1
|
Smith ZD, Hetzel S, Meissner A. DNA methylation in mammalian development and disease. Nat Rev Genet 2025; 26:7-30. [PMID: 39134824 DOI: 10.1038/s41576-024-00760-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 12/15/2024]
Abstract
The DNA methylation field has matured from a phase of discovery and genomic characterization to one seeking deeper functional understanding of how this modification contributes to development, ageing and disease. In particular, the past decade has seen many exciting mechanistic discoveries that have substantially expanded our appreciation for how this generic, evolutionarily ancient modification can be incorporated into robust epigenetic codes. Here, we summarize the current understanding of the distinct DNA methylation landscapes that emerge over the mammalian lifespan and discuss how they interact with other regulatory layers to support diverse genomic functions. We then review the rising interest in alternative patterns found during senescence and the somatic transition to cancer. Alongside advancements in single-cell and long-read sequencing technologies, the collective insights made across these fields offer new opportunities to connect the biochemical and genetic features of DNA methylation to cell physiology, developmental potential and phenotype.
Collapse
Affiliation(s)
- Zachary D Smith
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
2
|
Nguyen HH, Gupta I, Cellini A, Papadimitriou JC, Mehra R, Gaykalova DA, Witek ME. Comprehensive Analysis Reveals No Significant Correlation Between p16/CDKN2A Expression and Treatment Outcomes in Laryngeal Squamous Cell Carcinoma. Head Neck 2024. [PMID: 39714101 DOI: 10.1002/hed.28044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/16/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND The p16/CDKN2A protein is being explored as an independent prognostic marker in laryngeal cancer, with studies suggesting that p16-positive patients may have a better prognosis. While its role is well-established in oropharyngeal squamous cell carcinoma (OPSCC) related to HPV, ongoing research indicates its potential prognostic value in laryngeal cancer, even in HPV-negative cases. METHODS In this study, we investigated the association between survival outcomes and p16 expression in a cohort of 310 laryngeal cancer patients from the Cancer Genome Atlas (TCGA) Program and the University of Maryland Medical Center (UMMC). RESULTS In the TCGA cohort, patients with high p16 protein expression had a significantly higher probability of disease-free survival (DFS) at 89%, compared to 51% in the low p16 protein group (p = 0.0266). Additionally, the mean relative p16 protein expression decreased significantly with advancing TNM stage, measured at 1.116 for stage II, 1.075 for stage III, and 0.6204 for stage IV (p = 0.7871 for stage II vs. stage III, p = 0.0065 for stage III vs. stage IV, p = 0.0031 for stage I vs. stage IV). Protein expression for p16 also correlated with CDKN2A retention/deletion status (p = 0.0077), where the DFS was higher in patients with retained CDKN2A than those with deleted CDKN2A (p = 0.0187). Multivariate analysis of the UMMC and TCGA cohorts revealed that both an increase in the patient's age and higher T stage significantly increased the risk of mortality (p = 0.05, p = 0.01, respectively). CONCLUSION While this study observes trends suggesting that low p16 protein expression is associated with longer DFS and advanced TNM stage in laryngeal cancer, the multivariate analysis did not establish p16 as an independent prognostic factor. These findings suggest that while p16 may have a biological role in tumor progression, its utility as a standalone prognostic marker in clinical outcomes requires further validation.
Collapse
Affiliation(s)
| | - Ishita Gupta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ashley Cellini
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - John C Papadimitriou
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ranee Mehra
- Department of Medical Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Matthew E Witek
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Medstar Georgetown University Hospital, Washington, DC, USA
| |
Collapse
|
3
|
Chang S, Moon R, Nam D, Lee SW, Yoon I, Lee DS, Choi S, Paek E, Hwang D, Hur JK, Nam Y, Chang R, Park H. Hypoxia increases methylated histones to prevent histone clipping and heterochromatin redistribution during Raf-induced senescence. Nucleic Acids Res 2024:gkae1210. [PMID: 39660649 DOI: 10.1093/nar/gkae1210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024] Open
Abstract
Hypoxia enhances histone methylation by inhibiting oxygen- and α-ketoglutarate-dependent demethylases, resulting in increased methylated histones. This study reveals how hypoxia-induced methylation affects histone clipping and the reorganization of heterochromatin into senescence-associated heterochromatin foci (SAHF) during oncogene-induced senescence (OIS) in IMR90 human fibroblasts. Notably, using top-down proteomics, we discovered specific cleavage sites targeted by Cathepsin L (CTSL) in H3, H2B and H4 during Raf activation, identifying novel sites in H2B and H4. Hypoxia counteracts CTSL-mediated histone clipping by promoting methylation without affecting CTSL's activity. This increase in methylation under hypoxia protects against clipping, reshaping the epigenetic landscape and influencing chromatin accessibility, as shown by ATAC-seq analysis. These insights underscore the pivotal role of hypoxia-induced histone methylation in protecting chromatin from significant epigenetic shifts during cellular aging.
Collapse
Affiliation(s)
- Soojeong Chang
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Ramhee Moon
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Dowoon Nam
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Won Lee
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Insoo Yoon
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Dong-Sung Lee
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Seunghyuk Choi
- Department of Computer Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Eunok Paek
- Department of Computer Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Junho K Hur
- Department of Genetics, College of Medicine, Hanyang University, Seoul 04763, Republic of Korea
| | - Youhyun Nam
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Republic of Korea
| | - Rakwoo Chang
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Republic of Korea
| | - Hyunsung Park
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Republic of Korea
| |
Collapse
|
4
|
Balamurli G, Liew AQX, Tee WW, Pervaiz S. Interplay between epigenetics, senescence and cellular redox metabolism in cancer and its therapeutic implications. Redox Biol 2024; 78:103441. [PMID: 39612910 PMCID: PMC11629570 DOI: 10.1016/j.redox.2024.103441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
There is accumulating evidence indicating a close crosstalk between key molecular events regulating cell growth and proliferation, which could profoundly impact carcinogenesis and its progression. Here we focus on reviewing observations highlighting the interplay between epigenetic modifications, irreversible cell cycle arrest or senescence, and cellular redox metabolism. Epigenetic alterations, such as DNA methylation and histone modifications, dynamically influence tumour transcriptome, thereby impacting tumour phenotype, survival, growth and spread. Interestingly, the acquisition of senescent phenotype can be triggered by epigenetic changes, acting as a double-edged sword via its ability to suppress tumorigenesis or by facilitating an inflammatory milieu conducive for cancer progression. Concurrently, an aberrant redox metabolism, which is a function of the balance between reactive oxygen species (ROS) generation and intracellular anti-oxidant defences, influences signalling cascades and genomic stability in cancer cells by serving as a critical link between epigenetics and senescence. Recognizing this intricate interconnection offers a nuanced perspective for therapeutic intervention by simultaneously targeting specific epigenetic modifications, modulating senescence dynamics, and restoring redox homeostasis.
Collapse
Affiliation(s)
- Geoffrey Balamurli
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Angeline Qiu Xia Liew
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), NUS, Singapore
| | - Wee Wei Tee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), NUS, Singapore; NUS Medicine Healthy Longevity Program, NUS, Singapore; National University Cancer Institute, National University Health System, Singapore.
| |
Collapse
|
5
|
Zhao J, Chen A, Wang R, Qiu D, Chen H, Li J, Zhang J, Wang T, Wang Y, Lin Y, Zhou J, Du Y, Yuan H, Zhang Y, Miao D, Wang Y, Jin J. Bmi-1 Epigenetically Orchestrates Osteogenic and Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells to Delay Bone Aging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404518. [PMID: 39225325 PMCID: PMC11633582 DOI: 10.1002/advs.202404518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/05/2024] [Indexed: 09/04/2024]
Abstract
With the increase in the aging population, senile osteoporosis (SOP) has become a major global public health concern. Here, it is found that Prx1 and Bmi-1 co-localized in trabecular bone, bone marrow cavity, endosteum, and periosteum. Prx1-driven Bmi-1 knockout in bone-marrow mesenchymal stem cells (BMSCs) reduced bone mass and increased bone marrow adiposity by inhibiting osteoblastic bone formation, promoting osteoclastic bone resorption, downregulating the proliferation and osteogenic differentiation of BMSCs, and upregulating the adipogenic differentiation of BMSCs. However, Prx1-driven Bmi-1 overexpression showed a contrasting phenotype to Prx1-driven Bmi-1 knockout in BMSCs. Regarding mechanism, Bmi-1-RING1B bound to DNMT3A and promoted its ubiquitination and inhibited DNA methylation of Runx2 at the region from 45047012 to 45047313 bp, thus promoting the osteogenic differentiation of BMSCs. Moreover, Bmi-1-EZH2 repressed the transcription of Cebpa by promoting H3K27 trimethylation at the promoter region -1605 to -1596 bp, thus inhibiting the adipogenic differentiation of BMSCs. It is also found that Prx1-driven Bmi-1 overexpression rescued the SOP induced by Prx1-driven Bmi-1 knockout in BMSCs. Thus, Bmi-1 functioned as a hub protein in the epigenetic regulation of BMSCs differentiation to delay bone aging. The Prx1-driven Bmi-1 overexpression in BMSCs can be used as an approach for the translational therapy of SOP.
Collapse
Affiliation(s)
- Jingyu Zhao
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Ao Chen
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Rong Wang
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Dong Qiu
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityState Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral DiseasesJiangsu Province Engineering Research Centre of Stomatological Translational MedicineNanjing Medical UniversityNanjingJiangsu210029China
| | - Haiyun Chen
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Jiyu Li
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Jin'ge Zhang
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Tianxiao Wang
- School of PharmacyNanjing Medical UniversityNanjingJiangsu211166China
| | - Yue Wang
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Yujie Lin
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Jiawen Zhou
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Yifei Du
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityState Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral DiseasesJiangsu Province Engineering Research Centre of Stomatological Translational MedicineNanjing Medical UniversityNanjingJiangsu210029China
| | - Hua Yuan
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityState Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral DiseasesJiangsu Province Engineering Research Centre of Stomatological Translational MedicineNanjing Medical UniversityNanjingJiangsu210029China
| | - Yongjie Zhang
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Dengshun Miao
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Yuli Wang
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityState Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral DiseasesJiangsu Province Engineering Research Centre of Stomatological Translational MedicineNanjing Medical UniversityNanjingJiangsu210029China
| | - Jianliang Jin
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| |
Collapse
|
6
|
Boonmee A, Benjaskulluecha S, Kueanjinda P, Wongprom B, Pattarakankul T, Sri-Ngern-Ngam K, Umthong S, Takano J, Koseki H, Palaga T. A polycomb group protein EED epigenetically regulates responses in lipopolysaccharide tolerized macrophages. Epigenetics Chromatin 2024; 17:36. [PMID: 39614386 DOI: 10.1186/s13072-024-00562-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND To avoid exaggerated inflammation, innate immune cells adapt to become hypo-responsive or "tolerance" in response to successive exposure to stimuli, which is a part of innate immune memory. Polycomb repressive complex 2 (PRC2) mediates the transcriptional repression by catalyzing histone H3 lysine 27 trimethylation (H3K27me3) but little is known about its role in lipopolysaccharide (LPS)-induced tolerance in macrophages. RESULT We examined the unexplored roles of EED, a component of the PRC2, in LPS tolerant macrophages. In Eed KO macrophages, significant reduction in H3K27me3 and increased active histone mark, H3K27ac, was observed. Eed KO macrophages exhibited dampened pro-inflammatory cytokine productions (TNF-α and IL-6) while increasing non-tolerizable genes upon LPS tolerance. Pharmacological inhibition of EED also reduced TNF-α and IL-6 during LPS tolerance. Mechanistically, LPS tolerized Eed KO macrophages failed to increase glycolytic activity. RNA-Seq analyses revealed that the hallmarks of hypoxia, TGF-β, and Wnt/β-catenin signaling were enriched in LPS tolerized Eed KO macrophages. Among the upregulated genes, the promoter of Runx3 was found to be associated with EED. Silencing Runx3 in Eed KO macrophages partially rescued the dampened pro-inflammatory response during LPS tolerance. Enrichment of H3K27me3 was decreased in a subset of genes that are upregulated in Eed KO LPS tolerized macrophages, indicating the direct regulatory roles of PRC2 on such genes. Motif enrichment analysis identified the ETS family transcription factor binding sites in the absence of EED in LPS tolerized macrophages. CONCLUSION Our results provided mechanistic insight into how the PRC2 via EED regulates LPS tolerance in macrophages by epigenetically silencing genes that play a crucial role during LPS tolerance such as those of the TGF-β/Runx3 axis.
