1
|
Van der Stede T, Van de Loock A, Turiel G, Hansen C, Tamariz-Ellemann A, Ullrich M, Lievens E, Spaas J, Yigit N, Anckaert J, Nuytens J, De Baere S, Van Thienen R, Weyns A, De Wilde L, Van Eenoo P, Croubels S, Halliwill JR, Mestdagh P, Richter EA, Gliemann L, Hellsten Y, Vandesompele J, De Bock K, Derave W. Cellular deconstruction of the human skeletal muscle microenvironment identifies an exercise-induced histaminergic crosstalk. Cell Metab 2025:S1550-4131(24)00493-5. [PMID: 39919738 DOI: 10.1016/j.cmet.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 10/14/2024] [Accepted: 12/18/2024] [Indexed: 02/09/2025]
Abstract
Plasticity of skeletal muscle is induced by transcriptional and translational events in response to exercise, leading to multiple health and performance benefits. The skeletal muscle microenvironment harbors myofibers and mononuclear cells, but the rich cell diversity has been largely ignored in relation to exercise adaptations. Using our workflow of transcriptome profiling of individual myofibers, we observed that their exercise-induced transcriptional response was surprisingly modest compared with the bulk muscle tissue response. Through the integration of single-cell data, we identified a small mast cell population likely responsible for histamine secretion during exercise and for targeting myeloid and vascular cells rather than myofibers. We demonstrated through histamine H1 or H2 receptor blockade in humans that this paracrine histamine signaling cascade drives muscle glycogen resynthesis and coordinates the transcriptional exercise response. Altogether, our cellular deconstruction of the human skeletal muscle microenvironment uncovers a histamine-driven intercellular communication network steering muscle recovery and adaptation to exercise.
Collapse
Affiliation(s)
- Thibaux Van der Stede
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium; Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Alexia Van de Loock
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Guillermo Turiel
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Camilla Hansen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | | | - Max Ullrich
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Eline Lievens
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Jan Spaas
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium; BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nurten Yigit
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jasper Anckaert
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Justine Nuytens
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Siegrid De Baere
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Merelbeke, Belgium
| | - Ruud Van Thienen
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Anneleen Weyns
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Laurie De Wilde
- Department of Diagnostic Sciences, Doping Control Laboratory, Ghent University, Ghent, Belgium
| | - Peter Van Eenoo
- Department of Diagnostic Sciences, Doping Control Laboratory, Ghent University, Ghent, Belgium
| | - Siska Croubels
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Merelbeke, Belgium
| | - John R Halliwill
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Pieter Mestdagh
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Erik A Richter
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Gliemann
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jo Vandesompele
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
2
|
Graca FA, Stephan A, Minden-Birkenmaier BA, Shirinifard A, Wang YD, Demontis F, Labelle M. Platelet-derived chemokines promote skeletal muscle regeneration by guiding neutrophil recruitment to injured muscles. Nat Commun 2023; 14:2900. [PMID: 37217480 DOI: 10.1038/s41467-023-38624-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Skeletal muscle regeneration involves coordinated interactions between different cell types. Injection of platelet-rich plasma is circumstantially considered an aid to muscle repair but whether platelets promote regeneration beyond their role in hemostasis remains unexplored. Here, we find that signaling via platelet-released chemokines is an early event necessary for muscle repair in mice. Platelet depletion reduces the levels of the platelet-secreted neutrophil chemoattractants CXCL5 and CXCL7/PPBP. Consequently, early-phase neutrophil infiltration to injured muscles is impaired whereas later inflammation is exacerbated. Consistent with this model, neutrophil infiltration to injured muscles is compromised in male mice with Cxcl7-knockout platelets. Moreover, neo-angiogenesis and the re-establishment of myofiber size and muscle strength occurs optimally in control mice post-injury but not in Cxcl7ko mice and in neutrophil-depleted mice. Altogether, these findings indicate that platelet-secreted CXCL7 promotes regeneration by recruiting neutrophils to injured muscles, and that this signaling axis could be utilized therapeutically to boost muscle regeneration.
Collapse
Affiliation(s)
- Flavia A Graca
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Benjamin A Minden-Birkenmaier
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Oncology, Division of Molecular Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Myriam Labelle
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Department of Oncology, Division of Molecular Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
3
|
Xu X, Talifu Z, Zhang CJ, Gao F, Ke H, Pan YZ, Gong H, Du HY, Yu Y, Jing YL, Du LJ, Li JJ, Yang DG. Mechanism of skeletal muscle atrophy after spinal cord injury: A narrative review. Front Nutr 2023; 10:1099143. [PMID: 36937344 PMCID: PMC10020380 DOI: 10.3389/fnut.2023.1099143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Spinal cord injury leads to loss of innervation of skeletal muscle, decreased motor function, and significantly reduced load on skeletal muscle, resulting in atrophy. Factors such as braking, hormone level fluctuation, inflammation, and oxidative stress damage accelerate skeletal muscle atrophy. The atrophy process can result in skeletal muscle cell apoptosis, protein degradation, fat deposition, and other pathophysiological changes. Skeletal muscle atrophy not only hinders the recovery of motor function but is also closely related to many systemic dysfunctions, affecting the prognosis of patients with spinal cord injury. Extensive research on the mechanism of skeletal muscle atrophy and intervention at the molecular level has shown that inflammation and oxidative stress injury are the main mechanisms of skeletal muscle atrophy after spinal cord injury and that multiple pathways are involved. These may become targets of future clinical intervention. However, most of the experimental studies are still at the basic research stage and still have some limitations in clinical application, and most of the clinical treatments are focused on rehabilitation training, so how to develop more efficient interventions in clinical treatment still needs to be further explored. Therefore, this review focuses mainly on the mechanisms of skeletal muscle atrophy after spinal cord injury and summarizes the cytokines and signaling pathways associated with skeletal muscle atrophy in recent studies, hoping to provide new therapeutic ideas for future clinical work.
