1
|
Walzik D, Joisten N, Schenk A, Trebing S, Schaaf K, Metcalfe AJ, Spiliopoulou P, Hiefner J, McCann A, Watzl C, Ueland PM, Gehlert S, Worthmann A, Brenner C, Zimmer P. Acute exercise boosts NAD + metabolism of human peripheral blood mononuclear cells. Brain Behav Immun 2024; 123:1011-1023. [PMID: 39500416 DOI: 10.1016/j.bbi.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/27/2024] [Accepted: 11/02/2024] [Indexed: 11/13/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) coenzymes are the central electron carriers in biological energy metabolism. Low NAD+ levels are proposed as a hallmark of ageing and several diseases, which has given rise to therapeutic strategies that aim to tackle these conditions by boosting NAD+ levels. As a lifestyle factor with preventive and therapeutic effects, exercise increases NAD+ levels across various tissues, but so far human trials are mostly focused on skeletal muscle. Given that immune cells are mobilized and redistributed in response to acute exercise, we conducted two complementary trials to test the hypothesis that a single exercise session alters NAD+ metabolism of peripheral blood mononuclear cells (PBMCs). In a randomized crossover trial (DRKS00017686) with 24 young adults (12 female) we show that acute exercise increases gene expression and protein abundance of several key NAD+ metabolism enzymes with high conformity between high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT). In a longitudinal exercise trial (DRKS00029105) with 12 young adults (6 female) we confirm these results and reveal that - similar to skeletal muscle - NAD+ salvage is pivotal for PBMCs in response to exercise. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of NAD+ salvage pathway, displayed a pronounced increase in gene expression during exercise, which was accompanied by elevated intracellular NAD+ levels and reduced serum levels of the NAD+ precursor nicotinamide. These results demonstrate that acute exercise triggers NAD+ biosynthesis of human PBMCs with potential implications for immunometabolism, immune effector function, and immunological exercise adaptions.
Collapse
Affiliation(s)
- David Walzik
- Department of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Otto-Hahn-Straße 3, 44227 Dortmund, Germany
| | - Niklas Joisten
- Department of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Otto-Hahn-Straße 3, 44227 Dortmund, Germany; Division of Exercise and Movement Science, Institute for Sport Science, University of Göttingen, Sprangerweg 2, 37075 Göttingen, Lower Saxony, Germany
| | - Alexander Schenk
- Department of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Otto-Hahn-Straße 3, 44227 Dortmund, Germany
| | - Sina Trebing
- Department of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Otto-Hahn-Straße 3, 44227 Dortmund, Germany
| | - Kirill Schaaf
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Alan J Metcalfe
- Chest Unit, Centre for Human and Applied Physiological Sciences (CHAPS), Denmark Hill Campus, King's College Hospital, King's College London, London, United Kingdom
| | - Polyxeni Spiliopoulou
- Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, 172 37 Athens, Greece
| | - Johanna Hiefner
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Adrian McCann
- Bevital AS, Frydenbøgården 5. etg., Minde Allé 35, 5068 Bergen, Norway
| | - Carsten Watzl
- Leibniz Research Center for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystraße 67, 44139 Dortmund, Germany
| | - Per Magne Ueland
- Bevital AS, Frydenbøgården 5. etg., Minde Allé 35, 5068 Bergen, Norway
| | - Sebastian Gehlert
- Department for the Biosciences of Sports, Institute of Sports Science, University of Hildesheim, Universitätsplatz 1, 31141 Hildesheim, Germany
| | - Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Charles Brenner
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Philipp Zimmer
- Department of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Otto-Hahn-Straße 3, 44227 Dortmund, Germany.
| |
Collapse
|
2
|
Miller LB, Feuz MB, Meyer RG, Meyer-Ficca ML. Reproductive toxicology: keeping up with our changing world. FRONTIERS IN TOXICOLOGY 2024; 6:1456687. [PMID: 39463893 PMCID: PMC11502475 DOI: 10.3389/ftox.2024.1456687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024] Open
Abstract
Reproductive toxicology testing is essential to safeguard public health of current and future generations. Traditional toxicological testing of male reproduction has focused on evaluating substances for acute toxicity to the reproductive system, with fertility assessment as a main endpoint and infertility a main adverse outcome. Newer studies in the last few decades have significantly widened our understanding of what represents an adverse event in reproductive toxicology, and thus changed our perspective of what constitutes a reproductive toxicant, such as endocrine disrupting chemicals that affect fertility and offspring health in an intergenerational manner. Besides infertility or congenital abnormalities, adverse outcomes can present as increased likelihood for various health problems in offspring, including metabolic syndrome, neurodevelopmental problems like autism and increased cancer predisposition, among others. To enable toxicologic studies to accurately represent the population, toxicologic testing designs need to model changing population characteristics and exposure circumstances. Current trends of increasing importance in human reproduction include increased paternal age, with an associated decline of nicotinamide adenine dinucleotide (NAD), and a higher prevalence of obesity, both of which are factors that toxicological testing study design should account for. In this perspective article, we highlighted some limitations of standard testing protocols, the need for expanding the assessed reproductive endpoint by including genetic and epigenetic sperm parameters, and the potential of recent developments, including mixture testing, novel animal models, in vitro systems like organoids, multigenerational testing protocols, as well as in silico modelling, machine learning and artificial intelligence.
