1
|
Wang N, Yuan Y, Hu T, Xu H, Piao H. Metabolism: an important player in glioma survival and development. Discov Oncol 2024; 15:577. [PMID: 39436434 PMCID: PMC11496451 DOI: 10.1007/s12672-024-01402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Gliomas are malignant tumors originating from both neuroglial cells and neural stem cells. The involvement of neural stem cells contributes to the tumor's heterogeneity, affecting its metabolic features, development, and response to therapy. This review provides a brief introduction to the importance of metabolism in gliomas before systematically categorizing them into specific groups based on their histological and molecular genetic markers. Metabolism plays a critical role in glioma biology, as tumor cells rely heavily on altered metabolic pathways to support their rapid growth, survival, and progression. Dysregulated metabolic processes, involving carbohydrates, lipids, and amino acids not only fuel tumor development but also contribute to therapy resistance and metastatic potential. By understanding these metabolic changes, key intervention points, such as mutations in genes like RTK, EGFR, RAS, and IDH can be identified, paving the way for novel therapeutic strategies. This review emphasizes the connection between metabolic pathways and clinical challenges, offering actionable insights for future research and therapeutic development in gliomas.
Collapse
Affiliation(s)
- Ning Wang
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi, Dalian, Dalian, Liaoning, 116024, People's Republic of China
- Department of Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong, Shenyang, Liaoning, 110042, People's Republic of China
| | - Yiru Yuan
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi, Dalian, Dalian, Liaoning, 116024, People's Republic of China
- Department of Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong, Shenyang, Liaoning, 110042, People's Republic of China
| | - Tianhao Hu
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi, Dalian, Dalian, Liaoning, 116024, People's Republic of China
- Department of Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong, Shenyang, Liaoning, 110042, People's Republic of China
| | - Huizhe Xu
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi, Dalian, Dalian, Liaoning, 116024, People's Republic of China.
- Department of Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong, Shenyang, Liaoning, 110042, People's Republic of China.
| | - Haozhe Piao
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi, Dalian, Dalian, Liaoning, 116024, People's Republic of China.
- Department of Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong, Shenyang, Liaoning, 110042, People's Republic of China.
| |
Collapse
|
2
|
Al-khatib SM, Al-Bzour AN, Almajali MN, Jarrad TA, AL-Eitan LN, Abdo N. Analysis of IDH and EGFR as biomarkers in glioblastoma multiforme: A case-control study. Heliyon 2024; 10:e35323. [PMID: 39165999 PMCID: PMC11333891 DOI: 10.1016/j.heliyon.2024.e35323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
Background Glioblastoma multiforme (GBM) is a very aggressive primary central nervous system (CNS) tumor with limited therapeutic options and poor prognosis. This study aimed to analyze the association between single nucleotide polymorphisms (SNPs), including IDH1 rs121913500C > T, IDH2 rs11540478G > A, and EGFR rs1468727C > T, and their association on the risk and overall survival of GBM patients in Jordan. Methods Using a case-control study design involving 63 GBM patients and 226 healthy controls was conducted at King Abdullah University Hospital in Jordan. DNA extraction was performed using formalin-fixed and paraffin-embedded tissue for GBM samples and blood samples for controls. SNPs analysis was performed using the Sequenom iPLEX assay sequencing technique. Survival outcomes were assessed using Cox models and hazard ratios (HR), and single-cell RNA (scRNA) analysis was performed from GSE70630. Results The study showed a significant association between genotype frequency in GBM cases and controls for specific SNPs, including IDH1 rs121913500C > T, and EGFR rs1468727C > T. The G/G genotype of rs11540478 (IDH2) was associated with better prognostic outcomes in GBM patients. The scRNA analysis demonstrated the differential expression of IDH1, IDH2, and EGFR in GBM, with enrichment in central carbon metabolism in cancer. Conclusion Our findings suggest that SNPs, particularly in IDH1 and IDH2 genes and EGFR, may serve as diagnostic and prognostic biomarkers for GBM. While the study underscores the clinical relevance of these genetic variants, further investigations with larger and more diverse populations are essential to validate and extend these associations.
Collapse
Affiliation(s)
- Sohaib M. Al-khatib
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ayah N. Al-Bzour
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohammad N. Almajali
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Tariq A. Jarrad
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Laith N. AL-Eitan
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Nour Abdo
- Department of Public Health, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
3
|
Elahi LS, Condro MC, Kawaguchi R, Qin Y, Alvarado AG, Gruender B, Qi H, Li T, Lai A, Castro MG, Lowenstein PR, Garrett MC, Kornblum HI. Valproic acid targets IDH1 mutants through alteration of lipid metabolism. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:20. [PMID: 39149696 PMCID: PMC11321993 DOI: 10.1038/s44324-024-00021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/01/2024] [Indexed: 08/17/2024]
Abstract
Histone deacetylases (HDACs) have a wide range of targets and can rewire both the chromatin and lipidome of cancer cells. In this study, we show that valproic acid (VPA), a brain penetrant anti-seizure medication and histone deacetylase inhibitor, inhibits the growth of IDH1 mutant tumors in vivo and in vitro, with at least some selectivity over IDH1 wild-type tumors. Surprisingly, genes upregulated by VPA showed no enhanced chromatin accessibility at the promoter, but there was a correlation between VPA-downregulated genes and diminished promoter chromatin accessibility. VPA inhibited the transcription of lipogenic genes and these lipogenic genes showed significant decreases in promoter chromatin accessibility only in the IDH1 MT glioma cell lines tested. VPA inhibited the mTOR pathway and a key lipogenic gene, fatty acid synthase (FASN). Both VPA and a selective FASN inhibitor TVB-2640 rewired the lipidome and promoted apoptosis in an IDH1 MT but not in an IDH1 WT glioma cell line. We further find that HDACs are involved in the regulation of lipogenic genes and HDAC6 is particularly important for the regulation of FASN in IDH1 MT glioma. Finally, we show that FASN knockdown alone and VPA in combination with FASN knockdown significantly improved the survival of mice in an IDH1 MT primary orthotopic xenograft model in vivo. We conclude that targeting fatty acid metabolism through HDAC inhibition and/or FASN inhibition may be a novel therapeutic opportunity in IDH1 mutant gliomas.
Collapse
Affiliation(s)
- Lubayna S. Elahi
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Michael C. Condro
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Riki Kawaguchi
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Yue Qin
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Alvaro G. Alvarado
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Brandon Gruender
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Haocheng Qi
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Tie Li
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Albert Lai
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Maria G. Castro
- Department of Neurosurgery, Department of Cell and Developmental Biology, and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI USA
| | - Pedro R. Lowenstein
- Department of Neurosurgery, Department of Cell and Developmental Biology, and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI USA
| | | | - Harley I. Kornblum
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| |
Collapse
|
4
|
Ivanov S, Nano O, Hana C, Bonano-Rios A, Hussein A. Molecular Targeting of the Isocitrate Dehydrogenase Pathway and the Implications for Cancer Therapy. Int J Mol Sci 2024; 25:7337. [PMID: 39000443 PMCID: PMC11242572 DOI: 10.3390/ijms25137337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
The advent of comprehensive genomic profiling using next-generation sequencing (NGS) has unveiled an abundance of potentially actionable genetic aberrations that have shaped our understanding of the cancer biology landscape. Isocitrate dehydrogenase (IDH) is an enzyme present in the cytosol (IDH1) and mitochondria (IDH2 and IDH3). In the mitochondrion, it catalyzes the irreversible oxidative decarboxylation of isocitrate, yielding the production of α-ketoglutarate and nicotinamide adenine dinucleotide phosphate (NADPH) as well as carbon dioxide (CO2). In the cytosol, IDH catalyzes the decarboxylation of isocitrate to α-ketoglutarate as well as the reverse reductive carboxylation of α-ketoglutarate to isocitrate. These rate-limiting steps in the tricarboxylic acid cycle, as well as the cytoplasmic response to oxidative stress, play key roles in gene regulation, cell differentiation, and tissue homeostasis. Mutations in the genes encoding IDH1 and IDH2 and, less commonly, IDH3 have been found in a variety of cancers, most commonly glioma, acute myeloid leukemia (AML), chondrosarcoma, and intrahepatic cholangiocarcinoma. In this paper, we intend to elucidate the theorized pathophysiology behind IDH isomer mutation, its implication in cancer manifestation, and discuss some of the available clinical data regarding the use of novel IDH inhibitors and their role in therapy.
Collapse
Affiliation(s)
- Stanislav Ivanov
- Memorial Cancer Institute, Memorial Healthcare System, Pembroke Pines, FL 33028, USA; (O.N.); (A.B.-R.); (A.H.)
| | | | | | | | | |
Collapse
|
5
|
Gunasegaran B, Ashley CL, Marsh-Wakefield F, Guillemin GJ, Heng B. Viruses in glioblastoma: an update on evidence and clinical trials. BJC REPORTS 2024; 2:33. [PMID: 39516641 PMCID: PMC11524015 DOI: 10.1038/s44276-024-00051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/13/2024] [Accepted: 02/22/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Glioblastoma (GB) is a lethal and aggressive brain tumour. While molecular characteristics of GB is studied extensively, the aetiology of GB remains uncertain. The interest in exploring viruses as a potential contributor to the development of GB stems from the notion that viruses are known to play a key role in pathogenesis of other human cancers such as cervical cancer. Nevertheless, the role of viruses in GB remains controversial. METHODS This review delves into the current body of knowledge surrounding the presence of viruses in GB as well as provide updates on clinical trials examining the potential inclusion of antiviral therapies as part of the standard of care protocol. CONCLUSIONS The review summarises current evidences and important gaps in our knowledge related to the presence of viruses in GB.
Collapse
Affiliation(s)
- Bavani Gunasegaran
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Caroline L Ashley
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Medical Sciences Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Felix Marsh-Wakefield
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Medical Sciences Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Centenary Institute, Camperdown, NSW, Australia
| | | | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Pang Y, Li Q, Sergi Z, Yu G, Sang X, Kim O, Wang H, Ranjan A, Merchant M, Oudit B, Robey RW, Soheilian F, Tran B, Núñez FJ, Zhang M, Song H, Zhang W, Davis D, Gilbert MR, Gottesman MM, Liu Z, Khan J, Thomas CJ, Castro MG, Gujral TS, Wu J. Exploiting the therapeutic vulnerability of IDH-mutant gliomas with zotiraciclib. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.29.547143. [PMID: 37786680 PMCID: PMC10541587 DOI: 10.1101/2023.06.29.547143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Isocitrate dehydrogenase (IDH)-mutant gliomas have distinctive metabolic and biological traits that may render them susceptible to targeted treatments. Here, by conducting a high-throughput drug screen, we pinpointed a specific susceptibility of IDH-mutant gliomas to zotiraciclib (ZTR). ZTR exhibited selective growth inhibition across multiple IDH-mutant glioma in vitro and in vivo models. Mechanistically, ZTR at low doses suppressed CDK9 and RNA Pol II phosphorylation in IDH-mutant cells, disrupting mitochondrial function and NAD+ production, causing oxidative stress. Integrated biochemical profiling of ZTR kinase targets and transcriptomics unveiled that ZTR-induced bioenergetic failure was linked to the suppression of PIM kinase activity. We posit that the combination of mitochondrial dysfunction and an inability to adapt to oxidative stress resulted in significant cell death upon ZTR treatment, ultimately increasing the therapeutic vulnerability of IDH-mutant gliomas. These findings prompted a clinical trial evaluating ZTR in IDH-mutant gliomas towards precision medicine ( NCT05588141 ). Highlights Zotiraciclib (ZTR), a CDK9 inhibitor, hinders IDH-mutant glioma growth in vitro and in vivo . ZTR halts cell cycle, disrupts respiration, and induces oxidative stress in IDH-mutant cells.ZTR unexpectedly inhibits PIM kinases, impacting mitochondria and causing bioenergetic failure.These findings led to the clinical trial NCT05588141, evaluating ZTR for IDH-mutant gliomas.