Collapse
Affiliation(s)
- Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Chun-Jia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Yun-Zhu Pan
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Han Gong
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Hua-Yong Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Ying-Li Jing
- School of Rehabilitation, Capital Medical University, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liang-Jie Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- *Correspondence: Jian-Jun Li
| | - De-Gang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- De-Gang Yang
| |
Collapse
|
4
|
Liu C, He YX, Zhang JN, Yang F, Wang SY, Hu JL, Yu Y. Angelica oil restores the intestinal barrier function by suppressing S100A8/A9 signalling in mice with ulcerative colitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154490. [PMID: 36332386 DOI: 10.1016/j.phymed.2022.154490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) progression is driven by the activation of immune cells that release pro-inflammatory mediators to disrupt intestinal epithelial barrier integrity. This study aimed to investigate the potential protective effects of Angelica oil (AO) on the intestinal epithelial barrier in mice with UC and the underlying mechanisms. METHODS Improvement of the disease state and protective effect of AO on the intestinal epithelial barrier were observed in mice with dextran sulphate sodium salt (DSS)-induced UC. Protein microarrays were used to screen AO-affected cytokine pools and their recruited immune cells for accumulation in the tissues. Furthermore, quantitative proteomics was applied to search for AO-acting molecules and to verify in vitro the functions of key molecules between inflammation and the intestinal mucosal barrier. RESULTS AO significantly alleviated intestinal inflammation, reduced intestinal permeability, and retained barrier function in mice with UC. Furthermore, cytokines inhibited by AO mainly promoted monocyte and neutrophil activation or chemotaxis. Moreover, proteomic screening revealed that S100A8/A9 was a key molecule significantly regulated by AO, and its mediated TLR4/NF-κB pathway was also inhibited. Finally, we verified that AO inhibited the activation of the S100A8/A9/TLR4 signalling pathway and enhanced the expression of tight junctions (TJs) proteins using a cellular model of intestinal barrier damage induced by S100A8/A9 or macrophage-derived medium. And the enhancement of TJs in intestinal epithelial cells and the inhibition of inflammatory signalling by AO were significantly attenuated due to the application of S100A8/A9 monoclonal antibody. CONCLUSION These results demonstrated that AO improves intestinal mucosal barrier damage in the inflammatory environment of mice with UC by inhibiting the expression of S100A8/A9 and the activation of its downstream TLR4/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Chang Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Yue-Xian He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Jia-Ning Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Fang Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Shu-Yuan Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Ji-Liang Hu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China.
| | - Yang Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China.
| |
Collapse
|
5
|
Choi MC, Jo J, Lee M, Park J, Yao TP, Park Y. Cathelicidin-related antimicrobial peptide mediates skeletal muscle degeneration caused by injury and Duchenne muscular dystrophy in mice. J Cachexia Sarcopenia Muscle 2022; 13:3091-3105. [PMID: 36059045 PMCID: PMC9745559 DOI: 10.1002/jcsm.13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cathelicidin, an antimicrobial peptide, plays a key role in regulating bacterial killing and innate immunity; however, its role in skeletal muscle function is unknown. We investigated the potential role of cathelicidin in skeletal muscle pathology resulting from acute injury and Duchenne muscular dystrophy (DMD) in mice. METHODS Expression changes and muscular localization of mouse cathelicidin-related antimicrobial peptide (Cramp) were examined in the skeletal muscle of normal mice treated with chemicals (cardiotoxin and BaCl2 ) or in dystrophic muscle of DMD mouse models (mdx, mdx/Utrn+/- and mdx/Utrn-/- ). Cramp penetration into myofibres and effects on muscle damage were studied by treating synthetic peptides to mouse skeletal muscles or C2C12 myotubes. Cramp knockout (KO) mice and mdx/Utrn/Cramp KO lines were used to determine whether Cramp mediates muscle degeneration. Muscle pathophysiology was assessed by histological methods, serum analysis, grip strength and lifespan. Molecular factors targeted by Cramp were identified by the pull-down assay and proteomic analysis. RESULTS In response to acute muscle injury, Cramp was activated in muscle-infiltrating neutrophils and internalized into myofibres. Cramp treatments of mouse skeletal muscles or C2C12 myotubes resulted in muscle degeneration and myotube damage, respectively. Genetic ablation of Cramp reduced neutrophil infiltration and ameliorated muscle pathology, such as fibre size (P < 0.001; n = 6) and fibrofatty infiltration (P < 0.05). Genetic reduction of Cramp in mdx/Utrn+/- mice not only attenuated muscle damage (35%, P < 0.05; n = 9-10), myonecrosis (53%, P < 0.05), inflammation (37-65%, P < 0.01) and fibrosis (14%, P < 0.05) but also restored muscle fibre size (14%, P < 0.05) and muscle force (18%, P < 0.05). Reducing Cramp levels led to a 63% (male, P < 0.05; n = 10-14) and a 124% (female, P < 0.001; n = 20) increase in the lifespan of mdx/Utrn-/- mice. Proteomic and mechanistic studies revealed that Cramp cross-talks with Ca2+ signalling in skeletal muscle through sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase1 (SERCA1). Cramp binds and inactivates SERCA1, leading to the activation of Ca2+ -dependent calpain proteases that exacerbate DMD progression. CONCLUSIONS These findings identify Cramp as an immune cell-derived regulator of skeletal muscle degeneration and provide a potential therapeutic target for DMD.