Collapse
Affiliation(s)
| | | | | | - Mirella L. Meyer-Ficca
- Department of Veterinary, Clinical and Life Sciences, College of Veterinary Medicine, Utah State University, Logan, UT, United States
| |
Collapse
|
3
|
Migaud ME, Ziegler M, Baur JA. Regulation of and challenges in targeting NAD + metabolism. Nat Rev Mol Cell Biol 2024; 25:822-840. [PMID: 39026037 DOI: 10.1038/s41580-024-00752-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/20/2024]
Abstract
Nicotinamide adenine dinucleotide, in its oxidized (NAD+) and reduced (NADH) forms, is a reduction-oxidation (redox) co-factor and substrate for signalling enzymes that have essential roles in metabolism. The recognition that NAD+ levels fall in response to stress and can be readily replenished through supplementation has fostered great interest in the potential benefits of increasing or restoring NAD+ levels in humans to prevent or delay diseases and degenerative processes. However, much about the biology of NAD+ and related molecules remains poorly understood. In this Review, we discuss the current knowledge of NAD+ metabolism, including limitations of, assumptions about and unappreciated factors that might influence the success or contribute to risks of NAD+ supplementation. We highlight several ongoing controversies in the field, and discuss the role of the microbiome in modulating the availability of NAD+ precursors such as nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN), the presence of multiple cellular compartments that have distinct pools of NAD+ and NADH, and non-canonical NAD+ and NADH degradation pathways. We conclude that a substantial investment in understanding the fundamental biology of NAD+, its detection and its metabolites in specific cells and cellular compartments is needed to support current translational efforts to safely boost NAD+ levels in humans.
Collapse
Affiliation(s)
- Marie E Migaud
- Mitchell Cancer Institute, Department of Pharmacology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, USA.
| | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Joseph A Baur
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Szot JO, Cuny H, Martin EM, Sheng DZ, Iyer K, Portelli S, Nguyen V, Gereis JM, Alankarage D, Chitayat D, Chong K, Wentzensen IM, Vincent-Delormé C, Lermine A, Burkitt-Wright E, Ji W, Jeffries L, Pais LS, Tan TY, Pitt J, Wise CA, Wright H, Andrews ID, Pruniski B, Grebe TA, Corsten-Janssen N, Bouman K, Poulton C, Prakash S, Keren B, Brown NJ, Hunter MF, Heath O, Lakhani SA, McDermott JH, Ascher DB, Chapman G, Bozon K, Dunwoodie SL. A metabolic signature for NADSYN1-dependent congenital NAD deficiency disorder. J Clin Invest 2024; 134:e174824. [PMID: 38357931 PMCID: PMC10866660 DOI: 10.1172/jci174824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/20/2023] [Indexed: 02/16/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is essential for embryonic development. To date, biallelic loss-of-function variants in 3 genes encoding nonredundant enzymes of the NAD de novo synthesis pathway - KYNU, HAAO, and NADSYN1 - have been identified in humans with congenital malformations defined as congenital NAD deficiency disorder (CNDD). Here, we identified 13 further individuals with biallelic NADSYN1 variants predicted to be damaging, and phenotypes ranging from multiple severe malformations to the complete absence of malformation. Enzymatic assessment of variant deleteriousness in vitro revealed protein domain-specific perturbation, complemented by protein structure modeling in silico. We reproduced NADSYN1-dependent CNDD in mice and assessed various maternal NAD precursor supplementation strategies to prevent adverse pregnancy outcomes. While for Nadsyn1+/- mothers, any B3 vitamer was suitable to raise NAD, preventing embryo loss and malformation, Nadsyn1-/- mothers required supplementation with amidated NAD precursors (nicotinamide or nicotinamide mononucleotide) bypassing their metabolic block. The circulatory NAD metabolome in mice and humans before and after NAD precursor supplementation revealed a consistent metabolic signature with utility for patient identification. Our data collectively improve clinical diagnostics of NADSYN1-dependent CNDD, provide guidance for the therapeutic prevention of CNDD, and suggest an ongoing need to maintain NAD levels via amidated NAD precursor supplementation after birth.