Collapse
|
7
|
Guo Z, Huo X, Li X, Jiang C, Xue L. Advances in regulation and function of stearoyl-CoA desaturase 1 in cancer, from bench to bed. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2773-2785. [PMID: 37450239 DOI: 10.1007/s11427-023-2352-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/23/2023] [Indexed: 07/18/2023]
Abstract
Stearoyl-CoA desaturase 1 (SCD1) converts saturated fatty acids to monounsaturated fatty acids. The expression of SCD1 is increased in many cancers, and the altered expression contributes to the proliferation, invasion, sternness and chemoresistance of cancer cells. Recently, more evidence has been reported to further support the important role of SCD1 in cancer, and the regulation mechanism of SCD1 has also been focused. Multiple factors are involved in the regulation of SCD1, including metabolism, diet, tumor microenvironment, transcription factors, non-coding RNAs, and epigenetics modification. Moreover, SCD1 is found to be involved in regulating ferroptosis resistance. Based on these findings, SCD1 has been considered as a potential target for cancer treatment. However, the resistance of SCD1 inhibition may occur in certain tumors due to tumor heterogeneity and metabolic plasticity. This review summarizes recent advances in the regulation and function of SCD1 in tumors and discusses the potential clinical application of targeting SCD1 for cancer treatment.
Collapse
Affiliation(s)
- Zhengyang Guo
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Xiao Huo
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Xianlong Li
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Changtao Jiang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China.
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, 100191, China.
| | - Lixiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China.
- Peking University Third Hospital Cancer Center, Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
8
|
Jaraíz-Rodríguez M, Del Prado L, Balsa E. Metabolic remodeling in astrocytes: Paving the path to brain tumor development. Neurobiol Dis 2023; 188:106327. [PMID: 37839712 DOI: 10.1016/j.nbd.2023.106327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023] Open
Abstract
The brain is a highly metabolic organ, composed of multiple cell classes, that controls crucial functions of the body. Although neurons have traditionally been the main protagonist, astrocytes have gained significant attention over the last decade. In this regard, astrocytes are a type of glial cells that have recently emerged as critical regulators of central nervous system (CNS) function and play a significant role in maintaining brain energy metabolism. However, in certain scenarios, astrocyte behavior can go awry, which poses a significant threat to brain integrity and function. This is definitively the case for mutations that turn normal astrocytes and astrocytic precursors into gliomas, an aggressive type of brain tumor. In addition, healthy astrocytes can interact with tumor cells, becoming part of the tumor microenvironment and influencing disease progression. In this review, we discuss the recent evidence suggesting that disturbed metabolism in astrocytes can contribute to the development and progression of fatal human diseases such as cancer. Emphasis is placed on detailing the molecular bases and metabolic pathways of this disease and highlighting unique metabolic vulnerabilities that can potentially be exploited to develop successful therapeutic opportunities.
Collapse
Affiliation(s)
- Myriam Jaraíz-Rodríguez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Lucia Del Prado
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Eduardo Balsa
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain; Instituto Universitario de Biología Molecular - IUBM (Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
9
|
Gruber E, Kats LM. The curious case of IDH mutant acute myeloid leukaemia: biochemistry and therapeutic approaches. Biochem Soc Trans 2023; 51:1675-1686. [PMID: 37526143 PMCID: PMC10586776 DOI: 10.1042/bst20230017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Of the many genetic alterations that occur in cancer, relatively few have proven to be suitable for the development of targeted therapies. Mutations in isocitrate dehydrogenase (IDH) 1 and -2 increase the capacity of cancer cells to produce a normally scarce metabolite, D-2-hydroxyglutarate (2-HG), by several orders of magnitude. The discovery of the unusual biochemistry of IDH mutations spurred a flurry of activity that revealed 2-HG as an 'oncometabolite' with pleiotropic effects in malignant cells and consequences for anti-tumour immunity. Over the next decade, we learned that 2-HG dysregulates a wide array of molecular pathways, among them a large family of dioxygenases that utilise the closely related metabolite α-ketoglutarate (α-KG) as an essential co-substrate. 2-HG not only contributes to malignant transformation, but some cancer cells become addicted to it and sensitive to inhibitors that block its synthesis. Moreover, high 2-HG levels and loss of wild-type IDH1 or IDH2 activity gives rise to synthetic lethal vulnerabilities. Herein, we review the biology of IDH mutations with a particular focus on acute myeloid leukaemia (AML), an aggressive disease where selective targeting of IDH-mutant cells is showing significant promise.
Collapse
Affiliation(s)
- Emily Gruber
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Lev M. Kats
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
10
|
Geoerger B, Schiff M, Penard-Lacronique V, Darin N, Saad SM, Duchon C, Lamazière A, Desmons A, Pontoizeau C, Berlanga P, Ducassou S, Yen K, Su M, Schenkein D, Ottolenghi C, De Botton S. Enasidenib treatment in two individuals with D-2-hydroxyglutaric aciduria carrying a germline IDH2 mutation. Nat Med 2023:10.1038/s41591-023-02382-9. [PMID: 37248298 DOI: 10.1038/s41591-023-02382-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/01/2023] [Indexed: 05/31/2023]
Abstract
D-2-hydroxyglutaric aciduria type II (D2HGA2) is a severe inborn disorder of metabolism caused by heterozygous R140 mutations in the IDH2 (isocitrate dehydrogenase 2) gene. Here we report the results of treatment of two children with D2HGA2, one of whom exhibited severe dilated cardiomyopathy, with the selective mutant IDH2 enzyme inhibitor enasidenib. In both children, enasidenib treatment led to normalization of D-2-hydroxyglutarate (D-2-HG) concentrations in body fluids. At doses of 50 mg and 60 mg per day, no side effects were observed, except for asymptomatic hyperbilirubinemia. For the child with cardiomyopathy, chronic D-2-HG inhibition was associated with improved cardiac function, and for both children, therapy was associated with improved daily functioning, global motility and social interactions. Treatment of the child with cardiomyopathy led to therapy-coordinated changes in serum phospholipid levels, which were partly recapitulated in cultured fibroblasts, associated with complex effects on lipid and redox-related gene pathways. These findings indicate that targeted inhibition of a mutant enzyme can partly reverse the pathology of a chronic neurometabolic genetic disorder.
Collapse
Affiliation(s)
- Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
| | - Manuel Schiff
- Reference Center for Inborn Errors of Metabolism, Necker University Hospital, APHP and University of Paris Cité, Paris, France
- INSERM UMRS 1163, Institut Imagine, Paris, France
| | - Virginie Penard-Lacronique
- INSERM 1170, Université Paris-Saclay, Equipe Labellisée Ligue Nationale Contre le Cancer, member of OPALE Carnot Institute The Organization for Partnerships in Leukemia, Villejuif, France
| | - Niklas Darin
- Department of Pediatrics, Institute of Clinical Sciences, University of Gothenburg and Queen Silvia Children's Hospital at Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Selim-Maria Saad
- Department of Cardiology, Clinique du Diaconat, Mulhouse, France
| | - Clarisse Duchon
- Reference Center for Inborn Errors of Metabolism, Necker University Hospital, APHP and University of Paris Cité, Paris, France
| | - Antonin Lamazière
- Clinical Metabolomic Department, Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, Paris, France
| | - Aurore Desmons
- Clinical Metabolomic Department, Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, Paris, France
| | - Clément Pontoizeau
- Reference Center for Inborn Errors of Metabolism, Necker University Hospital, APHP and University of Paris Cité, Paris, France
- INSERM UMRS 1163, Institut Imagine, Paris, France
- Metabolomics Unit of the Department of Biology, Physiology and Genetics, Necker University Hospital, APHP and University of Paris Cité, Paris, France
| | - Pablo Berlanga
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Stéphane Ducassou
- Department of Pediatric Hemato-Oncology, CHU Bordeaux, Bordeaux, France
| | - Katharine Yen
- Agios Pharmaceuticals, Cambridge, MA, USA
- Auron Therapeutics, Cambridge, MA, USA
| | - Michael Su
- Agios Pharmaceuticals, Cambridge, MA, USA
- Auron Therapeutics, Cambridge, MA, USA
| | - David Schenkein
- Agios Pharmaceuticals, Cambridge, MA, USA
- GV, Cambridge, MA, USA
| | - Chris Ottolenghi
- Reference Center for Inborn Errors of Metabolism, Necker University Hospital, APHP and University of Paris Cité, Paris, France
- INSERM UMRS 1163, Institut Imagine, Paris, France
- Metabolomics Unit of the Department of Biology, Physiology and Genetics, Necker University Hospital, APHP and University of Paris Cité, Paris, France
| | - Stéphane De Botton
- INSERM 1170, Université Paris-Saclay, Equipe Labellisée Ligue Nationale Contre le Cancer, member of OPALE Carnot Institute The Organization for Partnerships in Leukemia, Villejuif, France
- Department of Hematology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
11
|
Wang QX, Zhang PY, Li QQ, Tong ZJ, Wu JZ, Yu SP, Yu YC, Ding N, Leng XJ, Chang L, Xu JG, Sun SL, Yang Y, Li NG, Shi ZH. Challenges for the development of mutant isocitrate dehydrogenases 1 inhibitors to treat glioma. Eur J Med Chem 2023; 257:115464. [PMID: 37235998 DOI: 10.1016/j.ejmech.2023.115464] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Glioma is one of the most common types of brain tumors, and its high recurrence and mortality rates threaten human health. In 2008, the frequent isocitrate dehydrogenase 1 (IDH1) mutations in glioma were reported, which brought a new strategy in the treatment of this challenging disease. In this perspective, we first discuss the possible gliomagenesis after IDH1 mutations (mIDH1). Subsequently, we systematically investigate the reported mIDH1 inhibitors and present a comparative analysis of the ligand-binding pocket in mIDH1. Additionally, we also discuss the binding features and physicochemical properties of different mIDH1 inhibitors to facilitate the future development of mIDH1 inhibitors. Finally, we discuss the possible selectivity features of mIDH1 inhibitors against WT-IDH1 and IDH2 by combining protein-based and ligand-based information. We hope that this perspective can inspire the development of mIDH1 inhibitors and bring potent mIDH1 inhibitors for the treatment of glioma.
Collapse
Affiliation(s)
- Qing-Xin Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Peng-Yu Zhang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Zhen-Jiang Tong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jia-Zhen Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Shao-Peng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Liang Chang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jin-Guo Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
12
|
Kuna RS, Kumar A, Wessendorf-Rodriguez KA, Galvez H, Green CR, McGregor GH, Cordes T, Shaw RJ, Svensson RU, Metallo CM. Inter-organelle cross-talk supports acetyl-coenzyme A homeostasis and lipogenesis under metabolic stress. SCIENCE ADVANCES 2023; 9:eadf0138. [PMID: 37134162 PMCID: PMC10156121 DOI: 10.1126/sciadv.adf0138] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/03/2023] [Indexed: 05/05/2023]
Abstract
Proliferating cells rely on acetyl-CoA to support membrane biogenesis and acetylation. Several organelle-specific pathways are available for provision of acetyl-CoA as nutrient availability fluctuates, so understanding how cells maintain acetyl-CoA homeostasis under such stresses is critically important. To this end, we applied 13C isotope tracing cell lines deficient in these mitochondrial [ATP-citrate lyase (ACLY)]-, cytosolic [acetyl-CoA synthetase (ACSS2)]-, and peroxisomal [peroxisomal biogenesis factor 5 (PEX5)]-dependent pathways. ACLY knockout in multiple cell lines reduced fatty acid synthesis and increased reliance on extracellular lipids or acetate. Knockout of both ACLY and ACSS2 (DKO) severely stunted but did not entirely block proliferation, suggesting that alternate pathways can support acetyl-CoA homeostasis. Metabolic tracing and PEX5 knockout studies link peroxisomal oxidation of exogenous lipids as a major source of acetyl-CoA for lipogenesis and histone acetylation in cells lacking ACLY, highlighting a role for inter-organelle cross-talk in supporting cell survival in response to nutrient fluctuations.
Collapse
Affiliation(s)
- Ramya S. Kuna
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Avi Kumar
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karl A. Wessendorf-Rodriguez
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hector Galvez
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Courtney R. Green
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Grace H. McGregor
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Thekla Cordes
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Reuben J. Shaw
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | - Christian M. Metallo
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
13
|
Park JW. Metabolic Rewiring in Adult-Type Diffuse Gliomas. Int J Mol Sci 2023; 24:ijms24087348. [PMID: 37108511 PMCID: PMC10138713 DOI: 10.3390/ijms24087348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Multiple metabolic pathways are utilized to maintain cellular homeostasis. Given the evidence that altered cell metabolism significantly contributes to glioma biology, the current research efforts aim to improve our understanding of metabolic rewiring between glioma's complex genotype and tissue context. In addition, extensive molecular profiling has revealed activated oncogenes and inactivated tumor suppressors that directly or indirectly impact the cellular metabolism that is associated with the pathogenesis of gliomas. The mutation status of isocitrate dehydrogenases (IDHs) is one of the most important prognostic factors in adult-type diffuse gliomas. This review presents an overview of the metabolic alterations in IDH-mutant gliomas and IDH-wildtype glioblastoma (GBM). A particular focus is placed on targeting metabolic vulnerabilities to identify new therapeutic strategies for glioma.