Collapse
Affiliation(s)
- Moon-Chang Choi
- Department of Biomedical Science, Chosun University, Gwangju, South Korea
| | - Jiwon Jo
- Department of Biomedical Science, Chosun University, Gwangju, South Korea
| | - Myeongjin Lee
- Department of Biomedical Science, Chosun University, Gwangju, South Korea
| | - Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju, South Korea
| | - Tso-Pang Yao
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Yoonkyung Park
- Department of Biomedical Science, Chosun University, Gwangju, South Korea
| |
Collapse
|
6
|
Komori T, Morikawa Y. Essential roles of the cytokine oncostatin M in crosstalk between muscle fibers and immune cells in skeletal muscle after aerobic exercise. J Biol Chem 2022; 298:102686. [PMID: 36370846 PMCID: PMC9720348 DOI: 10.1016/j.jbc.2022.102686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022] Open
Abstract
Crosstalk between muscle fibers and immune cells is well known in the processes of muscle repair after exercise, especially resistance exercise. In aerobic exercise, however, this crosstalk is not fully understood. In the present study, we found that macrophages, especially anti-inflammatory (M2) macrophages, and neutrophils accumulated in skeletal muscles of mice 24 h after a single bout of an aerobic exercise. The expression of oncostatin M (OSM), a member of the interleukin 6 family of cytokines, was also increased in muscle fibers immediately after the exercise. In addition, we determined that deficiency of OSM in mice inhibited the exercise-induced accumulation of M2 macrophages and neutrophils, whereas intramuscular injection of OSM increased these immune cells in skeletal muscles. Furthermore, the chemokines related to the recruitment of macrophages and neutrophils were induced in skeletal muscles after aerobic exercise, which were attenuated in OSM-deficient mice. Among them, CC chemokine ligand 2, CC chemokine ligand 7, and CXC chemokine ligand 1 were induced by OSM in skeletal muscles. Next, we analyzed the direct effects of OSM on the skeletal muscle macrophages, because the OSM receptor β subunit was expressed predominantly in macrophages in the skeletal muscle. OSM directly induced the expression of these chemokines and anti-inflammatory markers in the skeletal muscle macrophages. From these findings, we conclude that OSM is essential for aerobic exercise-induced accumulation of M2 macrophages and neutrophils in the skeletal muscle partly through the regulation of chemokine expression in macrophages.
Collapse
|
7
|
Hatakeyama H, Kanzaki M. Protocol for preparing sensor molecules and analyzing heterotypic endomembrane fusion in insulin-responsive cells using live-cell imaging. STAR Protoc 2022; 3:101726. [PMID: 36170109 PMCID: PMC9526234 DOI: 10.1016/j.xpro.2022.101726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/07/2022] [Accepted: 08/31/2022] [Indexed: 01/26/2023] Open
Abstract
Heterotypic endomembrane fusion between static GLUT4-containing vesicles and traveling transferrin receptor-containing endosomes triggers insulin-responsive translocation of the GLUT4 glucose transporter. Here, we provide a protocol for preparing BODIPY-based fluorescent sensor molecules allowing detection of heterotypic endomembrane fusion through dequenching via streptavidin-biotin binding and ratiometrically analyzing insulin-responsive events with live-cell imaging. Although this protocol is for evaluating specific fusion processes relating GLUT4 translocation, it is also applicable to assessing other processes so long as sensor molecules can properly label target molecules. For complete details on the use and execution of this protocol, please refer to Hatakeyama et al. (2022).
Collapse
Affiliation(s)
- Hiroyasu Hatakeyama
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8579, Japan,Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan,Department of Physiology, Kitasato University School of Medicine, Sagamihara 252-0374, Japan,Corresponding author
| | - Makoto Kanzaki
- Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan,Corresponding author
| |
Collapse
|
8
|
RSPO3 is a novel contraction-inducible factor identified in an "in vitro exercise model" using primary human myotubes. Sci Rep 2022; 12:14291. [PMID: 35995979 PMCID: PMC9395423 DOI: 10.1038/s41598-022-18190-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
The physiological significance of skeletal muscle as a secretory organ is now well known but we can only speculate as to the existence of as-yet-unidentified myokines, especially those upregulated in response to muscle contractile activity. We first attempted to establish an “insert-chamber based in vitro exercise model” allowing the miniature but high cell-density culture state enabling highly developed contractile human myotubes to be readily obtained by applying electric pulse stimulation (EPS). By employing this in vitro exercise model, we identified R-spondin 3 (RSPO3) as a novel contraction-inducible myokine produced by cultured human myotubes. Contraction-dependent muscular RSPO3 mRNA upregulation was confirmed in skeletal muscles of mice subjected to sciatic nerve mediated in situ contraction as well as those of mice after 2 h of running. Pharmacological in vitro experiments demonstrated a relatively high concentration of metformin (millimolar range) to suppress the contraction-inducible mRNA upregulation of human myokines including RSPO3, interleukin (IL)-6, IL-8 and CXCL1. Our data also suggest human RSPO3 to be a paracrine factor that may positively participate in the myogenesis processes of myoblasts and satellite cells. Thus, the “insert chamber-based in vitro exercise model” is a potentially valuable research tool for investigating contraction-inducible biological responses of human myotubes usually exhibiting poorer contractility development even in the setting of EPS treatment.
Collapse
|
9
|
Impact of habitual chewing on gut motility via microbiota transition. Sci Rep 2022; 12:13819. [PMID: 35970869 PMCID: PMC9378666 DOI: 10.1038/s41598-022-18095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
The gut environment, including the microbiota and its metabolites and short-chain fatty acids (SCFA), is essential for health maintenance. It is considered that functional recovery treatment for masticatory dysphagia affects the composition of the gut microbiota, indicating that habitual mastication, depending on the hardness of the food, may affect the gut microbiota and environment. However, the impact of chronic powdered diet feeding on the colonic condition and motility remains unclear. Here, we evaluated various colonic features in mice fed with powdered diets for a long-term and a mouse model with masticatory behavior. We observed a decreased abundance of the SCFA-producing bacterial genera in the ceca of the powdered diet-fed mice. Based on the importance of SCFAs in gut immune homeostasis and motility, interestingly, powdered diet feeding also resulted in constipation-like symptoms due to mild colitis, which were ameliorated by the administration of a neutrophil-depleting agent and neutrophil elastase inhibitors. Lastly, the suppressed colonic motility in the powdered diet-fed mice was significantly improved by loading masticatory activity for 2 h. Thus, feeding habits with appropriate masticatory activity and stimulation may play a key role in providing a favorable gut environment based on interactions between the gut microbiota and host immune system.