Collapse
Affiliation(s)
- Justin O. Szot
- Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia
| | - Hartmut Cuny
- Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Ella M.M.A. Martin
- Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia
| | - Delicia Z. Sheng
- Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia
| | - Kavitha Iyer
- Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia
| | - Stephanie Portelli
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Vivien Nguyen
- Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia
| | - Jessica M. Gereis
- Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia
| | - Dimuthu Alankarage
- Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia
| | - David Chitayat
- Department of Pediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, and
- Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Karen Chong
- Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Alban Lermine
- Laboratoire de Biologie Médicale Multisites SeqOIA, FMG2025, Paris, France
| | - Emma Burkitt-Wright
- Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Weizhen Ji
- Yale University School of Medicine, Pediatric Genomics Discovery Program, New Haven, Connecticut, USA
| | - Lauren Jeffries
- Yale University School of Medicine, Pediatric Genomics Discovery Program, New Haven, Connecticut, USA
| | - Lynn S. Pais
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Tiong Y. Tan
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - James Pitt
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
- Metabolic Laboratory, Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Cheryl A. Wise
- Department of Diagnostic Genomics, PathWest Laboratory Medicine Western Australia, Nedlands, Perth, Western Australia, Australia
| | - Helen Wright
- General Paediatric Department, Perth Children’s Hospital, Perth, Western Australia, Australia
- Rural Clinical School, University of Western Australia, Perth, Western Australia, Australia
| | | | - Brianna Pruniski
- Division of Genetics and Metabolism, Phoenix Children’s Hospital, Phoenix, Arizona, USA
| | - Theresa A. Grebe
- Division of Genetics and Metabolism, Phoenix Children’s Hospital, Phoenix, Arizona, USA
| | - Nicole Corsten-Janssen
- Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Katelijne Bouman
- Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Cathryn Poulton
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, Western Australia, Australia
| | - Supraja Prakash
- Division of Genetics and Metabolism, Phoenix Children’s Hospital, Phoenix, Arizona, USA
| | - Boris Keren
- Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique – Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Natasha J. Brown
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Matthew F. Hunter
- Monash Genetics, Monash Health, Clayton, Victoria, Australia
- Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Oliver Heath
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Metabolic Medicine, The Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - Saquib A. Lakhani
- Yale University School of Medicine, Pediatric Genomics Discovery Program, New Haven, Connecticut, USA
| | - John H. McDermott
- Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - David B. Ascher
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Gavin Chapman
- Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Kayleigh Bozon
- Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia
| | - Sally L. Dunwoodie
- Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, Sydney, New South Wales, Australia
- Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Ghanem MS, Caffa I, Monacelli F, Nencioni A. Inhibitors of NAD + Production in Cancer Treatment: State of the Art and Perspectives. Int J Mol Sci 2024; 25:2092. [PMID: 38396769 PMCID: PMC10889166 DOI: 10.3390/ijms25042092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The addiction of tumors to elevated nicotinamide adenine dinucleotide (NAD+) levels is a hallmark of cancer metabolism. Obstructing NAD+ biosynthesis in tumors is a new and promising antineoplastic strategy. Inhibitors developed against nicotinamide phosphoribosyltransferase (NAMPT), the main enzyme in NAD+ production from nicotinamide, elicited robust anticancer activity in preclinical models but not in patients, implying that other NAD+-biosynthetic pathways are also active in tumors and provide sufficient NAD+ amounts despite NAMPT obstruction. Recent studies show that NAD+ biosynthesis through the so-called "Preiss-Handler (PH) pathway", which utilizes nicotinate as a precursor, actively operates in many tumors and accounts for tumor resistance to NAMPT inhibitors. The PH pathway consists of three sequential enzymatic steps that are catalyzed by nicotinate phosphoribosyltransferase (NAPRT), nicotinamide mononucleotide adenylyltransferases (NMNATs), and NAD+ synthetase (NADSYN1). Here, we focus on these enzymes as emerging targets in cancer drug discovery, summarizing their reported inhibitors and describing their current or potential exploitation as anticancer agents. Finally, we also focus on additional NAD+-producing enzymes acting in alternative NAD+-producing routes that could also be relevant in tumors and thus become viable targets for drug discovery.
Collapse
Affiliation(s)
- Moustafa S. Ghanem
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
6
|
Chini CCS, Cordeiro HS, Tran NLK, Chini EN. NAD metabolism: Role in senescence regulation and aging. Aging Cell 2024; 23:e13920. [PMID: 37424179 PMCID: PMC10776128 DOI: 10.1111/acel.13920] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
The geroscience hypothesis proposes that addressing the biology of aging could directly prevent the onset or mitigate the severity of multiple chronic diseases. Understanding the interplay between key aspects of the biological hallmarks of aging is essential in delivering the promises of the geroscience hypothesis. Notably, the nucleotide nicotinamide adenine dinucleotide (NAD) interfaces with several biological hallmarks of aging, including cellular senescence, and changes in NAD metabolism have been shown to be involved in the aging process. The relationship between NAD metabolism and cellular senescence appears to be complex. On the one hand, the accumulation of DNA damage and mitochondrial dysfunction induced by low NAD+ can promote the development of senescence. On the other hand, the low NAD+ state that occurs during aging may inhibit SASP development as this secretory phenotype and the development of cellular senescence are both highly metabolically demanding. However, to date, the impact of NAD+ metabolism on the progression of the cellular senescence phenotype has not been fully characterized. Therefore, to explore the implications of NAD metabolism and NAD replacement therapies, it is essential to consider their interactions with other hallmarks of aging, including cellular senescence. We propose that a comprehensive understanding of the interplay between NAD boosting strategies and senolytic agents is necessary to advance the field.