Collapse
Affiliation(s)
- Jong-Whi Park
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| |
Collapse
|
14
|
Liu Y, Chou FJ, Lang F, Zhang M, Song H, Zhang W, Davis DL, Briceno NJ, Zhang Y, Cimino PJ, Zaghloul KA, Gilbert MR, Armstrong TS, Yang C. Protein Kinase B (PKB/AKT) Protects IDH-Mutated Glioma from Ferroptosis via Nrf2. Clin Cancer Res 2023; 29:1305-1316. [PMID: 36648507 PMCID: PMC10073324 DOI: 10.1158/1078-0432.ccr-22-3179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
PURPOSE Mutations of the isocitrate dehydrogenase (IDH) gene are common genetic mutations in human malignancies. Increasing evidence indicates that IDH mutations play critical roles in malignant transformation and progression. However, the therapeutic options for IDH-mutated cancers remain limited. In this study, the investigation of patient cohorts revealed that the PI3K/protein kinase B (AKT) signaling pathways were enhanced in IDH-mutated cancer cells. EXPERIMENTAL DESIGN In this study, we investigated the gene expression profile in IDH-mutated cells using RNA sequencing after the depletion of AKT. Gene set enrichment analysis (GSEA) and pathway enrichment analysis were used to discover altered molecular pathways due to AKT depletion. We further investigated the therapeutic effect of the AKT inhibitor, ipatasertib (Ipa), combined with temozolomide (TMZ) in cell lines and preclinical animal models. RESULTS GSEA and pathway enrichment analysis indicated that the PI3K/AKT pathway significantly correlated with Nrf2-guided gene expression and ferroptosis-related pathways. Mechanistically, AKT suppresses the activity of GSK3β and stabilizes Nrf2. Moreover, inhibition of AKT activity with Ipa synergizes with the genotoxic agent TMZ, leading to overwhelming ferroptotic cell death in IDH-mutated cancer cells. The preclinical animal model confirmed that combining Ipa and TMZ treatment prolonged survival. CONCLUSIONS Our findings highlighted AKT/Nrf2 pathways as a potential synthetic lethality target for IDH-mutated cancers.
Collapse
Affiliation(s)
- Yang Liu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Fu-Ju Chou
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Fengchao Lang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Meili Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Hua Song
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Wei Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Dionne L. Davis
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Nicole J. Briceno
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Yang Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Patrick J. Cimino
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Kareem A. Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Mark R. Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Terri S. Armstrong
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Chunzhang Yang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| |
Collapse
|
15
|
Thamim M, Agrahari AK, Gupta P, Thirumoorthy K. Rational Computational Approaches in Drug Discovery: Potential Inhibitors for Allosteric Regulation of Mutant Isocitrate Dehydrogenase-1 Enzyme in Cancers. Molecules 2023; 28:molecules28052315. [PMID: 36903561 PMCID: PMC10005488 DOI: 10.3390/molecules28052315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 03/06/2023] Open
Abstract
Mutations in homodimeric isocitrate dehydrogenase (IDH) enzymes at specific arginine residues result in the abnormal activity to overproduce D-2 hydroxyglutarate (D-2HG), which is often projected as solid oncometabolite in cancers and other disorders. As a result, depicting the potential inhibitor for D-2HG formation in mutant IDH enzymes is a challenging task in cancer research. The mutation in the cytosolic IDH1 enzyme at R132H, especially, may be associated with higher frequency of all types of cancers. So, the present work specifically focuses on the design and screening of allosteric site binders to the cytosolic mutant IDH1 enzyme. The 62 reported drug molecules were screened along with biological activity to identify the small molecular inhibitors using computer-aided drug design strategies. The designed molecules proposed in this work show better binding affinity, biological activity, bioavailability, and potency toward the inhibition of D-2HG formation compare to the reported drugs in the in silico approach.
Collapse
Affiliation(s)
- Masthan Thamim
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Ashish Kumar Agrahari
- Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India
| | - Pawan Gupta
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Krishnan Thirumoorthy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
- Correspondence:
| |
Collapse
|
16
|
Thomas D, Wu M, Nakauchi Y, Zheng M, Thompson-Peach CA, Lim K, Landberg N, Köhnke T, Robinson N, Kaur S, Kutyna M, Stafford M, Hiwase D, Reinisch A, Peltz G, Majeti R. Dysregulated Lipid Synthesis by Oncogenic IDH1 Mutation Is a Targetable Synthetic Lethal Vulnerability. Cancer Discov 2023; 13:496-515. [PMID: 36355448 PMCID: PMC9900324 DOI: 10.1158/2159-8290.cd-21-0218] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/18/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
Isocitrate dehydrogenase 1 and 2 (IDH) are mutated in multiple cancers and drive production of (R)-2-hydroxyglutarate (2HG). We identified a lipid synthesis enzyme [acetyl CoA carboxylase 1 (ACC1)] as a synthetic lethal target in mutant IDH1 (mIDH1), but not mIDH2, cancers. Here, we analyzed the metabolome of primary acute myeloid leukemia (AML) blasts and identified an mIDH1-specific reduction in fatty acids. mIDH1 also induced a switch to b-oxidation indicating reprogramming of metabolism toward a reliance on fatty acids. Compared with mIDH2, mIDH1 AML displayed depletion of NADPH with defective reductive carboxylation that was not rescued by the mIDH1-specific inhibitor ivosidenib. In xenograft models, a lipid-free diet markedly slowed the growth of mIDH1 AML, but not healthy CD34+ hematopoietic stem/progenitor cells or mIDH2 AML. Genetic and pharmacologic targeting of ACC1 resulted in the growth inhibition of mIDH1 cancers not reversible by ivosidenib. Critically, the pharmacologic targeting of ACC1 improved the sensitivity of mIDH1 AML to venetoclax. SIGNIFICANCE Oncogenic mutations in both IDH1 and IDH2 produce 2-hydroxyglutarate and are generally considered equivalent in terms of pathogenesis and targeting. Using comprehensive metabolomic analysis, we demonstrate unexpected metabolic differences in fatty acid metabolism between mutant IDH1 and IDH2 in patient samples with targetable metabolic interventions. See related commentary by Robinson and Levine, p. 266. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Daniel Thomas
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
- Adelaide Medical School, University of Adelaide, South Australia and Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Manhong Wu
- Department of Anesthesiology, Pain and Perioperative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Yusuke Nakauchi
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Ming Zheng
- Department of Anesthesiology, Pain and Perioperative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Chloe A.L. Thompson-Peach
- Adelaide Medical School, University of Adelaide, South Australia and Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Kelly Lim
- Adelaide Medical School, University of Adelaide, South Australia and Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Niklas Landberg
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Thomas Köhnke
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia, South Australia, Australia
| | - Satinder Kaur
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Monika Kutyna
- Adelaide Medical School, University of Adelaide, South Australia and Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Melissa Stafford
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Devendra Hiwase
- Adelaide Medical School, University of Adelaide, South Australia and Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andreas Reinisch
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
- Division of Hematology and Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Gary Peltz
- Department of Anesthesiology, Pain and Perioperative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
- Corresponding Author: Ravindra Majeti, Department of Medicine, Division of Hematology, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Lokey Stem Cell Building, 265 Campus Drive, Stanford, CA 94305. Phone: 650-721-6376; Fax: 650-736-2961; E-mail:
| |
Collapse
|
17
|
Reflections on the Biology of Cell Culture Models: Living on the Edge of Oxidative Metabolism in Cancer Cells. Int J Mol Sci 2023; 24:ijms24032717. [PMID: 36769044 PMCID: PMC9916950 DOI: 10.3390/ijms24032717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Nowadays, the study of cell metabolism is a hot topic in cancer research. Many studies have used 2D conventional cell cultures for their simplicity and the facility to infer mechanisms. However, the limitations of bidimensional cell cultures to recreate architecture, mechanics, and cell communication between tumor cells and their environment, have forced the development of other more realistic in vitro methodologies. Therefore, the explosion of 3D culture techniques and the necessity to reduce animal experimentation to a minimum has attracted the attention of researchers in the field of cancer metabolism. Here, we revise the limitations of actual culture models and discuss the utility of several 3D culture techniques to resolve those limitations.
Collapse
|
18
|
Miller JJ, Gonzalez Castro LN, McBrayer S, Weller M, Cloughesy T, Portnow J, Andronesi O, Barnholtz-Sloan JS, Baumert BG, Berger MS, Bi WL, Bindra R, Cahill DP, Chang SM, Costello JF, Horbinski C, Huang RY, Jenkins RB, Ligon KL, Mellinghoff IK, Nabors LB, Platten M, Reardon DA, Shi DD, Schiff D, Wick W, Yan H, von Deimling A, van den Bent M, Kaelin WG, Wen PY. Isocitrate dehydrogenase (IDH) mutant gliomas: A Society for Neuro-Oncology (SNO) consensus review on diagnosis, management, and future directions. Neuro Oncol 2023; 25:4-25. [PMID: 36239925 PMCID: PMC9825337 DOI: 10.1093/neuonc/noac207] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Isocitrate dehydrogenase (IDH) mutant gliomas are the most common adult, malignant primary brain tumors diagnosed in patients younger than 50, constituting an important cause of morbidity and mortality. In recent years, there has been significant progress in understanding the molecular pathogenesis and biology of these tumors, sparking multiple efforts to improve their diagnosis and treatment. In this consensus review from the Society for Neuro-Oncology (SNO), the current diagnosis and management of IDH-mutant gliomas will be discussed. In addition, novel therapies, such as targeted molecular therapies and immunotherapies, will be reviewed. Current challenges and future directions for research will be discussed.
Collapse
Affiliation(s)
- Julie J Miller
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - L Nicolas Gonzalez Castro
- Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Samuel McBrayer
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, Texas, 75235, USA
| | - Michael Weller
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| | | | - Jana Portnow
- Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Ovidiu Andronesi
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jill S Barnholtz-Sloan
- Informatics and Data Science (IDS), Center for Biomedical Informatics and Information Technology (CBIIT), Trans-Divisional Research Program (TDRP), Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Bethesda, MD, USA
| | - Brigitta G Baumert
- Cantonal Hospital Graubunden, Institute of Radiation-Oncology, Chur, Switzerland
| | - Mitchell S Berger
- Department of Neurosurgery, University of California-San Francisco, San Francisco, California, USA
| | - Wenya Linda Bi
- Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Ranjit Bindra
- Department of Therapeutic Radiology, Brain Tumor Center, Yale School of Medicine, New Haven, CT, USA
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Susan M Chang
- Department of Neurosurgery, University of California-San Francisco, San Francisco, California, USA
| | - Joseph F Costello
- Department of Neurosurgery, University of California-San Francisco, San Francisco, California, USA
| | - Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Raymond Y Huang
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Robert B Jenkins
- Individualized Medicine Research, Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, Minnesota 55901, USA
| | - Keith L Ligon
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Ingo K Mellinghoff
- Department of Neurology, Evnin Family Chair in Neuro-Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - L Burt Nabors
- Department of Neurology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael Platten
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - David A Reardon
- Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Diana D Shi
- Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - David Schiff
- Division of Neuro-Oncology, Department of Neurology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Wolfgang Wick
- Neuro-Oncology at the German Cancer Research Center (DKFZ), Program Chair of Neuro-Oncology at the National Center for Tumor Diseases (NCT), and Neurology and Chairman at the Neurology Clinic in Heidelberg, Heidelberg, Germany
| | - Hai Yan
- Genetron Health Inc, Gaithersburg, Maryland 20879, USA
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Heidelberg, and, Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), and, DKTK, INF 224, 69120 Heidelberg, Germany
| | - Martin van den Bent
- Brain Tumour Centre, Erasmus MC Cancer Institute, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands
| | - William G Kaelin
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
19
|
Exploration of natural product database for the identification of potent inhibitor against IDH2 mutational variants for glioma therapy. J Mol Model 2022; 29:6. [PMID: 36484830 DOI: 10.1007/s00894-022-05409-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Mutation in isocitrate dehydrogenase 2 (mIDH2) is an oncogenic driver prevalently reported in various cancer types including gliomas. To date, enasidenib is the only FDA-approved drug widely used as a mIDH2 (R140Q) inhibitor. However, dose-limiting toxicity and modest brain penetrating capability restrict its use as a plausible mIDH2 inhibitor. Furthermore, secondary site mutations (Q316E and I319M) were identified in patients with enasidenib treatments resulting in acquired therapeutic resistance. Hence, in the present investigation, we aimed to identify novel and potent drug-like compounds to overcome the existing drawbacks using an integrated in-silico strategy. A sum of 1574 natural compounds from the naturally occurring plant-based anti-cancerous compound activity target (NPACT) database was proclaimed and subjected to molecular docking. The binding affinities of the resultant natural compounds were rescored using MM-GBSA scoring functions. The resultant lead molecules were subjected to anticancer activity prediction using the machine-learning model. Furthermore, the toxicity and drug-likeliness of the lead compounds were investigated using ADMET properties. Eventually, the integrated in silico approach resulted in a lead molecule, namely squalene (NPACT00954) against mIDH2 protein. The screened compound was subjected to mutational analysis accomplishing second-site mutations. Interestingly, squalene exhibited appreciable binding affinity alongside good brain penetrating potential than enasidenib. Indeed, the reproducibility and significance of our results are examined by running 3 replicas of 100-ns simulations per system using the random initial velocities of the atoms generated by Maxwell distribution at a given temperature. Thus, we hypothesize from our results that further optimization of squalene could be beneficial for the treatment and management of glioma in the near future.