Collapse
Affiliation(s)
- Atsadang Boonmee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Salisa Benjaskulluecha
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
- Inter-disciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Patipark Kueanjinda
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Benjawan Wongprom
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thitiporn Pattarakankul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Materials and Bio-Interfaces, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kittitach Sri-Ngern-Ngam
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supawadee Umthong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Junichiro Takano
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Schurer A, Glushakow-Smith SG, Gritsman K. Targeting chromatin modifying complexes in acute myeloid leukemia. Stem Cells Transl Med 2024:szae089. [PMID: 39607901 DOI: 10.1093/stcltm/szae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024] Open
Abstract
Acute myeloid leukemia (AML) is a devastating hematologic malignancy with high rates of relapse, which can, in part, be attributed to the dysregulation of chromatin modifications. These epigenetic modifications can affect the capacity of hematopoietic cells to self-renew or differentiate, which can lead to transformation. Aberrant histone modifications contribute to the derepression of self-renewal genes such as HOXA/B and MEIS1 in committed hematopoietic progenitors, which is considered a key mechanism of leukemogenesis in MLL-rearranged (MLL-r) and NPM1-mutated AML. As regulators of some of the key histone modifications in this disease, the menin-KMT2A and polycomb repressive (PRC1/2) complexes have been identified as promising targets for the treatment of AML. This review explores recent discoveries of how leukemic cells hijack these complexes and their interactions with other chromatin regulators to promote disease progression. We also discuss inhibitors targeting these complexes that have demonstrated therapeutic efficacy in preclinical and clinical studies and propose novel therapeutic combinations targeting the KMT2A and PRC1/2 broader interacting networks to overcome issues of resistance to existing monotherapies.
Collapse
Affiliation(s)
- Alexandra Schurer
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
- The Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Shira G Glushakow-Smith
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
- The Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Kira Gritsman
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
- The Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, United States
- Department of Medical Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, United States
- Center for Tumor Dormancy, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, United States
- Marilyn and Stanley M. Katz Institute for Immunotherapy for Cancer and Inflammatory Disorders, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| |
Collapse
|
8
|
Mushtaq M, Liaño-Pons J, Wang J, Alzrigat M, Yuan Y, Ruiz-Pérez MV, Chen Y, Kashuba E, Haglund de Flon F, Brodin B, Arsenian-Henriksson M. EZH2 inhibition sensitizes retinoic acid-driven senescence in synovial sarcoma. Cell Death Dis 2024; 15:836. [PMID: 39550391 PMCID: PMC11569238 DOI: 10.1038/s41419-024-07176-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024]
Abstract
Synovial sarcoma (SS) is driven by a unique t(18;X) chromosomal translocation resulting in expression of the SS18-SSX fusion oncoprotein, a transcriptional regulator with both activating and repressing functions. However, the manner in which SS18-SSX contributes to the development of SS is not entirely known. Here, we show that SS18-SSX drives the expression of Preferentially Expressed Antigen in Melanoma (PRAME), which is highly expressed in SS but whose function remains poorly understood. The fusion protein directly binds and activates the PRAME promoter and we found that expression of SS18-SSX and PRAME are positively correlated. We provide evidence that PRAME modulates retinoic acid (RA) signaling, forming a ternary complex with the RA receptor α (RARα) and the Enhancer of Zeste Homolog 2 (EZH2). Knockdown of PRAME suppressed the response to all-trans retinoic acid (ATRA) supporting PRAME's role in modulating RA-signaling. Notably, we demonstrate that combined pharmacological inhibition of EZH2 and treatment with ATRA reconstituted RA signaling followed by reduced proliferation and induction of cellular senescence. In conclusion, our data provides new insights on the role of the SS18-SSX fusion protein in regulation of PRAME expression and RA signaling, highlighting the therapeutic potential of disrupting the RARα-PRAME-EZH2 complex in SS. Schematic presentation of the proposed model. A The RARα-PRAME-EZH2 ternary complex in SS. The fusion SS18-SSX oncoprotein binds to the PRAME promoter and activates its expression. PRAME in turn interacts with RARα-RXR heterodimers as well as with EZH2, and the complex binds to retinoic acid response elements (RAREs) in the DNA. This results in transcriptional repression of retinoic acid (RA) responsive genes and thus inhibition of RA-signaling, allowing tumor cell proliferation. B Therapeutic strategy. Treatment with an EZH2 inhibitor, such as GSK343, or activation of RAR receptors via all-trans retinoic acid (ATRA), disrupts the RARα-PRAME-EZH2 ternary complex and restores RA-signaling. Exposure to GSK343 or ATRA results in inhibition of cell proliferation and induction of cellular senescence, where GSK343 shows a dominant effect. The Figure was created with Biorender.com.
Collapse
Affiliation(s)
- Muhammad Mushtaq
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
- Department of Biotechnology, Faculty of Life Sciences and Informatics. Balochistan University of Information Technology, Engineering, and Management Sciences (BUITEMS), 87300, Quetta, Pakistan.
| | - Judit Liaño-Pons
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
| | - Jiansheng Wang
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Mohammad Alzrigat
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Ye Yuan
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - María Victoria Ruiz-Pérez
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Yi Chen
- Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 76, Stockholm, Sweden
- Division of Hematology and Oncology, Department of Medicine, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, USA
| | - Elena Kashuba
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65, Stockholm, Sweden
- RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of NAS of Ukraine, 03022, Kyiv, Ukraine
| | - Felix Haglund de Flon
- Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 76, Stockholm, Sweden
| | - Bertha Brodin
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
| |
Collapse
|
9
|
Daigh LH, Saha D, Rosenthal DL, Ferrick KR, Meyer T. Uncoupling of mTORC1 from E2F activity maintains DNA damage and senescence. Nat Commun 2024; 15:9181. [PMID: 39448567 PMCID: PMC11502682 DOI: 10.1038/s41467-024-52820-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
DNA damage is a primary trigger for cellular senescence, which in turn causes organismal aging and is a promising target of anti-aging therapies. Most DNA damage occurs when DNA is fragile during DNA replication in S phase, but senescent cells maintain DNA damage long-after DNA replication has stopped. How senescent cells induce DNA damage and why senescent cells fail to repair damaged DNA remain open questions. Here, we combine reversible expression of the senescence-inducing CDK4/6 inhibitory protein p16INK4 (p16) with live single-cell analysis and show that sustained mTORC1 signaling triggers senescence in non-proliferating cells by increasing transcriptional DNA damage and inflammation signaling that persists after p16 is degraded. Strikingly, we show that activation of E2F transcriptional program, which is regulated by CDK4/6 activity and promotes expression of DNA repair proteins, repairs transcriptionally damaged DNA without requiring DNA replication. Together, our study suggests that senescence can be maintained by ongoing mTORC1-induced transcriptional DNA damage that cannot be sufficiently repaired without induction of protective E2F target genes.
Collapse
Affiliation(s)
- Leighton H Daigh
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Debarya Saha
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - David L Rosenthal
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Katherine R Ferrick
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
10
|
Chhabra Y, Fane ME, Pramod S, Hüser L, Zabransky DJ, Wang V, Dixit A, Zhao R, Kumah E, Brezka ML, Truskowski K, Nandi A, Marino-Bravante GE, Carey AE, Gour N, Maranto DA, Rocha MR, Harper EI, Ruiz J, Lipson EJ, Jaffee EM, Bibee K, Sunshine JC, Ji H, Weeraratna AT. Sex-dependent effects in the aged melanoma tumor microenvironment influence invasion and resistance to targeted therapy. Cell 2024; 187:6016-6034.e25. [PMID: 39243764 PMCID: PMC11580838 DOI: 10.1016/j.cell.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/19/2024] [Accepted: 08/07/2024] [Indexed: 09/09/2024]
Abstract
There is documented sex disparity in cutaneous melanoma incidence and mortality, increasing disproportionately with age and in the male sex. However, the underlying mechanisms remain unclear. While biological sex differences and inherent immune response variability have been assessed in tumor cells, the role of the tumor-surrounding microenvironment, contextually in aging, has been overlooked. Here, we show that skin fibroblasts undergo age-mediated, sex-dependent changes in their proliferation, senescence, ROS levels, and stress response. We find that aged male fibroblasts selectively drive an invasive, therapy-resistant phenotype in melanoma cells and promote metastasis in aged male mice by increasing AXL expression. Intrinsic aging in male fibroblasts mediated by EZH2 decline increases BMP2 secretion, which in turn drives the slower-cycling, highly invasive, and therapy-resistant melanoma cell phenotype, characteristic of the aged male TME. Inhibition of BMP2 activity blocks the emergence of invasive phenotypes and sensitizes melanoma cells to BRAF/MEK inhibition.
Collapse
Affiliation(s)
- Yash Chhabra
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | - Mitchell E Fane
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Sneha Pramod
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Laura Hüser
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Daniel J Zabransky
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Vania Wang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Agrani Dixit
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Ruzhang Zhao
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Edwin Kumah
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Megan L Brezka
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Kevin Truskowski
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Asmita Nandi
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Gloria E Marino-Bravante
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Alexis E Carey
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Naina Gour
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Devon A Maranto
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Murilo R Rocha
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Elizabeth I Harper
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Justin Ruiz
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Evan J Lipson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205, USA; The Cancer Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kristin Bibee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joel C Sunshine
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
11
|
Yadav P, Jain R, Yadav RK. Emerging roles of cancer-associated histone mutations in genomic instabilities. Front Cell Dev Biol 2024; 12:1455572. [PMID: 39439908 PMCID: PMC11494296 DOI: 10.3389/fcell.2024.1455572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Epigenetic mechanisms often fuel the quick evolution of cancer cells from normal cells. Mutations or aberrant expressions in the enzymes of DNA methylation, histone post-translational modifications, and chromatin remodellers have been extensively investigated in cancer pathogenesis; however, cancer-associated histone mutants have gained momentum in recent decades. Next-generation sequencing of cancer cells has identified somatic recurrent mutations in all the histones (H3, H4, H2A, H2B, and H1) with different frequencies for various tumour types. Importantly, the well-characterised H3K27M, H3G34R/V, and H3K36M mutations are termed as oncohistone mutants because of their wide roles, from defects in cellular differentiation, transcriptional dysregulation, and perturbed epigenomic profiles to genomic instabilities. Mechanistically, these histone mutants impart their effects on histone modifications and/or on irregular distributions of chromatin complexes. Recent studies have identified the crucial roles of the H3K27M and H3G34R/V mutants in the DNA damage response pathway, but their impacts on chemotherapy and tumour progression remain elusive. In this review, we summarise the recent developments in their functions toward genomic instabilities and tumour progression. Finally, we discuss how such a mechanistic understanding can be harnessed toward the potential treatment of tumours harbouring the H3K27M, H3G34R/V, and H3K36M mutations.
Collapse
|
12
|
Jonkhout MCM, Vanhessche T, Ferreira M, Verbinnen I, Withof F, Van der Hoeven G, Szekér K, Azhir Z, Lien WH, Van Eynde A, Bollen M. Embryonic NIPP1 Depletion in Keratinocytes Triggers a Cell Cycle Arrest and Premature Senescence in Adult Mice. J Invest Dermatol 2024; 144:2162-2175.e12. [PMID: 38431220 DOI: 10.1016/j.jid.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
NIPP1 is a ubiquitously expressed regulatory subunit of PP1. Its embryonic deletion in keratinocytes causes chronic sterile skin inflammation, epidermal hyperproliferation, and resistance to mutagens in adult mice. To explore the primary effects of NIPP1 deletion, we first examined hair cycle progression of NIPP1 skin knockouts (SKOs). The entry of the first hair cycle in the SKOs was delayed owing to prolonged quiescence of hair follicle stem cells. In contrast, the entry of the second hair cycle in the SKOs was advanced as a result of precocious activation of hair follicle stem cells. The epidermis of SKOs progressively accumulated senescent cells, and this cell-fate switch was accelerated by DNA damage. Primary keratinocytes from SKO neonates and human NIPP1-depleted HaCaT keratinocytes failed to proliferate and showed an increase in the expression of cell cycle inhibitors (p21, p16/Ink4a, and/or p19/Arf) and senescence-associated-secretory-phenotype factors as well as in DNA damage (γH2AX and 53BP1). Our data demonstrate that the primary effect of NIPP1 deletion in keratinocytes is a cell cycle arrest and premature senescence that gradually progresse to chronic senescence and likely contribute to the decreased sensitivity of SKOs to mutagens.
Collapse
Affiliation(s)
- Marloes C M Jonkhout
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Tijs Vanhessche
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Mónica Ferreira
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Iris Verbinnen
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Fabienne Withof
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Gerd Van der Hoeven
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Kathelijne Szekér
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Zahra Azhir
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Wen-Hui Lien
- de Duve Institute, Faculty of Medicine, Université catholique de Louvain, Brussels, Belgium
| | - Aleyde Van Eynde
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium.