Collapse
Affiliation(s)
- Claudia Christiano Silva Chini
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| | - Heidi Soares Cordeiro
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| | - Ngan Le Kim Tran
- Center for Clinical and Translational Science and Mayo Clinic Graduate School of Biomedical SciencesMayo ClinicJacksonvilleFloridaUSA
| | - Eduardo Nunes Chini
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| |
Collapse
|
7
|
Bhasin S, Seals D, Migaud M, Musi N, Baur JA. Nicotinamide Adenine Dinucleotide in Aging Biology: Potential Applications and Many Unknowns. Endocr Rev 2023; 44:1047-1073. [PMID: 37364580 DOI: 10.1210/endrev/bnad019] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/28/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Recent research has unveiled an expansive role of NAD+ in cellular energy generation, redox reactions, and as a substrate or cosubstrate in signaling pathways that regulate health span and aging. This review provides a critical appraisal of the clinical pharmacology and the preclinical and clinical evidence for therapeutic effects of NAD+ precursors for age-related conditions, with a particular focus on cardiometabolic disorders, and discusses gaps in current knowledge. NAD+ levels decrease throughout life; age-related decline in NAD+ bioavailability has been postulated to be a contributor to many age-related diseases. Raising NAD+ levels in model organisms by administration of NAD+ precursors improves glucose and lipid metabolism; attenuates diet-induced weight gain, diabetes, diabetic kidney disease, and hepatic steatosis; reduces endothelial dysfunction; protects heart from ischemic injury; improves left ventricular function in models of heart failure; attenuates cerebrovascular and neurodegenerative disorders; and increases health span. Early human studies show that NAD+ levels can be raised safely in blood and some tissues by oral NAD+ precursors and suggest benefit in preventing nonmelanotic skin cancer, modestly reducing blood pressure and improving lipid profile in older adults with obesity or overweight; preventing kidney injury in at-risk patients; and suppressing inflammation in Parkinson disease and SARS-CoV-2 infection. Clinical pharmacology, metabolism, and therapeutic mechanisms of NAD+ precursors remain incompletely understood. We suggest that these early findings provide the rationale for adequately powered randomized trials to evaluate the efficacy of NAD+ augmentation as a therapeutic strategy to prevent and treat metabolic disorders and age-related conditions.
Collapse
Affiliation(s)
- Shalender Bhasin
- Department of Medicine, Harvard Medical School, Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Douglas Seals
- Department of Integrative Physiology and Medicine, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Marie Migaud
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of Southern Alabama, Mobile, AL 36688, USA
| | - Nicolas Musi
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joseph A Baur
- Department of Physiology, Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Ueland HO, Ulvik A, Løvås K, Wolff ASB, Breivik LE, Stokland AEM, Rødahl E, Nilsen RM, Husebye E, Ueland GÅ. Systemic Activation of the Kynurenine Pathway in Graves Disease With and Without Ophthalmopathy. J Clin Endocrinol Metab 2023; 108:1290-1297. [PMID: 36611247 PMCID: PMC10188306 DOI: 10.1210/clinem/dgad004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
CONTEXT Graves disease (GD) is one of the most common autoimmune disorders. Recent literature has shown an immune response involving several different inflammatory related proteins in these patients. OBJECTIVE This work aimed to characterize the kynurenine pathway, activated during interferon-γ (IFN-γ)-mediated inflammation and cellular (T-helper type 1 [Th1] type) immunity, in GD patients with and without thyroid eye disease (TED). METHODS We analyzed 34 biomarkers by mass spectrometry in serum samples from 100 patients with GD (36 with TED) and 100 matched healthy controls. The analytes included 10 metabolites and 3 indices from the kynurenine pathway, 6 microbiota-derived metabolites, 10 B-vitamers, and 5 serum proteins reflecting inflammation and kidney function. RESULTS GD patients showed significantly elevated levels of 7 biomarkers compared with healthy controls (omega squared [ω2] > 0.06; P < .01). Of these 7, the 6 biomarkers with the strongest effect size were all components of the kynurenine pathway. Factor analysis showed that biomarkers related to cellular immunity and the Th1 responses (3-hydroxykynurenine, kynurenine, and quinolinic acid with the highest loading) were most strongly associated with GD. Further, a factor mainly reflecting acute phase response (C-reactive protein and serum amyloid A) showed weaker association with GD by factor analysis. There were no differences in biomarker levels between GD patients with and without TED. CONCLUSION This study supports activation of IFN-γ inflammation and Th1 cellular immunity in GD, but also a contribution of acute-phase reactants. Our finding of no difference in systemic activation of the kynurenine pathway in GD patients with and without TED implies that the local Th1 immune response in the orbit is not reflected systemically.
