1
|
Abdellatef SA, Wang H, Nakanishi J. Microtubules Disruption Alters the Cellular Structures and Mechanics Depending on Underlying Chemical Cues. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2312282. [PMID: 39344221 DOI: 10.1002/smll.202312282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 09/19/2024] [Indexed: 10/01/2024]
Abstract
The extracellular matrix determines cell morphology and stiffness by manipulating the cytoskeleton. The impacts of extracellular matrix cues, including the mechanical and topographical cues on microtubules and their role in biological behaviors, are previously studied. However, there is a lack of understanding about how microtubules (MTs) are affected by environmental chemical cues, such as extracellular matrix density. Specifically, it is crucial to understand the connection between cellular morphology and mechanics induced by chemical cues and the role of microtubules in these cellular responses. To address this, surfaces with high and low cRGD (cyclic Arginine-Glycine-Aspartic acid) peptide ligand densities are used. The cRGD is diluted with a bioinert ligand to prevent surface native cellular remodeling. The cellular morphology, actin, and microtubules differ on these surfaces. Confocal fluorescence microscopes and atomic force microscopy (AFM) are used to determine the structural and mechanical cellular responses with and without microtubules. Microtubules are vital as an intracellular scaffold in elongated morphology correlated with low cRGD compared to rounded morphology in high cRGD substrates. The contributions of MTs to nucleus morphology and cellular mechanics are based on the underlying cRGD densities. Finally, this study reveals a significant correlation between MTs, actin networks, and vimentin in response to the underlying densities of cRGD.
Collapse
Affiliation(s)
- Shimaa A Abdellatef
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Hongxin Wang
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Jun Nakanishi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
- Graduate School of Advanced Engineering, Tokyo University of Science, 6-3-1, Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| |
Collapse
|
2
|
Mozzer A, Pitha I. Cyclic strain alters the transcriptional and migratory response of scleral fibroblasts to TGFβ. Exp Eye Res 2024; 244:109917. [PMID: 38697276 DOI: 10.1016/j.exer.2024.109917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
In glaucoma, scleral fibroblasts are exposed to IOP-associated mechanical strain and elevated TGFβ levels. These stimuli, in turn, lead to scleral remodeling. Here, we examine the scleral fibroblast migratory and transcriptional response to these stimuli to better understand mechanisms of glaucomatous scleral remodeling. Human peripapillary scleral (PPS) fibroblasts were cultured on parallel grooves, treated with TGFβ (2 ng/ml) in the presence of vehicle or TGFβ signaling inhibitors, and exposed to uniaxial strain (1 Hz, 5%, 12-24 h). Axis of cellular orientation was determined at baseline, immediately following strain, and 24 h after strain cessation with 0° being completely aligned with grooves and 90° being perpendicular. Fibroblasts migration in-line and across grooves was assessed using a scratch assay. Transcriptional profiling of TGFβ-treated fibroblasts with or without strain was performed by RT-qPCR and pERK, pSMAD2, and pSMAD3 levels were measured by immunoblot. Pre-strain alignment of TGFβ-treated cells with grooves (6.2 ± 1.5°) was reduced after strain (21.7 ± 5.3°, p < 0.0001) and restored 24 h after strain cessation (9.5 ± 2.6°). ERK, FAK, and ALK5 inhibition prevented this reduction; however, ROCK, YAP, or SMAD3 inhibition did not. TGFβ-induced myofibroblast markers were reduced by strain (αSMA, POSTN, ASPN, MLCK1). While TGFβ-induced phosphorylation of ERK and SMAD2 was unaffected by cyclic strain, SMAD3 phosphorylation was reduced (p = 0.0004). Wound healing across grooves was enhanced by ROCK and SMAD3 inhibition but not ERK or ALK5 inhibition. These results provide insight into the mechanisms by which mechanical strain alters the cellular response to TGFβ and the potential signaling pathways that underlie scleral remodeling.
Collapse
Affiliation(s)
- Ann Mozzer
- Department of Ophthalmology, USA; Center for Nanomedicine, USA
| | - Ian Pitha
- Department of Ophthalmology, USA; Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
3
|
Mougkogiannis P, Adamatzky A. Thermosensory Spiking Activity of Proteinoid Microspheres Cross-Linked by Actin Filaments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12649-12670. [PMID: 38837748 PMCID: PMC11191697 DOI: 10.1021/acs.langmuir.4c01107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Actin, found in all eukaryotic cells as globular (G) or filamentous (F) actin, undergoes polymerization, with G-actin units changing shape to become F-actin. Thermal proteins, or proteinoids, are created by heating amino acids (160-200 °C), forming polymeric chains. These proteinoids can swell in an aqueous solution at around 50 °C, producing hollow microspheres filled with a solution, exhibiting voltage spikes. Our research explores the signaling properties of proteinoids, actin filaments, and hybrid networks combining actin and proteinoids. Proteinoids replicate brain excitation dynamics despite lacking specific membranes or ion channels. We investigate enhancing conductivity and spiking by using pure actin, yielding improved coordination in networks compared with individual filaments or proteinoids. Temperature changes (20 short-peptide supramolecular C to 80 °C) regulate conduction states, demonstrating external control over emergent excitability in protobrain systems. Adding actin to proteinoids reduces spike timing variability, providing a more uniform feature distribution. These findings support theoretical models proposing cytoskeletal matrices for functional specification in synthetic protocell brains, promoting stable interaction complexity. The study concludes that life-like signal encoding can emerge spontaneously within biological polymer scaffolds, incorporating abiotic chemistry.
Collapse
Affiliation(s)
| | - Andrew Adamatzky
- Unconventional Computing
Laboratory, UWE Bristol, Bristol BS16 1QY, U.K.
| |
Collapse
|
4
|
Park R, Kang MS, Heo G, Shin YC, Han DW, Hong SW. Regulated Behavior in Living Cells with Highly Aligned Configurations on Nanowrinkled Graphene Oxide Substrates: Deep Learning Based on Interplay of Cellular Contact Guidance. ACS NANO 2024; 18:1325-1344. [PMID: 38099607 DOI: 10.1021/acsnano.2c09815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Micro-/nanotopographical cues have emerged as a practical and promising strategy for controlling cell fate and reprogramming, which play a key role as biophysical regulators in diverse cellular processes and behaviors. Extracellular biophysical factors can trigger intracellular physiological signaling via mechanotransduction and promote cellular responses such as cell adhesion, migration, proliferation, gene/protein expression, and differentiation. Here, we engineered a highly ordered nanowrinkled graphene oxide (GO) surface via the mechanical deformation of an ultrathin GO film on an elastomeric substrate to observe specific cellular responses based on surface-mediated topographical cues. The ultrathin GO film on the uniaxially prestrained elastomeric substrate through self-assembly and subsequent compressive force produced GO nanowrinkles with periodic amplitude. To examine the acute cellular behaviors on the GO-based cell interface with nanostructured arrays of wrinkles, we cultured L929 fibroblasts and HT22 hippocampal neuronal cells. As a result, our developed cell-culture substrate obviously provided a directional guidance effect. In addition, based on the observed results, we adapted a deep learning (DL)-based data processing technique to precisely interpret the cell behaviors on the nanowrinkled GO surfaces. According to the learning/transfer learning protocol of the DL network, we detected cell boundaries, elongation, and orientation and quantitatively evaluated cell velocity, traveling distance, displacement, and orientation. The presented experimental results have intriguing implications such that the nanotopographical microenvironment could engineer the living cells' morphological polarization to assemble them into useful tissue chips consisting of multiple cell types.
