilience approach to overcome vulnerability to drugs of abuse. Eur Neuropsychopharmacol 2020; 37:12-28. [PMID: 32624295 DOI: 10.1016/j.euroneuro.2020.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/10/2020] [Accepted: 06/10/2020] [Indexed: 12/23/2022]
Abstract
Drug addiction is a multifactorial disorder resulting from the complex interaction between biological, environmental and drug-induced effects. Generally, stress is a well-known risk factor for the development of drug addiction and relapse. While most of the research focuses on risk factors that increase the vulnerability to drugs of abuse, recent studies are focusing on the areas of strength/positive coping approaches that can increase resistance to drugs of abuse. In this review, we concentrate on resilience, seen as a dynamic process, which can allow individuals to positively adapt within the context of a specific risk for psychiatric illness. Here, we discuss the effects of social stress in animal models on drug use, particularly cocaine. In contrast, we suggest social interaction reward when available as an alternative to drug use as an approach contracting negative stress effects and increasing resistance to drug use. Indeed, interventions, which aim at enhancing resilience to stress through the facilitation of social interaction and the enhancement of social support, could be particularly effective in helping people cope with stress and preventing drug use problems or relapse. Finally, understanding the neurobiological mechanisms underlying protective factors such as social interaction reward should provide the basis for future evidence-based interventions targeting substance abuse and stress-related pathologies.
Collapse
|
20
|
Acute Stress Enhances Associative Learning via Dopamine Signaling in the Ventral Lateral Striatum. J Neurosci 2020; 40:4391-4400. [PMID: 32321745 DOI: 10.1523/jneurosci.3003-19.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 01/02/2023] Open
Abstract
Acute stress transiently increases vigilance, enhancing the detection of salient stimuli in one's environment. This increased perceptual sensitivity is thought to promote the association of rewarding outcomes with relevant cues. The mesolimbic dopamine system is critical for learning cue-reward associations. Dopamine levels in the ventral striatum are elevated following exposure to stress. Together, this suggests that the mesolimbic dopamine system could mediate the influence of acute stress on cue-reward learning. To address this possibility, we examined how a single stressful experience influenced learning in an appetitive pavlovian conditioning task. Male rats underwent an episode of restraint prior to the first conditioning session. This acute stress treatment augmented conditioned responding in subsequent sessions. Voltammetry recordings of mesolimbic dopamine levels demonstrated that acute stress selectively increased reward-evoked dopamine release in the ventral lateral striatum (VLS), but not in the ventral medial striatum. Antagonizing dopamine receptors in the VLS blocked the stress-induced enhancement of conditioned responding. Collectively, these findings illustrate that stress engages dopamine signaling in the VLS to facilitate appetitive learning.SIGNIFICANCE STATEMENT Acute stress influences learning about aversive and rewarding outcomes. Dopamine neurons are sensitive to stress and critical for reward learning. However, it is unclear whether stress regulates reward learning via dopamine signaling. Using fast-scan cyclic voltammetry as rats underwent pavlovian conditioning, we demonstrate that a single stressful experience increases reward-evoked dopamine release in the ventral lateral striatum. This enhanced dopamine signal accompanies a long-lasting increase in conditioned behavioral responding. These findings highlight that the ventral lateral striatum is a node for mediating the effect of stress on reward processing.