Collapse
|
20
|
Gulaia V, Shmelev M, Romanishin A, Shved N, Farniev V, Goncharov N, Biktimirov A, Vargas IL, Khodosevich K, Kagansky A, Kumeiko V. Single-nucleus transcriptomics of IDH1- and TP53-mutant glioma stem cells displays diversified commitment on invasive cancer progenitors. Sci Rep 2022; 12:18975. [PMID: 36348001 PMCID: PMC9643511 DOI: 10.1038/s41598-022-23646-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Glioma is a devastating brain tumor with a high mortality rate attributed to the glioma stem cells (GSCs) possessing high plasticity. Marker mutations in isocitrate dehydrogenase type 1 (IDH1) and tumor protein 53 (TP53) are frequent in gliomas and impact the cell fate decisions. Understanding the GSC heterogeneity within IDH1- and TP53- mutant tumors may elucidate possible treatment targets. Here, we performed single-nucleus transcriptomics of mutant and wild-type glioma samples sorted for Sox2 stem cell marker. For the first time the rare subpopulations of Sox2 + IDH1- and TP53-mutant GSCs were characterized. In general, GSCs contained the heterogeneity root subpopulation resembling active neural stem cells capable of asymmetric division to quiescent and transit amplifying cell branches. Specifically, double-mutant GSCs revealed the commitment on highly invasive oligodendrocyte- and astroglia-like progenitors. Additionally, double-mutant GSCs displayed upregulated markers of collagen synthesis, altered lipogenesis and high migration, while wild-type GSCs expressed genes related to ATP production. Wild-type GSC root population was highly heterogeneous and lacked the signature marker expression, thus glioblastoma treatment should emphasize on establishing differentiation protocol directed against residual GSCs. For the more differentiated IDH1- and TP53-mutant gliomas we suggest therapeutic targeting of migration molecules, such as CD44.
Collapse
Affiliation(s)
- Valeriia Gulaia
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia
| | - Mikhail Shmelev
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia
| | - Aleksander Romanishin
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia ,grid.410686.d0000 0001 1018 9204School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, 236041 Russia
| | - Nikita Shved
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia ,grid.417808.20000 0001 1393 1398A.V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, 690041 Russia
| | - Vladislav Farniev
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia
| | - Nikolay Goncharov
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia
| | - Arthur Biktimirov
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia
| | - Irene Lisa Vargas
- grid.5254.60000 0001 0674 042XBiotech Research & Innovation Centre (BRIC), The Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Konstantin Khodosevich
- grid.5254.60000 0001 0674 042XBiotech Research & Innovation Centre (BRIC), The Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alexander Kagansky
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia
| | - Vadim Kumeiko
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia ,grid.417808.20000 0001 1393 1398A.V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, 690041 Russia
| |
Collapse
|
21
|
Ni Y, Shen P, Wang X, Liu H, Luo H, Han X. The roles of IDH1 in tumor metabolism and immunity. Future Oncol 2022; 18:3941-3953. [PMID: 36621781 DOI: 10.2217/fon-2022-0583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
IDH1 is a key metabolic enzyme for cellular respiration in the tricarboxylic acid (TCA) cycle that can convert isocitrate into α-ketoglutarate (α-KG) and generate NADPH. The reduction of IDH1 may affect dioxygenase activity and damage the body's detoxification mechanism. Many studies have shown that IDH1 is closely related to the occurrence and development of tumors, and the changes in IDH1 expression levels or gene mutations have appeared in many tumor tissues and produced a series of metabolic and immunity changes at the same time. To better understand the relationship between IDH1 and tumor development, this article reviews the latest advances in IDH1 and tumor metabolism, tumor immunity, IDH1 regulatory mechanisms and IDH1 target inhibitors.
Collapse
Affiliation(s)
- Yingqian Ni
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Peibo Shen
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Xingchen Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - He Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Huiyuan Luo
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Xiuzhen Han
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China.,Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, China.,Shandong Cancer Hospital and Institute, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| |
Collapse
|
22
|
Abstract
Standard treatment for patients with IDH-mutant gliomas with radiation therapy and chemotherapy is non-curative and associated with long-term neurotoxicity. This has created intense interest in targeted therapeutic strategies that are specifically designed of IDH-mutant tumors. Much progress has been made in understanding the unique biology of IDH-mutant gliomas, and now various IDH-mutant-specific targeting strategies are in various phases of development. Here, we will review a range of IDH-mutant targeting treatments being explored, including direct IDH inhibitors, as well as strategies that take advantage of IDH-mutant-specific vulnerabilities.
Collapse
Affiliation(s)
- Julie J Miller
- Department of Neurology, Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Hu C, Zeng Z, Ma D, Yin Z, Zhao S, Chen T, Tang L, Zuo S. Discovery of novel IDH1-R132C inhibitors through structure-based virtual screening. Front Pharmacol 2022; 13:982375. [PMID: 36160383 PMCID: PMC9491111 DOI: 10.3389/fphar.2022.982375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Isocitrate dehydrogenase (IDH) belongs to a family of enzymes involved in glycometabolism. It is found in many living organisms and is one of the most mutated metabolic enzymes. In the current study, we identified novel IDH1-R132C inhibitors using docking-based virtual screening and cellular inhibition assays. A total of 100 molecules with high docking scores were obtained from docking-based virtual screening. The cellular inhibition assay demonstrated five compounds at a concentration of 10 μM could inhibit cancer cells harboring the IDH1-R132C mutation proliferation by > 50%. The compound (T001-0657) showed the most potent effect against cancer cells harboring the IDH1-R132C mutation with a half-maximal inhibitory concentration (IC50) value of 1.311 μM. It also showed a cytotoxic effect against cancer cells with wild-type IDH1 and normal cells with IC50 values of 49.041 μM and >50 μM, respectively. Molecular dynamics simulations were performed to investigate the stability of the kinase structure binding of allosteric inhibitor compound A and the identified compound T001-0657 binds to IDH1-R132C. Root-mean-square deviation, root-mean-square fluctuation, and binding free energy calculations showed that both compounds bind tightly to IDH1-R132C. In conclusion, the compound identified in this study had high selectivity for cancer cells harboring IDH1-R132C mutation and could be considered a promising hit compound for further development of IDH1-R132C inhibitors.
Collapse
Affiliation(s)
- Chujiao Hu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R and D, Guiyang, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Precision Medicine Research Institute of Guizhou, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhirui Zeng
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Precision Medicine Research Institute of Guizhou, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Dan Ma
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R and D, Guiyang, China
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhixin Yin
- College of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Shanshan Zhao
- College of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Tengxiang Chen
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Precision Medicine Research Institute of Guizhou, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Tengxiang Chen, ; Lei Tang, ; Shi Zuo,
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R and D, Guiyang, China
- *Correspondence: Tengxiang Chen, ; Lei Tang, ; Shi Zuo,
| | - Shi Zuo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Precision Medicine Research Institute of Guizhou, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Tengxiang Chen, ; Lei Tang, ; Shi Zuo,
| |
Collapse
|
24
|
Yang G, Shan D, Zhao R, Li G. Metabolism-Associated DNA Methylation Signature Stratifies Lower-Grade Glioma Patients and Predicts Response to Immunotherapy. Front Cell Dev Biol 2022; 10:902298. [PMID: 35784470 PMCID: PMC9240391 DOI: 10.3389/fcell.2022.902298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
Metabolism and DNA methylation (DNAm) are closely linked. The value of the metabolism-DNAm interplay in stratifying glioma patients has not been explored. In the present study, we aimed to stratify lower-grade glioma (LGG) patients based on the DNAm associated with metabolic reprogramming. Four data sets of LGGs from three databases (TCGA/CGGA/GEO) were used in this study. By screening the Kendall’s correlation of DNAm with 87 metabolic processes from KEGG, we identified 391 CpGs with a strong correlation with metabolism. Based on these metabolism-associated CpGs, we performed consensus clustering and identified three distinct subgroups of LGGs. These three subgroups were characterized by distinct molecular features and clinical outcomes. We also constructed a subgroup-related, quantifiable CpG signature with strong prognostic power to stratify LGGs. It also serves as a potential biomarker to predict the response to immunotherapy. Overall, our findings provide new perspectives for the stratification of LGGs and for understanding the mechanisms driving malignancy.
Collapse
Affiliation(s)
- Guozheng Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Dezhi Shan
- Department of Neurosurgery, Beijing Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Beijing, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- *Correspondence: Gang Li,
| |
Collapse
|
25
|
Hodge SH, McSorley HJ. A Good Day for Helminths: how parasite‐derived GDH suppresses inflammatory responses. EMBO Rep 2022; 23:e55054. [PMID: 35357756 PMCID: PMC9066059 DOI: 10.15252/embr.202255054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022] Open
Abstract
Parasitic helminths are often associated with immunoregulation, which allows them to survive in their hosts in the face of type 2 immune responses. They achieve this feat through the secretion of multiple immunomodulatory factors. In this issue of EMBO Reports, Prodjinotho et al show that the parasitic cestode Taenia solium induces regulatory T‐cell responses in mice and humans through the release of the metabolic enzyme Glutamate dehydrogenase (GDH), which may be a conserved pathway of immunoregulation in many helminths (Prodjinotho et al, 2022).
Collapse
Affiliation(s)
- Suzanne H Hodge
- Division of Cell Signalling and Immunology University of Dundee Dundee UK
| | - Henry J McSorley
- Division of Cell Signalling and Immunology University of Dundee Dundee UK
| |
Collapse
|
26
|
Saikiran Reddy M, Bhattacharjee D, Jain N. Plk1 regulates mutant IDH1 enzyme activity and mutant IDH2 ubiquitination in mitosis. Cell Signal 2022; 92:110279. [PMID: 35143931 DOI: 10.1016/j.cellsig.2022.110279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
Mutations in the metabolic enzymes, IDH1 and IDH2 are frequently found in glioma, chondrosarcoma, and acute myeloid leukemia. In our previous study, we showed that mutant IDH1 and IDH2 proteins levels are high in mitosis, and mutant IDH1 enzyme activity increases in mitosis. In another study, we observed that mutant IDH2 is ubiquitinated in mitosis in an APC/C-dependent manner. To orchestrate mitosis, kinases phosphorylate key proteins and regulate their functions. But it is unknown, whether mitotic kinases regulate mutant IDH1 and IDH2. As IDH1 and IDH2 have 66% sequence identity, thus we hypothesized that a common mitotic kinase(s) may regulate mutant IDH1 and IDH2 in mitosis. To test our hypothesis, we examined mutant IDH1 and IDH2 binding to mitotic kinases and determined their role in regulating mutant IDH1 and IDH2 in mitosis. Here, we observed that Cdk1/Cyclin B1 phosphorylated mutant IDH1 and IDH2 binds Plk1. Conserved Plk1 phosphobinding sites in IDH1 and IDH2 are important for Plk1 binding. We found that Plk1 regulates mutant IDH1 enzyme activity and blocking Plk1 decreases D-2HG, whereas, overexpressing Plk1 increases D-2HG levels. Furthermore, blocking Plk1 decreases mutant IDH2 ubiquitination, whereas, overexpressing Plk1 increases mutant IDH2 ubiquitination in mitosis. We conclude that Plk1 regulates mutant IDH1 enzyme activity and mutant IDH2 ubiquitination in mitosis. Based on our results, we suggest that Plk1 can be a therapeutic target in mutant IDH-linked tumours.