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Zhou Y, Yang Y, Wang B, Chen W, Wei Y, Wu R, Meng L, Lyu L. Discovery of ferroptosis-related genes in renal ischemia reperfusion and evaluate the potential impact on kidney transplantation. Front Immunol 2024; 15:1394477. [PMID: 39308866 PMCID: PMC11412852 DOI: 10.3389/fimmu.2024.1394477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Background Renal ischemia reperfusion injury (IRI) is one of the pivotal event of acute kidney injury (AKI), and they are unavoidable in the process of kidney transplantation, which eventually leads to the loss of renal allograft. Ferroptosis is a newly identified programmed cell death. Recent studies have suggested that ferroptosis may participate in the pathophysiological process of renal IRI. Therefore, we aimed to determine biomarkers associated with ferroptosis during renal IRI and their impact on renal allografts. Methods We conducted a comprehensive bioinformatics analysis and established an IRI-AKI animal model to illustrate the critical role of ferroptosis-related hub genes (FRHGs) in IRI-AKI and their potential impact on kidney transplantation. Results In this study, we identified 60 ferroptosis-related genes (FRGs) in renal IRI based on the GSE148420 dataset and FerrDb database. And then we performed functional annotation analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Protein-protein interaction (PPI) network was constructed by online tool String. EZH2, CDKN1A, PPARA, EGR1, ATF3, and CD44 were identited as six ferroptosis-related hubgenes (FRHGs) using four methods, including MMC, Degree, DMNC, and EPC. FRHGs expression level were verified by the validation sets GSE58438 and GSE126805. Protein expression level of FRHGs verified by Proteomics and Western blot. Cibersort was utilized to analyze immune cell infiltration during renal IRI as well as the correlation between FRHGs and immune cells. The GSE21374 dataset was used for renal allografts survival analysis. Finally, We induced the IRI-AKI animal model and illustrated the importance of FRGHs CD44 in ferroptosis and the accumulation of macrophages. Conclusion We identified 6 FRHGs. We found that FRHGs not only exhibited significant correlation with immune cells but also directly influenced the survival of transplanted kidneys in the human population. Among six FRHGs, only CD44 was overexpressed at both the gene and protein levels. Anti-CD44 exerts a protective effect by inhibiting ferroptosis and the accumulation of M1 macrophages during renal IRI. This study provided new insights into the pathogenesis of renal IRI and provided new evidence for its treatment.
Collapse
Affiliation(s)
- Yao Zhou
- Department of Emergency, Guangxi Academy of Medical Sciences & People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yuwei Yang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Bo Wang
- Department of Emergency, Guangxi Academy of Medical Sciences & People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wan Chen
- Department of Emergency, Guangxi Academy of Medical Sciences & People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yanlin Wei
- Department of Emergency, Guangxi Academy of Medical Sciences & People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ruihua Wu
- Department of Emergency, Guangxi Academy of Medical Sciences & People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - LingZhang Meng
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, & The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Liwen Lyu
- Department of Emergency, Guangxi Academy of Medical Sciences & People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
14
|
Zhang X, Wang T. YIPF2 regulates genome integrity. Cell Biosci 2024; 14:114. [PMID: 39238039 PMCID: PMC11376028 DOI: 10.1186/s13578-024-01300-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
Understanding of the mechanisms for genome integrity maintenance can help in developing effective intervention strategies to combat aging. A whole-genome RNAi screen was conducted to identify novel factors involved in maintaining genome stability. The potential target genes identified in the screening are related to the cell cycle, proteasome, and spliceosomes. Unexpectedly, the Golgi protein YIPF2 has been found to play a critical role in maintaining genome stability. The depletion of YIPF2 hinders the process of homologous recombination (HR) repair, which then triggers DNA damage response mechanisms, ultimately leading to cellular senescence. The overexpression of YIPF2 facilitated cellular recovery from DNA damage induced by chemotherapy agents or replicative senescence-associated DNA damage. Our findings indicate that only the intact Golgi apparatus containing YIPF2 provides a protective effect on genome integrity.
Collapse
Affiliation(s)
- Xiao Zhang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint, Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou, China
- GIBH-CUHK Joint Research Laboratory On Stem Cell and Regenerative Medicine, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint, Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou, China.
- GIBH-CUHK Joint Research Laboratory On Stem Cell and Regenerative Medicine, Guangzhou, China.
| |
Collapse
|
15
|
Xiong J, Dong L, Lv Q, Yin Y, Zhao J, Ke Y, Wang S, Zhang W, Wu M. Targeting senescence-associated secretory phenotypes to remodel the tumour microenvironment and modulate tumour outcomes. Clin Transl Med 2024; 14:e1772. [PMID: 39270064 PMCID: PMC11398298 DOI: 10.1002/ctm2.1772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Accepted: 07/08/2024] [Indexed: 09/15/2024] Open
Abstract
Tumour cell senescence can be induced by various factors, including DNA damage, inflammatory signals, genetic toxins, ionising radiation and nutrient metabolism. The senescence-associated secretory phenotype (SASP), secreted by senescent tumour cells, possesses the capacity to modulate various immune cells, including macrophages, T cells, natural killer cells and myeloid-derived suppressor cells, as well as vascular endothelial cells and fibroblasts within the tumour microenvironment (TME), and this modulation can result in either the promotion or suppression of tumorigenesis and progression. Exploring the impact of SASP on the TME could identify potential therapeutic targets, yet limited studies have dissected its functions. In this review, we delve into the causes and mechanisms of tumour cell senescence. We then concentrate on the influence of SASP on the tumour immune microenvironment, angiogenesis, extracellular matrix and the reprogramming of cancer stem cells, along with their associated tumour outcomes. Last, we present a comprehensive overview of the diverse array of senotherapeutics, highlighting their prospective advantages and challenge for the treatment of cancer patients. KEY POINTS: Senescence-associated secretory phenotype (SASP) secretion from senescent tumour cells significantly impacts cancer progression and biology. SASP is involved in regulating the remodelling of the tumour microenvironment, including immune microenvironment, vascular, extracellular matrix and cancer stem cells. Senotherapeutics, such as senolytic, senomorphic, nanotherapy and senolytic vaccines, hold promise for enhancing cancer treatment efficacy.
Collapse
Affiliation(s)
- Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lu Dong
- The Second Clinical College of Wuhan University, Wuhan, China
| | - Qiongying Lv
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yutong Yin
- The First Clinical College of Wuhan University, Wuhan, China
| | - Jiahui Zhao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Youning Ke
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Yanagawa K, Kuma A, Hamasaki M, Kita S, Yamamuro T, Nishino K, Nakamura S, Omori H, Kaminishi T, Oikawa S, Kato Y, Edahiro R, Kawagoe R, Taniguchi T, Tanaka Y, Shima T, Tabata K, Iwatani M, Bekku N, Hanayama R, Okada Y, Akimoto T, Kosako H, Takahashi A, Shimomura I, Sakata Y, Yoshimori T. The Rubicon-WIPI axis regulates exosome biogenesis during ageing. Nat Cell Biol 2024; 26:1558-1570. [PMID: 39174742 DOI: 10.1038/s41556-024-01481-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
Cells release intraluminal vesicles in multivesicular bodies as exosomes to communicate with other cells. Although recent studies suggest an intimate link between exosome biogenesis and autophagy, the detailed mechanism is not fully understood. Here we employed comprehensive RNA interference screening for autophagy-related factors and discovered that Rubicon, a negative regulator of autophagy, is essential for exosome release. Rubicon recruits WIPI2d to endosomes to promote exosome biogenesis. Interactome analysis of WIPI2d identified the ESCRT components that are required for intraluminal vesicle formation. Notably, we found that Rubicon is required for an age-dependent increase of exosome release in mice. In addition, small RNA sequencing of serum exosomes revealed that Rubicon determines the fate of exosomal microRNAs associated with cellular senescence and longevity pathways. Taken together, our current results suggest that the Rubicon-WIPI axis functions as a key regulator of exosome biogenesis and is responsible for age-dependent changes in exosome quantity and quality.
Collapse
Affiliation(s)
- Kyosuke Yanagawa
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Akiko Kuma
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
- Health Promotion System Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Maho Hamasaki
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Shunbun Kita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Tokyo New Drug Research Laboratories, Pharmaceutical Business Unit, Kowa Company, Higashimurayama, Japan
| | - Tadashi Yamamuro
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Kohei Nishino
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Japan
- Department of Biochemistry, Nara Medical University, Kashihara, Japan
| | - Hiroko Omori
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Tatsuya Kaminishi
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Satoshi Oikawa
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Waseda Institute for Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Yoshio Kato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Ryuya Edahiro
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryosuke Kawagoe
- i2i-Labo, Yokohama Research Center, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Yokohama, Japan
| | - Takako Taniguchi
- i2i-Labo, Yokohama Research Center, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Yokohama, Japan
| | - Yoko Tanaka
- Division of Cellular Senescence, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takayuki Shima
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Biochemistry, Nara Medical University, Kashihara, Japan
| | - Keisuke Tabata
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Miki Iwatani
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Nao Bekku
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Rikinari Hanayama
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Statistical Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
- WPI Premium Research Institute for Human Metaverse Medicine, Osaka University, Suita, Japan
| | - Takayuki Akimoto
- Laboratory of Muscle Biology, Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Akiko Takahashi
- Division of Cellular Senescence, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan.
- Health Promotion System Science, Graduate School of Medicine, Osaka University, Suita, Japan.
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.
| |
Collapse
|
17
|
Etoh K, Araki H, Koga T, Hino Y, Kuribayashi K, Hino S, Nakao M. Citrate metabolism controls the senescent microenvironment via the remodeling of pro-inflammatory enhancers. Cell Rep 2024; 43:114496. [PMID: 39043191 DOI: 10.1016/j.celrep.2024.114496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/22/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
The senescent microenvironment and aged cells per se contribute to tissue remodeling, chronic inflammation, and age-associated dysfunction. However, the metabolic and epigenomic bases of the senescence-associated secretory phenotype (SASP) remain largely unknown. Here, we show that ATP-citrate lyase (ACLY), a key enzyme in acetyl-coenzyme A (CoA) synthesis, is essential for the pro-inflammatory SASP, independent of persistent growth arrest in senescent cells. Citrate-derived acetyl-CoA facilitates the action of SASP gene enhancers. ACLY-dependent de novo enhancers augment the recruitment of the chromatin reader BRD4, which causes SASP activation. Consistently, specific inhibitions of the ACLY-BRD4 axis suppress the STAT1-mediated interferon response, creating the pro-inflammatory microenvironment in senescent cells and tissues. Our results demonstrate that ACLY-dependent citrate metabolism represents a selective target for controlling SASP designed to promote healthy aging.
Collapse
Affiliation(s)
- Kan Etoh
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Hirotaka Araki
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Tomoaki Koga
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yuko Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kanji Kuribayashi
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan.
| |
Collapse
|
18
|
Di Giorgio E, Dalla E, Tolotto V, D’Este F, Paluvai H, Ranzino L, Brancolini C. HDAC4 influences the DNA damage response and counteracts senescence by assembling with HDAC1/HDAC2 to control H2BK120 acetylation and homology-directed repair. Nucleic Acids Res 2024; 52:8218-8240. [PMID: 38874468 PMCID: PMC11317144 DOI: 10.1093/nar/gkae501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
Access to DNA is the first level of control in regulating gene transcription, a control that is also critical for maintaining DNA integrity. Cellular senescence is characterized by profound transcriptional rearrangements and accumulation of DNA lesions. Here, we discovered an epigenetic complex between HDAC4 and HDAC1/HDAC2 that is involved in the erase of H2BK120 acetylation. The HDAC4/HDAC1/HDAC2 complex modulates the efficiency of DNA repair by homologous recombination, through dynamic deacetylation of H2BK120. Deficiency of HDAC4 leads to accumulation of H2BK120ac, impaired recruitment of BRCA1 and CtIP to the site of lesions, accumulation of damaged DNA and senescence. In senescent cells this complex is disassembled because of increased proteasomal degradation of HDAC4. Forced expression of HDAC4 during RAS-induced senescence reduces the genomic spread of γH2AX. It also affects H2BK120ac levels, which are increased in DNA-damaged regions that accumulate during RAS-induced senescence. In summary, degradation of HDAC4 during senescence causes the accumulation of damaged DNA and contributes to the activation of the transcriptional program controlled by super-enhancers that maintains senescence.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Laboratory of Biochemistry, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Emiliano Dalla
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Vanessa Tolotto
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Francesca D’Este
- Laboratory of Biochemistry, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Harikrishnareddy Paluvai
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Liliana Ranzino
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Claudio Brancolini
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
| |
Collapse
|
19
|
Ahmad A, Braden A, Khan S, Xiao J, Khan MM. Crosstalk between the DNA damage response and cellular senescence drives aging and age-related diseases. Semin Immunopathol 2024; 46:10. [PMID: 39095660 DOI: 10.1007/s00281-024-01016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/21/2024] [Indexed: 08/04/2024]
Abstract
Cellular senescence is a crucial process of irreversible cell-cycle arrest, in which cells remain alive, but permanently unable to proliferate in response to distinct types of stressors. Accumulating evidence suggests that DNA damage builds over time and triggers DNA damage response signaling, leading to cellular senescence. Cellular senescence serves as a platform for the perpetuation of inflammatory responses and is central to numerous age-related diseases. Defects in DNA repair genes or senescence can cause premature aging disease. Therapeutic approaches limiting DNA damage or senescence contribute to a rescued phenotype of longevity and neuroprotection, thus suggesting a mechanistic interaction between DNA damage and senescence. Here, we offer a unique perspective on the crosstalk between the DNA damage response pathway and senescence as well as their contribution to age-related diseases. We further summarize recent progress on the mechanisms and therapeutics of senescence, address existing challenges, and offering new insights and future directions in the senescence field.