Collapse
|
21
|
Limanaqi F, Busceti CL, Biagioni F, Fornai F, Puglisi-Allegra S. Autophagy-Based Hypothesis on the Role of Brain Catecholamine Response During Stress. Front Psychiatry 2020; 11:569248. [PMID: 33093837 PMCID: PMC7527533 DOI: 10.3389/fpsyt.2020.569248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
Stressful events, similar to abused drugs, significantly affect the homeostatic balance of the catecholamine brain systems while activating compensation mechanisms to restore balance. In detail, norepinephrine (NE)- and dopamine (DA)-containing neurons within the locus coeruleus (LC) and ventral tegmental area (VTA), are readily and similarly activated by psychostimulants and stressful events involving neural processes related to perception, reward, cognitive evaluation, appraisal, and stress-dependent hormonal factors. Brain catecholamine response to stress results in time-dependent regulatory processes involving mesocorticolimbic circuits and networks, where LC-NE neurons respond more readily than VTA-DA neurons. LC-NE projections are dominant in controlling the forebrain DA-targeted areas, such as the nucleus accumbens (NAc) and medial pre-frontal cortex (mPFC). Heavy and persistent coping demand could lead to sustained LC-NE and VTA-DA neuronal activity, that, when persisting chronically, is supposed to alter LC-VTA synaptic connections. Increasing evidence has been provided indicating a role of autophagy in modulating DA neurotransmission and synaptic plasticity. This alters behavior, and emotional/cognitive experience in response to drug abuse and occasionally, to psychological stress. Thus, relevant information to address the role of stress and autophagy can be drawn from psychostimulants research. In the present mini-review we discuss the role of autophagy in brain catecholamine response to stress and its dysregulation. The findings here discussed suggest a crucial role of regulated autophagy in the response and adaptation of LC-NE and VTA-DA systems to stress.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies on Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | - Francesco Fornai
- Department of Translational Research and New Technologies on Medicine and Surgery, University of Pisa, Pisa, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | | |
Collapse
|
22
|
Alpha1-adrenergic receptor blockade in the ventral tegmental area modulates conditional stimulus-induced cocaine seeking. Neuropharmacology 2019; 158:107680. [DOI: 10.1016/j.neuropharm.2019.107680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 05/31/2019] [Accepted: 06/20/2019] [Indexed: 11/24/2022]
|
23
|
Kielbinski M, Bernacka J, Solecki WB. Differential regulation of phasic dopamine release in the forebrain by the VTA noradrenergic receptor signaling. J Neurochem 2019; 149:747-759. [PMID: 31001835 DOI: 10.1111/jnc.14706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/07/2019] [Accepted: 04/10/2019] [Indexed: 12/24/2022]
Abstract
Phasic dopamine (DA) release from the ventral tegmental area (VTA) into forebrain structures is implicated in associative learning and conditional stimulus (CS)-evoked behavioral responses. Mounting evidence points to noradrenaline signaling in the VTA as an important regulatory input. Accordingly, adrenergic receptor (AR) blockade in the VTA has been shown to modulate CS-dependent behaviors. Here, we hypothesized that α1 - and α2 -AR (but not β-AR) activity preferentially modulates phasic, in contrast to tonic, DA release. In addition, these effects could differ between forebrain targets. We used fast-scan cyclic voltammetric measurements in rats to assess the effects of intra-VTA microinfusion of terazosin, a selective α1 -AR antagonist, on electrically evoked phasic DA release in the nucleus accumbens (NAc) core and medial prefrontal cortex (mPFC). Terazosin dose-dependently attenuated phasic, but not tonic, DA release in the NAc core, but not in the mPFC. Next, we measured the effects of intra-VTA administration of the α2 -AR selective antagonist RX-821002 on evoked DA in the NAc core. Similar to the effects of α1 -AR blockade, intra-VTA α2 -AR blockade with RX-0821002 strongly and dose-dependently attenuated phasic, but not tonic, DA release. In contrast, no regulation by RX-821002 was observed in the mPFC. This effect was sensitive to intra-VTA blockade of D2 receptors with raclopride. Finally, the β-AR antagonist propranolol ineffectively modulated DA release in the NAc core. These findings revealed both α1 - and α2 -ARs in the VTA as selective regulators of phasic DA release. Importantly, we demonstrated that AR blockade modulated mesolimbic, in contrast to mesocortical, DA release in previously unstudied heterogeneity in AR regulation of forebrain phasic DA.
Collapse
Affiliation(s)
- Michał Kielbinski
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Joanna Bernacka
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Wojciech B Solecki
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
24
|
CRF modulation of central monoaminergic function: Implications for sex differences in alcohol drinking and anxiety. Alcohol 2018; 72:33-47. [PMID: 30217435 DOI: 10.1016/j.alcohol.2018.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/03/2018] [Accepted: 01/19/2018] [Indexed: 01/06/2023]
Abstract
Decades of research have described the importance of corticotropin-releasing factor (CRF) signaling in alcohol addiction, as well as in commonly co-expressed neuropsychiatric diseases, including anxiety and mood disorders. However, CRF signaling can also acutely regulate binge alcohol consumption, anxiety, and affect in non-dependent animals, possibly via modulation of central monoaminergic signaling. We hypothesize that basal CRF tone is particularly high in animals and humans with an inherent propensity for high anxiety and alcohol consumption, and thus these individuals are at increased risk for the development of alcohol use disorder and comorbid neuropsychiatric diseases. The current review focuses on extrahypothalamic CRF circuits, particularly those stemming from the bed nucleus of the stria terminalis (BNST), found to play a role in basal phenotypes, and examines whether the intrinsic hyperactivity of these circuits is sufficient to escalate the expression of these behaviors and steepen the trajectory of development of disease states. We focus our efforts on describing CRF modulation of biogenic amine neuron populations that have widespread projections to the forebrain to modulate behaviors, including alcohol and drug intake, stress reactivity, and anxiety. Further, we review the known sex differences and estradiol modulation of these neuron populations and CRF signaling at their synapses to address the question of whether females are more susceptible to the development of comorbid addiction and stress-related neuropsychiatric diseases because of hyperactive extrahypothalamic CRF circuits compared to males.