Collapse
Affiliation(s)
- M Saikiran Reddy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debanjan Bhattacharjee
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nishant Jain
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
27
|
Cheng P, Chen K, Zhang S, Mu KT, Liang S, Zhang Y. IDH1 R132C and ERC2 L309I Mutations Contribute to the Development of Maffucci's Syndrome. Front Endocrinol (Lausanne) 2021; 12:763349. [PMID: 34790172 PMCID: PMC8591216 DOI: 10.3389/fendo.2021.763349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background Maffucci's syndrome is characterized by the coexistence of multiple enchondromas and soft-tissue hemangiomas. It has been clear that somatic mosaic isocitrate dehydrogenase type 1 (IDH1) or isocitrate dehydrogenase type 2 (IDH2) mutations are associated with Maffucci's syndrome and Ollier disease, but the mechanisms underlying hemangiomas of the Maffucci's syndrome is still obscure. This study aimed to determine the mechanism of hemangiomas in Maffucci's syndrome. Methods We received a 26-year-old female patient with typical Maffucci's syndrome, and exome sequencing was conducted using DNA from her peripheral blood and enchondroma tissues. Somatic mutations were characterized by a comparative analysis of exome sequences and further confirmed by the sequencing of PCR products derived from original blood and tissue samples. The mutations of an additional 69 patients with Ollier disease were further tested. The functional impacts of these somatic mutations on Maffucci's syndrome, especially the development of hemangiomas, were evaluated. Results We reported a typical case of Maffucci's syndrome, which was confirmed by both imaging findings and pathology. Through exome sequencing of this patient's DNA samples, we identified an R132C mutation in the isocitrate dehydrogenase type 1 (IDH1) gene and an L309I mutation in the ELKS/RAB6-interacting/CAST family member 2 (ERC2) gene in this patient. Approximately 33.3% of the clones were positive for the IDH1 R132C mutation, and 19.0% of the clones were positive for the ECR2 L309I mutation. The IDH1 R132C mutation was detected in most of the patients with Ollier disease (51/69 patients), and the mean frequency of this mutation was 63.3% in total sequence readouts, but the ECR2 L309I mutation was absent in all of the patients with Ollier disease. In vitro experiments confirmed that the IDH1 R132C mutation promotes chondrocyte proliferation, and the ERC2 L309I mutation enhances angiogenesis. Conclusions Our results suggest that while IDH1 is a known pathogenic gene in enchondromatosis, ERC2 is a novel gene identified in Maffucci's syndrome. The somatic L309I mutation of ERC2 contributes to the pathogenesis of hypervascularization to facilitate the development of hemangiomas in Maffucci's syndrome. The combination of the IDH1 R132C and ERC2 L309I mutations contributes to the development of Maffucci's syndrome, and these results may enable further research on the pathogenesis of Maffucci's syndrome.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Chen
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Shu Zhang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Wuhan, China
| | - Ke-tao Mu
- Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Liang
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhang
- Department of Nephrology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Olszewski K, Barsotti A, Feng XJ, Momcilovic M, Liu KG, Kim JI, Morris K, Lamarque C, Gaffney J, Yu X, Patel JP, Rabinowitz JD, Shackelford DB, Poyurovsky MV. Inhibition of glucose transport synergizes with chemical or genetic disruption of mitochondrial metabolism and suppresses TCA cycle-deficient tumors. Cell Chem Biol 2021; 29:423-435.e10. [PMID: 34715056 DOI: 10.1016/j.chembiol.2021.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/04/2021] [Accepted: 10/02/2021] [Indexed: 12/18/2022]
Abstract
Efforts to target glucose metabolism in cancer have been limited by the poor potency and specificity of existing anti-glycolytic agents and a poor understanding of the glucose dependence of cancer subtypes in vivo. Here, we present an extensively characterized series of potent, orally bioavailable inhibitors of the class I glucose transporters (GLUTs). The representative compound KL-11743 specifically blocks glucose metabolism, triggering an acute collapse in NADH pools and a striking accumulation of aspartate, indicating a dramatic shift toward oxidative phosphorylation in the mitochondria. Disrupting mitochondrial metabolism via chemical inhibition of electron transport, deletion of the malate-aspartate shuttle component GOT1, or endogenous mutations in tricarboxylic acid cycle enzymes, causes synthetic lethality with KL-11743. Patient-derived xenograft models of succinate dehydrogenase A (SDHA)-deficient cancers are specifically sensitive to KL-11743, providing direct evidence that TCA cycle-mutant tumors are vulnerable to GLUT inhibitors in vivo.
Collapse
Affiliation(s)
| | | | | | - Milica Momcilovic
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA 90095, USA
| | - Kevin G Liu
- Kadmon Corporation, LLC., New York, NY 10016, USA
| | - Ji-In Kim
- Kadmon Corporation, LLC., New York, NY 10016, USA
| | - Koi Morris
- Kadmon Corporation, LLC., New York, NY 10016, USA
| | | | - Jack Gaffney
- Kadmon Corporation, LLC., New York, NY 10016, USA
| | - Xuemei Yu
- Kadmon Corporation, LLC., New York, NY 10016, USA
| | | | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - David B Shackelford
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
29
|
Kayabolen A, Yilmaz E, Bagci-Onder T. IDH Mutations in Glioma: Double-Edged Sword in Clinical Applications? Biomedicines 2021; 9:799. [PMID: 34356864 PMCID: PMC8301439 DOI: 10.3390/biomedicines9070799] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/03/2023] Open
Abstract
Discovery of point mutations in the genes encoding isocitrate dehydrogenases (IDH) in gliomas about a decade ago has challenged our view of the role of metabolism in tumor progression and provided a new stratification strategy for malignant gliomas. IDH enzymes catalyze the conversion of isocitrate to alpha-ketoglutarate (α-KG), an intermediate in the citric acid cycle. Specific mutations in the genes encoding IDHs cause neomorphic enzymatic activity that produces D-2-hydroxyglutarate (2-HG) and result in the inhibition of α-KG-dependent enzymes such as histone and DNA demethylases. Thus, chromatin structure and gene expression profiles in IDH-mutant gliomas appear to be different from those in IDH-wildtype gliomas. IDH mutations are highly common in lower grade gliomas (LGG) and secondary glioblastomas, and they are among the earliest genetic events driving tumorigenesis. Therefore, inhibition of mutant IDH enzymes in LGGs is widely accepted as an attractive therapeutic strategy. On the other hand, the metabolic consequences derived from IDH mutations lead to selective vulnerabilities within tumor cells, making them more sensitive to several therapeutic interventions. Therefore, instead of shutting down mutant IDH enzymes, exploiting the selective vulnerabilities caused by them might be another attractive and promising strategy. Here, we review therapeutic options and summarize current preclinical and clinical studies on IDH-mutant gliomas.
Collapse
Affiliation(s)
- Alisan Kayabolen
- Brain Cancer Research and Therapy Lab, Koç University School of Medicine, 34450 Istanbul, Turkey; (A.K.); (E.Y.)
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
| | - Ebru Yilmaz
- Brain Cancer Research and Therapy Lab, Koç University School of Medicine, 34450 Istanbul, Turkey; (A.K.); (E.Y.)
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Lab, Koç University School of Medicine, 34450 Istanbul, Turkey; (A.K.); (E.Y.)
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
| |
Collapse
|
30
|
Lim K, Thompson-Peach C, Thomas D. Neonatal heel prick mass spectrometry identifies metabolic predictors of AML latency. Leuk Res 2021; 109:106644. [PMID: 34175567 DOI: 10.1016/j.leukres.2021.106644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 12/22/2022]
Abstract
Ongoing research efforts that consider cancer as a disease of dramatically altered cellular metabolism have accelerated interest in snapshot metabolomics in various human tissues. In this issue of Leukemia Research, Petrick et al performed metabolomic analysis on newborn blood spots and found a number of unexpected ceramide and sphingolipid compounds that may play a role in the development and latency of pediatric acute myeloid leukemia (AML). The chemical complexity and range of cellular metabolites massively exceeds the relatively limited building blocks of the transcriptome or the proteome and has high potential to find novel leukemia-specific macromolecular synthesis pathways, metabolic vulnerabilities and biomarkers.
Collapse
Affiliation(s)
- Kelly Lim
- Adelaide Medical School, The University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Chloe Thompson-Peach
- Adelaide Medical School, The University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Daniel Thomas
- Adelaide Medical School, The University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
31
|
Tryptophan metabolism drives dynamic immunosuppressive myeloid states in IDH-mutant gliomas. ACTA ACUST UNITED AC 2021; 2:723-740. [DOI: 10.1038/s43018-021-00201-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/18/2021] [Indexed: 12/23/2022]
Abstract
AbstractThe dynamics and phenotypes of intratumoral myeloid cells during tumor progression are poorly understood. Here we define myeloid cellular states in gliomas by longitudinal single-cell profiling and demonstrate their strict control by the tumor genotype: in isocitrate dehydrogenase (IDH)-mutant tumors, differentiation of infiltrating myeloid cells is blocked, resulting in an immature phenotype. In late-stage gliomas, monocyte-derived macrophages drive tolerogenic alignment of the microenvironment, thus preventing T cell response. We define the IDH-dependent tumor education of infiltrating macrophages to be causally related to a complex re-orchestration of tryptophan metabolism, resulting in activation of the aryl hydrocarbon receptor. We further show that the altered metabolism of IDH-mutant gliomas maintains this axis in bystander cells and that pharmacological inhibition of tryptophan metabolism can reverse immunosuppression. In conclusion, we provide evidence of a glioma genotype-dependent intratumoral network of resident and recruited myeloid cells and identify tryptophan metabolism as a target for immunotherapy of IDH-mutant tumors.
Collapse
|
32
|
Bai X, Zhang H, Zhou Y, Nagaoka K, Meng J, Ji C, Liu D, Dong X, Cao K, Mulla J, Cheng Z, Mueller W, Bay A, Hildebrand G, Lu S, Wallace J, Wands JR, Sun B, Huang CK. Ten-Eleven Translocation 1 Promotes Malignant Progression of Cholangiocarcinoma With Wild-Type Isocitrate Dehydrogenase 1. Hepatology 2021; 73:1747-1763. [PMID: 32740973 PMCID: PMC7855500 DOI: 10.1002/hep.31486] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) is a highly lethal disease without effective therapeutic approaches. The whole-genome sequencing data indicate that about 20% of patients with CCA have isocitrate dehydrogenase 1 (IDH1) mutations, which have been suggested to target 2-oxoglutarate (OG)-dependent dioxygenases in promoting CCA carcinogenesis. However, the clinical study indicates that patients with CCA and mutant IDH1 have better prognosis than those with wild-type IDH1, further complicating the roles of 2-OG-dependent enzymes. APPROACH AND RESULTS This study aimed to clarify if ten-eleven translocation 1 (TET1), which is one of the 2-OG-dependent enzymes functioning in regulating 5-hydroxymethylcytosine (5hmC) formation, is involved in CCA progression. By analyzing The Cancer Genome Atlas (TCGA) data set, TET1 mRNA was found to be substantially up-regulated in patients with CCA when compared with noncancerous bile ducts. Additionally, TET1 protein expression was significantly elevated in human CCA tumors. CCA cells were challenged with α-ketoglutarate (α-KG) and dimethyl-α-KG (DM-α-KG), which are cosubstrates for TET1 dioxygenase. The treatments with α-KG and DM-α-KG promoted 5hmC formation and malignancy of CCA cells. Molecular and pharmacological approaches were used to inhibit TET1 activity, and these treatments substantially suppressed 5hmC and CCA carcinogenesis. Mechanistically, it was found that knockdown of TET1 may suppress CCA progression by targeting cell growth and apoptosis through epigenetic regulation. Consistently, targeting TET1 significantly inhibited CCA malignant progression in a liver orthotopic xenograft model by targeting cell growth and apoptosis. CONCLUSIONS Our data suggest that expression of TET1 is highly associated with CCA carcinogenesis. It will be important to evaluate TET1 expression in CCA tumors before application of the IDH1 mutation inhibitor because the inhibitor suppresses 2-hydroxyglutarate expression, which may result in activation of TET, potentially leading to CCA malignancy.