Collapse
Affiliation(s)
- Rowoon Park
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Gyeonghwa Heo
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Yong Cheol Shin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Ohio 44195, United States
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
- Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
5
|
Chen J, Chen X, Ma Y, Liu Y, Li J, Peng K, Dai Y, Chen X. Effect of Anisotropic Structural Depth on Orientation and Differentiation Behavior of Skeletal Muscle Cells. ACS OMEGA 2023; 8:41374-41382. [PMID: 37969971 PMCID: PMC10634202 DOI: 10.1021/acsomega.3c04981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/03/2023] [Indexed: 11/17/2023]
Abstract
Extensive research has been conducted to examine how substrate topological factors are involved in modulating the cell behavior. Among numerous topological factors, the vital influence of the touchable depth of substrates on cell behaviors has already been extensively characterized, but the response of cells to the topological structure at untouchable depth is still elusive. Herein, the influences of substrate depth on myoblast behaviors are systematically investigated using substrates with depths ranging from touchable depth (microgrooved) to untouchable depth (microbridges). The results show that an increase in microgroove depth is accompanied by an inhibited cell spreading, an enhanced elongation, and a more obvious orientation along microgrooves. Interestingly, myoblasts located on microbridges show a more pronounced elongation with increasing culture time but a position-dependent orientation. Myoblasts on the center and parallel boundary of microbridges orient along the bridges, while myoblasts on the vertical boundary align perpendicular to the microbridges. Moreover, the differentiation results of the myoblasts indicate that the differentiated myotubes can maintain this position-dependent orientation. The simulation of the stress field in cell monolayers suggests that the position-dependent orientation is caused by the comprehensive response of myoblasts to the substrate discontinuity and substrate depth. These findings provide valuable insights into the mechanism of cell depth sensing and could inform the design of tissue engineering scaffolds for skeletal muscle and biohybrid actuation.
Collapse
Affiliation(s)
- Jianfeng Chen
- School
of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Xuefei Chen
- School
of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Yihao Ma
- School
of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Yiran Liu
- School
of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Jin Li
- School
of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Kai Peng
- School
of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Yichuan Dai
- School
of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Xiaoxiao Chen
- School
of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| |
Collapse
|
6
|
Tagay Y, Kheirabadi S, Ataie Z, Singh RK, Prince O, Nguyen A, Zhovmer AS, Ma X, Sheikhi A, Tsygankov D, Tabdanov ED. Dynein-Powered Cell Locomotion Guides Metastasis of Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302229. [PMID: 37726225 PMCID: PMC10625109 DOI: 10.1002/advs.202302229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/20/2023] [Indexed: 09/21/2023]
Abstract
The principal cause of death in cancer patients is metastasis, which remains an unresolved problem. Conventionally, metastatic dissemination is linked to actomyosin-driven cell locomotion. However, the locomotion of cancer cells often does not strictly line up with the measured actomyosin forces. Here, a complementary mechanism of metastatic locomotion powered by dynein-generated forces is identified. These forces arise within a non-stretchable microtubule network and drive persistent contact guidance of migrating cancer cells along the biomimetic collagen fibers. It is also shown that the dynein-powered locomotion becomes indispensable during invasive 3D migration within a tissue-like luminal network formed by spatially confining granular hydrogel scaffolds (GHS) made up of microscale hydrogel particles (microgels). These results indicate that the complementary motricity mediated by dynein is always necessary and, in certain instances, sufficient for disseminating metastatic breast cancer cells. These findings advance the fundamental understanding of cell locomotion mechanisms and expand the spectrum of clinical targets against metastasis.
Collapse
Affiliation(s)
- Yerbol Tagay
- Department of PharmacologyPenn State College of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
| | - Sina Kheirabadi
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Zaman Ataie
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Rakesh K. Singh
- Department of Obstetrics & GynecologyGynecology OncologyUniversity of Rochester Medical CenterRochesterNY14642USA
| | - Olivia Prince
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMD20903USA
| | - Ashley Nguyen
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMD20903USA
| | - Alexander S. Zhovmer
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMD20903USA
| | - Xuefei Ma
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMD20903USA
| | - Amir Sheikhi
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
| | - Erdem D. Tabdanov
- Department of PharmacologyPenn State College of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
- Penn State Cancer InstitutePenn State College of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
| |
Collapse
|
7
|
Zhovmer AS, Manning A, Smith C, Wang J, Ma X, Tsygankov D, Dokholyan NV, Cartagena-Rivera AX, Singh RK, Tabdanov ED. Septins Enable T Cell Contact Guidance via Amoeboid-Mesenchymal Switch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559597. [PMID: 37808814 PMCID: PMC10557721 DOI: 10.1101/2023.09.26.559597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Lymphocytes exit circulation and enter in-tissue guided migration toward sites of tissue pathologies, damage, infection, or inflammation. By continuously sensing and adapting to the guiding chemo-mechano-structural properties of the tissues, lymphocytes dynamically alternate and combine their amoeboid (non-adhesive) and mesenchymal (adhesive) migration modes. However, which mechanisms guide and balance different migration modes are largely unclear. Here we report that suppression of septins GTPase activity induces an abrupt amoeboid-to-mesenchymal transition of T cell migration mode, characterized by a distinct, highly deformable integrin-dependent immune cell contact guidance. Surprisingly, the T cell actomyosin cortex contractility becomes diminished, dispensable and antagonistic to mesenchymal-like migration mode. Instead, mesenchymal-like T cells rely on microtubule stabilization and their non-canonical dynein motor activity for high fidelity contact guidance. Our results establish septin's GTPase activity as an important on/off switch for integrin-dependent migration of T lymphocytes, enabling their dynein-driven fluid-like mesenchymal propulsion along the complex adhesion cues.
Collapse
Affiliation(s)
- Alexander S Zhovmer
- Center for Biologics Evaluation & Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Alexis Manning
- Center for Biologics Evaluation & Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Chynna Smith
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Jian Wang
- Departments of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Xuefei Ma
- Center for Biologics Evaluation & Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nikolay V Dokholyan
- Departments of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, The Pennsylvania State University Hershey-Hummelstown, PA, USA
| | - Alexander X Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Rakesh K Singh
- Department of Obstetrics & Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Erdem D Tabdanov
- Departments of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
- Penn State Cancer Institute, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| |
Collapse
|
8
|
Chen J, Vishweshwaraiah YL, Mailman RB, Tabdanov ED, Dokholyan NV. A noncommutative combinatorial protein logic circuit controls cell orientation in nanoenvironments. SCIENCE ADVANCES 2023; 9:eadg1062. [PMID: 37235645 PMCID: PMC10219599 DOI: 10.1126/sciadv.adg1062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Single-protein-based devices that integrate signal sensing with logical operations to generate functional outputs offer exceptional promise for monitoring and modulating biological systems. Engineering such intelligent nanoscale computing agents is challenging, as it requires the integration of sensor domains into a functional protein via intricate allosteric networks. We incorporate a rapamycin-sensitive sensor (uniRapR) and a blue light-responsive LOV2 domain into human Src kinase, creating a protein device that functions as a noncommutative combinatorial logic circuit. In our design, rapamycin activates Src kinase, causing protein localization to focal adhesions, whereas blue light exerts the reverse effect that inactivates Src translocation. Focal adhesion maturation induced by Src activation reduces cell migration dynamics and shifts cell orientation to align along collagen nanolane fibers. Using this protein device, we reversibly control cell orientation by applying the appropriate input signals, a framework that may be useful in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jiaxing Chen
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
| | | | - Richard B. Mailman
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
| | - Erdem D. Tabdanov
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
9
|
Tagay Y, Kheirabadi S, Ataie Z, Singh RK, Prince O, Nguyen A, Zhovmer AS, Ma X, Sheikhi A, Tsygankov D, Tabdanov ED. Dynein-Powered Cell Locomotion Guides Metastasis of Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535605. [PMID: 37066378 PMCID: PMC10104034 DOI: 10.1101/2023.04.04.535605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Metastasis is a principal cause of death in cancer patients, which remains an unresolved fundamental and clinical problem. Conventionally, metastatic dissemination is linked to the actomyosin-driven cell locomotion. However, locomotion of cancer cells often does not strictly line up with the measured actomyosin forces. Here, we identify a complementary mechanism of metastatic locomotion powered by the dynein-generated forces. These forces that arise within a non-stretchable microtubule network drive persistent contact guidance of migrating cancer cells along the biomimetic collagen fibers. We also show that dynein-powered locomotion becomes indispensable during invasive 3D migration within a tissue-like luminal network between spatially confining hydrogel microspheres. Our results indicate that the complementary contractile system of dynein motors and microtubules is always necessary and in certain instances completely sufficient for dissemination of metastatic breast cancer cells. These findings advance fundamental understanding of cell locomotion mechanisms and expand the spectrum of clinical targets against metastasis.