Collapse
|
10
|
Ikeuchi S, Minamida M, Nakamura T, Konishi M, Kamioka H. Exploratory Systematic Review and Meta-Analysis of Panax Genus Plant Ingestion Evaluation in Exercise Endurance. Nutrients 2022; 14:nu14061185. [PMID: 35334841 PMCID: PMC8950061 DOI: 10.3390/nu14061185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Many studies that use food containing Panax genus plants (PGPs) have been conducted but most of them have not mentioned the effective compounds ginsenosides and their composition. Therefore, we conducted a systematic review and meta-analysis of time to exhaustion as an index of exercise endurance with ingestion of PGPs or ginsenosides to reveal their effects. Methods: We performed a systematic review with a comprehensive and structured literature search using seven literature databases, four clinical trial databases, and three general web search engines during 15–22 March 2021. A random-effects model was applied to calculate the standardized mean difference (SMD) and 95% confidence interval (CI) as the difference between the mean in the treatment and placebo groups. We evaluated the risk of bias of individual studies along with the risk of bias tool in the Cochrane handbook. This study was funded by Maruzen Pharmaceuticals Co., Ltd. (Hiroshima, Japan). The protocol for this study was registered with the UMIN-CTR (No. UMIN000043341). Results: Five studies met the inclusion criteria. The number of total participants was 90, with 59 in the ingestion-PGPs group and 64 in the control group, because three studies were crossover-design trials. We found that ingestion of PGPs or ginsenosides significantly improved exercise endurance (SMD [95% CI]: 0.58 [0.22–0.95], I2 = 0%). It was suggested that ginsenoside Rg1 (Rg1) and PGPs extract containing Rg1 were significantly effective in improving exercise endurance (SMD [95% CI]: 0.70 [0.14–1.27], I2 = 30%) by additional analysis. Conclusions: This systematic review suggests that the ingestion of PGPs or ginsenosides, especially Rg1, is effective in improving exercise endurance in healthy adults. However, further high-quality randomized controlled trials are required because imprecision and publication bias cannot be ignored in this systematic review.
Collapse
Affiliation(s)
- Shingo Ikeuchi
- Research & Development Division, Maruzen Pharmaceuticals Co., Ltd., 1089-8 Sagata, Shinnichi-cho, Hiroshima 729-3102, Japan; (M.M.); (T.N.); (M.K.)
- Faculty of Regional Environment Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan;
- Correspondence: ; Tel.: +81-847-52-6262
| | - Mika Minamida
- Research & Development Division, Maruzen Pharmaceuticals Co., Ltd., 1089-8 Sagata, Shinnichi-cho, Hiroshima 729-3102, Japan; (M.M.); (T.N.); (M.K.)
| | - Touma Nakamura
- Research & Development Division, Maruzen Pharmaceuticals Co., Ltd., 1089-8 Sagata, Shinnichi-cho, Hiroshima 729-3102, Japan; (M.M.); (T.N.); (M.K.)
| | - Masatoshi Konishi
- Research & Development Division, Maruzen Pharmaceuticals Co., Ltd., 1089-8 Sagata, Shinnichi-cho, Hiroshima 729-3102, Japan; (M.M.); (T.N.); (M.K.)
| | - Hiroharu Kamioka
- Faculty of Regional Environment Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan;
| |
Collapse
|
11
|
Suzuki K, Tsuchiya M, Yoshida S, Ogawa K, Chen W, Kanzaki M, Takahashi T, Fujita R, Li Y, Yabe Y, Aizawa T, Hagiwara Y. Tissue accumulation of neutrophil extracellular traps mediates muscle hyperalgesia in a mouse model. Sci Rep 2022; 12:4136. [PMID: 35264677 PMCID: PMC8907237 DOI: 10.1038/s41598-022-07916-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 02/14/2022] [Indexed: 11/24/2022] Open
Abstract
Accumulation of uric acid (UA) during muscular trauma is a factor involved in the development of muscle hyperalgesia. Neutrophil extracellular traps (NETs), DNA-based reticular structures to capture UA, play a central role in the pain onset of gout attacks; however, the involvement of NETs via the elevation of local UA level in muscle hyperalgesia due to injuries from muscle overuse remains unknown. The triceps surae muscles (TSMs) in the unilateral hindlimb of mice were electrically stimulated to induce excessive muscle contraction. Mechanical withdrawal thresholds, tissue UA levels, neutrophil recruitment, and protein amount of citrullinated histone 3 (citH3), a major marker of NETs, were investigated. Furthermore, whether neutrophil depletion, extracellular DNA cleavage, and administration of the urate-lowering agent febuxostat improved muscle hyperalgesia caused by NET formation was examined. CitH3 expression upon neutrophil recruitment was significantly increased in the stimulated TSMs with increased tissue UA levels, whereas febuxostat administration improved muscle hyperalgesia with decreased citH3 and tissue UA levels, as observed in neutrophil depletion and extracellular DNA digestion. The underlying mechanism of muscle hyperalgesia associated with locally recruited neutrophils forming NETs due to increased tissue UA levels potentially plays a significant role in creating a vicious circle of muscle pain.
Collapse
Affiliation(s)
- Kazuaki Suzuki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Masahiro Tsuchiya
- Department of Nursing, Tohoku Fukushi University, 6-149-1 Kunimi-ga-oka, Sendai, 981-3201, Japan.
| | - Shinichirou Yoshida
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kazumi Ogawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Weijian Chen
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Makoto Kanzaki
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Tadahisa Takahashi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Ryo Fujita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Yuqing Li
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Yutaka Yabe
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yoshihiro Hagiwara
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
12
|
Heckmann M, Klanert G, Sandner G, Lanzerstorfer P, Auer M, Weghuber J. Fluorescence Microscopy-Based Quantitation of GLUT4 Translocation. Methods Appl Fluoresc 2022; 10. [PMID: 35008072 DOI: 10.1088/2050-6120/ac4998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/10/2022] [Indexed: 11/11/2022]
Abstract
Postprandial insulin-stimulated glucose uptake into target tissue is crucial for the maintenance of normal blood glucose homeostasis. This step is rate-limited by the number of facilitative glucose transporters type 4 (GLUT4) present in the plasma membrane. Since insulin resistance and impaired GLUT4 translocation are associated with the development of metabolic disorders such as type 2 diabetes, this transporter has become an important target of antidiabetic drug research. The application of screening approaches that are based on the analysis of GLUT4 translocation to the plasma membrane to identify substances with insulinomimetic properties has gained global research interest in recent years. Here, we review methods that have been implemented to quantitate the translocation of GLUT4 to the plasma membrane. These methods can be broadly divided into two sections: microscopy-based technologies (e.g., immunoelectron, confocal or total internal reflection fluorescence microscopy) and biochemical and spectrometric approaches (e.g., membrane fractionation, photoaffinity labeling or flow cytometry). In this review, we discuss the most relevant approaches applied to GLUT4 thus far, highlighting the advantages and disadvantages of these approaches, and we provide a critical discussion and outlook into new methodological opportunities.