Collapse
Affiliation(s)
- Ajmal Ahmad
- Department of Ophthalmology, College of Medicine, King Saud University Riyadh, Riyadh, Saudi Arabia
| | - Anneliesse Braden
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 415 Link Building, Memphis, TN, 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sazzad Khan
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 415 Link Building, Memphis, TN, 38163, USA
| | - Jianfeng Xiao
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 415 Link Building, Memphis, TN, 38163, USA
| | - Mohammad Moshahid Khan
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 415 Link Building, Memphis, TN, 38163, USA.
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA.
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
20
|
Mo F, Tsai CT, Zheng R, Cheng C, Heslop HE, Brenner MK, Mamonkin M, Watanabe N. Human platelet lysate enhances in vivo activity of CAR-Vδ2 T cells by reducing cellular senescence and apoptosis. Cytotherapy 2024; 26:858-868. [PMID: 38506769 PMCID: PMC11269029 DOI: 10.1016/j.jcyt.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND AIMS Vγ9Vδ2 T cells are an attractive cell platform for the off-the-shelf cancer immunotherapy as the result of their lack of alloreactivity and inherent multi-pronged cytotoxicity, which could be further amplified with chimeric antigen receptors (CARs). In this study, we sought to enhance the in vivo longevity of CAR-Vδ2 T cells by modulating ex vivo manufacturing conditions and selecting an optimal CAR costimulatory domain. METHODS Specifically, we compared the anti-tumor activity of Vδ2 T cells expressing anti-CD19 CARs with costimulatory endodomains derived from CD28, 4-1BB or CD27 and generated in either standard fetal bovine serum (FBS)- or human platelet lysate (HPL)-supplemented medium. RESULTS We found that HPL supported greater expansion of CAR-Vδ2 T cells with comparable in vitro cytotoxicity and cytokine secretion to FBS-expanded CAR-Vδ2 T cells. HPL-expanded CAR-Vδ2 T cells showed enhanced in vivo anti-tumor activity with longer T-cell persistence compared with FBS counterparts, with 4-1BB costimulated CAR showing the greatest activity. Mechanistically, HPL-expanded CAR Vδ2 T cells exhibited reduced apoptosis and senescence transcriptional pathways compared to FBS-expanded CAR-Vδ2 T cells and increased telomerase activity. CONCLUSIONS This study supports enhancement of therapeutic potency of CAR-Vδ2 T cells through a manufacturing improvement.
Collapse
Affiliation(s)
- Feiyan Mo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas, USA; Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Chiou-Tsun Tsai
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas, USA
| | - Rong Zheng
- Department of Molecular and Human Genetics, Lester & Sue Breast Center, Baylor College of Medicine, Houston, Texas, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Chonghui Cheng
- Department of Molecular and Human Genetics, Lester & Sue Breast Center, Baylor College of Medicine, Houston, Texas, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas, USA; Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas, USA; Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Maksim Mamonkin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas, USA; Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Norihiro Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas, USA.
| |
Collapse
|
21
|
Chida K, Kanazawa H, Kinoshita H, Roy AM, Hakamada K, Takabe K. The role of lidocaine in cancer progression and patient survival. Pharmacol Ther 2024; 259:108654. [PMID: 38701900 PMCID: PMC11162934 DOI: 10.1016/j.pharmthera.2024.108654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
Since its development in 1943, lidocaine has been one of the most commonly used local anesthesia agents for surgical procedures. Lidocaine alters neuronal signal transmission by prolonging the inactivation of fast voltage-gated sodium channels in the cell membrane of neurons, which are responsible for action potential propagation. Recently, it has attracted attention due to emerging evidence suggesting its potential antitumor properties, particularly in the in vitro setting. Further, local administration of lidocaine around the tumor immediately prior to surgical removal has been shown to improve overall survival in breast cancer patients. However, the exact mechanisms driving these antitumor effects remain largely unclear. In this article, we will review the existing literature on the mechanism of lidocaine as a local anesthetic, its effects on the cancer cells and the tumor microenvironment, involved pathways, and cancer progression. Additionally, we will explore recent reports highlighting its impact on clinical outcomes in cancer patients. Taken together, there remains significant ambiguity surrounding lidocaine's functions and roles in cancer biology, particularly in perioperative setting.
Collapse
Affiliation(s)
- Kohei Chida
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Hirofumi Kanazawa
- The University of Texas Health Science Center at Tyler School of Medicine, TX, USA.
| | - Hirotaka Kinoshita
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan.
| | - Arya Mariam Roy
- Department of Hematology and Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan; Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY 14263, USA; Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan; Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
22
|
Rubin JB, Abou-Antoun T, Ippolito JE, Llaci L, Marquez CT, Wong JP, Yang L. Epigenetic developmental mechanisms underlying sex differences in cancer. J Clin Invest 2024; 134:e180071. [PMID: 38949020 PMCID: PMC11213507 DOI: 10.1172/jci180071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Cancer risk is modulated by hereditary and somatic mutations, exposures, age, sex, and gender. The mechanisms by which sex and gender work alone and in combination with other cancer risk factors remain underexplored. In general, cancers that occur in both the male and female sexes occur more commonly in XY compared with XX individuals, regardless of genetic ancestry, geographic location, and age. Moreover, XY individuals are less frequently cured of their cancers, highlighting the need for a greater understanding of sex and gender effects in oncology. This will be necessary for optimal laboratory and clinical cancer investigations. To that end, we review the epigenetics of sexual differentiation and its effect on cancer hallmark pathways throughout life. Specifically, we will touch on how sex differences in metabolism, immunity, pluripotency, and tumor suppressor functions are patterned through the epigenetic effects of imprinting, sex chromosome complement, X inactivation, genes escaping X inactivation, sex hormones, and life history.
Collapse
Affiliation(s)
| | | | - Joseph E. Ippolito
- Department of Radiology
- Department of Biochemistry and Molecular Biophysics
| | - Lorida Llaci
- Deartment of Genetics Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
23
|
Tchelougou D, Malaquin N, Cardin GB, Desmul J, Turcotte S, Rodier F. Defining melanoma combination therapies that provide senolytic sensitivity in human melanoma cells. Front Cell Dev Biol 2024; 12:1368711. [PMID: 38946802 PMCID: PMC11211604 DOI: 10.3389/fcell.2024.1368711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Malignant Melanoma that resists immunotherapy remains the deadliest form of skin cancer owing to poor clinically lasting responses. Alternative like genotoxic or targeted chemotherapy trigger various cancer cell fates after treatment including cell death and senescence. Senescent cells can be eliminated using senolytic drugs and we hypothesize that the targeted elimination of therapy-induced senescent melanoma cells could complement both conventional and immunotherapies. We utilized a panel of cells representing diverse mutational background relevant to melanoma and found that they developed distinct senescent phenotypes in response to treatment. A genotoxic combination therapy of carboplatin-paclitaxel or irradiation triggered a mixed response of cell death and senescence, irrespective of BRAF mutation profiles. DNA damage-induced senescent melanoma cells exhibited morphological changes, residual DNA damage, and increased senescence-associated secretory phenotype (SASP). In contrast, dual targeted inhibition of Braf and Mek triggered a different mixed cell fate response including senescent-like and persister cells. While persister cells could reproliferate, senescent-like cells were stably arrested, but without detectable DNA damage and senescence-associated secretory phenotype. To assess the sensitivity to senolytics we employed a novel real-time imaging-based death assay and observed that Bcl2/Bcl-XL inhibitors and piperlongumine were effective in promoting death of carboplatin-paclitaxel and irradiation-induced senescent melanoma cells, while the mixed persister cells and senescent-like cells resulting from Braf-Mek inhibition remained unresponsive. Interestingly, a direct synergy between Bcl2/Bcl-XL inhibitors and Braf-Mek inhibitors was observed when used out of the context of senescence. Overall, we highlight diverse hallmarks of melanoma senescent states and provide evidence of context-dependent senotherapeutics that could reduce treatment resistance while also discussing the limitations of this strategy in human melanoma cells.
Collapse
Affiliation(s)
- Daméhan Tchelougou
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Nicolas Malaquin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Guillaume B. Cardin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Jordan Desmul
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Simon Turcotte
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
- Département de chirurgie, Université de Montréal, Montreal, QC, Canada
| | - Francis Rodier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
- Département de Radiologie, Radio-oncologie et médicine nucléaire, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
24
|
Chen Q, Wu M, Tang Q, Yan P, Zhu L. Age-Related Alterations in Immune Function and Inflammation: Focus on Ischemic Stroke. Aging Dis 2024; 15:1046-1074. [PMID: 37728582 PMCID: PMC11081165 DOI: 10.14336/ad.2023.0721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/21/2023] [Indexed: 09/21/2023] Open
Abstract
The aging of the global population poses significant scientific challenges. Moreover, the biological process of aging is the most significant risk factor for most chronic illnesses; therefore, understanding the molecular and cellular mechanisms underlying these aging-related challenges is crucial for extending the healthy lifespan of older individuals. Preventing brain aging remains a priority public health goal, and integrative and comprehensive aging analyses have revealed that immunosenescence is a potential cause of age-related brain damage and disease (e.g., stroke). Importantly, the neuroinflammatory and immune systems present two-way contact and thus can affect each other. Emerging evidence supports the numerous effects of immunosenescence- and inflammation-mediated immunity in neurologically injured brains. In this study, we briefly outline how aging alters the pathophysiology and transcriptional amplitude in patients who experienced stroke and then discuss how the immune system and its cellular components and molecular mechanisms are affected by age after stroke. Finally, we highlight emerging interventions with the potential to slow down or reduce aging and prevent stroke onset.
Collapse
Affiliation(s)
- Qiuxin Chen
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Minmin Wu
- Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Qiang Tang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Peiyu Yan
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Luwen Zhu
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| |
Collapse
|
25
|
Kazansky Y, Mueller HS, Cameron D, Demarest P, Zaffaroni N, Arrighetti N, Zuco V, Mundi PS, Kuwahara Y, Somwar R, Qu R, Califano A, de Stanchina E, Dela Cruz FS, Kung AL, Gounder MM, Kentsis A. Epigenetic targeting of PGBD5-dependent DNA damage in SMARCB1-deficient sarcomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592420. [PMID: 38766189 PMCID: PMC11100591 DOI: 10.1101/2024.05.03.592420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Despite the potential of targeted epigenetic therapies, most cancers do not respond to current epigenetic drugs. The Polycomb repressive complex EZH2 inhibitor tazemetostat was recently approved for the treatment of SMARCB1-deficient epithelioid sarcomas, based on the functional antagonism between PRC2 and loss of SMARCB1. Through the analysis of tazemetostat-treated patient tumors, we recently defined key principles of their response and resistance to EZH2 epigenetic therapy. Here, using transcriptomic inference from SMARCB1-deficient tumor cells, we nominate the DNA damage repair kinase ATR as a target for rational combination EZH2 epigenetic therapy. We show that EZH2 inhibition promotes DNA damage in epithelioid and rhabdoid tumor cells, at least in part via its induction of the transposase-derived PGBD5. We leverage this collateral synthetic lethal dependency to target PGBD5-dependent DNA damage by inhibition of ATR but not CHK1 using elimusertib. Consequently, combined EZH2 and ATR inhibition improves therapeutic responses in diverse patient-derived epithelioid and rhabdoid tumors in vivo. This advances a combination epigenetic therapy based on EZH2-PGBD5 synthetic lethal dependency suitable for immediate translation to clinical trials for patients.
Collapse
Affiliation(s)
- Yaniv Kazansky
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Helen S. Mueller
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Cameron
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Phillip Demarest
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Valentina Zuco
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Prabhjot S. Mundi
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yasumichi Kuwahara
- Department of Biochemistry and Molecular Biology, Kyoto Prefectural University of Medicine
| | - Romel Somwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Qu
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Califano
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Filemon S. Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew L. Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mrinal M. Gounder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
26
|
Lopes-Paciencia S, Bourdeau V, Rowell MC, Amirimehr D, Guillon J, Kalegari P, Barua A, Quoc-Huy Trinh V, Azzi F, Turcotte S, Serohijos A, Ferbeyre G. A senescence restriction point acting on chromatin integrates oncogenic signals. Cell Rep 2024; 43:114044. [PMID: 38568812 DOI: 10.1016/j.celrep.2024.114044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/12/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
We identify a senescence restriction point (SeRP) as a critical event for cells to commit to senescence. The SeRP integrates the intensity and duration of oncogenic stress, keeps a memory of previous stresses, and combines oncogenic signals acting on different pathways by modulating chromatin accessibility. Chromatin regions opened upon commitment to senescence are enriched in nucleolar-associated domains, which are gene-poor regions enriched in repeated sequences. Once committed to senescence, cells no longer depend on the initial stress signal and exhibit a characteristic transcriptome regulated by a transcription factor network that includes ETV4, RUNX1, OCT1, and MAFB. Consistent with a tumor suppressor role for this network, the levels of ETV4 and RUNX1 are very high in benign lesions of the pancreas but decrease dramatically in pancreatic ductal adenocarcinomas. The discovery of senescence commitment and its chromatin-linked regulation suggests potential strategies for reinstating tumor suppression in human cancers.