Collapse
Affiliation(s)
- Yerbol Tagay
- Department of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Sina Kheirabadi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zaman Ataie
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Rakesh K. Singh
- Department of Obstetrics & Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Olivia Prince
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20903, USA
| | - Ashley Nguyen
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20903, USA
| | - Alexander S. Zhovmer
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20903, USA
| | - Xuefei Ma
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20903, USA
| | - Amir Sheikhi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Erdem D. Tabdanov
- Department of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
- Penn State Cancer Institute, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| |
Collapse
|
10
|
Comelles J, Fernández-Majada V, Acevedo V, Rebollo-Calderon B, Martínez E. Soft topographical patterns trigger a stiffness-dependent cellular response to contact guidance. Mater Today Bio 2023; 19:100593. [PMID: 36923364 PMCID: PMC10009736 DOI: 10.1016/j.mtbio.2023.100593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Topographical patterns are a powerful tool to study directional migration. Grooved substrates have been extensively used as in vitro models of aligned extracellular matrix fibers because they induce cell elongation, alignment, and migration through a phenomenon known as contact guidance. This process, which involves the orientation of focal adhesions, F-actin, and microtubule cytoskeleton along the direction of the grooves, has been primarily studied on hard materials of non-physiological stiffness. But how it unfolds when the stiffness of the grooves varies within the physiological range is less known. Here we show that substrate stiffness modulates the cellular response to topographical contact guidance. We find that for fibroblasts, while focal adhesions and actin respond to topography independently of the stiffness, microtubules show a stiffness-dependent response that regulates contact guidance. On the other hand, both clusters and single breast carcinoma epithelial cells display stiffness-dependent contact guidance, leading to more directional and efficient migration when increasing substrate stiffness. These results suggest that both matrix stiffening and alignment of extracellular matrix fibers cooperate during directional cell migration, and that the outcome differs between cell types depending on how they organize their cytoskeletons.
Collapse
Affiliation(s)
- Jordi Comelles
- Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Department of Electronics and Biomedical Engineering, University of Barcelona (UB), Martí I Franquès 1, 08028, Barcelona, Spain
| | - Vanesa Fernández-Majada
- Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Department of Pathology and Experimental Therapeutics, University of Barcelona (UB), Feixa Llarga, 08907, L'Hospitalet de Llobregat, Spain
| | - Verónica Acevedo
- Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Beatriz Rebollo-Calderon
- Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Elena Martínez
- Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER), Av. Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain.,Department of Electronics and Biomedical Engineering, University of Barcelona (UB), Martí I Franquès 1, 08028, Barcelona, Spain
| |
Collapse
|
11
|
Wheatley BA, Rey-Suarez I, Hourwitz MJ, Kerr S, Shroff H, Fourkas JT, Upadhyaya A. Nanotopography modulates cytoskeletal organization and dynamics during T cell activation. Mol Biol Cell 2022; 33:ar88. [PMID: 35830602 PMCID: PMC9582624 DOI: 10.1091/mbc.e21-12-0601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Exposure to MHC-antigen complexes on the surface of antigen-presenting cells (APCs) activates T cells, inducing the formation of the immune synapse (IS). Antigen detection at the APC surface is thus a critical step in the adaptive immune response. The physical properties of antigen-presenting surfaces encountered by T cells in vivo are believed to modulate T cell activation and proliferation. Although stiffness and ligand mobility influence IS formation, the effect of the complex topography of the APC surface on this process is not well understood. Here we investigate how nanotopography modulates cytoskeletal dynamics and signaling during the early stages of T cell activation using high-resolution fluorescence microscopy on nanofabricated surfaces with parallel nanoridges of different spacings. We find that although nanoridges reduce the maximum spread area as compared with cells on flat surfaces, the ridges enhance the accumulation of actin and the signaling kinase ZAP-70 at the IS. Actin polymerization is more dynamic in the presence of ridges, which influence the directionality of both actin flows and microtubule (MT) growth. Our results demonstrate that the topography of the activating surface exerts both global effects on T cell morphology and local changes in actin and MT dynamics, collectively influencing T cell signaling.
Collapse
Affiliation(s)
- Brittany A Wheatley
- Department of Integrative Structural and Computational Biology and.,Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458
| | - Ivan Rey-Suarez
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742
| | - Matt J Hourwitz
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - Sarah Kerr
- Department of Physics, University of Colorado, Boulder, CO 80302
| | - Hari Shroff
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - John T Fourkas
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742.,Maryland Quantum Materials Center, University of Maryland, College Park, MD 20742
| | - Arpita Upadhyaya
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,Department of Physics, University of Maryland, College Park, MD 20742
| |
Collapse
|
12
|
Lee SH, Hou JC, Hamidzadeh A, Yousafzai MS, Ajeti V, Chang H, Odde DJ, Murrell M, Levchenko A. A molecular clock controls periodically driven cell migration in confined spaces. Cell Syst 2022; 13:514-529.e10. [PMID: 35679858 DOI: 10.1016/j.cels.2022.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/10/2021] [Accepted: 05/13/2022] [Indexed: 01/25/2023]
Abstract
Navigation through a dense, physically confining extracellular matrix is common in invasive cell spread and tissue reorganization but is still poorly understood. Here, we show that this migration is mediated by cyclic changes in the activity of a small GTPase RhoA, which is dependent on the oscillatory changes in the activity and abundance of the RhoA guanine nucleotide exchange factor, GEF-H1, and triggered by a persistent increase in the intracellular Ca2+ levels. We show that the molecular clock driving these cyclic changes is mediated by two coupled negative feedback loops, dependent on the microtubule dynamics, with a frequency that can be experimentally modulated based on a predictive mathematical model. We further demonstrate that an increasing frequency of the clock translates into a faster cell migration within physically confining spaces. This work lays the foundation for a better understanding of the molecular mechanisms dynamically driving cell migration in complex environments.
Collapse
Affiliation(s)
- Sung Hoon Lee
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Jay C Hou
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Archer Hamidzadeh
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - M Sulaiman Yousafzai
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Physics, Yale University, New Haven, CT 06520, USA
| | - Visar Ajeti
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Physics, Yale University, New Haven, CT 06520, USA; Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Hao Chang
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Murrell
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Physics, Yale University, New Haven, CT 06520, USA
| | - Andre Levchenko
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
13
|
Kim KA, Vellampatti S, Kim BC. Characterization of Integrin Molecular Tension of Human Breast Cancer Cells on Anisotropic Nanopatterns. Front Mol Biosci 2022; 9:825970. [PMID: 35755806 PMCID: PMC9218603 DOI: 10.3389/fmolb.2022.825970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Physical interactions between cells and micro/nanometer-sized architecture presented in an extracellular matrix (ECM) environment significantly influence cell adhesion and morphology, often facilitating the incidence of diseases, such as cancer invasion and metastasis. Sensing and responding to the topographical cues are deeply associated with a physical interplay between integrins, ligands, and mechanical force transmission, ultimately determining diverse cell behavior. Thus, how the tension applied to the integrin-ligand bonds controls cells' response to the topographical cues needs to be elucidated through quantitative analysis. Here, in this brief research report, we reported a novel platform, termed "topo-tension gauge tether (TGT)," to visualize single-molecule force applied to the integrin-ligand on the aligned anisotropic nanopatterns. Using the topo-TGT assay, first, topography-induced adhesion and morphology of cancerous and normal cells were compared with the pre-defined peak integrin tension. Next, spatial integrin tensions underneath cells were identified using reconstructed integrin tension maps. As a result, we characterized each cell's capability to comply with nanotopographies and the magnitude of the spatial integrin tension. Altogether, the quantitative information on integrin tension will be a valuable basis for understanding the biophysical mechanisms underlying the force balance influencing adhesion to the topographical cues.
Collapse
Affiliation(s)
- Kyung Ah Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - Srivithya Vellampatti
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - Byoung Choul Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| |
Collapse
|
14
|
Ray A, Callaway MK, Rodríguez-Merced NJ, Crampton AL, Carlson M, Emme KB, Ensminger EA, Kinne AA, Schrope JH, Rasmussen HR, Jiang H, DeNardo DG, Wood DK, Provenzano PP. Stromal architecture directs early dissemination in pancreatic ductal adenocarcinoma. JCI Insight 2021; 7:150330. [PMID: 34914633 PMCID: PMC8855836 DOI: 10.1172/jci.insight.150330] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/10/2021] [Indexed: 12/02/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is an extremely metastatic and lethal disease. Here, in both murine and human PDA, we demonstrate that extracellular matrix architecture regulates cell extrusion and subsequent invasion from intact ductal structures through tumor-associated collagen signatures (TACS). This results in early dissemination from histologically premalignant lesions and continual invasion from well-differentiated disease, and it suggests TACS as a biomarker to aid in the pathologic assessment of early disease. Furthermore, we show that pancreatitis results in invasion-conducive architectures, thus priming the stroma prior to malignant disease. Analysis in potentially novel microfluidic-derived microtissues and in vivo demonstrates decreased extrusion and invasion following focal adhesion kinase (FAK) inhibition, consistent with decreased metastasis. Thus, data suggest that targeting FAK or strategies to reengineer and normalize tumor microenvironments may have roles not only in very early disease, but also for limiting continued dissemination from unresectable disease. Likewise, it may be beneficial to employ stroma-targeting strategies to resolve precursor diseases such as pancreatitis in order to remove stromal architectures that increase risk for early dissemination.