Collapse
Affiliation(s)
- Hans Olav Ueland
- Department of Ophthalmology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Arve Ulvik
- Bevital A/S, Laboratoriebygget, 5021 Bergen, Norway
| | - Kristian Løvås
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Anette S B Wolff
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, 5021 Bergen, Norway
| | - Lars Ertesvåg Breivik
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, 5021 Bergen, Norway
| | | | - Eyvind Rødahl
- Department of Ophthalmology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
| | - Roy Miodini Nilsen
- Department of Health and Functioning, Western Norway University of Applied Sciences, 5063 Bergen, Norway
| | - Eystein Husebye
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, 5021 Bergen, Norway
| | | |
Collapse
|
9
|
Auyeung A, Wang HC, Aravagiri K, Knezevic NN. Kynurenine Pathway Metabolites as Potential Biomarkers in Chronic Pain. Pharmaceuticals (Basel) 2023; 16:681. [PMID: 37242464 PMCID: PMC10224279 DOI: 10.3390/ph16050681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Chronic pain is a pressing medical and socioeconomic issue worldwide. It is debilitating for individual patients and places a major burden on society in the forms of direct medical costs and lost work productivity. Various biochemical pathways have been explored to explain the pathophysiology of chronic pain in order to identify biomarkers that can potentially serve as both evaluators of and guides for therapeutic effectiveness. The kynurenine pathway has recently been a source of interest due to its suspected role in the development and sustainment of chronic pain conditions. The kynurenine pathway is the primary pathway responsible for the metabolization of tryptophan and generates nicotinamide adenine dinucleotide (NAD+), in addition to the metabolites kynurenine (KYN), kynurenic acid (KA), and quinolinic acid (QA). Dysregulation of this pathway and changes in the ratios of these metabolites have been associated with numerous neurotoxic and inflammatory states, many of which present simultaneously with chronic pain symptoms. While further studies utilizing biomarkers to elucidate the kynurenine pathway's role in chronic pain are needed, the metabolites and receptors involved in its processes nevertheless present researchers with promising sources of novel and personalized disease-modifying treatments.
Collapse
Affiliation(s)
- Andrew Auyeung
- Advocate Illinois Masonic Medical Center, Department of Anesthesiology, Chicago, IL 60657, USA; (A.A.)
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA 50312, USA
| | - Hank C. Wang
- Advocate Illinois Masonic Medical Center, Department of Anesthesiology, Chicago, IL 60657, USA; (A.A.)
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Kannan Aravagiri
- Advocate Illinois Masonic Medical Center, Department of Anesthesiology, Chicago, IL 60657, USA; (A.A.)
| | - Nebojsa Nick Knezevic
- Advocate Illinois Masonic Medical Center, Department of Anesthesiology, Chicago, IL 60657, USA; (A.A.)
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Walzik D, Jonas W, Joisten N, Belen S, Wüst RCI, Guillemin G, Zimmer P. Tissue-specific effects of exercise as NAD + -boosting strategy: Current knowledge and future perspectives. Acta Physiol (Oxf) 2023; 237:e13921. [PMID: 36599416 DOI: 10.1111/apha.13921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/21/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+ ) is an evolutionarily highly conserved coenzyme with multi-faceted cell functions, including energy metabolism, molecular signaling processes, epigenetic regulation, and DNA repair. Since the discovery that lower NAD+ levels are a shared characteristic of various diseases and aging per se, several NAD+ -boosting strategies have emerged. Other than pharmacological and nutritional approaches, exercise is thought to restore NAD+ homeostasis through metabolic adaption to chronically recurring states of increased energy demand. In this review we discuss the impact of acute exercise and exercise training on tissue-specific NAD+ metabolism of rodents and humans to highlight the potential value as NAD+ -boosting strategy. By interconnecting results from different investigations, we aim to draw attention to tissue-specific alterations in NAD+ metabolism and the associated implications for whole-body NAD+ homeostasis. Acute exercise led to profound alterations of intracellular NAD+ metabolism in various investigations, with the magnitude and direction of changes being strongly dependent on the applied exercise modality, cell type, and investigated animal model or human population. Exercise training elevated NAD+ levels and NAD+ metabolism enzymes in various tissues. Based on these results, we discuss molecular mechanisms that might connect acute exercise-induced disruptions of NAD+ /NADH homeostasis to chronic exercise adaptions in NAD+ metabolism. Taking this hypothesis-driven approach, we hope to inspire future research on the molecular mechanisms of exercise as NAD+ -modifying lifestyle intervention, thereby elucidating the potential therapeutic value in NAD+ -related pathologies.