Collapse
Affiliation(s)
- Stéphane Lopes-Paciencia
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Véronique Bourdeau
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Marie-Camille Rowell
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Davoud Amirimehr
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Jordan Guillon
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Paloma Kalegari
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Arnab Barua
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Vincent Quoc-Huy Trinh
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; Institut de recherche en immunologie et en cancérologie (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada; Département de pathologie, Centre hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Feryel Azzi
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Simon Turcotte
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; Département de chirurgie, Service de chirurgie hépatopancréatobiliaire, Centre hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Adrian Serohijos
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Gerardo Ferbeyre
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
27
|
Kaur P, Shankar E, Gupta S. EZH2-mediated development of therapeutic resistance in cancer. Cancer Lett 2024; 586:216706. [PMID: 38331087 DOI: 10.1016/j.canlet.2024.216706] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
Enhancer of zeste homolog 2 (EZH2) regulates gene expression and plays a definite role in cell proliferation, apoptosis, and senescence. Overexpression of EZH2 has been found in various human malignancies, including prostate, breast, and ovarian cancers, and is associated with increased metastasis and poor prognosis. EZH2 catalyzes trimethylation of lysine 27 of histone H3 (H3K27me3) as a canonical role in a PRC2-dependent manner. This mechanism silences various tumor suppressor genes through EZH2-mediated histone lysine methyltransferase activity. As a non-canonical role, EZH2 partners with other signaling molecules to undergo post-translational modification to orchestrate its function as a co-activator playing a critical role in cancer progression. Dysregulation of EZH2 has also been associated with therapeutic resistance in cancer cells. Given the role of EZH2 in promoting carcinogenesis and therapy resistance, both canonical and non-canonical EZH2 inhibitors have been used to combat multiple cancer types. Moreover, combining EZH2 inhibitors with other therapeutic modalities have shown to enhance the therapeutic efficacy and overcome potential resistance mechanisms in these cancerous cells. Therefore, targeting EZH2 through canonical and non-canonical modes appears to be a promising therapeutic strategy to enhance efficacy and overcome resistance in multiple cancers.
Collapse
Affiliation(s)
- Parminder Kaur
- Department of Urology, Case Western Reserve University, Cleveland, OH, 44016, USA; The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44016, USA.
| | - Eswar Shankar
- Department of Urology, Case Western Reserve University, Cleveland, OH, 44016, USA; Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, OH, 44016, USA; The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44016, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44016, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, 44016, USA; Department of Nutrition, Case Western Reserve University, Cleveland, OH, 44016, USA; Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
28
|
Paternot S, Raspé E, Meiller C, Tarabichi M, Assié J, Libert F, Remmelink M, Bisteau X, Pauwels P, Blum Y, Le Stang N, Tabone‐Eglinger S, Galateau‐Sallé F, Blanquart C, Van Meerbeeck JP, Berghmans T, Jean D, Roger PP. Preclinical evaluation of CDK4 phosphorylation predicts high sensitivity of pleural mesotheliomas to CDK4/6 inhibition. Mol Oncol 2024; 18:866-894. [PMID: 36453028 PMCID: PMC10994244 DOI: 10.1002/1878-0261.13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/04/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer with limited therapeutic options. We evaluated the impact of CDK4/6 inhibition by palbociclib in 28 MPM cell lines including 19 patient-derived ones, using various approaches including RNA-sequencing. Palbociclib strongly and durably inhibited the proliferation of 23 cell lines, indicating a unique sensitivity of MPM to CDK4/6 inhibition. When observed, insensitivity to palbociclib was mostly explained by the lack of active T172-phosphorylated CDK4. This was associated with high p16INK4A (CDKN2A) levels that accompany RB1 defects or inactivation, or (unexpectedly) CCNE1 overexpression in the presence of wild-type RB1. Prolonged palbociclib treatment irreversibly inhibited proliferation despite re-induction of cell cycle genes upon drug washout. A senescence-associated secretory phenotype including various potentially immunogenic components was irreversibly induced. Phosphorylated CDK4 was detected in 80% of 47 MPMs indicating their sensitivity to CDK4/6 inhibitors. Its absence in some highly proliferative MPMs was linked to very high p16 (CDKN2A) expression, which was also observed in public datasets in tumours from short-survival patients. Our study supports the evaluation of CDK4/6 inhibitors for MPM treatment, in monotherapy or combination therapy.
Collapse
Affiliation(s)
- Sabine Paternot
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| | - Eric Raspé
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| | - Clément Meiller
- Université de ParisCentre de Recherche des Cordeliers, Inserm, Sorbonne Université, Functional Genomics of Solid TumorsFrance
| | - Maxime Tarabichi
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| | - Jean‐Baptiste Assié
- Université de ParisCentre de Recherche des Cordeliers, Inserm, Sorbonne Université, Functional Genomics of Solid TumorsFrance
- CEpiA (Clinical Epidemiology and Ageing), EA 7376‐IMRBUniversity Paris‐Est CréteilFrance
- GRC OncoThoParisEst, Service de Pneumologie, CHI Créteil, UPECCréteilFrance
| | - Frederick Libert
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
- BRIGHTCore, ULBBrusselsBelgium
| | - Myriam Remmelink
- Department of Pathology, Erasme HospitalUniversité Libre de BruxellesBelgium
| | - Xavier Bisteau
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE)Integrated Personalized and Precision Oncology Network (IPPON)WilrijkBelgium
- Department of PathologyAntwerp University HospitalEdegemBelgium
| | - Yuna Blum
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le CancerParisFrance
- Present address:
IGDR UMR 6290, CNRS, Université de Rennes 1France
| | - Nolwenn Le Stang
- MESOBANK, Department of Biopathology, Centre Léon BérardLyonFrance
| | | | - Françoise Galateau‐Sallé
- MESOBANK, Department of Biopathology, Centre Léon BérardLyonFrance
- Cancer Research Center INSERM U1052‐CNRS 5286RLyonFrance
| | | | | | - Thierry Berghmans
- Clinic of Thoracic OncologyInstitut Jules Bordet, Université Libre de BruxellesBrusselsBelgium
| | - Didier Jean
- Université de ParisCentre de Recherche des Cordeliers, Inserm, Sorbonne Université, Functional Genomics of Solid TumorsFrance
| | - Pierre P. Roger
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| |
Collapse
|
29
|
Chen J, Tang S, Zheng Q, Li J, Jiang H, Lu H, Liao G, Li K, Liang Y. The competitive mechanism of EZH1 and EZH2 in promoting oral squamous cell carcinoma. Exp Cell Res 2024; 436:113957. [PMID: 38309675 DOI: 10.1016/j.yexcr.2024.113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Enhancer of Zeste Homolog 1 (EZH1) and Enhancer of Zeste Homolog 2 (EZH2) are the key components of polycomb repressive complex 2 (PRC2); however, the roles of these proteins in oral squamous cell carcinoma (OSCC) have yet to be elucidated. In this study, we aimed to determine the respective roles of these proteins in OSCC by investigating the expression levels of EZH1 and EZH2 in OSCC tissues (N = 63) by immunohistochemistry. In addition, we used lentiviruses to construct stable OSCC cell lines that overexpressed EZH1 and EZH2. Then, we investigated these cell lines for cell viability, colony formation capacity, stemness, and epithelial-mesenchymal transition (EMT). Binding competition between EZH1 and EZH2 with PRC2 was further evaluated using Co-immunoprecipitation (Co-IP). Compared with normal tissues, the expression levels of EZH2 in OSCC tissues was up-regulated, while the expression of EZH1 was down-regulated. EZH2 enhanced cell viability, colony formation capacity, stemness, and EMT, while EZH1 did not. Furthermore, analysis indicated that EZH1 and EZH2 bound competitively to PRC2 and influenced the methylation status of H3K27. In conclusion, our findings verified that EZH1 and EZH2 play opposing roles in OSCC and that EZH1 and EZH2 compete as the key component of PRC2, thus affecting the characteristics of OSCC via the methylation of H3K27.
Collapse
Affiliation(s)
- Jianghai Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Shanshan Tang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Qiuhan Zheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Jingyuan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Hong Jiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Huanzi Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Guiqing Liao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China.
| | - Kan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China.
| | - Yujie Liang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China.
| |
Collapse
|
30
|
Bisht S, Mao Y, Easwaran H. Epigenetic dynamics of aging and cancer development: current concepts from studies mapping aging and cancer epigenomes. Curr Opin Oncol 2024; 36:82-92. [PMID: 38441107 PMCID: PMC10939788 DOI: 10.1097/cco.0000000000001020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
PURPOSE OF REVIEW This review emphasizes the role of epigenetic processes as incidental changes occurring during aging, which, in turn, promote the development of cancer. RECENT FINDINGS Aging is a complex biological process associated with the progressive deterioration of normal physiological functions, making age a significant risk factor for various disorders, including cancer. The increasing longevity of the population has made cancer a global burden, as the risk of developing most cancers increases with age due to the cumulative effect of exposure to environmental carcinogens and DNA replication errors. The classical 'somatic mutation theory' of cancer cause is being challenged by the observation that multiple normal cells harbor cancer driver mutations without resulting in cancer. In this review, we discuss the role of age-associated epigenetic alterations, including DNA methylation, which occur across all cell types and tissues with advancing age. There is an increasing body of evidence linking these changes with cancer risk and prognosis. SUMMARY A better understanding about the epigenetic changes acquired during aging is critical for comprehending the mechanisms leading to the age-associated increase in cancer and for developing novel therapeutic strategies for cancer treatment and prevention.
Collapse
Affiliation(s)
- Shilpa Bisht
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yiqing Mao
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hariharan Easwaran
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
31
|
Sadeghi M, Mestivier D, Carbonnelle E, Benamouzig R, Khazaie K, Sobhani I. Loss of symbiotic and increase of virulent bacteria through microbial networks in Lynch syndrome colon carcinogenesis. Front Oncol 2024; 13:1313735. [PMID: 38375206 PMCID: PMC10876293 DOI: 10.3389/fonc.2023.1313735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/14/2023] [Indexed: 02/21/2024] Open
Abstract
Purpose Through a pilot study, we performed whole gut metagenomic analysis in 17 Lynch syndrome (LS) families, including colorectal cancer (CRC) patients and their healthy first-degree relatives. In a second asymptomatic LS cohort (n=150) undergoing colonoscopy-screening program, individuals with early precancerous lesions were compared to those with a normal colonoscopy. Since bacteria are organized into different networks within the microbiota, we compared related network structures in patients and controls. Experimental design Fecal prokaryote DNA was extracted prior to colonoscopy for whole metagenome (n=34, pilot study) or 16s rRNA sequencing (validation study). We characterized bacteria taxonomy using Diamond/MEGAN6 and DADA2 pipelines and performed differential abundances using Shaman website. We constructed networks using SparCC inference tools and validated the construction's accuracy by performing qPCR on selected bacteria. Results Significant differences in bacterial communities in LS-CRC patients were identified, with an enrichment of virulent bacteria and a depletion of symbionts compared to their first-degree relatives. Bacteria taxa in LS asymptomatic individuals with colonic precancerous lesions (n=79) were significantly different compared to healthy individuals (n=71). The main bacterial network structures, constructed based on bacteria-bacteria correlations in CRC (pilot study) and in asymptomatic precancerous patients (validation-study), showed a different pattern than in controls. It was characterized by virulent/symbiotic co-exclusion in both studies and illustrated (validation study) by a higher Escherichia/Bifidobacterium ratio, as assessed by qPCR. Conclusion Enhanced fecal virulent/symbiotic bacteria ratios influence bacterial network structures. As an early event in colon carcinogenesis, these ratios can be used to identify asymptomatic LS individual with a higher risk of CRC.