Collapse
Affiliation(s)
- Arja Ray
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Mackenzie K Callaway
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Nelson J Rodríguez-Merced
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Alexandra L Crampton
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Marjorie Carlson
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Kenneth B Emme
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Ethan A Ensminger
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Alexander A Kinne
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Jonathan H Schrope
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Haley R Rasmussen
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Hong Jiang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States of America
| | - David G DeNardo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States of America
| | - David K Wood
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Paolo P Provenzano
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| |
Collapse
|
15
|
Zhovmer AS, Manning A, Smith C, Hayes JB, Burnette DT, Wang J, Cartagena-Rivera AX, Dokholyan NV, Singh RK, Tabdanov ED. Mechanical Counterbalance of Kinesin and Dynein Motors in a Microtubular Network Regulates Cell Mechanics, 3D Architecture, and Mechanosensing. ACS NANO 2021; 15:17528-17548. [PMID: 34677937 PMCID: PMC9291236 DOI: 10.1021/acsnano.1c04435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Microtubules (MTs) and MT motor proteins form active 3D networks made of unstretchable cables with rod-like bending mechanics that provide cells with a dynamically changing structural scaffold. In this study, we report an antagonistic mechanical balance within the dynein-kinesin microtubular motor system. Dynein activity drives the microtubular network inward compaction, while isolated activity of kinesins bundles and expands MTs into giant circular bands that deform the cell cortex into discoids. Furthermore, we show that dyneins recruit MTs to sites of cell adhesion, increasing the topographic contact guidance of cells, while kinesins antagonize it via retraction of MTs from sites of cell adhesion. Actin-to-microtubule translocation of septin-9 enhances kinesin-MT interactions, outbalances the activity of kinesins over that of dyneins, and induces the discoid architecture of cells. These orthogonal mechanisms of MT network reorganization highlight the existence of an intricate mechanical balance between motor activities of kinesins and dyneins that controls cell 3D architecture, mechanics, and cell-microenvironment interactions.
Collapse
Affiliation(s)
- Alexander S. Zhovmer
- Center
for Biologics Evaluation and Research, U.S.
Food and Drug Administration, Silver Spring, Maryland 20903, United States
| | - Alexis Manning
- Center
for Biologics Evaluation and Research, U.S.
Food and Drug Administration, Silver Spring, Maryland 20903, United States
| | - Chynna Smith
- Section
on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - James B. Hayes
- Department
of Cell and Developmental Biology, Vanderbilt Medical Center, University of Vanderbilt, Nashville, Tennessee 37232, United States
| | - Dylan T. Burnette
- Department
of Cell and Developmental Biology, Vanderbilt Medical Center, University of Vanderbilt, Nashville, Tennessee 37232, United States
| | - Jian Wang
- Department
of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hummelstown, Pennsylvania 17036, United States
| | - Alexander X. Cartagena-Rivera
- Section
on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Nikolay V. Dokholyan
- Department
of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hummelstown, Pennsylvania 17036, United States
- Department
of Biochemistry & Molecular Biology, Penn State College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033, United States
| | - Rakesh K. Singh
- Department
of Obstetrics and Gynecology, University
of Rochester Medical Center, Rochester, New York 14620, United States
| | - Erdem D. Tabdanov
- Department
of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hummelstown, Pennsylvania 17036, United States
| |
Collapse
|
16
|
Vishweshwaraiah YL, Chen J, Chirasani VR, Tabdanov ED, Dokholyan NV. Two-input protein logic gate for computation in living cells. Nat Commun 2021; 12:6615. [PMID: 34785644 PMCID: PMC8595391 DOI: 10.1038/s41467-021-26937-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/28/2021] [Indexed: 11/25/2022] Open
Abstract
Advances in protein design have brought us within reach of developing a nanoscale programming language, in which molecules serve as operands and their conformational states function as logic gates with precise input and output behaviors. Combining these nanoscale computing agents into larger molecules and molecular complexes will allow us to write and execute "code". Here, in an important step toward this goal, we report an engineered, single protein design that is allosterically regulated to function as a 'two-input logic OR gate'. Our system is based on chemo- and optogenetic regulation of focal adhesion kinase. In the engineered FAK, all of FAK domain architecture is retained and key intramolecular interactions between the kinase and the FERM domains are externally controlled through a rapamycin-inducible uniRapR module in the kinase domain and a light-inducible LOV2 module in the FERM domain. Orthogonal regulation of protein function was possible using the chemo- and optogenetic switches. We demonstrate that dynamic FAK activation profoundly increased cell multiaxial complexity in the fibrous extracellular matrix microenvironment and decreased cell motility. This work provides proof-of-principle for fine multimodal control of protein function and paves the way for construction of complex nanoscale computing agents.
Collapse
Affiliation(s)
| | - Jiaxing Chen
- Departments of Pharmacology, Penn State College of Medicine, Hershey, PA, 17033-0850, USA
| | - Venkat R Chirasani
- Departments of Pharmacology, Penn State College of Medicine, Hershey, PA, 17033-0850, USA
| | - Erdem D Tabdanov
- Departments of Pharmacology, Penn State College of Medicine, Hershey, PA, 17033-0850, USA
| | - Nikolay V Dokholyan
- Departments of Pharmacology, Penn State College of Medicine, Hershey, PA, 17033-0850, USA.
- Departments of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033-0850, USA.
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
17
|
Micro-scaffolds as synthetic cell niches: recent advances and challenges. Curr Opin Biotechnol 2021; 73:290-299. [PMID: 34619481 DOI: 10.1016/j.copbio.2021.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 01/01/2023]
Abstract
Micro-fabrication and nano-fabrication provide useful approaches to address fundamental biological questions by mimicking the physiological microenvironment in which cells carry out their functions. In particular, 2D patterns and 3D scaffolds obtained via lithography, direct laser writing, and other techniques allow for shaping hydrogels, synthetic polymers and biologically derived materials to create structures for (single) cell culture. Applications of micro-scaffolds mimicking cell niches include stem cell self-renewal, differentiation, and lineage specification. This review moves from technological aspects of scaffold microfabrication for cell biological applications to a broad overview of advances in (stem) cell research: achievements for embryonic, induced pluripotent, mesenchymal, and neural stem cells are treated in detail, while a particular section is dedicated to micro-scaffolds used to study single cells in basic cell biology.
Collapse
|
18
|
Ray A, Provenzano PP. Aligned forces: Origins and mechanisms of cancer dissemination guided by extracellular matrix architecture. Curr Opin Cell Biol 2021; 72:63-71. [PMID: 34186415 PMCID: PMC8530881 DOI: 10.1016/j.ceb.2021.05.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
Organized extracellular matrix (ECM), in the form of aligned architectures, is a critical mediator of directed cancer cell migration by contact guidance, leading to metastasis in solid tumors. Current models suggest anisotropic force generation through the engagement of key adhesion and cytoskeletal complexes drives contact-guided migration. Likewise, disrupting the balance between cell-cell and cell-ECM forces, driven by ECM engagement for cells at the tumor-stromal interface, initiates and drives local invasion. Furthermore, processes such as traction forces exerted by cancer and stromal cells, spontaneous reorientation of matrix-producing fibroblasts, and direct binding of ECM modifying proteins lead to the emergence of collagen alignment in tumors. Thus, as we obtain a deeper understanding of the origins of ECM alignment and the mechanisms by which it is maintained to direct invasion, we are poised to use the new paradigm of stroma-targeted therapies to disrupt this vital axis of disease progression in solid tumors.