Collapse
Affiliation(s)
- Xuewei Bai
- Department of Pancreatic and Biliary Surgery, First
Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Liver
Research Center, Division of Gastroenterology & Liver Research Center, Warren
Alpert Medical School of Brown University and Rhode Island Providence, RI, USA,Liver Research Center, Division of Gastroenterology &
Liver Research Center, Warren Alpert Medical School of Brown University and Rhode
Island Hospital, Providence, RI, USA
| | - Hongyu Zhang
- Liver Research Center, Division of Gastroenterology &
Liver Research Center, Warren Alpert Medical School of Brown University and Rhode
Island Hospital, Providence, RI, USA
| | - Yamei Zhou
- Department of Pancreatic and Biliary Surgery, First
Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Liver
Research Center, Division of Gastroenterology & Liver Research Center, Warren
Alpert Medical School of Brown University and Rhode Island Providence, RI, USA,Liver Research Center, Division of Gastroenterology &
Liver Research Center, Warren Alpert Medical School of Brown University and Rhode
Island Hospital, Providence, RI, USA
| | - Katsuya Nagaoka
- Liver Research Center, Division of Gastroenterology &
Liver Research Center, Warren Alpert Medical School of Brown University and Rhode
Island Hospital, Providence, RI, USA
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of
Anhui Medical University; Institute of Urology & Anhui Province Key Laboratory
of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Chengcheng Ji
- Liver Research Center, Division of Gastroenterology &
Liver Research Center, Warren Alpert Medical School of Brown University and Rhode
Island Hospital, Providence, RI, USA
| | - Dan Liu
- Liver Research Center, Division of Gastroenterology &
Liver Research Center, Warren Alpert Medical School of Brown University and Rhode
Island Hospital, Providence, RI, USA
| | - Xianghui Dong
- Department of Pathology, The First Affiliated Hospital of
Harbin Medical University, Harbin 150001, Heilongjiang Province, P.R. China
| | - Kevin Cao
- Liver Research Center, Division of Gastroenterology &
Liver Research Center, Warren Alpert Medical School of Brown University and Rhode
Island Hospital, Providence, RI, USA
| | - Joud Mulla
- Liver Research Center, Division of Gastroenterology &
Liver Research Center, Warren Alpert Medical School of Brown University and Rhode
Island Hospital, Providence, RI, USA
| | - Zhixiang Cheng
- Liver Research Center, Division of Gastroenterology &
Liver Research Center, Warren Alpert Medical School of Brown University and Rhode
Island Hospital, Providence, RI, USA
| | - William Mueller
- Liver Research Center, Division of Gastroenterology &
Liver Research Center, Warren Alpert Medical School of Brown University and Rhode
Island Hospital, Providence, RI, USA
| | - Amalia Bay
- Liver Research Center, Division of Gastroenterology &
Liver Research Center, Warren Alpert Medical School of Brown University and Rhode
Island Hospital, Providence, RI, USA
| | - Grace Hildebrand
- Liver Research Center, Division of Gastroenterology &
Liver Research Center, Warren Alpert Medical School of Brown University and Rhode
Island Hospital, Providence, RI, USA
| | - Shaolei Lu
- Department of Pathology and Laboratory Medicine, Warren
Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI,
USA
| | - Joselynn Wallace
- Center for Computational Biology of Human Disease and
Center for Computation and Visualization, Brown University, Providence, RI,
USA
| | - Jack R. Wands
- Liver Research Center, Division of Gastroenterology &
Liver Research Center, Warren Alpert Medical School of Brown University and Rhode
Island Hospital, Providence, RI, USA
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, First
Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Liver
Research Center, Division of Gastroenterology & Liver Research Center, Warren
Alpert Medical School of Brown University and Rhode Island Providence, RI, USA,Correspondence to: Chiung-Kuei Huang,
Ph.D., Liver Research Center, Rhode Island Hospital, Brown Alpert Medical
School, Brown University, 55 Claverick Street, Providence, RI 02903,
; Bei Sun, M.D., Ph.D. Department
of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin
Medical University. Key Laboratory of Hepatosplenic Surgery, Ministry of
Education, The First Affiliated Hospital of Harbin Medical University, No. 23
Youzheng Road, Nangang District, Harbin 150081, Heilongjiang Province, P.R.
China. Tel: 86-451-85555721; Fax: 86-451-53643849;
| | - Chiung-Kuei Huang
- Liver Research Center, Division of Gastroenterology &
Liver Research Center, Warren Alpert Medical School of Brown University and Rhode
Island Hospital, Providence, RI, USA,Correspondence to: Chiung-Kuei Huang,
Ph.D., Liver Research Center, Rhode Island Hospital, Brown Alpert Medical
School, Brown University, 55 Claverick Street, Providence, RI 02903,
; Bei Sun, M.D., Ph.D. Department
of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin
Medical University. Key Laboratory of Hepatosplenic Surgery, Ministry of
Education, The First Affiliated Hospital of Harbin Medical University, No. 23
Youzheng Road, Nangang District, Harbin 150081, Heilongjiang Province, P.R.
China. Tel: 86-451-85555721; Fax: 86-451-53643849;
| |
Collapse
|
33
|
Pathmanapan S, Ilkayeva O, Martin JT, Loe AKH, Zhang H, Zhang GF, Newgard CB, Wunder JS, Alman BA. Mutant IDH and non-mutant chondrosarcomas display distinct cellular metabolomes. Cancer Metab 2021; 9:13. [PMID: 33762012 PMCID: PMC7992867 DOI: 10.1186/s40170-021-00247-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/03/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Majority of chondrosarcomas are associated with a number of genetic alterations, including somatic mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 genes, but the downstream effects of these mutated enzymes on cellular metabolism and tumor energetics are unknown. As IDH mutations are likely to be involved in malignant transformation of chondrosarcomas, we aimed to exploit metabolomic changes in IDH mutant and non-mutant chondrosarcomas. METHODS Here, we profiled over 69 metabolites in 17 patient-derived xenografts by targeted mass spectrometry to determine if metabolomic differences exist in mutant IDH1, mutant IDH2, and non-mutant chondrosarcomas. UMAP (Uniform Manifold Approximation and Projection) analysis was performed on our dataset to examine potential similarities that may exist between each chondrosarcoma based on genotype. RESULTS UMAP revealed that mutant IDH chondrosarcomas possess a distinct metabolic profile compared with non-mutant chondrosarcomas. More specifically, our targeted metabolomics study revealed large-scale differences in organic acid intermediates of the tricarboxylic acid (TCA) cycle, amino acids, and specific acylcarnitines in chondrosarcomas. Lactate and late TCA cycle intermediates were elevated in mutant IDH chondrosarcomas, suggestive of increased glycolytic metabolism and possible anaplerotic influx to the TCA cycle. A broad elevation of amino acids was found in mutant IDH chondrosarcomas. A few acylcarnitines of varying carbon chain lengths were also elevated in mutant IDH chondrosarcomas, but with minimal clustering in accordance with tumor genotype. Analysis of previously published gene expression profiling revealed increased expression of several metabolism genes in mutant IDH chondrosarcomas, which also correlated to patient survival. CONCLUSIONS Overall, our findings suggest that IDH mutations induce global metabolic changes in chondrosarcomas and shed light on deranged metabolic pathways.
Collapse
Affiliation(s)
- Sinthu Pathmanapan
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Olga Ilkayeva
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC, USA
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - John T Martin
- Department of Orthopaedic Surgery, Duke University, 311 Trent, Durham, NC, 27710, USA
| | - Adrian Kwan Ho Loe
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Hongyuan Zhang
- Department of Orthopaedic Surgery, Duke University, 311 Trent, Durham, NC, 27710, USA
| | - Guo-Fang Zhang
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Christopher B Newgard
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC, USA
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Jay S Wunder
- Lunenfeld-Tanenbaum Research Institute, and the University Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto, ON, Canada
| | - Benjamin A Alman
- Department of Orthopaedic Surgery, Duke University, 311 Trent, Durham, NC, 27710, USA.
| |
Collapse
|
34
|
Traylor JI, Pernik MN, Sternisha AC, McBrayer SK, Abdullah KG. Molecular and Metabolic Mechanisms Underlying Selective 5-Aminolevulinic Acid-Induced Fluorescence in Gliomas. Cancers (Basel) 2021; 13:cancers13030580. [PMID: 33540759 PMCID: PMC7867275 DOI: 10.3390/cancers13030580] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary 5-aminolevulinic acid (5-ALA) is a medication that produces fluorescence in certain cancers, which enables surgeons to visualize tumor margins during surgery. Gliomas are brain tumors that can be difficult to fully resect due to their infiltrative nature. In this review we explored what is known about the mechanism of 5-ALA, recent discoveries that increase our understanding of that mechanism, and potential targets to increase fluorescence in lower grade gliomas. Abstract 5-aminolevulinic acid (5-ALA) is a porphyrin precursor in the heme synthesis pathway. When supplied exogenously, certain cancers consume 5-ALA and convert it to the fluorogenic metabolite protoporphyrin IX (PpIX), causing tumor-specific tissue fluorescence. Preoperative administration of 5-ALA is used to aid neurosurgical resection of high-grade gliomas such as glioblastoma, allowing for increased extent of resection and progression free survival for these patients. A subset of gliomas, especially low-grade tumors, do not accumulate PpIX intracellularly or readily fluoresce upon 5-ALA administration, making gross total resection difficult to achieve in diffuse lesions. We review existing literature on 5-ALA metabolism and PpIX accumulation to explore potential mechanisms of 5-ALA-induced glioma tissue fluorescence. Targeting the heme synthesis pathway and understanding its dysregulation in malignant tissues could aid the development of adjunct therapies to increase intraoperative fluorescence after 5-ALA treatment.
Collapse
Affiliation(s)
- Jeffrey I. Traylor
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (J.I.T.); (M.N.P.)
| | - Mark N. Pernik
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (J.I.T.); (M.N.P.)
| | - Alex C. Sternisha
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Samuel K. McBrayer
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Correspondence: (S.K.M.); (K.G.A.); Tel.: +1-(214)-648-3730 (S.K.M.); +1-(214)-645-2300 (K.G.A.)
| | - Kalil G. Abdullah
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (J.I.T.); (M.N.P.)
- Correspondence: (S.K.M.); (K.G.A.); Tel.: +1-(214)-648-3730 (S.K.M.); +1-(214)-645-2300 (K.G.A.)
| |
Collapse
|
35
|
An acidic residue buried in the dimer interface of isocitrate dehydrogenase 1 (IDH1) helps regulate catalysis and pH sensitivity. Biochem J 2021; 477:2999-3018. [PMID: 32729927 DOI: 10.1042/bcj20200311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
Abstract
Isocitrate dehydrogenase 1 (IDH1) catalyzes the reversible NADP+-dependent conversion of isocitrate to α-ketoglutarate (αKG) to provide critical cytosolic substrates and drive NADPH-dependent reactions like lipid biosynthesis and glutathione regeneration. In biochemical studies, the forward reaction is studied at neutral pH, while the reverse reaction is typically characterized in more acidic buffers. This led us to question whether IDH1 catalysis is pH-regulated, which would have functional implications under conditions that alter cellular pH, like apoptosis, hypoxia, cancer, and neurodegenerative diseases. Here, we show evidence of catalytic regulation of IDH1 by pH, identifying a trend of increasing kcat values for αKG production upon increasing pH in the buffers we tested. To understand the molecular determinants of IDH1 pH sensitivity, we used the pHinder algorithm to identify buried ionizable residues predicted to have shifted pKa values. Such residues can serve as pH sensors, with changes in protonation states leading to conformational changes that regulate catalysis. We identified an acidic residue buried at the IDH1 dimer interface, D273, with a predicted pKa value upshifted into the physiological range. D273 point mutations had decreased catalytic efficiency and, importantly, loss of pH-regulated catalysis. Based on these findings, we conclude that IDH1 activity is regulated, at least in part, by pH. We show this regulation is mediated by at least one buried acidic residue ∼12 Å from the IDH1 active site. By establishing mechanisms of regulation of this well-conserved enzyme, we highlight catalytic features that may be susceptible to pH changes caused by cell stress and disease.
Collapse
|
36
|
Lim EW, Parker SJ, Metallo CM. Deuterium Tracing to Interrogate Compartment-Specific NAD(P)H Metabolism in Cultured Mammalian Cells. Methods Mol Biol 2020; 2088:51-71. [PMID: 31893370 DOI: 10.1007/978-1-0716-0159-4_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Oxidation-reduction (redox) reactions are ubiquitous in biology and typically occur in specific subcellular compartments. In cells, the electron transfer between molecules and organelles is commonly facilitated by pyridine nucleotides such as nicotinamide adenine dinucleotide phosphate (NADPH) and nicotinamide adenine dinucleotide (NADH). While often taken for granted, these metabolic reactions are critically important for maintaining redox homeostasis and biochemical potentials across membranes. While 13C tracing and metabolic flux analysis (MFA) have emerged as powerful tools to study intracellular metabolism, this approach is limited when applied to pathways catalyzed in multiple cellular compartments. To address this issue, we and others have applied 2H (deuterium) tracers to observe transfer of labeled hydride anions, which accompanies electron transfer. Furthermore, we have developed a reporter system for indirectly quantifying NADPH enrichment in specific subcellular compartments. Here, we provide a detailed description of 2H tracing applications and the interrogation of mitochondrial versus cytosolic NAD(P)H metabolism in cultured mammalian cells. Specifically, we describe the generation of reporter cell lines that express epitope-tagged R132H-IDH1 or R172K-IDH2 and produce (D)2-hydroxyglutarate in a doxycycline-dependent manner. These tools and methods allow for quantitation of reducing equivalent turnover rates, the directionality of pathways present in multiple compartments, and the estimation of pathway contributions to NADPH pools.