Collapse
Affiliation(s)
- Mohammad Sadeghi
- EA7375 –EC2M3: Early detection of Colonic Cancer by using Microbial & Molecular Markers Paris East Créteil University (UPEC), Créteil, France
| | - Denis Mestivier
- EA7375 –EC2M3: Early detection of Colonic Cancer by using Microbial & Molecular Markers Paris East Créteil University (UPEC), Créteil, France
| | - Etienne Carbonnelle
- Bacteriology, Virology, Hygiene Laboratory, Assistance Publique–Hôpitaux de Paris (APHP), Avicenne Hospital, Bobigny, France
| | - Robert Benamouzig
- Department of Gastroenterology, Assistance Publique–Hôpitaux de Paris (APHP), Avicenne Hospital, Bobigny, France
| | | | - Iradj Sobhani
- EA7375 –EC2M3: Early detection of Colonic Cancer by using Microbial & Molecular Markers Paris East Créteil University (UPEC), Créteil, France
- Department of Gastroenterology, Assistance Publique–Hôpitaux de Paris (APHP), Henri Mondor Hospital, Créteil, France
| |
Collapse
|
32
|
Zhu H, Lu J, Fu M, Chen P, Yu Y, Chen M, Zhao Q, Wu M, Ye M. YAP represses intestinal inflammation through epigenetic silencing of JMJD3. Clin Epigenetics 2024; 16:14. [PMID: 38245781 PMCID: PMC10800074 DOI: 10.1186/s13148-024-01626-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Epigenetics plays an important role in the pathogenesis of inflammatory bowel disease (IBD). Some studies have reported that YAP is involved in inflammatory response and can regulate target genes through epigenetic modifications. JMJD3, a histone H3K27me3 demethylase, is associated with some inflammatory diseases. In this study, we investigated the role of YAP in the development of IBD and the underlying epigenetic mechanisms. RESULTS YAP expression was significantly increased in both in vitro and in vivo colitis models as well as in patients with IBD. Epithelial-specific knockout of YAP aggravates disease progression in dextran sodium sulfate (DSS)-induced murine colitis. In the TNF-α-activated cellular inflammation model, YAP knockdown significantly increased JMJD3 expression. Coimmunoprecipitation experiments showed that YAP and EZH2 bind to each other, and chromatin immunoprecipitation-PCR (ChIP-PCR) assay indicated that silencing of YAP or EZH2 decreases H3K27me3 enrichment on the promoter of JMJD3. Finally, administration of the JMJD3 pharmacological inhibitor GSK-J4 alleviated the progression of DSS-induced murine colitis. CONCLUSION Our findings elucidate an epigenetic mechanism by which YAP inhibits the inflammatory response in colitis through epigenetic silencing of JMJD3 by recruiting EZH2.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Jiali Lu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - MingYue Fu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Ping Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yali Yu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Min Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Min Wu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Mei Ye
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
33
|
Qin H, Liu C, Li C, Feng C, Bo Huang. Advances in bi-directional relationships for EZH2 and oxidative stress. Exp Cell Res 2024; 434:113876. [PMID: 38070859 DOI: 10.1016/j.yexcr.2023.113876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/14/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
Over the past two decades, polycomb repressive complex 2(PRC2) has emerged as a vital repressive complex in overall cell fate determination. In mammals, enhancer of zeste homolog 2 (EHZ2), which is the core component of PRC2, has also been recognized as an important regulator of inflammatory, redox, tumorigenesis and damage repair signalling networks. To exert these effects, EZH2 must regulate target genes epigenetically or interact directly with other gene expression-regulating factors, such as LncRNAs and microRNAs. Our review provides a comprehensive summary of research advances, discoveries and trends regarding the regulatory mechanisms between EZH2 and reactive oxygen species (ROS). First, we outline novel findings about how EZH2 regulates the generation of ROS at the molecular level. Then, we summarize how oxidative stress controls EHZ2 alteration (upregulation, downregulation, or phosphorylation) via various molecules and signalling pathways. Finally, we address why EZH2 and oxidative stress have an undefined relationship and provide potential future research ideas.
Collapse
Affiliation(s)
- Heng Qin
- Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Army Medical University, Chongqing, 400037, PR China.
| | - Chang Liu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, PR China.
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, PR China.
| | - Chencheng Feng
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, PR China.
| | - Bo Huang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, PR China.
| |
Collapse
|
34
|
Wang K, Jiang X, Jiang Y, Liu J, Du Y, Zhang Z, Li Y, Zhao X, Li J, Zhang R. EZH2-H3K27me3-mediated silencing of mir-139-5p inhibits cellular senescence in hepatocellular carcinoma by activating TOP2A. J Exp Clin Cancer Res 2023; 42:320. [PMID: 38008711 PMCID: PMC10680220 DOI: 10.1186/s13046-023-02855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/08/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Epigenetic alterations play an important role in hepatocellular carcinoma (HCC) development. Enhancer of zeste homolog 2 (EZH2) is a well-known epigenetic modifier that functions as an oncogene in tumors by promoting the H3K27me3-mediated transcriptional repression of tumor suppressor genes. "Senescent cells" has been proposed as a possible core component of the hallmarks of cancer conceptualization. Induction of cell senescence and targeted elimination of these senescent tumor cells are new strategies for tumor therapy. However, the role of EZH2 in regulating cellular senescence remains poorly understood. METHODS Bioinformatics analyses suggested that EZH2 and DNA topoisomerase II alpha (TOP2A) are coexpressed in tumors, including HCC. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analyses and gene set enrichment analyses (GSEA) suggests a correlation of EZH2 and TOP2A expression with cellular senescence in HCC. MicroRNA (miRNA) inhibitor and mimics, siRNA, PLKO-shRNA, and plenti6.3-miR-139 were used to upregulate or downregulate the expression of target genes. CCK8, EdU, clone formation, and senescence-associated β-galactosidase (SA-β-gal) staining assays were performed to assess cell proliferation and cellular senescence phenotypes. Dual-luciferase reporter and chromatin immunoprecipitation assays were performed to investigate the targeted binding and inhibition of TOP2A 3' untranslated region (UTR) by miR-139-5p and the DNA enrichment of miR139-5p by EZH2 and H3K27me3. BALB/c nude mice were used to establish a xenograft tumor model and verify the phenotypes upon EZH2 and TOP2A silencing and miR-139 overexpression in vivo. In addition, tissue microarrays were used to analyze the expression patterns and correlations among EZH2, TOP2A, and miR-139-5p expression in HCC. RESULTS Bioinformatics analysis revealed that EZH2 and TOP2A are coexpressed in HCC. In vitro gain- and loss-of-function experiments showed that inhibition of EZH2 and TOP2A induces cellular senescence and inhibits proliferation of HCC cells. In vivo tumorigenesis assays indicated that EZH2 and TOP2A knockdown inhibits tumorigenesis by inducing cellular senescence. Mechanistically, EZH2 promotes TOP2A expression by regulating the H3K27me3-mediated epigenetic silencing of miR-139-5p. TOP2A is a direct target of miR-139-5p, and inhibition of miR-139-5p can reverse the promotion by EZH2 of TOP2A expression. The overexpression of miR-139-5p induces cellular senescence and inhibits proliferation of HCC cells both in vitro and in vivo. Clinically, expression of EZH2 and TOP2A are higher in HCC tissues than in normal tissues, and this high coexpression indicates a worse outcome of patients with HCC. Moreover, expression of EZH2 and TOP2A is significantly correlated with tumor differentiation grade, tumor invasion, and TNM stage in HCC. miR-139-5p expression is lower in HCC tumors than in normal tissues and is correlated with better prognosis of HCC patients. CONCLUSIONS Our study revealed the role of the EZH2/miR-139-5p/TOP2A axis in regulating cellular senescence and cell proliferation in HCC, enriching the molecular mechanisms of EZH2-mediated epigenetic regulation in HCC. Therefore, our results provide insight into the therapeutic potential of targeting EZH2 to induce cellular senescence and then destroy senescent cells for HCC.
Collapse
Affiliation(s)
- Ke Wang
- Department of digestive surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of General Surgery, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, 430064, China
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xunliang Jiang
- Department of digestive surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu Jiang
- Department of Hepatobiliary Surgery, XI'AN DAXING hospital, Xi'an, 710032, China
| | - Jun Liu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yongtao Du
- Department of digestive surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Zecheng Zhang
- Department of digestive surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yunlong Li
- Department of digestive surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xinhui Zhao
- Department of Thyroid and Breast Surgery, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, 710018, China
| | - Jipeng Li
- Department of digestive surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
- Department of Experimental Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China.
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
35
|
Chen Y, Ai L, Zhang Y, Li X, Xu S, Yang W, Jin J, Ma Y, Hu Z, Zhang Y, Rong Y, Zhang S. The EZH2-H3K27me3 axis modulates aberrant transcription and apoptosis in cyclophosphamide-induced ovarian granulosa cell injury. Cell Death Discov 2023; 9:413. [PMID: 37963880 PMCID: PMC10646043 DOI: 10.1038/s41420-023-01705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023] Open
Abstract
Chemotherapy-induced ovarian damage and infertility are significant concerns for women of childbearing age with cancer; however, the underlying mechanisms are still not fully understood. Our study has revealed a close association between epigenetic regulation and cyclophosphamide (CTX)-induced ovarian damage. Specifically, CTX and its active metabolite 4-hydroperoxy cyclophosphamide (4-HC) were found to increase the apoptosis of granulosa cells (GCs) by reducing EZH2 and H3K27me3 levels, both in vivo and in vitro. Furthermore, RNA-seq and CUT&Tag analyses revealed that the loss of H3K27me3 peaks on promoters led to the overactivation of genes associated with transcriptional regulation and apoptosis, indicating that stable H3K27me3 status could help to provide a safeguard against CTX-induced ovarian damage. Administration of the H3K27me3-demethylase inhibitor, GSK-J4, prior to CTX treatment could partially mitigate GC apoptosis by reversing the reduction of H3K27me3 and the aberrant upregulation of specific genes involved in transcriptional regulation and apoptosis. GSK-J4 could thus potentially be a protective agent for female fertility when undergoing chemotherapy. The results provide new insights into the mechanisms for chemotherapy injury and future clinical interventions for fertility preservation.
Collapse
Affiliation(s)
- Yingyan Chen
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Leilei Ai
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Yingyi Zhang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Xiang Li
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Shiqian Xu
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Weijie Yang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Jiamin Jin
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Yerong Ma
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Zhanhong Hu
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Yinli Zhang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Yan Rong
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China.
| | - Songying Zhang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China.
| |
Collapse
|
36
|
Qian J, Zhou X, Tanaka K, Takahashi A. Alteration in the chromatin landscape during the DNA damage response: Continuous rotation of the gear driving cellular senescence and aging. DNA Repair (Amst) 2023; 131:103572. [PMID: 37742405 DOI: 10.1016/j.dnarep.2023.103572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
The DNA damage response (DDR) is a crucial biological mechanism for maintaining cellular homeostasis in living organisms. This complex process involves a cascade of signaling pathways that orchestrate the sensing and processing of DNA lesions. Perturbations in this process may cause DNA repair failure, genomic instability, and irreversible cell cycle arrest, known as cellular senescence, potentially culminating in tumorigenesis. Persistent DDR exerts continuous and cumulative pressure on global chromatin dynamics, resulting in altered chromatin structure and perturbed epigenetic regulations, which are highly associated with cellular senescence and aging. Sustained DDR activation and heterochromatin changes further promote senescence-associated secretory phenotype (SASP), which is responsible for aging-related diseases and cancer development. In this review, we discuss the diverse mechanisms by which DDR leads to cellular senescence and triggers SASP, together with the evidence for DDR-induced chromatin remodeling and epigenetic regulation in relation to aging.
Collapse
Affiliation(s)
- Jianghao Qian
- Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Miyagi 980-8575, Japan
| | - Xiangyu Zhou
- Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Miyagi 980-8575, Japan
| | - Akiko Takahashi
- Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; Cancer Cell Communication Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan.
| |
Collapse
|
37
|
Petrashen AP, Verdesca AD, Kreiling JA, Sedivy JM. Regulation of the somatotropic axis by MYC-mediated miRNA repression. Front Cell Dev Biol 2023; 11:1269860. [PMID: 37908640 PMCID: PMC10615138 DOI: 10.3389/fcell.2023.1269860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023] Open
Abstract
The transcription factor MYC is overexpressed in many human cancers and has a significant causal role in tumor incidence and progression. In contrast, Myc +/- heterozygous mice, which have decreased MYC expression, exhibit a 10-20% increase in lifespan and a decreased incidence or progression of several age-related diseases. Myc heterozygous mice were also reported to have decreased mTOR and IGF1 signaling, two pathways whose reduced activity is associated with longevity in diverse species. Given MYC's downstream role in these pathways, the downregulation of mTOR and IGF1 signaling in Myc heterozygotes suggests the presence of feedback loops within this regulatory network. In this communication we provide further evidence that the reduction of Myc expression in Myc +/- heterozygous mice provokes a female-specific decrease in circulating IGF1 as well as a reduction of IGF1 protein in the liver. In particular, reduced Myc expression led to upregulation of miRNAs that target the Igf1 transcript, thereby inhibiting its translation and leading to decreased IGF1 protein levels. Using Argonaute (AGO)-CLIP-sequencing we found enrichment of AGO binding in the Igf1 transcript at the target sites of let-7, miR-122, and miR-29 in female, but not male Myc heterozygotes. Upregulation of the liver-specific miR-122 in primary hepatocytes in culture and in vivo in mice resulted in significant downregulation of IGF1 protein, but not mRNA. Reduced levels of IGF1 increased GH production in the pituitary through a well-documented negative-feedback relationship. In line with this, we found that IGF1 levels in bone (where miR-122 is not expressed) were unchanged, consistent with the decreased incidence of osteoporosis in female Myc heterozygotes, despite decreased circulating IGF1.