Collapse
|
25
|
Aqueous Extract of Semen Ziziphi Spinosae Exerts Anxiolytic Effects during Nicotine Withdrawal via Improvement of Amygdaloid CRF/CRF1R Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2419183. [PMID: 30245730 PMCID: PMC6139233 DOI: 10.1155/2018/2419183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/26/2018] [Accepted: 08/16/2018] [Indexed: 12/05/2022]
Abstract
Anxiety during nicotine withdrawal (NicW) is a key risk factor for smoking relapse. Semen Ziziphi Spinosae (SZS), which is a prototypical hypnotic-sedative herb in Oriental medicine, has been clinically used to treat insomnia and general anxiety disorders for thousands of years. Thus, the present study evaluated the effects of the aqueous extract of SZS (AESZS) on NicW-induced anxiety in male rats that received subcutaneous administrations of nicotine (Nic) (0.4 mg/kg, twice a day) for 7 d followed by 4 d of withdrawal. During NicW, the rats received four intragastric treatments of AESZS (60 mg/kg/d or 180 mg/kg/d). AESZS dose-dependently attenuated NicW-induced anxiety-like behaviors in the elevated plus maze (EPM) tests and 180 mg/kg/d AESZS inhibited NicW-induced increases in plasma corticosterone. Additionally, the protein and mRNA expressions of corticotropin-releasing factor (CRF) and CRF type 1 receptor (CRF1R) increased in the central nucleus of the amygdala (CeA) during NicW, but these changes were suppressed by 180 mg/kg/d AESZS. A post-AESZS infusion of CRF into the CeA abolished the attenuation of anxiety by AESZS and 180 mg/kg/d AESZS suppressed NicW-induced increases in norepinephrine and 3-methoxy-4-hydroxy-phenylglycol levels in the CeA. The present results suggest that AESZS ameliorated NicW-induced anxiety via improvements in CRF/CRF1R and noradrenergic signaling in the CeA.
Collapse
|
26
|
Newman EL, Leonard MZ, Arena DT, de Almeida RMM, Miczek KA. Social defeat stress and escalation of cocaine and alcohol consumption: Focus on CRF. Neurobiol Stress 2018; 9:151-165. [PMID: 30450381 PMCID: PMC6236516 DOI: 10.1016/j.ynstr.2018.09.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022] Open
Abstract
Both the ostensibly aversive effects of unpredictable episodes of social stress and the intensely rewarding effects of drugs of abuse activate the mesocorticolimbic dopamine systems. Significant neuroadaptations in interacting stress and reward neurocircuitry may underlie the striking connection between stress and substance use disorders. In rodent models, recurring intermittent exposure to social defeat stress appears to produce a distinct profile of neuroadaptations that translates most readily to the repercussions of social stress in humans. In the present review, preclinical rodent models of social defeat stress and subsequent alcohol, cocaine or opioid consumption are discussed with regard to: (1) the temporal pattern of social defeat stress, (2) male and female protocols of social stress-escalated drug consumption, and (3) the neuroplastic effects of social stress, which may contribute to escalated drug-taking. Neuroadaptations in corticotropin-releasing factor (CRF) and CRF modulation of monoamines in the ventral tegmental area and the bed nucleus of the stria terminalis are highlighted as potential mechanisms underlying stress-escalated drug consumption. However, the specific mechanisms that drive CRF-mediated increases in dopamine require additional investigation as do the stress-induced neuroadaptations that may contribute to the development of compulsive patterns of drug-taking.
Collapse
Affiliation(s)
- Emily L Newman
- Psychology Dept., Tufts University, Medford, MA, 02155, USA
| | | | | | - Rosa M M de Almeida
- Institute of Psychology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Klaus A Miczek
- Psychology Dept., Tufts University, Medford, MA, 02155, USA.,Dept. of Neuroscience, Sackler School of Graduate Biomedical Sciences, Boston, MA, 02111, USA
| |
Collapse
|