Collapse
Affiliation(s)
- Esther W Lim
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Seth J Parker
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
- Diabetes and Endocrinology Research Center, University of California San Diego, La Jolla, CA, USA.
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
37
|
Dowdy T, Zhang L, Celiku O, Movva S, Lita A, Ruiz-Rodado V, Gilbert MR, Larion M. Sphingolipid Pathway as a Source of Vulnerability in IDH1 mut Glioma. Cancers (Basel) 2020; 12:E2910. [PMID: 33050528 PMCID: PMC7601159 DOI: 10.3390/cancers12102910] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/23/2022] Open
Abstract
In addition to providing integrity to cellular structure, the various classes of lipids participate in a multitude of functions including secondary messengers, receptor stimulation, lymphocyte trafficking, inflammation, angiogenesis, cell migration, proliferation, necrosis and apoptosis, thus highlighting the importance of understanding their role in the tumor phenotype. In the context of IDH1mut glioma, investigations focused on metabolic alterations involving lipidomics' present potential to uncover novel vulnerabilities. Herein, a detailed lipidomic analysis of the sphingolipid metabolism was conducted in patient-derived IDH1mut glioma cell lines, as well as model systems, with the of identifying points of metabolic vulnerability. We probed the effect of decreasing D-2HG levels on the sphingolipid pathway, by treating these cell lines with an IDH1mut inhibitor, AGI5198. The results revealed that N,N-dimethylsphingosine (NDMS), sphingosine C17 and sphinganine C18 were significantly downregulated, while sphingosine-1-phosphate (S1P) was significantly upregulated in glioma cultures following suppression of IDH1mut activity. We exploited the pathway using a small-scale, rational drug screen and identified a combination that was lethal to IDHmut cells. Our work revealed that further addition of N,N-dimethylsphingosine in combination with sphingosine C17 triggered a dose-dependent biostatic and apoptotic response in a panel of IDH1mut glioma cell lines specifically, while it had little effect on the IDHWT cells probed here. To our knowledge, this is the first study that shows how altering the sphingolipid pathway in IDH1mut gliomas elucidates susceptibility that can arrest proliferation and initiate subsequent cellular death.
Collapse
Affiliation(s)
- Tyrone Dowdy
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (T.D.); (L.Z.); (O.C.); (A.L.); (V.R.-R.); (M.R.G.)
| | - Lumin Zhang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (T.D.); (L.Z.); (O.C.); (A.L.); (V.R.-R.); (M.R.G.)
| | - Orieta Celiku
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (T.D.); (L.Z.); (O.C.); (A.L.); (V.R.-R.); (M.R.G.)
| | - Sriya Movva
- George Washington School of Medicine and Health Sciences, Washington, DC 20052, USA;
| | - Adrian Lita
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (T.D.); (L.Z.); (O.C.); (A.L.); (V.R.-R.); (M.R.G.)
| | - Victor Ruiz-Rodado
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (T.D.); (L.Z.); (O.C.); (A.L.); (V.R.-R.); (M.R.G.)
| | - Mark R. Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (T.D.); (L.Z.); (O.C.); (A.L.); (V.R.-R.); (M.R.G.)
| | - Mioara Larion
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (T.D.); (L.Z.); (O.C.); (A.L.); (V.R.-R.); (M.R.G.)
| |
Collapse
|
38
|
Rathore R, Schutt CR, Van Tine BA. PHGDH as a mechanism for resistance in metabolically-driven cancers. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:762-774. [PMID: 33511334 PMCID: PMC7840151 DOI: 10.20517/cdr.2020.46] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At the forefront of cancer research is the rapidly evolving understanding of metabolic reprogramming within cancer cells. The expeditious adaptation to metabolic inhibition allows cells to evolve and acquire resistance to targeted treatments, which makes therapeutic exploitation complex but achievable. 3-phosphoglycerate dehydrogenase (PHGDH) is the rate-limiting enzyme of de novo serine biosynthesis and is highly expressed in a variety of cancers, including breast cancer, melanoma, and Ewing’s sarcoma. This review will investigate the role of PHGDH in normal biological processes, leading to the role of PHGDH in the progression of cancer. With an understanding of the molecular mechanisms by which PHGDH expression advances cancer growth, we will highlight the known mechanisms of resistance to cancer therapeutics facilitated by PHGDH biology and identify avenues for combatting PHGDH-driven resistance with inhibitors of PHGDH to allow for the development of effective metabolic therapies.
Collapse
Affiliation(s)
- Richa Rathore
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Charles R Schutt
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Brian A Van Tine
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA.,Siteman Cancer Center, St. Louis, MO 63110, USA
| |
Collapse
|
39
|
Chiral discrimination in a mutated IDH enzymatic reaction in cancer: a computational perspective. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:549-559. [PMID: 32880665 DOI: 10.1007/s00249-020-01460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
Chiral discrimination in biological systems, such as L-amino acids in proteins and d-sugars in nucleic acids, has been proposed to depend on various mechanisms, and chiral discrimination by mutated enzymes mediating cancer cell signaling is important in current research. We have explored how mutated isocitrate dehydrogenase (IDH) catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate which in turn is converted to d-2-hydroxyglutatrate (d-2HG) as a preferred product instead of l-2-hydroxyglutatrate (l-2HG) according to quantum chemical calculations. Using transition state structure modeling, we delineate the preferred product formation of d-2HG over l-2HG in an IDH active site model. The mechanisms for the formation of d-2HG over l-2HG are assessed by identifying transition state structures and activation energy barriers in gas and solution phases. The calculated reaction energy profile for the formation of d-2HG and l-2HG metabolites shows a 29 times higher value for l-2HG as compared to d-2HG. Results for second-order Møller-Plesset perturbation theory (MP2) do not alter the observed trend based on Density Functional Theory (DFT). The observed trends in reaction energy profile explain why the formation of D-2HG is preferred over l-2HG and reveal why mutation leads to the formation of d-2HG instead of l-2HG. For a better understanding of the observed difference in the activation barrier for the formation of the two alternative products, we performed natural bond orbital analysis, non-covalent interactions analysis and energy decomposition analysis. Our findings based on computational calculations clearly indicate a role for chiral discrimination in mutated enzymatic pathways in cancer biology.
Collapse
|
40
|
Benej M, Svastova E, Banova R, Kopacek J, Gibadulinova A, Kery M, Arena S, Scaloni A, Vitale M, Zambrano N, Papandreou I, Denko NC, Pastorekova S. CA IX Stabilizes Intracellular pH to Maintain Metabolic Reprogramming and Proliferation in Hypoxia. Front Oncol 2020; 10:1462. [PMID: 32983978 PMCID: PMC7493625 DOI: 10.3389/fonc.2020.01462] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/09/2020] [Indexed: 01/14/2023] Open
Abstract
Tumor hypoxia represents a severe microenvironmental stress that is frequently associated with acidosis. Cancer cells respond to these stresses with changes in gene expression that promote survival at least in part through pH regulation and metabolic reprogramming. Hypoxia-induced carbonic anhydrase IX (CA IX) plays a critical adaptive role in response to hypoxic and acidic environments by catalytically hydrating extracellular CO2 to produce bicarbonate for buffering intracellular pH (pHi). We used proteome-wide profiling to study the cellular response to transient CA IX knockdown in hypoxia and found a decrease in the levels of key glycolytic enzymes and lactate dehydrogenase A (LDHA). Interestingly, the activity of LDH was also decreased as demonstrated by native in-gel activity assay. These changes led to a significant reduction in glycolytic flux and extracellular lactate levels in cancer cells in vitro, contributing to a decrease in proliferation. Interestingly, addition of the alternative LDH substrate alpha-ketobutyrate restored LDHA activity, extracellular acidification, pHi, and cellular proliferation. These results indicate that in the absence of CA IX, reduction of pHi disrupts LDHA activity and hinders the cellular capacity to regenerate NAD+ and secrete protons to the extracellular space. Hypoxia-induced CA IX therefore mediates adaptation to microenvironmental hypoxia and acidosis directly, by enzymatically converting extracellular CO2 to bicarbonate, and indirectly, by maintaining glycolysis-permissive intracellular milieu.
Collapse
Affiliation(s)
- Martin Benej
- The Ohio State University Wexner Medical Center and OSU Comprehensive Cancer Center, Columbus, OH, United States.,Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eliska Svastova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Radivojka Banova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Juraj Kopacek
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Adriana Gibadulinova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Kery
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Simona Arena
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Monica Vitale
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Ioanna Papandreou
- The Ohio State University Wexner Medical Center and OSU Comprehensive Cancer Center, Columbus, OH, United States
| | - Nicholas C Denko
- The Ohio State University Wexner Medical Center and OSU Comprehensive Cancer Center, Columbus, OH, United States
| | - Silvia Pastorekova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
41
|
Kumar A, Mitchener J, King ZA, Metallo CM. Escher-Trace: a web application for pathway-based visualization of stable isotope tracing data. BMC Bioinformatics 2020; 21:297. [PMID: 32650717 PMCID: PMC7350651 DOI: 10.1186/s12859-020-03632-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/23/2020] [Indexed: 12/23/2022] Open
Abstract
Background Stable isotope tracing has become an invaluable tool for probing the metabolism of biological systems. However, data analysis and visualization from metabolic tracing studies often involve multiple software packages and lack pathway architecture. A deep understanding of the metabolic contexts from such datasets is required for biological interpretation. Currently, there is no single software package that allows researchers to analyze and integrate stable isotope tracing data into annotated or custom-built metabolic networks. Results We built a standalone web-based software, Escher-Trace, for analyzing tracing data and communicating results. Escher-Trace allows users to upload baseline corrected mass spectrometer (MS) tracing data and correct for natural isotope abundance, generate publication quality graphs of metabolite labeling, and present data in the context of annotated metabolic pathways. Here we provide a detailed walk-through of how to incorporate and visualize 13C metabolic tracing data into the Escher-Trace platform. Conclusions Escher-Trace is an open-source software for analysis and interpretation of stable isotope tracing data and is available at https://escher-trace.github.io/.
Collapse
Affiliation(s)
- Avi Kumar
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jack Mitchener
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Zachary A King
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA. .,Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
42
|
Ruiz-Rodado V, Seki T, Dowdy T, Lita A, Zhang M, Han S, Yang C, Cherukuri MK, Gilbert MR, Larion M. Metabolic Landscape of a Genetically Engineered Mouse Model of IDH1 Mutant Glioma. Cancers (Basel) 2020; 12:E1633. [PMID: 32575619 PMCID: PMC7352932 DOI: 10.3390/cancers12061633] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
Understanding the metabolic reprogramming of aggressive brain tumors has potential applications for therapeutics as well as imaging biomarkers. However, little is known about the nutrient requirements of isocitrate dehydrogenase 1 (IDH1) mutant gliomas. The IDH1 mutation involves the acquisition of a neomorphic enzymatic activity which generates D-2-hydroxyglutarate from α-ketoglutarate. In order to gain insight into the metabolism of these malignant brain tumors, we conducted metabolic profiling of the orthotopic tumor and the contralateral regions for the mouse model of IDH1 mutant glioma; as well as to examine the utilization of glucose and glutamine in supplying major metabolic pathways such as glycolysis and tricarboxylic acid (TCA). We also revealed that the main substrate of 2-hydroxyglutarate is glutamine in this model, and how this re-routing impairs its utilization in the TCA. Our 13C tracing analysis, along with hyperpolarized magnetic resonance experiments, revealed an active glycolytic pathway similar in both regions (tumor and contralateral) of the brain. Therefore, we describe the reprogramming of the central carbon metabolism associated with the IDH1 mutation in a genetically engineered mouse model which reflects the tumor biology encountered in glioma patients.