Collapse
Affiliation(s)
- Arja Ray
- Department of Pathology, University of California, San Francisco, USA.
| | - Paolo P Provenzano
- Department of Biomedical Engineering, University of Minnesota, USA; University of Minnesota Physical Sciences in Oncology Center, USA; Masonic Cancer Center, University of Minnesota, USA; Institute for Engineering in Medicine, University of Minnesota, USA; Stem Cell Institute, University of Minnesota, USA.
| |
Collapse
|
19
|
Zhovmer AS, Chandler M, Manning A, Afonin KA, Tabdanov ED. Programmable DNA-augmented hydrogels for controlled activation of human lymphocytes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102442. [PMID: 34284132 DOI: 10.1016/j.nano.2021.102442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/25/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022]
Abstract
Contractile forces within the planar interface between T cell and antigen-presenting surface mechanically stimulate T cell receptors (TCR) in the mature immune synapses. However, the origin of mechanical stimulation during the initial, i.e., presynaptic, microvilli-based TCR activation in the course of immune surveillance remains unknown and new tools to help address this problem are needed. In this work, we develop nucleic acid nanoassembly (NAN)-based technology for functionalization of hydrogels using isothermal toehold-mediated reassociation of RNA/DNA heteroduplexes. Resulting platform allows for regulation with NAN linkers of 3D force momentum along the TCR mechanical axis, whereas hydrogels contribute to modulation of 2D shear modulus. By utilizing different lengths of NAN linkers conjugated to polyacrylamide gels of different shear moduli, we demonstrate an efficient capture of human T lymphocytes and tunable activation of TCR, as confirmed by T-cell spreading and pY foci.
Collapse
Affiliation(s)
- Alexander S Zhovmer
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
| | - Morgan Chandler
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Alexis Manning
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Kirill A Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | - Erdem D Tabdanov
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
20
|
Cell contact guidance via sensing anisotropy of network mechanical resistance. Proc Natl Acad Sci U S A 2021; 118:2024942118. [PMID: 34266950 DOI: 10.1073/pnas.2024942118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the ubiquitous importance of cell contact guidance, the signal-inducing contact guidance of mammalian cells in an aligned fibril network has defied elucidation. This is due to multiple interdependent signals that an aligned fibril network presents to cells, including, at least, anisotropy of adhesion, porosity, and mechanical resistance. By forming aligned fibrin gels with the same alignment strength, but cross-linked to different extents, the anisotropic mechanical resistance hypothesis of contact guidance was tested for human dermal fibroblasts. The cross-linking was shown to increase the mechanical resistance anisotropy, without detectable change in network microstructure and without change in cell adhesion to the cross-linked fibrin gel. This methodology thus isolated anisotropic mechanical resistance as a variable for fixed anisotropy of adhesion and porosity. The mechanical resistance anisotropy |Y*| -1 - |X*| -1 increased over fourfold in terms of the Fourier magnitudes of microbead displacement |X*| and |Y*| at the drive frequency with respect to alignment direction Y obtained by optical forces in active microrheology. Cells were found to exhibit stronger contact guidance in the cross-linked gels possessing greater mechanical resistance anisotropy: the cell anisotropy index based on the tensor of cell orientation, which has a range 0 to 1, increased by 18% with the fourfold increase in mechanical resistance anisotropy. We also show that modulation of adhesion via function-blocking antibodies can modulate the guidance response, suggesting a concomitant role of cell adhesion. These results indicate that fibroblasts can exhibit contact guidance in aligned fibril networks by sensing anisotropy of network mechanical resistance.
Collapse
|
21
|
Shi N, Li Y, Chang L, Zhao G, Jin G, Lyu Y, Genin GM, Ma Y, Xu F. A 3D, Magnetically Actuated, Aligned Collagen Fiber Hydrogel Platform Recapitulates Physical Microenvironment of Myoblasts for Enhancing Myogenesis. SMALL METHODS 2021; 5:e2100276. [PMID: 34927916 DOI: 10.1002/smtd.202100276] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/23/2021] [Indexed: 06/14/2023]
Abstract
Many cell responses that underlie the development, maturation, and function of tissues are guided by the architecture and mechanical loading of the extracellular matrix (ECM). Because mechanical stimulation must be transmitted through the ECM architecture, the synergy between these two factors is important. However, recapitulating the synergy of these physical microenvironmental cues in vitro remains challenging. To address this, a 3D magnetically actuated collagen hydrogel platform is developed that enables combined control of ECM architecture and mechanical stimulation. With this platform, it is demonstrated how these factors synergistically promote cell alignment of C2C12 myoblasts and enhance myogenesis. This promotion is driven in part by the dynamics of Yes-associated protein and structure of cellular microtubule networks. This facile platform holds great promises for regulating cell behavior and fate, generating a broad range of engineered physiologically representative microtissues in vitro, and quantifying the mechanobiology underlying their functions.
Collapse
Affiliation(s)
- Nianyuan Shi
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuhui Li
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Le Chang
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guoxu Zhao
- School of Material Science and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, China
| | - Guorui Jin
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yi Lyu
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guy M Genin
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
- NSF Science and Technology Center for Engineering MechanoBiology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yufei Ma
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
22
|
Engineering T cells to enhance 3D migration through structurally and mechanically complex tumor microenvironments. Nat Commun 2021; 12:2815. [PMID: 33990566 PMCID: PMC8121808 DOI: 10.1038/s41467-021-22985-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 04/07/2021] [Indexed: 12/18/2022] Open
Abstract
Defining the principles of T cell migration in structurally and mechanically complex tumor microenvironments is critical to understanding escape from antitumor immunity and optimizing T cell-related therapeutic strategies. Here, we engineered nanotextured elastic platforms to study and enhance T cell migration through complex microenvironments and define how the balance between contractility localization-dependent T cell phenotypes influences migration in response to tumor-mimetic structural and mechanical cues. Using these platforms, we characterize a mechanical optimum for migration that can be perturbed by manipulating an axis between microtubule stability and force generation. In 3D environments and live tumors, we demonstrate that microtubule instability, leading to increased Rho pathway-dependent cortical contractility, promotes migration whereas clinically used microtubule-stabilizing chemotherapies profoundly decrease effective migration. We show that rational manipulation of the microtubule-contractility axis, either pharmacologically or through genome engineering, results in engineered T cells that more effectively move through and interrogate 3D matrix and tumor volumes. Thus, engineering cells to better navigate through 3D microenvironments could be part of an effective strategy to enhance efficacy of immune therapeutics. The mechanics of the migration of T cells into tumours is an important aspect of tumour immunity. Here the authors engineer complex 3D environments to explore functions of microtubules and cell contractility as strategies to enhance T cell migration in tumour microenvironments.
Collapse
|
23
|
Leclech C, Barakat AI. Is there a universal mechanism of cell alignment in response to substrate topography? Cytoskeleton (Hoboken) 2021; 78:284-292. [PMID: 33843154 DOI: 10.1002/cm.21661] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/05/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022]
Abstract
Cell alignment and elongation in the direction of anisotropic and aligned topographies are key manifestations of cellular contact guidance and are observed in many cell types. Whether this observation occurs through a universal mechanism remains to be established. In this Views article, we begin by presenting the most widely accepted model of topography-driven cell alignment which posits that anisotropic topographies impose lateral constraints on the growth of focal adhesions and actin stress fibers, thereby driving anisotropic force generation and cellular elongation and alignment. We then discuss particular scenarios where alternative or complementary mechanisms of cell alignment appear to be at play. These include the cases of specific cell types such as amoeboid-like cells and neurons as well as certain topography sizes. Finally, we review the role of the actin cytoskeleton in modulating topography-driven cell alignment and underscore the need for elucidating the role that other cytoskeletal elements play. We close by identifying key open questions the responses to which will significantly enhance our understanding of the role of cellular contact guidance in health and disease.