Collapse
Affiliation(s)
- Mara Heckmann
- University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, Wels, Oberösterreich, 4600, AUSTRIA
| | - Gerald Klanert
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, Tulln, 3430, AUSTRIA
| | - Georg Sandner
- University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, Wels, Oberösterreich, 4600, AUSTRIA
| | - Peter Lanzerstorfer
- University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, Wels, Oberösterreich, 4600, AUSTRIA
| | - Manfred Auer
- Division of Pathway Medicine, University of Edinburgh, University of Edinburgh Medical School, The Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, Edinburgh, EH8 9AB, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Julian Weghuber
- University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, Wels, Oberösterreich, 4600, AUSTRIA
| |
Collapse
|
13
|
Piotrowski ER, Tift MS, Crocker DE, Pearson AB, Vázquez-Medina JP, Keith AD, Khudyakov JI. Ontogeny of Carbon Monoxide-Related Gene Expression in a Deep-Diving Marine Mammal. Front Physiol 2021; 12:762102. [PMID: 34744798 PMCID: PMC8567018 DOI: 10.3389/fphys.2021.762102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Marine mammals such as northern elephant seals (NES) routinely experience hypoxemia and ischemia-reperfusion events to many tissues during deep dives with no apparent adverse effects. Adaptations to diving include increased antioxidants and elevated oxygen storage capacity associated with high hemoprotein content in blood and muscle. The natural turnover of heme by heme oxygenase enzymes (encoded by HMOX1 and HMOX2) produces endogenous carbon monoxide (CO), which is present at high levels in NES blood and has been shown to have cytoprotective effects in laboratory systems exposed to hypoxia. To understand how pathways associated with endogenous CO production and signaling change across ontogeny in diving mammals, we measured muscle CO and baseline expression of 17 CO-related genes in skeletal muscle and whole blood of three age classes of NES. Muscle CO levels approached those of animals exposed to high exogenous CO, increased with age, and were significantly correlated with gene expression levels. Muscle expression of genes associated with CO production and antioxidant defenses (HMOX1, BVR, GPX3, PRDX1) increased with age and was highest in adult females, while that of genes associated with protection from lipid peroxidation (GPX4, PRDX6, PRDX1, SIRT1) was highest in adult males. In contrast, muscle expression of mitochondrial biogenesis regulators (PGC1A, ESRRA, ESRRG) was highest in pups, while genes associated with inflammation (HMOX2, NRF2, IL1B) did not vary with age or sex. Blood expression of genes involved in regulation of inflammation (IL1B, NRF2, BVR, IL10) was highest in pups, while HMOX1, HMOX2 and pro-inflammatory markers (TLR4, CCL4, PRDX1, TNFA) did not vary with age. We propose that ontogenetic upregulation of baseline HMOX1 expression in skeletal muscle of NES may, in part, underlie increases in CO levels and expression of genes encoding antioxidant enzymes. HMOX2, in turn, may play a role in regulating inflammation related to ischemia and reperfusion in muscle and circulating immune cells. Our data suggest putative ontogenetic mechanisms that may enable phocid pups to transition to a deep-diving lifestyle, including high baseline expression of genes associated with mitochondrial biogenesis and immune system activation during postnatal development and increased expression of genes associated with protection from lipid peroxidation in adulthood.
Collapse
Affiliation(s)
| | - Michael S. Tift
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Daniel E. Crocker
- Biology Department, Sonoma State University, Rohnert Park, CA, United States
| | - Anna B. Pearson
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States
| | - José P. Vázquez-Medina
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Anna D. Keith
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| | - Jane I. Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| |
Collapse
|
14
|
Schilling BK, Baker JS, Komatsu C, Marra KG. Intramuscular injection of skeletal muscle derived extracellular matrix mitigates denervation atrophy after sciatic nerve transection. J Tissue Eng 2021; 12:20417314211032491. [PMID: 34567507 PMCID: PMC8458676 DOI: 10.1177/20417314211032491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Peripheral nerve injury and the associated muscle atrophy has an estimated annual healthcare burden of $150 billion dollars in the United States. When considering the total annual health-related spending of $3.5 trillion, these pathologies alone occupy about 4.3%. The prevalence of these ailments is rooted, at least in part, in the lack of specific preventative therapies that can be administered to muscle while it remains in the denervated state. To address this, skeletal muscle-derived ECM (skECM) was injected directly in denervated muscle with postoperative analysis performed at 20 weeks, including gait analysis, force production, cytokine quantification, and histological analysis. skECM was shown to be superior against non-injected muscle controls showing no difference in contraction force to uninjured muscle at 20 weeks. Cytokines IL-1β, IL-18, and IFNγ appeared to mediate regeneration with statistical regression implicating these cytokines as strong predictors of muscle contraction, showing significant linear correlation.
Collapse
Affiliation(s)
- Benjamin K Schilling
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jocelyn S Baker
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chiaki Komatsu
- Department of Plastic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kacey G Marra
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Plastic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Chen X, Zhang D, Li Y, Wang W, Bei W, Guo J. NLRP3 inflammasome and IL-1β pathway in type 2 diabetes and atherosclerosis: Friend or foe? Pharmacol Res 2021; 173:105885. [PMID: 34536551 DOI: 10.1016/j.phrs.2021.105885] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/23/2021] [Accepted: 09/09/2021] [Indexed: 12/28/2022]
Abstract
Type 2 diabetes and atherosclerosis have gradually garnered great attention as inflammatory diseases. Previously, the fact that Interleukin-1β (IL-1β) accelerates the development of type 2 diabetes and atherosclerosis has been proved in animal experiments and clinical trials. However, the continued studies found that the effect of IL-1β on type 2 diabetes and atherosclerosis is much more complicated than the negative impact. Nucleotide-binding oligomerization domain and leucine-rich repeat pyrin 3 domain (NLRP3) inflammasome, whose activation and assembly significantly affect the release of IL-1β, is a crucial effector activated by a variety of metabolites. The diversity of NLRP3 activation mode is one of the fundamental reasons for the intricate effects on the progression of type 2 diabetes and atherosclerosis, providing many new insights for us to intervene in metabolic diseases. This review focuses on how NLRP3 inflammasome affects the progression of type 2 diabetes and atherosclerosis and what opportunities and challenges it can bring us.