Collapse
Affiliation(s)
| | | | | | - John M. Sedivy
- Center on the Biology of Aging, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| |
Collapse
|
38
|
Emerson FJ, Lee SS. Chromatin: the old and young of it. Front Mol Biosci 2023; 10:1270285. [PMID: 37877123 PMCID: PMC10591336 DOI: 10.3389/fmolb.2023.1270285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/20/2023] [Indexed: 10/26/2023] Open
Abstract
Aging affects nearly all aspects of our cells, from our DNA to our proteins to how our cells handle stress and communicate with each other. Age-related chromatin changes are of particular interest because chromatin can dynamically respond to the cellular and organismal environment, and many modifications at chromatin are reversible. Changes at chromatin occur during aging, and evidence from model organisms suggests that chromatin factors could play a role in modulating the aging process itself, as altering proteins that work at chromatin often affect the lifespan of yeast, worms, flies, and mice. The field of chromatin and aging is rapidly expanding, and high-resolution genomics tools make it possible to survey the chromatin environment or track chromatin factors implicated in longevity with precision that was not previously possible. In this review, we discuss the state of chromatin and aging research. We include examples from yeast, Drosophila, mice, and humans, but we particularly focus on the commonly used aging model, the worm Caenorhabditis elegans, in which there are many examples of chromatin factors that modulate longevity. We include evidence of both age-related changes to chromatin and evidence of specific chromatin factors linked to longevity in core histones, nuclear architecture, chromatin remodeling, and histone modifications.
Collapse
Affiliation(s)
| | - Siu Sylvia Lee
- Lee Lab, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| |
Collapse
|
39
|
Magrin C, Bellafante M, Sola M, Piovesana E, Bolis M, Cascione L, Napoli S, Rinaldi A, Papin S, Paganetti P. Tau protein modulates an epigenetic mechanism of cellular senescence in human SH-SY5Y neuroblastoma cells. Front Cell Dev Biol 2023; 11:1232963. [PMID: 37842084 PMCID: PMC10569482 DOI: 10.3389/fcell.2023.1232963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: Progressive Tau deposition in neurofibrillary tangles and neuropil threads is the hallmark of tauopathies, a disorder group that includes Alzheimer's disease. Since Tau is a microtubule-associated protein, a prevalent concept to explain the pathogenesis of tauopathies is that abnormal Tau modification contributes to dissociation from microtubules, assembly into multimeric β-sheets, proteotoxicity, neuronal dysfunction and cell loss. Tau also localizes in the cell nucleus and evidence supports an emerging function of Tau in DNA stability and epigenetic modulation. Methods: To better characterize the possible role of Tau in regulation of chromatin compaction and subsequent gene expression, we performed a bioinformatics analysis of transcriptome data obtained from Tau-depleted human neuroblastoma cells. Results: Among the transcripts deregulated in a Tau-dependent manner, we found an enrichment of target genes for the polycomb repressive complex 2. We further describe decreased cellular amounts of the core components of the polycomb repressive complex 2 and lower histone 3 trimethylation in Tau deficient cells. Among the de-repressed polycomb repressive complex 2 target gene products, IGFBP3 protein was found to be linked to increased senescence induction in Tau-deficient cells. Discussion: Our findings propose a mechanism for Tau-dependent epigenetic modulation of cell senescence, a key event in pathologic aging.
Collapse
Affiliation(s)
- Claudia Magrin
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, PhD Program in Neurosciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Martina Bellafante
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
| | - Martina Sola
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, PhD Program in Neurosciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Ester Piovesana
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, PhD Program in Neurosciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Marco Bolis
- Functional Cancer Genomics Laboratory, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
- Lymphoma and Genomics Research Program, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
| | - Luciano Cascione
- Lymphoma and Genomics Research Program, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sara Napoli
- Lymphoma and Genomics Research Program, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
| | - Andrea Rinaldi
- Lymphoma and Genomics Research Program, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
| | - Stéphanie Papin
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
| | - Paolo Paganetti
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, PhD Program in Neurosciences, Università Della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
40
|
Li X, Yuan P, Yang H, Zong X, Yang C, Chen X, Li Y, Yan X, Wen Y, Zhu T, Zhang Q, Xue W, Dai J. Virus-Like Nanotherapeutic for Spatiotemporally Enhancing Antigen Presentation and Cross-Presentation toward Potential Personalized Immunotherapy. Adv Healthc Mater 2023; 12:e2300921. [PMID: 37531246 DOI: 10.1002/adhm.202300921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/13/2023] [Indexed: 08/04/2023]
Abstract
One of the major causes of immunotherapy resistance is the loss of major histocompatibility complex class I (MHC-I) molecules in tumor cells or the downregulation of the class I antigen presentation pathway. In this study, a novel virus-like nanotherapeutic (siRNA@HCM) is developed via encapsulating nanosized siRNA nanoparticles in a hybrid membrane comprising a personalized tumor cell membrane and a universal 293T membrane expressing the mutant vesicular stomatitis virus glycoprotein (mVSV-G). Upon intravenous administration, siRNA@HCM accumulates at the tumor site and provides two potent driving forces for antitumor immunity. First, mVSV-G induces the fusion of siRNA@HCM with tumor cell membranes and directly injects siRNAs into the cytoplasm, significantly improving tumor intrinsic MHC-I antigen presentation. Moreover, mVSV-G can promote the maturation of dendritic cells, thereby achieving highly efficient antigen cross-presentation. The results demonstrate that spatiotemporally enhancing tumor intrinsic antigen presentation and cross-presentation via siRNA@HCM can achieve satisfactory antitumor efficacy and excellent biocompatibility. Immune infiltration analysis shows that siRNA@HCM treatment turns cold tumors into hot tumors. In addition, it significantly promotes the therapeutic effect of programmed death-1 inhibitor. In summary, virus-like nanotherapeutics present a promising approach to enhance the antitumor immune response, with distinct advantages for potential personalized therapy and clinical applications.
Collapse
Affiliation(s)
- Xiaodi Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Pengfei Yuan
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Haiyuan Yang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Xiaoqing Zong
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Caiqi Yang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Xinjie Chen
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Yuchao Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Xiaodie Yan
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Yaoqi Wen
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Tianci Zhu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Qian Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Jian Dai
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
41
|
López-Gil L, Pascual-Ahuir A, Proft M. Genomic Instability and Epigenetic Changes during Aging. Int J Mol Sci 2023; 24:14279. [PMID: 37762580 PMCID: PMC10531692 DOI: 10.3390/ijms241814279] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is considered the deterioration of physiological functions along with an increased mortality rate. This scientific review focuses on the central importance of genomic instability during the aging process, encompassing a range of cellular and molecular changes that occur with advancing age. In particular, this revision addresses the genetic and epigenetic alterations that contribute to genomic instability, such as telomere shortening, DNA damage accumulation, and decreased DNA repair capacity. Furthermore, the review explores the epigenetic changes that occur with aging, including modifications to histones, DNA methylation patterns, and the role of non-coding RNAs. Finally, the review discusses the organization of chromatin and its contribution to genomic instability, including heterochromatin loss, chromatin remodeling, and changes in nucleosome and histone abundance. In conclusion, this review highlights the fundamental role that genomic instability plays in the aging process and underscores the need for continued research into these complex biological mechanisms.
Collapse
Affiliation(s)
- Lucía López-Gil
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain;
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, Consejo Superior de Investigaciones Científicas CSIC, Jaime Roig 11, 46010 Valencia, Spain
| | - Amparo Pascual-Ahuir
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain;
| | - Markus Proft
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, Consejo Superior de Investigaciones Científicas CSIC, Jaime Roig 11, 46010 Valencia, Spain
| |
Collapse
|
42
|
Deng Z, Richardson DR. The Myc Family and the Metastasis Suppressor NDRG1: Targeting Key Molecular Interactions with Innovative Therapeutics. Pharmacol Rev 2023; 75:1007-1035. [PMID: 37280098 DOI: 10.1124/pharmrev.122.000795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Cancer is a leading cause of death worldwide, resulting in ∼10 million deaths in 2020. Major oncogenic effectors are the Myc proto-oncogene family, which consists of three members including c-Myc, N-Myc, and L-Myc. As a pertinent example of the role of the Myc family in tumorigenesis, amplification of MYCN in childhood neuroblastoma strongly correlates with poor patient prognosis. Complexes between Myc oncoproteins and their partners such as hypoxia-inducible factor-1α and Myc-associated protein X (MAX) result in proliferation arrest and pro-proliferative effects, respectively. Interactions with other proteins are also important for N-Myc activity. For instance, the enhancer of zest homolog 2 (EZH2) binds directly to N-Myc to stabilize it by acting as a competitor against the ubiquitin ligase, SCFFBXW7, which prevents proteasomal degradation. Heat shock protein 90 may also be involved in N-Myc stabilization since it binds to EZH2 and prevents its degradation. N-Myc downstream-regulated gene 1 (NDRG1) is downregulated by N-Myc and participates in the regulation of cellular proliferation via associating with other proteins, such as glycogen synthase kinase-3β and low-density lipoprotein receptor-related protein 6. These molecular interactions provide a better understanding of the biologic roles of N-Myc and NDRG1, which can be potentially used as therapeutic targets. In addition to directly targeting these proteins, disrupting their key interactions may also be a promising strategy for anti-cancer drug development. This review examines the interactions between the Myc proteins and other molecules, with a special focus on the relationship between N-Myc and NDRG1 and possible therapeutic interventions. SIGNIFICANCE STATEMENT: Neuroblastoma is one of the most common childhood solid tumors, with a dismal five-year survival rate. This problem makes it imperative to discover new and more effective therapeutics. The molecular interactions between major oncogenic drivers of the Myc family and other key proteins; for example, the metastasis suppressor, NDRG1, may potentially be used as targets for anti-neuroblastoma drug development. In addition to directly targeting these proteins, disrupting their key molecular interactions may also be promising for drug discovery.
Collapse
Affiliation(s)
- Zhao Deng
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| |
Collapse
|
43
|
Ding N, You A, Zhao S, Yang H, Lai C, Ye F. EZH2 inhibitor Tazemetostat synergizes with JQ-1 in esophageal cancer by inhibiting c-Myc signaling pathway. Med Oncol 2023; 40:281. [PMID: 37634215 DOI: 10.1007/s12032-023-02147-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023]
Abstract
EZH2, a highly conserved histone methyltransferase, plays an essential role in tumorigenesis and development. The inhibitor of EZH2 tazemetostat has been approved to treat metastatic or locally advanced epithelioid sarcoma and recurrent or refractory follicular lymphoma. However, the effect of tazemetostat alone or in combination with other drugs in esophageal cancer has not been reported. In this study, we found that EZH2 was highly expressed in esophageal cancer at both mRNA and protein levels through transcriptomic and proteomic analyses. Furthermore, the results of CCK8, colony formation, cell cycle and cell apoptosis assays revealed that tazemetostat exerted an antitumour effect on esophageal cancer cells. Mechanistically, RNA-sequencing analysis of the tazemetostat-treated cells and vehicle-treated ones suggested that tazemetostat mainly inhibited the c-Myc signaling pathway and its targets, which was validated by western blotting. JQ-1, an inhibitor of bromodomain 4, was proven to attenuate c-Myc signaling in tumors. Thus, a therapeutic strategy based on tazemetostat in combination with JQ-1 is promising. The results demonstrated that tazemetostat and JQ-1 had a synergistic effect in vitro and in vivo for esophageal cancer.
Collapse
Affiliation(s)
- Nan Ding
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
- The Third Clinical Medical College, Fujian Medical University, FuZhou, China
| | - Abin You
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
- The Third Clinical Medical College, Fujian Medical University, FuZhou, China
| | - Senxia Zhao
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Hu Yang
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Chunping Lai
- The Third Clinical Medical College, Fujian Medical University, FuZhou, China
| | - Feng Ye
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China.
- The Third Clinical Medical College, Fujian Medical University, FuZhou, China.
| |
Collapse
|
44
|
Sirohi VK, Medrano TI, Kannan A, Bagchi IC, Cooke PS. Uterine-specific Ezh2 deletion enhances stromal cell senescence and impairs placentation, resulting in pregnancy loss. iScience 2023; 26:107028. [PMID: 37360688 PMCID: PMC10285549 DOI: 10.1016/j.isci.2023.107028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Maternal uterine remodeling facilitates embryo implantation, stromal cell decidualization and placentation, and perturbation of these processes may cause pregnancy loss. Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that epigenetically represses gene transcription; loss of uterine EZH2 affects endometrial physiology and induces infertility. We utilized a uterine Ezh2 conditional knockout (cKO) mouse to determine EZH2's role in pregnancy progression. Despite normal fertilization and implantation, embryo resorption occurred mid-gestation in Ezh2cKO mice, accompanied by compromised decidualization and placentation. Western blot analysis revealed Ezh2-deficient stromal cells have reduced amounts of the histone methylation mark H3K27me3, causing upregulation of senescence markers p21 and p16 and indicating that enhanced stromal cell senescence likely impairs decidualization. Placentas from Ezh2cKO dams on gestation day (GD) 12 show architectural defects, including mislocalization of spongiotrophoblasts and reduced vascularization. In summary, uterine Ezh2 loss impairs decidualization, increases decidual senescence, and alters trophoblast differentiation, leading to pregnancy loss.