Collapse
Affiliation(s)
- David Walzik
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| | - Wiebke Jonas
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| | - Niklas Joisten
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| | - Sergen Belen
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Rob C I Wüst
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Gilles Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
11
|
Liu X, Li J, Zitolo A, Gao M, Jiang J, Geng X, Xie Q, Wu D, Zheng H, Cai X, Lu J, Jaouen F, Li R. Doped Graphene To Mimic the Bacterial NADH Oxidase for One-Step NAD + Supplementation in Mammals. J Am Chem Soc 2023; 145:3108-3120. [PMID: 36700857 DOI: 10.1021/jacs.2c12336] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) is a critical regulator of metabolic networks, and declining levels of its oxidized form, NAD+, are closely associated with numerous diseases. While supplementing cells with precursors needed for NAD+ synthesis has shown poor efficacy in combatting NAD+ decline, an alternative strategy is the development of synthetic materials that catalyze the oxidation of NADH into NAD+, thereby taking over the natural role of the NADH oxidase (NOX) present in bacteria. Herein, we discovered that metal-nitrogen-doped graphene (MNGR) materials can catalyze the oxidation of NADH into NAD+. Among MNGR materials with different transition metals, Fe-, Co-, and Cu-NGR displayed strong catalytic activity combined with >80% conversion of NADH into NAD+, similar specificity to NOX for abstracting hydrogen from the pyridine ring of nicotinamide, and higher selectivity than 51 other nanomaterials. The NOX-like activity of FeNGR functioned well in diverse cell lines. As a proof of concept of the in vivo application, we showed that FeNGR could specifically target the liver and remedy the metabolic flux anomaly in obesity mice with NAD+-deficient cells. Overall, our study provides a distinct insight for exploration of drug candidates by design of synthetic materials to mimic the functions of unique enzymes (e.g., NOX) in bacteria.
Collapse
Affiliation(s)
- Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Jingkun Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Andrea Zitolo
- L'orme des Merisiers, Synchrotron SOLEIL, BP 48 Saint Aubin, Gif-sur-Yvette91192, France
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Jun Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Xiangtian Geng
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Qianqian Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Di Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Xiaoming Cai
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, China
| | - Frédéric Jaouen
- ICGM, CNRS, ENSCM, Univ. Montpellier, Montpellier34293, France
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou215123, China
| |
Collapse
|
12
|
Feuz MB, Meyer-Ficca ML, Meyer RG. Beyond Pellagra-Research Models and Strategies Addressing the Enduring Clinical Relevance of NAD Deficiency in Aging and Disease. Cells 2023; 12:500. [PMID: 36766842 PMCID: PMC9913999 DOI: 10.3390/cells12030500] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Research into the functions of nicotinamide adenine dinucleotide (NAD) has intensified in recent years due to the insight that abnormally low levels of NAD are involved in many human pathologies including metabolic disorders, neurodegeneration, reproductive dysfunction, cancer, and aging. Consequently, the development and validation of novel NAD-boosting strategies has been of central interest, along with the development of models that accurately represent the complexity of human NAD dynamics and deficiency levels. In this review, we discuss pioneering research and show how modern researchers have long since moved past believing that pellagra is the overt and most dramatic clinical presentation of NAD deficiency. The current research is centered on common human health conditions associated with moderate, but clinically relevant, NAD deficiency. In vitro and in vivo research models that have been developed specifically to study NAD deficiency are reviewed here, along with emerging strategies to increase the intracellular NAD concentrations.
Collapse
Affiliation(s)
- Morgan B. Feuz
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Mirella L. Meyer-Ficca
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
- College of Veterinary Medicine, Utah State University, Logan, UT 84322, USA
| | - Ralph G. Meyer
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
- College of Veterinary Medicine, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
13
|
Mizutani A, Sato M, Fujigaki H, Yamamoto Y, Saito K, Hatayama S, Fukuwatari T. Establishment of Model Mice to Evaluate Low Niacin Nutritional Status. J Nutr Sci Vitaminol (Tokyo) 2023; 69:305-313. [PMID: 37940571 DOI: 10.3177/jnsv.69.305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Niacin is involved in many biological reactions relating energy metabolism, redox reactions, DNA repair and longevity, and low NAD levels with aging and feeding high fat diets develop and progress age-related diseases. Although recent findings suggest the requirement of niacin insufficient animal model to further study, appropriate animal models have not been established yet because niacin is biosynthesized from tryptophan via tryptophan-nicotinamide pathway. To establish model mice to evaluate niacin nutritional status, we used kynurenine 3-monooxygenase knock out (KMO-/-) mice which lack NAD biosynthesis pathway from tryptophan. To determine the niacin requirement and assess niacin nutritional markers, 4 wk old KMO-/- mice were fed 2-30 mg/kg nicotinic acid containing diets for 28 d. More than 4 mg/kg but not less than 3 mg/kg nicotinic acid containing diets induced maximum growth, and niacin nutritional markers in the blood, liver and urine increased with increase of dietary nicotinic acid. These results showed that several niacin nutritional markers reflect niacin nutritional status, niacin nutritional status can be controlled by dietary nicotinic acid, and niacin requirement for maximum growth is 4 mg/kg nicotinic acid diets in the KMO-/- mice. This animal model useful to investigate pathophysiology and mechanism of niacin deficiency, clarify the relationships between niacin nutritional status and age-related and lifestyle diseases, and evaluate factors affecting niacin nutritional status.