Collapse
Affiliation(s)
- Xu Chen
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Dongxing Zhang
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Yuping Li
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Weixuan Wang
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Weijian Bei
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China.
| | - Jiao Guo
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China.
| |
Collapse
|
16
|
Chaweewannakorn C, Harada T, Nyasha MR, Koide M, Shikama Y, Hagiwara Y, Sasaki K, Kanzaki M, Tsuchiya M. Imaging of muscle activity-induced morphometric changes in fibril network of myofascia by two-photon microscopy. J Anat 2021; 238:515-526. [PMID: 33078407 PMCID: PMC7855069 DOI: 10.1111/joa.13339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/10/2020] [Accepted: 09/28/2020] [Indexed: 01/15/2023] Open
Abstract
Myofascia, deep fascia enveloping skeletal muscles, consists of abundant collagen and elastin fibres that play a key role in the transmission of muscular forces. However, understanding of biomechanical dynamics in myofascia remains very limited due to less quantitative and relevant approaches for in vivo examination. The purpose of this study was to evaluate the myofascial fibril structure by means of a quantitative approach using two-photon microscopy (TPM) imaging in combination with intravital staining of Evans blue dye (EBD), a far-red fluorescence dye, which potentially labels elastin. With focus on myofascia of the tibial anterior (TA) muscle, the fibril structure intravitally stained with EBD was observed at the depth level of collagen fibrous membrane above the muscle belly. The EBD-labelled fibril structure and orientation in myofascia indicated biomechanical responses to muscle activity and ageing. The orientation histograms of EBD-labelled fibrils were significantly modified depending upon the intensity of muscle activity and ageing. Moreover, the density of EBD-labelled fibrils in myofascia decreased with habitual exercise but increased with muscle immobilization or ageing. In particular, the diameter of EBD-labelled fibrils in aged mice was significantly higher. The orientation histograms of EBD-labelled fibrils after habitual exercise, muscle immobilization and ageing showed significant differences compared to control. Indeed, the histograms in bilateral TA myofascia of exercise mice made simple waveforms without multiple sharp peaks, whilst muscular immobilization or ageing significantly shifted a histogram with sustaining multiple sharp peaks. Therefore, the dynamics of fibre network with EBD fluorescence in response to the biomechanical environment possibly indicate functional tissue adaptation in myofascia. Furthermore, on the basis of the knowledge that neutrophil recruitment occurs locally in working muscles, we suggested the unique reconstruction mechanism involving neutrophilic elastase in the myofascial fibril structure. In addition to the elastolytic susceptibility of EBD-labelled fibrils, distinct immunoreactivities and activities of neutrophil elastase in the myofascia were observed after electric pulse stimulation-induced muscle contraction for 15 min. Our findings of EBD-labelled fibril dynamics in myofascia through quantitative approach using TPM imaging and intravital fluorescence labelling potentially brings new insights to examine muscle physiology and pathology.
Collapse
Affiliation(s)
- Chayanit Chaweewannakorn
- Division of Advanced Prosthetic DentistryGraduate School of DentistryTohoku UniversitySendaiJapan
- Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
| | - Takashi Harada
- Department of Orthopaedic SurgeryGraduate School of MedicineTohoku UniversitySendaiJapan
| | - Mazvita R. Nyasha
- Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
| | - Masashi Koide
- Department of Orthopaedic SurgeryGraduate School of MedicineTohoku UniversitySendaiJapan
| | - Yosuke Shikama
- Department of Oral Disease ResearchNational Center for Geriatrics and GerontologyObuJapan
| | - Yoshihiro Hagiwara
- Department of Orthopaedic SurgeryGraduate School of MedicineTohoku UniversitySendaiJapan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic DentistryGraduate School of DentistryTohoku UniversitySendaiJapan
| | - Makoto Kanzaki
- Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
| | | |
Collapse
|
17
|
Suzuki K, Tominaga T, Ruhee RT, Ma S. Characterization and Modulation of Systemic Inflammatory Response to Exhaustive Exercise in Relation to Oxidative Stress. Antioxidants (Basel) 2020; 9:antiox9050401. [PMID: 32397304 PMCID: PMC7278761 DOI: 10.3390/antiox9050401] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Exhaustive exercise induces systemic inflammatory responses, which are associated with exercise-induced tissue/organ damage, but the sources and triggers are not fully understood. Herein, the basics of inflammatory mediator cytokines and research findings on the effects of exercise on systemic inflammation are introduced. Subsequently, the association between inflammatory responses and tissue damage is examined in exercised and overloaded skeletal muscle and other internal organs. Furthermore, an overview of the interactions between oxidative stress and inflammatory mediator cytokines is provided. Particularly, the transcriptional regulation of redox signaling and pro-inflammatory cytokines is described, as the activation of the master regulatory factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is involved directly or indirectly in controlling pro-inflammatory genes and antioxidant enzymes expression, whilst nuclear factor-kappa B (NF-κB) regulates the pro-inflammatory gene expression. Additionally, preventive countermeasures against the pathogenesis along with the possibility of interventions such as direct and indirect antioxidants and anti-inflammatory agents are described. The aim of this review is to give an overview of studies on the systematic inflammatory responses to exercise, including our own group as well as others. Moreover, the challenges and future directions in understanding the role of exercise and functional foods in relation to inflammation and oxidative stress are discussed.