Collapse
Affiliation(s)
- Vijay K. Sirohi
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Theresa I. Medrano
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Athilakshmi Kannan
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Indrani C. Bagchi
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paul S. Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
45
|
Sun L, Li X, Luo H, Guo H, Zhang J, Chen Z, Lin F, Zhao G. EZH2 can be used as a therapeutic agent for inhibiting endothelial dysfunction. Biochem Pharmacol 2023; 213:115594. [PMID: 37207700 DOI: 10.1016/j.bcp.2023.115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) is a catalytic subunit of polycomb repressor complex 2 and plays important roles in endothelial cell homeostasis. EZH2 functionally methylates lysine 27 of histone H3 and represses gene expression through chromatin compaction. EZH2 mediates the effects of environmental stimuli by regulating endothelial functions, such as angiogenesis, endothelial barrier integrity, inflammatory signaling, and endothelial mesenchymal transition. Numerous studies have been conducted to determine the significance of EZH2 in endothelial function. The aim of this review is to provide a concise summary of the roles EZH2 plays in endothelial function and elucidate its therapeutic potential in cardiovascular diseases.
Collapse
Affiliation(s)
- Li Sun
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Xuefang Li
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Hui Luo
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Huige Guo
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Jie Zhang
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Zhigang Chen
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Fei Lin
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China.
| | - Guoan Zhao
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China.
| |
Collapse
|
46
|
Deng P, Hu H. HSP90-Dependent Upregulation of EZH2 Promotes Hypoxia/Reoxygenation-Induced Pyroptosis by Inhibiting miR-22 in Endothelial Cells. J Inflamm Res 2023; 16:2615-2630. [PMID: 37360624 PMCID: PMC10289174 DOI: 10.2147/jir.s403531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Objective Endothelial cell pyroptosis induced by hypoxia/reoxygenation (H/R) plays a key role in the pathogenesis of myocardial infarction (MI). However, the underlying mechanism is not clearly elucidated. Methods Human umbilical vein endothelial cells (HUVECs) exposed to H/R acted as in vitro model to investigate the mechanism of H/R-induced endothelial cell pyroptosis. CCK-8 assays were performed to investigate the viability of HUVECs. Calcein-AM/PI staining was carried out to quantify the death of HUVECs. The expression level of miR-22 was measured by RT-qPCR. The protein expression levels of zeste 2 polycomb repressive complex 2 subunit (EZH2), NLRP3, cleaved caspase-1 (c-caspase-1), GSDMD-N and heat shock protein 90 (HSP90) were measured by Western blot. Levels of IL-1β and IL-18 in culture medium were detected by ELISA. The intracellular localization of EZH2 was detected by immunofluorescence staining. Chromatin immunoprecipitation (ChIP) assay was used to detect the enrichment of EZH2 and H3K27me3 in the miR-22 promoter region. The binding between miR-22 and NLRP3 in HUVECs was confirmed by the dual luciferase assay. Reciprocal coimmunoprecipitation was conducted to detect the direct interaction between HSP90 and EZH2. Results H/R increased EZH2 expression, and the EZH2 siRNA could inhibit H/R-induced pyroptosis in HUVECs. H/R reduced miR-22 expression, which was reversed by EZH2 siRNA. Silencing of miR-22 by its inhibitor reversed EZH2 siRNA-induced pyroptosis inhibition in H/R-exposed HUVECs. Upregulation of miR-22 by its mimic suppressed EZH2 overexpression-enhanced pyroptosis in H/R-exposed HUVECs. ChIP assay confirmed that EZH2 bound to the miR-22 promoter region and repressed miR-22 expression through H3K27me3. Furthermore, luciferase reporter assay indicated that NLRP3 was a direct target of miR- 22 in HUVECs. Finally, HSP90 siRNA inhibited H/R-induced EZH2 expression, miR-22 downregulation, and pyroptosis in HUVECs. Conclusion H/R induces pyroptosis via the HSP90/EZH2/miR-22/NLRP3 signaling axis in endothelial cells.
Collapse
Affiliation(s)
- Paihe Deng
- Clinical Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, People’s Republic of China
| | - Huimin Hu
- Clinical Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, People’s Republic of China
| |
Collapse
|
47
|
Nelles DG, Hazrati LN. The pathological potential of ependymal cells in mild traumatic brain injury. Front Cell Neurosci 2023; 17:1216420. [PMID: 37396927 PMCID: PMC10312375 DOI: 10.3389/fncel.2023.1216420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is a common neurological condition affecting millions of individuals worldwide. Although the pathology of mTBI is not fully understood, ependymal cells present a promising approach for studying the pathogenesis of mTBI. Previous studies have revealed that DNA damage in the form of γH2AX accumulates in ependymal cells following mTBI, with evidence of widespread cellular senescence in the brain. Ependymal ciliary dysfunction has also been observed, leading to altered cerebrospinal fluid homeostasis. Even though ependymal cells have not been extensively studied in the context of mTBI, these observations reflect the pathological potential of ependymal cells that may underlie the neuropathological and clinical presentations of mTBI. This mini review explores the molecular and structural alterations that have been reported in ependymal cells following mTBI, as well as the potential pathological mechanisms mediated by ependymal cells that may contribute to overall dysfunction of the brain post-mTBI. Specifically, we address the topics of DNA damage-induced cellular senescence, dysregulation of cerebrospinal fluid homeostasis, and the consequences of impaired ependymal cell barriers. Moreover, we highlight potential ependymal cell-based therapies for the treatment of mTBI, with a focus on neurogenesis, ependymal cell repair, and modulation of senescence signaling pathways. Further insight and research in this field will help to establish the role of ependymal cells in the pathogenesis of mTBI and may lead to improved treatments that leverage ependymal cells to target the origins of mTBI pathology.
Collapse
Affiliation(s)
- Diana G. Nelles
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Lili-Naz Hazrati
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
48
|
Chibaya L, Murphy KC, DeMarco KD, Gopalan S, Liu H, Parikh CN, Lopez-Diaz Y, Faulkner M, Li J, Morris JP, Ho YJ, Chana SK, Simon J, Luan W, Kulick A, de Stanchina E, Simin K, Zhu LJ, Fazzio TG, Lowe SW, Ruscetti M. EZH2 inhibition remodels the inflammatory senescence-associated secretory phenotype to potentiate pancreatic cancer immune surveillance. NATURE CANCER 2023; 4:872-892. [PMID: 37142692 PMCID: PMC10516132 DOI: 10.1038/s43018-023-00553-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 04/05/2023] [Indexed: 05/06/2023]
Abstract
Immunotherapies that produce durable responses in some malignancies have failed in pancreatic ductal adenocarcinoma (PDAC) due to rampant immune suppression and poor tumor immunogenicity. We and others have demonstrated that induction of the senescence-associated secretory phenotype (SASP) can be an effective approach to activate anti-tumor natural killer (NK) cell and T cell immunity. In the present study, we found that the pancreas tumor microenvironment suppresses NK cell and T cell surveillance after therapy-induced senescence through enhancer of zeste homolog 2 (EZH2)-mediated epigenetic repression of proinflammatory SASP genes. EZH2 blockade stimulated production of SASP chemokines CCL2 and CXCL9/10, leading to enhanced NK cell and T cell infiltration and PDAC eradication in mouse models. EZH2 activity was also associated with suppression of chemokine signaling and cytotoxic lymphocytes and reduced survival in patients with PDAC. These results demonstrate that EZH2 represses the proinflammatory SASP and that EZH2 inhibition combined with senescence-inducing therapy could be a powerful means to achieve immune-mediated tumor control in PDAC.
Collapse
Affiliation(s)
- Loretah Chibaya
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Katherine C Murphy
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kelly D DeMarco
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sneha Gopalan
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Haibo Liu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Chaitanya N Parikh
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Yvette Lopez-Diaz
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Melissa Faulkner
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Junhui Li
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - John P Morris
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu-Jui Ho
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sachliv K Chana
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Janelle Simon
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wei Luan
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amanda Kulick
- Department of Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Department of Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karl Simin
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Marcus Ruscetti
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Immunology and Microbiology Program, University of Massachusetts Medical Chan School, Worcester, MA, USA.
- Cancer Center, University of Massachusetts Medical Chan School, Worcester, MA, USA.
| |
Collapse
|
49
|
Baggett BC, Murphy KR, Sengun E, Mi E, Cao Y, Turan NN, Lu Y, Schofield L, Kim TY, Kabakov AY, Bronk P, Qu Z, Camelliti P, Dubielecka P, Terentyev D, del Monte F, Choi BR, Sedivy J, Koren G. Myofibroblast senescence promotes arrhythmogenic remodeling in the aged infarcted rabbit heart. eLife 2023; 12:e84088. [PMID: 37204302 PMCID: PMC10259375 DOI: 10.7554/elife.84088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/18/2023] [Indexed: 05/20/2023] Open
Abstract
Progressive tissue remodeling after myocardial infarction (MI) promotes cardiac arrhythmias. This process is well studied in young animals, but little is known about pro-arrhythmic changes in aged animals. Senescent cells accumulate with age and accelerate age-associated diseases. Senescent cells interfere with cardiac function and outcome post-MI with age, but studies have not been performed in larger animals, and the mechanisms are unknown. Specifically, age-associated changes in timecourse of senescence and related changes in inflammation and fibrosis are not well understood. Additionally, the cellular and systemic role of senescence and its inflammatory milieu in influencing arrhythmogenesis with age is not clear, particularly in large animal models with cardiac electrophysiology more similar to humans than previously studied animal models. Here, we investigated the role of senescence in regulating inflammation, fibrosis, and arrhythmogenesis in young and aged infarcted rabbits. Aged rabbits exhibited increased peri-procedural mortality and arrhythmogenic electrophysiological remodeling at the infarct border zone (IBZ) compared to young rabbits. Studies of the aged infarct zone revealed persistent myofibroblast senescence and increased inflammatory signaling over a 12-week timecourse. Senescent IBZ myofibroblasts in aged rabbits appear to be coupled to myocytes, and our computational modeling showed that senescent myofibroblast-cardiomyocyte coupling prolongs action potential duration (APD) and facilitates conduction block permissive of arrhythmias. Aged infarcted human ventricles show levels of senescence consistent with aged rabbits, and senescent myofibroblasts also couple to IBZ myocytes. Our findings suggest that therapeutic interventions targeting senescent cells may mitigate arrhythmias post-MI with age.
Collapse
Affiliation(s)
- Brett C Baggett
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Kevin R Murphy
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Elif Sengun
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
- Department of Pharmacology, Institute of Graduate Studies in Health Sciences, Istanbul UniversityIstanbulTurkey
| | - Eric Mi
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Yueming Cao
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Nilufer N Turan
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Yichun Lu
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Lorraine Schofield
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Tae Yun Kim
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Anatoli Y Kabakov
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Peter Bronk
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Zhilin Qu
- School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Patrizia Camelliti
- School of Biosciences and Medicine, University of SurreyGuildfordUnited Kingdom
| | - Patrycja Dubielecka
- Brown UniversityProvidenceUnited States
- Department of Hematology, Rhode Island HospitalProvidenceUnited States
| | - Dmitry Terentyev
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | | | - Bum-Rak Choi
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | | | - Gideon Koren
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| |
Collapse
|
50
|
Wang HC, Moi SH, Chan LP, Wu CC, Du JS, Liu PL, Chou MC, Wu CW, Huang CJ, Hsiao HH, Pan MR, Chen LT. The role of the genomic mutation signature and tumor mutation burden on relapse risk prediction in head and neck squamous cell carcinoma after concurrent chemoradiotherapy. Exp Mol Med 2023:10.1038/s12276-023-00984-4. [PMID: 37121970 DOI: 10.1038/s12276-023-00984-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/07/2023] [Accepted: 01/30/2023] [Indexed: 05/02/2023] Open
Abstract
Personalized genetic profiling has focused on improving treatment efficacy and predicting risk stratification by identifying mutated genes and selecting targeted agents according to genetic testing. Therefore, we evaluated the role of genetic profiling and tumor mutation burden (TMB) using next-generation sequencing in patients with head and neck squamous cell carcinoma (HNSC). The relapse mutation signature (RMS) and chromatin remodeling mutation signature (CRMS) were explored to predict the risk of relapse in patients with HNSC treated with concurrent chemoradiotherapy (CCRT) with platinum-based chemotherapy. Patients in the high RMS and CRMS groups showed significantly shorter relapse-free survival than those in the low RMS and CRMS groups, respectively (p < 0.001 and p = 0.006). Multivariate Cox regression analysis showed that extranodal extension, CCRT response, and three somatic mutation profiles (TMB, RMS, and CRMS) were independent risk predictors for HNSC relapse. The predictive nomogram showed satisfactory performance in predicting relapse-free survival in patients with HNSC treated with CCRT.
Collapse
Affiliation(s)
- Hui-Ching Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Internal Medicine, Division of Hematology and Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Sin-Hua Moi
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Leong-Perng Chan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chun-Chieh Wu
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Jeng-Shiun Du
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Internal Medicine, Division of Hematology and Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Pei-Lin Liu
- Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Meng-Chun Chou
- Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Che-Wei Wu
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chih-Jen Huang
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hui-Hua Hsiao
- Department of Internal Medicine, Division of Hematology and Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Li-Tzong Chen
- Department of Internal Medicine, Division of Hematology and Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|