Collapse
Affiliation(s)
- Victor Ruiz-Rodado
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (V.R.-R.); (T.D.); (A.L.); (M.Z.); (S.H.); (C.Y.); (M.R.G.)
| | - Tomohiro Seki
- Radiation Biology Branch, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (T.S.); (M.K.C.)
| | - Tyrone Dowdy
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (V.R.-R.); (T.D.); (A.L.); (M.Z.); (S.H.); (C.Y.); (M.R.G.)
| | - Adrian Lita
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (V.R.-R.); (T.D.); (A.L.); (M.Z.); (S.H.); (C.Y.); (M.R.G.)
| | - Meili Zhang
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (V.R.-R.); (T.D.); (A.L.); (M.Z.); (S.H.); (C.Y.); (M.R.G.)
| | - Sue Han
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (V.R.-R.); (T.D.); (A.L.); (M.Z.); (S.H.); (C.Y.); (M.R.G.)
| | - Chunzhang Yang
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (V.R.-R.); (T.D.); (A.L.); (M.Z.); (S.H.); (C.Y.); (M.R.G.)
| | - Murali K. Cherukuri
- Radiation Biology Branch, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (T.S.); (M.K.C.)
| | - Mark R. Gilbert
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (V.R.-R.); (T.D.); (A.L.); (M.Z.); (S.H.); (C.Y.); (M.R.G.)
| | - Mioara Larion
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (V.R.-R.); (T.D.); (A.L.); (M.Z.); (S.H.); (C.Y.); (M.R.G.)
| |
Collapse
|
43
|
Michealraj KA, Kumar SA, Kim LJY, Cavalli FMG, Przelicki D, Wojcik JB, Delaidelli A, Bajic A, Saulnier O, MacLeod G, Vellanki RN, Vladoiu MC, Guilhamon P, Ong W, Lee JJY, Jiang Y, Holgado BL, Rasnitsyn A, Malik AA, Tsai R, Richman CM, Juraschka K, Haapasalo J, Wang EY, De Antonellis P, Suzuki H, Farooq H, Balin P, Kharas K, Van Ommeren R, Sirbu O, Rastan A, Krumholtz SL, Ly M, Ahmadi M, Deblois G, Srikanthan D, Luu B, Loukides J, Wu X, Garzia L, Ramaswamy V, Kanshin E, Sánchez-Osuna M, El-Hamamy I, Coutinho FJ, Prinos P, Singh S, Donovan LK, Daniels C, Schramek D, Tyers M, Weiss S, Stein LD, Lupien M, Wouters BG, Garcia BA, Arrowsmith CH, Sorensen PH, Angers S, Jabado N, Dirks PB, Mack SC, Agnihotri S, Rich JN, Taylor MD. Metabolic Regulation of the Epigenome Drives Lethal Infantile Ependymoma. Cell 2020; 181:1329-1345.e24. [PMID: 32445698 PMCID: PMC10782558 DOI: 10.1016/j.cell.2020.04.047] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/16/2020] [Accepted: 04/24/2020] [Indexed: 01/24/2023]
Abstract
Posterior fossa A (PFA) ependymomas are lethal malignancies of the hindbrain in infants and toddlers. Lacking highly recurrent somatic mutations, PFA ependymomas are proposed to be epigenetically driven tumors for which model systems are lacking. Here we demonstrate that PFA ependymomas are maintained under hypoxia, associated with restricted availability of specific metabolites to diminish histone methylation, and increase histone demethylation and acetylation at histone 3 lysine 27 (H3K27). PFA ependymomas initiate from a cell lineage in the first trimester of human development that resides in restricted oxygen. Unlike other ependymomas, transient exposure of PFA cells to ambient oxygen induces irreversible cellular toxicity. PFA tumors exhibit a low basal level of H3K27me3, and, paradoxically, inhibition of H3K27 methylation specifically disrupts PFA tumor growth. Targeting metabolism and/or the epigenome presents a unique opportunity for rational therapy for infants with PFA ependymoma.
Collapse
Affiliation(s)
- Kulandaimanuvel Antony Michealraj
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sachin A Kumar
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Leo J Y Kim
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Florence M G Cavalli
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - David Przelicki
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - John B Wojcik
- Department of Biochemistry and Biophysics and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V6T 1Z2, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Andrea Bajic
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Olivier Saulnier
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Graham MacLeod
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Ravi N Vellanki
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Maria C Vladoiu
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Paul Guilhamon
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Winnie Ong
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - John J Y Lee
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Yanqing Jiang
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Borja L Holgado
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Alex Rasnitsyn
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Ahmad A Malik
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Ricky Tsai
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Cory M Richman
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Kyle Juraschka
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Joonas Haapasalo
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Evan Y Wang
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Pasqualino De Antonellis
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hiromichi Suzuki
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hamza Farooq
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Polina Balin
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Kaitlin Kharas
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Randy Van Ommeren
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Olga Sirbu
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Avesta Rastan
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Stacey L Krumholtz
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Michelle Ly
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Moloud Ahmadi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Geneviève Deblois
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Dilakshan Srikanthan
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Betty Luu
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - James Loukides
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xiaochong Wu
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Livia Garzia
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, QC H4A 3J1, Canada
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Division of Haematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Evgeny Kanshin
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - María Sánchez-Osuna
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Ibrahim El-Hamamy
- Computational Biology Program, Adaptive Oncology Theme, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Fiona J Coutinho
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS Centre, South Tower, Toronto, ON M5G 1L7, Canada
| | - Sheila Singh
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Laura K Donovan
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Craig Daniels
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Samuel Weiss
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Lincoln D Stein
- Computational Biology Program, Adaptive Oncology Theme, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Bradly G Wouters
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cheryl H Arrowsmith
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS Centre, South Tower, Toronto, ON M5G 1L7, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V6T 1Z2, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Stephane Angers
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; Department of Pediatrics, McGill University, The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Peter B Dirks
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1L7, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Stephen C Mack
- Texas Children's Hospital Cancer Center, Department of Pediatrics, Baylor College of Medicine, Dan L. Duncan Cancer Center, Houston, TX 77030, USA.
| | - Sameer Agnihotri
- Department of Neurological Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA.
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
44
|
Cystine transporter regulation of pentose phosphate pathway dependency and disulfide stress exposes a targetable metabolic vulnerability in cancer. Nat Cell Biol 2020; 22:476-486. [PMID: 32231310 PMCID: PMC7194135 DOI: 10.1038/s41556-020-0496-x] [Citation(s) in RCA: 272] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
SLC7A11-mediated cystine uptake is critical for maintaining redox balance and cell survival. Here, we show that this comes at a significant cost for cancer cells with high SLC7A11 expression. Actively importing cystine is potentially toxic due to its low solubility, forcing SLC7A11-high cancer cells to constitutively reduce cystine to the more soluble cysteine. This presents a substantial drain on the cellular NADPH pool and renders such cells dependent on the pentose phosphate pathway (PPP). Limiting glucose supply to SLC7A11-high cancer cells results in marked accumulation of intracellular cystine, redox system collapse, and rapid cell death, which can be rescued by treatments that prevent disulfide accumulation. We further show that glucose transporter (GLUT) inhibitors selectively kill SLC7A11-high cancer cells and suppress SLC7A11-high tumor growth. Our results identify a coupling between SLC7A11-associated cystine metabolism and the PPP, and uncover an accompanying metabolic vulnerability for therapeutic targeting in SLC7A11-high cancers.
Collapse
|
45
|
Zhang X, Wang X, Wang XQD, Su J, Putluri N, Zhou T, Qu Y, Jeong M, Guzman A, Rosas C, Huang Y, Sreekumar A, Li W, Goodell MA. Dnmt3a loss and Idh2 neomorphic mutations mutually potentiate malignant hematopoiesis. Blood 2020; 135:845-856. [PMID: 31932841 PMCID: PMC7068035 DOI: 10.1182/blood.2019003330] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
Mutations in the epigenetic regulators DNMT3A and IDH1/2 co-occur in patients with acute myeloid leukemia and lymphoma. In this study, these 2 epigenetic mutations cooperated to induce leukemia. Leukemia-initiating cells from Dnmt3a-/- mice that express an IDH2 neomorphic mutant have a megakaryocyte-erythroid progenitor-like immunophenotype, activate a stem-cell-like gene signature, and repress differentiated progenitor genes. We observed an epigenomic dysregulation with the gain of repressive H3K9 trimethylation and loss of H3K9 acetylation in diseased mouse bone marrow hematopoietic stem and progenitor cells (HSPCs). HDAC inhibitors rapidly reversed the H3K9 methylation/acetylation imbalance in diseased mouse HSPCs while reducing the leukemia burden. In addition, using targeted metabolomic profiling for the first time in mouse leukemia models, we also showed that prostaglandin E2 is overproduced in double-mutant HSPCs, rendering them sensitive to prostaglandin synthesis inhibition. These data revealed that Dnmt3a and Idh2 mutations are synergistic events in leukemogenesis and that HSPCs carrying both mutations are sensitive to induced differentiation by the inhibition of both prostaglandin synthesis and HDAC, which may reveal new therapeutic opportunities for patients carrying IDH1/2 mutations.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI
- Department of Molecular and Human Genetics and
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Xinyu Wang
- Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China
| | | | - Jianzhong Su
- Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China
- Division of Biostatistics, Dan L. Duncan Cancer Center
- Department of Molecular and Cellular Biology, and
| | | | - Ting Zhou
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | - Ying Qu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; and
| | - Mira Jeong
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Anna Guzman
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Carina Rosas
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Yun Huang
- Health Science Center, Texas A&M University, Houston, TX
| | - Arun Sreekumar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; and
| | - Wei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center
- Department of Molecular and Cellular Biology, and
| | - Margaret A Goodell
- Department of Molecular and Human Genetics and
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| |
Collapse
|
46
|
Díaz-Hirashi Z, Gao T, Verdeguer F. Metabolic Reprogramming and Signaling to Chromatin Modifications in Tumorigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:225-241. [PMID: 32130702 DOI: 10.1007/978-3-030-34025-4_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cellular proliferation relies on a high energetic status, replenished through nutrient intake, that leads to the production of biosynthetic material. A communication between the energetic levels and the control of gene expression is essential to engage in cell division. Multiple nutrient and metabolic sensing mechanisms in cells control transcriptional responses through cell signaling cascades that activate specific transcription factors associated with a concomitant regulation of the chromatin state. In addition to this canonical axis, gene expression could be directly influenced by the fluctuation of specific key intermediary metabolites of central metabolic pathways which are also donors or cofactors of histone and DNA modifications. This alternative axis represents a more direct connection between nutrients and the epigenome function. Cancer cells are highly energetically demanding to sustain proliferation. To reach their energetic demands, cancer cells rewire metabolic pathways. Recent discoveries show that perturbations of metabolic pathways in cancer cells have a direct impact on the epigenome. In this chapter, the interaction between metabolic driven changes of transcriptional programs in the context of tumorigenesis will be discussed.
Collapse
Affiliation(s)
- Zyanya Díaz-Hirashi
- Department of Molecular Mechanisms of Disease, University of Zürich, Zürich, Switzerland
| | - Tian Gao
- Department of Molecular Mechanisms of Disease, University of Zürich, Zürich, Switzerland
| | - Francisco Verdeguer
- Department of Molecular Mechanisms of Disease, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
47
|
Natarajan SK, Venneti S. Glutamine Metabolism in Brain Tumors. Cancers (Basel) 2019; 11:E1628. [PMID: 31652923 PMCID: PMC6893651 DOI: 10.3390/cancers11111628] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 12/14/2022] Open
Abstract
Altered metabolism is a hallmark of cancer cells. Tumor cells rewire their metabolism to support their uncontrolled proliferation by taking up nutrients from the microenvironment. The amino acid glutamine is a key nutrient that fuels biosynthetic processes including ATP generation, redox homeostasis, nucleotide, protein, and lipid synthesis. Glutamine as a precursor for the neurotransmitter glutamate, and plays a critical role in the normal functioning of the brain. Brain tumors that grow in this glutamine/glutamate rich microenvironment can make synaptic connections with glutamatergic neurons and reprogram glutamine metabolism to enable their growth. In this review, we examine the functions of glutamate/glutamine in the brain and how brain tumor cells reprogram glutamine metabolism. Altered glutamine metabolism can be leveraged to develop non-invasive imaging strategies and we review these imaging modalities. Finally, we examine if targeting glutamine metabolism could serve as a therapeutic strategy in brain tumors.
Collapse
Affiliation(s)
- Siva Kumar Natarajan
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Sriram Venneti
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
- Department of Pathology, University of Michigan 3520E MSRB 1, 1150 West Medical Center Drive, Ann Arbor, MI 41804, USA.
| |
Collapse
|