Collapse
Affiliation(s)
- Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
- Correspondence: (K.S.); (S.M.); Tel.: +81-4-2947-6898 (K.S.); +81-4-2947-6753 (S.M.)
| | - Takaki Tominaga
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (T.T.); (R.T.R.)
| | - Ruheea Taskin Ruhee
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (T.T.); (R.T.R.)
| | - Sihui Ma
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
- Correspondence: (K.S.); (S.M.); Tel.: +81-4-2947-6898 (K.S.); +81-4-2947-6753 (S.M.)
| |
Collapse
|
18
|
Fan Z, Kiosses WB, Sun H, Orecchioni M, Ghosheh Y, Zajonc DM, Arnaout MA, Gutierrez E, Groisman A, Ginsberg MH, Ley K. High-Affinity Bent β 2-Integrin Molecules in Arresting Neutrophils Face Each Other through Binding to ICAMs In cis. Cell Rep 2020; 26:119-130.e5. [PMID: 30605669 PMCID: PMC6625519 DOI: 10.1016/j.celrep.2018.12.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/09/2018] [Accepted: 12/07/2018] [Indexed: 01/13/2023] Open
Abstract
Leukocyte adhesion requires β2-integrin activation. Resting integrins exist in a bent-closed conformation-i.e., not extended (E-) and not high affinity (H-)-unable to bind ligand. Fully activated E+H+ integrin binds intercellular adhesion molecules (ICAMs) expressed on the opposing cell in trans. E-H- transitions to E+H+ through E+H- or through E-H+, which binds to ICAMs on the same cell in cis. Spatial patterning of activated integrins is thought to be required for effective arrest, but no high-resolution cell surface localization maps of activated integrins exist. Here, we developed Super-STORM by combining super-resolution microscopy with molecular modeling to precisely localize activated integrin molecules and identify the molecular patterns of activated integrins on primary human neutrophils. At the time of neutrophil arrest, E-H+ integrins face each other to form oriented (non-random) nanoclusters. To address the mechanism causing this pattern, we blocked integrin binding to ICAMs in cis, which significantly relieved the face-to-face orientation.
Collapse
Affiliation(s)
- Zhichao Fan
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - William Bill Kiosses
- Microscopy Core Facility, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Hao Sun
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Marco Orecchioni
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Yanal Ghosheh
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Dirk M Zajonc
- Division of Immune Regulation, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA; Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - M Amin Arnaout
- Harvard Medical School, Boston, MA 02115, USA; Leukocyte Biology and Inflammation Program, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Regenerative Medicine, Medical Services, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Edgar Gutierrez
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Alex Groisman
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Mark H Ginsberg
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
19
|
Chaweewannakorn C, Nyasha MR, Chen W, Sekiai S, Tsuchiya M, Hagiwara Y, Bouzakri K, Sasaki K, Kanzaki M. Exercise‐evoked intramuscular neutrophil‐endothelial interactions support muscle performance and GLUT4 translocation: a mouse gnawing model study. J Physiol 2019; 598:101-122. [DOI: 10.1113/jp278564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Chayanit Chaweewannakorn
- Division of Advanced Prosthetic DentistryGraduate School of DentistryTohoku University Sendai Japan
- Graduate School of Biomedical EngineeringTohoku University Sendai Japan
| | - Mazvita R. Nyasha
- Graduate School of Biomedical EngineeringTohoku University Sendai Japan
| | - Weijian Chen
- Graduate School of Biomedical EngineeringTohoku University Sendai Japan
| | - Shigenori Sekiai
- Graduate School of Biomedical EngineeringTohoku University Sendai Japan
| | | | - Yoshihiro Hagiwara
- Department of Orthopaedic SurgeryGraduate School of MedicineTohoku University Sendai Japan
| | - Karim Bouzakri
- Centre Européen d'Etude du DiabèteDiabète et ThérapeutiqueUniversité de StrasbourgFédération de Médecine Translationnelle de Strasbourg EA7294 Strasbourg France
| | - Keiichi Sasaki
- Division of Advanced Prosthetic DentistryGraduate School of DentistryTohoku University Sendai Japan
| | - Makoto Kanzaki
- Graduate School of Biomedical EngineeringTohoku University Sendai Japan
| |
Collapse
|
20
|
Abudupataer M, Zou W, Zhang W, Ding S, Zhou Z, Chen J, Li H, Zhang Z, Wang C, Ge J, Hong T, Yang X. Histamine deficiency delays ischaemic skeletal muscle regeneration via inducing aberrant inflammatory responses and repressing myoblast proliferation. J Cell Mol Med 2019; 23:8392-8409. [PMID: 31600036 PMCID: PMC6850925 DOI: 10.1111/jcmm.14720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/01/2019] [Accepted: 09/08/2019] [Indexed: 01/27/2023] Open
Abstract
Histidine decarboxylase (HDC) catalyses the formation of histamine from L‐histidine. Histamine is a biogenic amine involved in many physiological and pathological processes, but its role in the regeneration of skeletal muscles has not been thoroughly clarified. Here, using a murine model of hindlimb ischaemia, we show that histamine deficiency in Hdc knockout (Hdc−/−) mice significantly reduces blood perfusion and impairs muscle regeneration. Using Hdc‐EGFP transgenic mice, we demonstrate that HDC is expressed predominately in CD11b+Gr‐1+ myeloid cells but not in skeletal muscles and endothelial cells. Large amounts of HDC‐expressing CD11b+ myeloid cells are rapidly recruited to injured and inflamed muscles. Hdc−/− enhances inflammatory responses and inhibits macrophage differentiation. Mechanically, we demonstrate that histamine deficiency decreases IGF‐1 (insulin‐like growth factor 1) levels and diminishes myoblast proliferation via H3R/PI3K/AKT‐dependent signalling. These results indicate a novel role for HDC‐expressing CD11b+ myeloid cells and histamine in myoblast proliferation and skeletal muscle regeneration.