Collapse
Affiliation(s)
- Amane Mizutani
- Department of Nutrition, School of Human Cultures, University of Shiga Prefecture
| | - Miu Sato
- Department of Nutrition, School of Human Cultures, University of Shiga Prefecture
| | - Hidetsugu Fujigaki
- Department of Advanced Diagnostic System Development, Fujita Health University Graduate School of Health Science
| | - Yasuko Yamamoto
- Department of Advanced Diagnostic System Development, Fujita Health University Graduate School of Health Science
| | - Kuniaki Saito
- Department of Advanced Diagnostic System Development, Fujita Health University Graduate School of Health Science
| | - Sho Hatayama
- Department of Nutrition, School of Human Cultures, University of Shiga Prefecture
| | - Tsutomu Fukuwatari
- Department of Nutrition, School of Human Cultures, University of Shiga Prefecture
| |
Collapse
|
14
|
Zeidler JD, Chini CC, Kanamori KS, Kashyap S, Espindola-Netto JM, Thompson K, Warner G, Cabral FS, Peclat TR, Gomez LS, Lopez SA, Wandersee MK, Schoon RA, Reid K, Menzies K, Beckedorff F, Reid JM, Brachs S, Meyer RG, Meyer-Ficca ML, Chini EN. Endogenous metabolism in endothelial and immune cells generates most of the tissue vitamin B3 (nicotinamide). iScience 2022; 25:105431. [PMID: 36388973 PMCID: PMC9646960 DOI: 10.1016/j.isci.2022.105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/10/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
In mammals, nicotinamide (NAM) is the primary NAD precursor available in circulation, a signaling molecule, and a precursor for methyl-nicotinamide (M-NAM) synthesis. However, our knowledge about how the body regulates tissue NAM levels is still limited. Here we demonstrate that dietary vitamin B3 partially regulates plasma NAM and NAM-derived metabolites, but not their tissue levels. We found that NAD de novo synthesis from tryptophan contributes to plasma and tissue NAM, likely by providing substrates for NAD-degrading enzymes. We also demonstrate that tissue NAM is mainly generated by endogenous metabolism and that the NADase CD38 is the main enzyme that produces tissue NAM. Tissue-specific CD38-floxed mice revealed that CD38 activity on endothelial and immune cells is the major contributor to tissue steady-state levels of NAM in tissues like spleen and heart. Our findings uncover the presence of different pools of NAM in the body and a central role for CD38 in regulating tissue NAM levels.
Collapse
Affiliation(s)
- Julianna D. Zeidler
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Claudia C.S. Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Karina S. Kanamori
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sonu Kashyap
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jair M. Espindola-Netto
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Katie Thompson
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Gina Warner
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Fernanda S. Cabral
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Thais R. Peclat
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Lilian Sales Gomez
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sierra A. Lopez
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, School of Veterinary Medicine, Utah State University, Logan, UT 84332, USA
| | - Miles K. Wandersee
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, School of Veterinary Medicine, Utah State University, Logan, UT 84332, USA
| | - Renee A. Schoon
- Oncology Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Kimberly Reid
- Interdisciplinary School of Health of Sciences, University Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Keir Menzies
- Interdisciplinary School of Health of Sciences, University Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Felipe Beckedorff
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joel M. Reid
- Oncology Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Sebastian Brachs
- Charité – Universitätsmedizin Berlin, Department of Endocrinology and Metabolism, 10115 Berlin, Germany,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Ralph G. Meyer
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, School of Veterinary Medicine, Utah State University, Logan, UT 84332, USA
| | - Mirella L. Meyer-Ficca
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, School of Veterinary Medicine, Utah State University, Logan, UT 84332, USA
| | - Eduardo Nunes Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA,Corresponding author
| |
Collapse
|
15
|
Ren Z, Xu Y, Li T, Sun W, Tang Z, Wang Y, Zhou K, Li J, Ding Q, Liang K, Wu L, Yin Y, Sun Z. NAD+ and its possible role in gut microbiota: Insights on the mechanisms by which gut microbes influence host metabolism. ANIMAL NUTRITION 2022; 10:360-371. [PMID: 35949199 PMCID: PMC9356074 DOI: 10.1016/j.aninu.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/01/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022]
|
16
|
Cercillieux A, Ciarlo E, Canto C. Balancing NAD + deficits with nicotinamide riboside: therapeutic possibilities and limitations. Cell Mol Life Sci 2022; 79:463. [PMID: 35918544 PMCID: PMC9345839 DOI: 10.1007/s00018-022-04499-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/20/2022] [Accepted: 07/20/2022] [Indexed: 12/21/2022]
Abstract
Alterations in cellular nicotinamide adenine dinucleotide (NAD+) levels have been observed in multiple lifestyle and age-related medical conditions. This has led to the hypothesis that dietary supplementation with NAD+ precursors, or vitamin B3s, could exert health benefits. Among the different molecules that can act as NAD+ precursors, Nicotinamide Riboside (NR) has gained most attention due to its success in alleviating and treating disease conditions at the pre-clinical level. However, the clinical outcomes for NR supplementation strategies have not yet met the expectations generated in mouse models. In this review we aim to provide a comprehensive view on NAD+ biology, what causes NAD+ deficits and the journey of NR from its discovery to its clinical development. We also discuss what are the current limitations in NR-based therapies and potential ways to overcome them. Overall, this review will not only provide tools to understand NAD+ biology and assess its changes in disease situations, but also to decide which NAD+ precursor could have the best therapeutic potential.