Collapse
Affiliation(s)
- Claire Leclech
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Abdul I Barakat
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
24
|
Rey-Suarez I, Rogers N, Kerr S, Shroff H, Upadhyaya A. Actomyosin dynamics modulate microtubule deformation and growth during T-cell activation. Mol Biol Cell 2021; 32:1641-1653. [PMID: 33826369 PMCID: PMC8684730 DOI: 10.1091/mbc.e20-10-0685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Activation of T-cells leads to the formation of immune synapses (ISs) with antigen-presenting cells. This requires T-cell polarization and coordination between the actomyosin and microtubule cytoskeletons. The interactions between these two cytoskeletal components during T-cell activation are not well understood. Here, we elucidate the interactions between microtubules and actin at the IS with high-resolution fluorescence microscopy. We show that microtubule growth dynamics in the peripheral actin-rich region is distinct from that in the central actin-free region. We further demonstrate that these differences arise from differential involvement of Arp2/3- and formin-nucleated actin structures. Formin inhibition results in a moderate decrease in microtubule growth rates, which is amplified in the presence of integrin engagement. In contrast, Arp2/3 inhibition leads to an increase in microtubule growth rates. We find that microtubule filaments are more deformed and exhibit greater shape fluctuations in the periphery of the IS than at the center. Using small molecule inhibitors, we show that actin dynamics and actomyosin contractility play key roles in defining microtubule deformations and shape fluctuations. Our results indicate a mechanical coupling between the actomyosin and microtubule systems during T-cell activation, whereby different actin structures influence microtubule dynamics in distinct ways.
Collapse
Affiliation(s)
- Ivan Rey-Suarez
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742
| | - Nate Rogers
- Department of Physics, University of Maryland, College Park, MD 20742
| | - Sarah Kerr
- Department of Physics, University of Colorado, Boulder, CO 80302
| | - Hari Shroff
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Arpita Upadhyaya
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,Department of Physics, University of Maryland, College Park, MD 20742
| |
Collapse
|
25
|
Schiweck J, Murk K, Ledderose J, Münster-Wandowski A, Ornaghi M, Vida I, Eickholt BJ. Drebrin controls scar formation and astrocyte reactivity upon traumatic brain injury by regulating membrane trafficking. Nat Commun 2021; 12:1490. [PMID: 33674568 PMCID: PMC7935889 DOI: 10.1038/s41467-021-21662-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
The brain of mammals lacks a significant ability to regenerate neurons and is thus particularly vulnerable. To protect the brain from injury and disease, damage control by astrocytes through astrogliosis and scar formation is vital. Here, we show that brain injury in mice triggers an immediate upregulation of the actin-binding protein Drebrin (DBN) in astrocytes, which is essential for scar formation and maintenance of astrocyte reactivity. In turn, DBN loss leads to defective astrocyte scar formation and excessive neurodegeneration following brain injuries. At the cellular level, we show that DBN switches actin homeostasis from ARP2/3-dependent arrays to microtubule-compatible scaffolds, facilitating the formation of RAB8-positive membrane tubules. This injury-specific RAB8 membrane compartment serves as hub for the trafficking of surface proteins involved in astrogliosis and adhesion mediators, such as β1-integrin. Our work shows that DBN-mediated membrane trafficking in astrocytes is an important neuroprotective mechanism following traumatic brain injury in mice.
Collapse
Affiliation(s)
- Juliane Schiweck
- grid.6363.00000 0001 2218 4662Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kai Murk
- grid.6363.00000 0001 2218 4662Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Ledderose
- grid.6363.00000 0001 2218 4662Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Marta Ornaghi
- grid.6363.00000 0001 2218 4662Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Imre Vida
- grid.6363.00000 0001 2218 4662Institute of Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britta J. Eickholt
- grid.6363.00000 0001 2218 4662Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany ,grid.6363.00000 0001 2218 4662NeuroCure - Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
26
|
Zhang W, Yang Y, Cui B. New perspectives on the roles of nanoscale surface topography in modulating intracellular signaling. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2021; 25:100873. [PMID: 33364912 PMCID: PMC7751896 DOI: 10.1016/j.cossms.2020.100873] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The physical properties of biomaterials, such as elasticity, stiffness, and surface nanotopography, are mechanical cues that regulate a broad spectrum of cell behaviors, including migration, differentiation, proliferation, and reprogramming. Among them, nanoscale surface topography, i.e. nanotopography, defines the nanoscale shape and spatial arrangement of surface elements, which directly interact with the cell membranes and stimulate changes in the cell signaling pathways. In biological systems, the effects of nanotopography are often entangled with those of other mechanical and biochemical factors. Precise engineering of 2D nanopatterns and 3D nanostructures with well-defined features has provided a powerful means to study the cellular responses to specific topographic features. In this Review, we discuss efforts in the last three years to understand how nanotopography affects membrane receptor activation, curvature-induced cell signaling, and stem cell differentiation.
Collapse
Affiliation(s)
| | | | - Bianxiao Cui
- Department of Chemistry, Stanford University, ChEM-H/Wu Tsai Neuroscience Research Complex, S285, 290 Jane Stanford Way, Stanford, CA, 94305, United States
| |
Collapse
|
27
|
Szeto J, Chow A, McCrea L, Mozzer A, Nguyen TD, Quigley HA, Pitha I. Regional Differences and Physiologic Behaviors in Peripapillary Scleral Fibroblasts. Invest Ophthalmol Vis Sci 2021; 62:27. [PMID: 33502460 PMCID: PMC7846956 DOI: 10.1167/iovs.62.1.27] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose The purpose of this study was to describe the cellular architecture of normal human peripapillary sclera (PPS) and evaluate surface topography's role in fibroblast behavior. Methods PPS cryosections from nonglaucomatous eyes were labelled for nuclei, fibrillar actin (FA), and alpha smooth muscle actin (αSMA) and imaged. Collagen fibrils were imaged using second harmonic generation. Nuclear density and aspect ratio of the internal PPS (iPPS), outer PPS (oPPS), and peripheral sclera were determined. FA and αSMA fibril alignment with collagen extracellular matrix (ECM) was determined. PPS fibroblasts were cultured on smooth or patterned membranes under mechanical strain and in the presence of TGFβ1 and 2. Results The iPPS (7.1 ± 2.0 × 10−4, P < 0.0001) and oPPS (5.3 ± 1.4 × 10−4, P = 0.0013) had greater nuclei density (nuclei/µm2) than peripheral sclera (2.5 ± 0.8 × 10−4). The iPPS (2.0 ± 0.3, P = 0.002) but not oPPS (2.4 ± 0.4, P = 0.45) nuclei had smaller aspect ratios than peripheral (2.7 ± 0.5) nuclei. FA was present throughout the scleral stroma and was more aligned with oPPS collagen (9.6 ± 1.9 degrees) than in the peripheral sclera (15.9 ± 3.9 degrees, P =0.002). The αSMA fibers in the peripheral sclera were less aligned with collagen fibrils (26.4 ± 4.8 degrees) than were FA (15.9 ± 3.9 degrees, P = 0.0002). PPS fibroblasts cultured on smooth membranes shifted to an orientation perpendicular to the direction of cyclic uniaxial strain (1 Hz, 5% strain, 42.2 ± 7.1 degrees versus 62.0 ± 8.5 degrees, P < 0.0001), whereas aligned fibroblasts on patterned membranes were resistant to strain-induced reorientation (5.9 ± 1.4 degrees versus 10 ± 3.3 degrees, P = 0.21). Resistance to re-orientation was reduced by TGFβ treatment (10 ± 3.3 degrees without TGFβ1 compared to 23.1 ± 4.5 degrees with TGFβ1, P < 0.0001). Conclusions Regions of the posterior sclera differ in cellular density and nuclear morphology. Topography alters the cellular response to mechanical strain.
Collapse
Affiliation(s)
- Julia Szeto
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Amanda Chow
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Liam McCrea
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Ann Mozzer
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Thao D Nguyen
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Harry A Quigley
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Ian Pitha
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
28
|
Micek HM, Visetsouk MR, Masters KS, Kreeger PK. Engineering the Extracellular Matrix to Model the Evolving Tumor Microenvironment. iScience 2020; 23:101742. [PMID: 33225247 PMCID: PMC7666341 DOI: 10.1016/j.isci.2020.101742] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Clinical evidence supports a role for the extracellular matrix (ECM) in cancer risk and prognosis across multiple tumor types, and numerous studies have demonstrated that individual ECM components impact key hallmarks of tumor progression (e.g., proliferation, migration, angiogenesis). However, the ECM is a complex network of fibrillar proteins, glycoproteins, and proteoglycans that undergoes dramatic changes in composition and organization during tumor development. In this review, we will highlight how engineering approaches can be used to examine the impact of changes in tissue architecture, ECM composition (i.e., identity and levels of individual ECM components), and cellular- and tissue-level mechanics on tumor progression. In addition, we will discuss recently developed methods to model the ECM that have not yet been applied to the study of cancer.