Collapse
Affiliation(s)
- Mieradilijiang Abudupataer
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weihong Zou
- Department of Pharmacy, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Weiwei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Suling Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheliang Zhou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinmiao Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiwei Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chunsheng Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tao Hong
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Glucose Ingestion Inhibits Endurance Exercise-Induced IL-6 Producing Macrophage Infiltration in Mice Muscle. Nutrients 2019; 11:nu11071496. [PMID: 31262006 PMCID: PMC6682949 DOI: 10.3390/nu11071496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Carbohydrate (CHO) supplementation during exercise attenuates exercise-induced increases in plasma Interleukin (IL)-6 concentration. However, the effects of CHO supplementation on muscle IL-6 production during endurance exercise is controversial. The purpose of this study was to investigate the effects of CHO supplementation on muscle IL-6 production during endurance exercise with a special focus on the IL-6 producing cells. Methods: C57BL/6J mice were divided into three groups—sedentary with water ingestion group as the control (Con; n = 10), exercise with water ingestion group (Ex; n = 10), and exercise with 6% glucose ingestion group (Ex + glucose; n = 10). The Ex and Ex + glucose groups completed 3 h of treadmill running (24 m/min, 7% incline) and were sacrificed immediately after exercise. Results: The exercise-induced increases of plasma IL-6 concentration and gastrocnemius IL-6 gene expression were attenuated by glucose ingestion. However, the increases of soleus IL-6 gene expression and gastrocnemius and soleus IL-6 protein expression were not attenuated by glucose ingestion. Furthermore, we observed that macrophages that infiltrated muscle produce IL-6 and glucose ingestion attenuated the infiltration of IL-6-producing macrophages. Conclusion: This study revealed that infiltrating macrophages may be one type of IL-6-producing cells during endurance exercise, and the infiltration of these cells in muscle was attenuated by glucose ingestion. However, the effects of glucose ingestion on muscle IL-6 production were limited.
Collapse
|
22
|
Knudsen JR, Henriquez-Olguin C, Li Z, Jensen TE. Electroporated GLUT4-7myc-GFP detects in vivo glucose transporter 4 translocation in skeletal muscle without discernible changes in GFP patterns. Exp Physiol 2019; 104:704-714. [PMID: 30710396 DOI: 10.1113/ep087545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/01/2019] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the central question of this study? Resolving the mechanism(s) leading to glucose transporter 4 (GLUT4) translocation to the muscle surface membrane has great therapeutic potential. However, the measurement of GLUT4 translocation is technically challenging. Here, we asked whether electroporation of GLUT4-7myc-GFP into skeletal muscle could be used as a tool to study GLUT4 translocation in vivo. What is the main finding and its importance? By acutely inducing GLUT4-7myc-GFP expression in skeletal muscle, we verified that in vivo exercise and AICAR stimulation increased the GLUT4 presence in the sarcolemma measured as myc signal. Importantly, the increased myc signal in the sarcolemma was not accompanied by major visual changes in the distribution of the GFP signal. ABSTRACT Insulin and exercise lead to translocation of the glucose transporter 4 (GLUT4) to the surface membrane of skeletal muscle fibres. This process is pivotal for facilitating glucose uptake into skeletal muscle. To study this, a robust assay is needed to measure the translocation of GLUT4 in adult skeletal muscle directly. Here, we aimed to validate a simple GLUT4 translocation assay using a genetically encoded biosensor in mouse skeletal muscle. We transfected GLUT4-7myc-GFP into mouse muscle to study live GLUT4 movement and to evaluate GLUT4 insertion in the muscle surface membrane after in vivo running exercise and pharmacological activation of AMP-activated protein kinase (AMPK). Transfection led to expression of GLUT4-7myc-GFP that was dynamic in live flexor digitorum brevis fibres and which, upon insulin stimulation, exposed the myc epitope extracellularly. Running exercise, in addition to AMPK activation by 5-aminoimidazole-4-carboxamide ribonucleotide, induced ∼125 and ∼100% increase, respectively, in extracellularly exposure of GLUT4 in the surface membrane of tibialis anterior muscle. Interestingly, the clear increase in surface-exposed GLUT4 content induced by insulin, exercise or AMPK activation was not accompanied by any discernible reorganization of the GLUT4-GFP signal. In conclusion, we provide a detailed description of an easy-to-use translocation assay to study GLUT4 accumulation at the surface membrane induced by exercise and exercise-mimicking stimuli. Notably, our analyses revealed that increased GLUT4 surface membrane accumulation was not accompanied by a discernible change in the GLUT4 localization pattern.
Collapse
Affiliation(s)
- Jonas Roland Knudsen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Carlos Henriquez-Olguin
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Zhencheng Li
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Elbenhardt Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Riuzzi F, Sorci G, Arcuri C, Giambanco I, Bellezza I, Minelli A, Donato R. Cellular and molecular mechanisms of sarcopenia: the S100B perspective. J Cachexia Sarcopenia Muscle 2018; 9:1255-1268. [PMID: 30499235 PMCID: PMC6351675 DOI: 10.1002/jcsm.12363] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022] Open
Abstract
Primary sarcopenia is a condition of reduced skeletal muscle mass and strength, reduced agility, and increased fatigability and risk of bone fractures characteristic of aged, otherwise healthy people. The pathogenesis of primary sarcopenia is not completely understood. Herein, we review the essentials of the cellular and molecular mechanisms of skeletal mass maintenance; the alterations of myofiber metabolism and deranged properties of muscle satellite cells (the adult stem cells of skeletal muscles) that underpin the pathophysiology of primary sarcopenia; the role of the Ca2+ -sensor protein, S100B, as an intracellular factor and an extracellular signal regulating cell functions; and the functional role of S100B in muscle tissue. Lastly, building on recent results pointing to S100B as to a molecular determinant of myoblast-brown adipocyte transition, we propose S100B as a transducer of the deleterious effects of accumulation of reactive oxygen species in myoblasts and, potentially, myofibers concurring to the pathophysiology of sarcopenia.
Collapse
Affiliation(s)
- Francesca Riuzzi
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy.,Interuniversity Institute of Myology
| | - Guglielmo Sorci
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy.,Interuniversity Institute of Myology
| | - Cataldo Arcuri
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy.,Interuniversity Institute of Myology
| | - Ileana Giambanco
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy.,Interuniversity Institute of Myology
| | - Ilaria Bellezza
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Alba Minelli
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Rosario Donato
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy.,Interuniversity Institute of Myology.,Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, Perugia, 06132, Italy
| |
Collapse
|