Collapse
Affiliation(s)
- Hannah M. Micek
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mike R. Visetsouk
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kristyn S. Masters
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Pamela K. Kreeger
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
29
|
Raghunathan V, Edwards SG, Leonard BC, Kim S, Evashenk AT, Song Y, Rewinski E, Marangakis Price A, Hoehn A, Chang C, Reilly CM, Muppala S, Murphy CJ, Thomasy SM. Differential effects of Hsp90 inhibition on corneal cells in vitro and in vivo. Exp Eye Res 2020; 202:108362. [PMID: 33220237 DOI: 10.1016/j.exer.2020.108362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 10/23/2022]
Abstract
The transformation of quiescent keratocytes to activated fibroblasts and myofibroblasts (KFM transformation) largely depends on transforming growth factor beta (TGFβ) signaling. Initiation of the TGFβ signaling cascade results from binding of TGFβ to the labile type I TGFβ receptor (TGFβRI), which is stabilized by the 90 kDa heat shock protein (Hsp90). Since myofibroblast persistence within the corneal stroma can result in stromal haze and corneal fibrosis in patients undergoing keratorefractive therapy, modulation of TGFβ signaling through Hsp90 inhibition would represent a novel approach to prevent myofibroblast persistence. In vitro, rabbit corneal fibroblasts (RCFs) or stratified immortalized human corneal epithelial cells (hTCEpi) were treated with a Hsp90 inhibitor (17AAG) in the presence/absence of TGFβ1. RCFs were cultured either on tissue culture plastic, anisotropically patterned substrates, and hydrogels of varying stiffness. Cellular responses to both cytoactive and variable substrates were assessed by morphologic changes to the cells, and alterations in expression patterns of key keratocyte and myofibroblast proteins using PCR, Western blotting and immunocytochemistry. Transepithelial electrical resistance (TEER) measurements were performed to establish epithelial barrier integrity. In vivo, the corneas of New Zealand White rabbits were wounded by phototherapeutic keratectomy (PTK) and treated with 17AAG (3× or 6× daily) either immediately or 7 days after wounding for 28 days. Rabbits underwent clinical ophthalmic examinations, SPOTS scoring and advanced imaging on days 0, 1, 3, 7, 10, 14, 21 and 28. On day 28, rabbits were euthanized and histopathology/immunohistochemistry was performed. In vitro data demonstrated that 17AAG inhibited KFM transformation with the de-differentiation of spindle shaped myofibroblasts to dendritic keratocyte-like cells accompanied by significant upregulation of corneal crystallins and suppression of myofibroblast markers regardless of TGFβ1 treatment. RCFs cultured on soft hydrogels or patterned substrates exhibited elevated expression of α-smooth muscle actin (αSMA) in the presence of 17AAG. Treatment of hTCEpi cells disrupted zonula occludens 1 (ZO-1) adherens junction formation. In vivo, there were no differences detected in nearly all clinical parameters assessed between treatment groups. However, rabbits treated with 17AAG developed greater stromal haze formation compared with controls, irrespective of frequency of administration. Lastly, there was increased αSMA positive myofibroblasts in the stroma of 17AAG treated animals when compared with controls. Hsp90 inhibition promoted reversion of the myofibroblast to keratocyte phenotype, although this only occurred on rigid substrates. By contrast, in vivo Hsp90 inhibition was detrimental to corneal wound healing likely due to impairment in corneal epithelial closure and barrier function restoration. Collectively, our data demonstrated a strong interplay in vitro between biophysical cues and soluble signaling molecules in determining corneal stromal cell phenotype.
Collapse
Affiliation(s)
- VijayKrishna Raghunathan
- Department of Basic Sciences, United States; The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX, United States.
| | - Sydney Garrison Edwards
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Brian C Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Soohyun Kim
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Alexander T Evashenk
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Yeonju Song
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Eva Rewinski
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Ariana Marangakis Price
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Alyssa Hoehn
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Connor Chang
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Christopher M Reilly
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Santoshi Muppala
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States; Department of Ophthalmology and Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States; Department of Ophthalmology and Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States.
| |
Collapse
|
30
|
Sung DC, Ahmad M, Lerma Cervantes CB, Zhang Y, Adelstein RS, Ma X. Mutations in non-muscle myosin 2A disrupt the actomyosin cytoskeleton in Sertoli cells and cause male infertility. Dev Biol 2020; 470:49-61. [PMID: 33188738 DOI: 10.1016/j.ydbio.2020.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 10/23/2022]
Abstract
Mutations in non-muscle myosin 2A (NM2A) encompass a wide spectrum of anomalies collectively known as MYH9-Related Disease (MYH9-RD) in humans that can include macrothrombocytopenia, glomerulosclerosis, deafness, and cataracts. We previously created mouse models of the three mutations most frequently found in humans: R702C, D1424N, and E1841K. While homozygous R702C and D1424N mutations are embryonic lethal, we found homozygous mutant E1841K mice to be viable. However the homozygous male, but not female, mice were infertile. Here, we report that these mice have reduced testis size and defects in actin-associated junctions in Sertoli cells, resulting in inability to form the blood-testis barrier and premature germ cell loss. Moreover, compound double heterozygous (R702C/E1841K and D1424/E1841K) males show the same abnormalities in testes as E1841K homozygous males. Conditional ablation of either NM2A or NM2B alone in Sertoli cells has no effect on fertility and testis size, however deletion of both NM2A and NM2B in Sertoli cells results in infertility. Isolation of mutant E1841K Sertoli cells reveals decreased NM2A and F-actin colocalization and thicker NM2A filaments. Furthermore, AE1841K/AE1841K and double knockout Sertoli cells demonstrate microtubule disorganization and increased tubulin acetylation, suggesting defects in the microtubule cytoskeleton. Together, these results demonstrate that NM2A and 2B paralogs play redundant roles in Sertoli cells and are essential for testes development and normal fertility.
Collapse
Affiliation(s)
- Derek C Sung
- Laboratory of Molecular Cardiology, Cell and Developmental Biology Center, Bethesda, MD, 20892-1583, United States; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1583, United States
| | - Mohsin Ahmad
- Laboratory of Molecular Cardiology, Cell and Developmental Biology Center, Bethesda, MD, 20892-1583, United States; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1583, United States
| | - Connie B Lerma Cervantes
- Laboratory of Molecular Cardiology, Cell and Developmental Biology Center, Bethesda, MD, 20892-1583, United States; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1583, United States
| | - Yingfan Zhang
- Laboratory of Molecular Cardiology, Cell and Developmental Biology Center, Bethesda, MD, 20892-1583, United States; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1583, United States
| | - Robert S Adelstein
- Laboratory of Molecular Cardiology, Cell and Developmental Biology Center, Bethesda, MD, 20892-1583, United States; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1583, United States
| | - Xuefei Ma
- Laboratory of Molecular Cardiology, Cell and Developmental Biology Center, Bethesda, MD, 20892-1583, United States; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1583, United States.
| |
Collapse
|
31
|
Leclech C, Villard C. Cellular and Subcellular Contact Guidance on Microfabricated Substrates. Front Bioeng Biotechnol 2020; 8:551505. [PMID: 33195116 PMCID: PMC7642591 DOI: 10.3389/fbioe.2020.551505] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Topography of the extracellular environment is now recognized as a major biophysical regulator of cell behavior and function. The study of the influence of patterned substrates on cells, named contact guidance, has greatly benefited from the development of micro and nano-fabrication techniques, allowing the emergence of increasingly diverse and elaborate engineered platforms. The purpose of this review is to provide a comprehensive view of the process of contact guidance from cellular to subcellular scales. We first classify and illustrate the large diversity of topographies reported in the literature by focusing on generic cellular responses to diverse topographical cues. Subsequently, and in a complementary fashion, we adopt the opposite approach and highlight cell type-specific responses to classically used topographies (arrays of pillars or grooves). Finally, we discuss recent advances on the key subcellular and molecular players involved in topographical sensing. Throughout the review, we focus particularly on neuronal cells, whose unique morphology and behavior have inspired a large body of studies in the field of topographical sensing and revealed fascinating cellular mechanisms. We conclude by using the current understanding of the cell-topography interactions at different scales as a springboard for identifying future challenges in the field of contact guidance.
Collapse
Affiliation(s)
- Claire Leclech
- Hydrodynamics Laboratory, CNRS UMR 7646, Ecole Polytechnique, Palaiseau, France
| | - Catherine Villard
- Physico-Chimie Curie, CNRS UMR 168, Université PSL, Sorbonne Université, Paris, France
| |
Collapse
|
32
|
Seetharaman S, Etienne-Manneville S. Cytoskeletal Crosstalk in Cell Migration. Trends Cell Biol 2020; 30:720-735. [DOI: 10.1016/j.tcb.2020.06.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/15/2023]
|
33
|
Abstract
We present a reproducible protocol for fabrication of polyacrylamide (PAA) hydrogel-based nano-patterns and nano-textures with a wide range of elastic rigidities to study fundamental cell behaviors, such as mechanosensitivity and motility. We explore the benefits of this protocol by successfully testing the compatibility of the PAA platforms with super-resolution microscopy, which is largely unavailable with platforms of nano-scale textures made from different polymers. We also utilized soft and rigid nano-textures to study the mechanosensing basis of T cell behavior and phenotype. For complete information on the generation and use of this protocol, please refer to Tabdanov et al. (2018b). Contact guidance cues are critical for directed cell migration in health and disease Manufacturing nano- and micro- scale patterns and textures with a wide range of rigidities The engineered platforms can be used to study motility in a wide range of cell types Deformable nano-textures are compatible with super-resolution imaging
Collapse
|
34
|
Gong X, Kulwatno J, Mills K. Rapid fabrication of collagen bundles mimicking tumor-associated collagen architectures. Acta Biomater 2020; 108:128-141. [PMID: 32194262 DOI: 10.1016/j.actbio.2020.03.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/31/2022]
Abstract
Stromal collagen is upregulated surrounding a solid tumor and presents as dense, thick, linearized, and aligned bundles. The collagen bundles are continually remodeled during tumor progression, and their orientation with respect to the tumor boundary has been correlated with invasive state. Currently, reconstituted-collagen gels are the standard in vitro tumor cell-extracellular matrix interaction model. The reticular, dense, and isotropic nanofiber (~900 nm-diameter, on average) gels do not, however, recapitulate the in vivo structural features of collagen bundling and alignment. Here, we present a rapid and simple method to fabricate bundles of collagen type I, whose average thickness may be varied between about 4 μm and 9 μm dependent upon diluent temperature and ionic strength. The durability and versatility of the collagen bundles was demonstrated with their incorporation into two in vitro models where the thickness and alignment of the collagen bundles resembled various in vivo arrangements. First, collagen bundles aligned by a microfluidic device elicited cancer cell contact guidance and enhanced their directional migration. Second, the presence of the collagen bundles in a bio-inert agarose hydrogel was shown to provide a route for cancer cell outgrowth. The unique structural features of the collagen bundles advance the physiological relevance of in vitro collagen-based tumor models for accurately capturing tumor cell-extracellular matrix interactions. STATEMENT OF SIGNIFICANCE: Collagen in the tumor microenvironment is upregulated and remodeled into dense, thick, and aligned bundles that are associated with invasive state. Current collagen-based in vitro models are based on reticular, isotropic nanofiber gels that do not fully recapitulate in vivo tumor stromal collagen. We present a simple and robust method of rapidly fabricating cell-scale collagen bundles that better mimic the remodeled collagen surrounding a tumor. Interacting with the bundles, cancer cells exhibited drastically different phenotypic behaviors, compared to nanofiber scaffolds. This work reveals the importance of microscale architecture of in vitro tumor models. The collagen bundles provide physiologically relevant collagen morphologies that may be easily incorporated into existing models of tumor cell-extracellular matrix interactions.
Collapse
|
35
|
Anisotropic stiffness gradient-regulated mechanical guidance drives directional migration of cancer cells. Acta Biomater 2020; 106:181-192. [PMID: 32044461 DOI: 10.1016/j.actbio.2020.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/30/2022]
Abstract
Interfacial interactions between cancer cells and surrounding microenvironment involve complex mechanotransduction mechanisms that are directly associated with tumor invasion and metastasis. Matrix remodeling triggers heterogeneity of stiffness in tumor microenvironment and thus generates anisotropic stiffness gradient (ASG). The migration of cancer cells mediated by ASG, however, still remains elusive. Based on a multi-layer polymerization method of microstructured hydrogels with surface topology, we develop an in vitro experimental platform for mechanical interactions of cancer cells with ASG matrix microenvironment. We show that mechanical guidance of mesenchymal cells is essentially modulated by ASG, leading to a spontaneous directional migration along the orientation parallel to the maximum stiffness although there is no stiffness gradient in the direction. The ASG-regulated mechanical guidance presents an alternative way of cancer cell directional migration. Further, our findings indicate that the mechanical guidance occurs only in mesenchymal cancer cells, but not in epithelial cancer cells, implying that cell contractility may contribute to ASG-regulated migration of cells. This work is not only helpful for elucidating the role of matrix remodeling in mediating tumor cell invasion and metastasis, but has potential implications for developing specific cancer treatments. STATEMENT OF SIGNIFICANCE: Local extracellular matrix (ECM) stiffening triggers mechanical heterogeneity in tumor microenvironment, which can exert a crucial impact on interfacial interactions between tumor cells and surrounding ECM. The underlying mechanobiological mechanism that tumor cells are modulated by mechanically heterogeneous ECM, however, still remains mysterious to a great extent. Through our established in vitro platform and analysis, we have demonstrated that anisotropic stiffness gradient (ASG) has the ability to elicit directional migration of cells, essentially depending on local stiffness gradients and the corresponding absolute stiffness values. This study is not only crucial for revealing the role of matrix remodeling in regulating tumor invasion and metastasis, but also offers a valuable guidance for developing anti-tumor therapies from the biomechanical perspective.
Collapse
|
36
|
Leal-Egaña A, Balland M, Boccaccini AR. Re-engineering Artificial Neoplastic Milieus: Taking Lessons from Mechano- and Topobiology. Trends Biotechnol 2020; 38:142-153. [DOI: 10.1016/j.tibtech.2019.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/30/2022]
|
37
|
Zhovmer AS, Tabdanov ED, Miao H, Wen H, Chen J, Luo X, Ma X, Provenzano PP, Adelstein RS. The role of nonmuscle myosin 2A and 2B in the regulation of mesenchymal cell contact guidance. Mol Biol Cell 2019; 30:1961-1973. [PMID: 31318315 PMCID: PMC6727766 DOI: 10.1091/mbc.e19-01-0071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Contact guidance refers to the ability of cells to sense the geometrical features of the microenvironment and respond by changing their shape and adopting the appropriate orientation. Inhibition and ablation of nonmuscle myosin 2 (NM2) paralogues have demonstrated their importance for contact guidance. However, the specific roles of the NM2 paralogues have not been systematically studied. In this work we use micropatterned substrates to examine the roles of NM2A and NM2B and to elucidate the relationship of the microenvironment, actomyosin, and microtubules in contact guidance. We show that contact guidance is preserved following loss of NM2B and that expression of NM2A alone is sufficient to establish an appropriate orientation of the cells. Loss of NM2B and overexpression of NM2A result in a prominent cell polarization that is found to be linked to the increased alignment of microtubules with the actomyosin scaffold. Suppression of actomyosin with blebbistatin reduces cell polarity on a flat surface, but not on a surface with contact guidance cues. This indicates that the lost microtubule-actomyosin interactions are compensated for by microtubule-microenvironment interactions, which are sufficient to establish cell polarity through contact guidance.
Collapse
Affiliation(s)
- Alexander S Zhovmer
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, Bethesda, MD 20814
| | - Erdem D Tabdanov
- Laboratory for Engineering in Oncology, University of Minnesota, Minneapolis, MN 55455
| | - Houxun Miao
- Imaging Physics Laboratory, National Heart, Lung, and Blood Institute, Bethesda, MD 20814
| | - Han Wen
- Imaging Physics Laboratory, National Heart, Lung, and Blood Institute, Bethesda, MD 20814
| | - Jinqiu Chen
- Collaborative Protein Technology Resource, National Cancer Institute, Bethesda, MD 20892
| | - Xiaoling Luo
- Collaborative Protein Technology Resource, National Cancer Institute, Bethesda, MD 20892
| | - Xuefei Ma
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, Bethesda, MD 20814
| | - Paolo P Provenzano
- Laboratory for Engineering in Oncology, University of Minnesota, Minneapolis, MN 55455
| | - Robert S Adelstein
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, Bethesda, MD 20814
| |
Collapse
|