Collapse
Affiliation(s)
- Angelique Cercillieux
- Nestlé Institute of Health Sciences, Nestlé Research Ltd., EPFL Campus, Innovation Park, Building G, 1015, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Eleonora Ciarlo
- Nestlé Institute of Health Sciences, Nestlé Research Ltd., EPFL Campus, Innovation Park, Building G, 1015, Lausanne, Switzerland
| | - Carles Canto
- Nestlé Institute of Health Sciences, Nestlé Research Ltd., EPFL Campus, Innovation Park, Building G, 1015, Lausanne, Switzerland.
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
17
|
Canto C. NAD + Precursors: A Questionable Redundancy. Metabolites 2022; 12:metabo12070630. [PMID: 35888754 PMCID: PMC9316858 DOI: 10.3390/metabo12070630] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/12/2022] Open
Abstract
The last decade has seen a strong proliferation of therapeutic strategies for the treatment of metabolic and age-related diseases based on increasing cellular NAD+ bioavailability. Among them, the dietary supplementation with NAD+ precursors—classically known as vitamin B3—has received most of the attention. Multiple molecules can act as NAD+ precursors through independent biosynthetic routes. Interestingly, eukaryote organisms have conserved a remarkable ability to utilize all of these different molecules, even if some of them are scarcely found in nature. Here, we discuss the possibility that the conservation of all of these biosynthetic pathways through evolution occurred because the different NAD+ precursors might serve specialized purposes.
Collapse
Affiliation(s)
- Carles Canto
- Nestlé Institute of Health Sciences, Nestlé Research Ltd., EPFL Campus, Innovation Park, Building G, 1015 Lausanne, Switzerland; ; Tel.: +41-(0)-216326116
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Solianik R, Schwieler L, Trepci A, Erhardt S, Brazaitis M. Two-day fasting affects kynurenine pathway with additional modulation of short-term whole-body cooling: a quasi-randomised crossover trial. Br J Nutr 2022; 129:1-8. [PMID: 35791050 DOI: 10.1017/s0007114522002069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Metabolites of the kynurenine (KYN) pathway of tryptophan (TRP) degradation have attracted interest as potential pathophysiological mediators and future diagnostic biomarkers. A greater knowledge of the pathological implications of the metabolites is associated with a need for a better understanding of how the normal behaviour and physiological activities impact their concentrations. This study aimed to investigate whether fasting (FAST) and whole-body cold-water immersion (CWI) affect KYN pathway metabolites. Thirteen young women were randomly assigned to receive the 2-d FAST with two 10-min CWI on separate days (FAST-CWI), 2-d FAST without CWI (FAST-CON), 2-d two CWI on separate days without FAST (CON-CWI) or the 2-d usual diet without CWI (CON-CON) in a randomised crossover fashion. Changes in plasma concentrations of TRP, kynurenic acid (KYNA), 3-hydroxy-kynurenine (3-HK), picolinic acid (PIC), quinolinic acid (QUIN) and nicotinamide (NAA) were determined with ultra-performance liquid chromatography-tandem mass spectrometer. FAST-CWI and FAST-CON lowered TRP concentration (P < 0·05, ηp2 = 0·24), and increased concentrations of KYNA, 3-HK and PIC (P < 0·05, ηp2 = 0·21-0·71) with no additional effects of CWI. The ratio of PIC/QUIN increased after FAST-CWI and FAST-CON trials (P < 0·05) but with a blunted effect in the FAST-CWI trial (P < 0·05) compared with the FAST-CON trials (ηp2 = 0·67). Concentrations of QUIN and NAA were unaltered. This study demonstrated that fasting for 2 d considerably impacts the concentration of several metabolites in the KYN pathway. This should be considered when discussing the potential of KYN pathway metabolites as biomarkers.
Collapse
Affiliation(s)
- Rima Solianik
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Lilly Schwieler
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ada Trepci
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sophie Erhardt
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marius Brazaitis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
19
|
Vallejo FA, Sanchez A, Cuglievan B, Walters WM, De Angulo G, Vanni S, Graham RM. NAMPT Inhibition Induces Neuroblastoma Cell Death and Blocks Tumor Growth. Front Oncol 2022; 12:883318. [PMID: 35814452 PMCID: PMC9261286 DOI: 10.3389/fonc.2022.883318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/17/2022] [Indexed: 11/24/2022] Open
Abstract
High-risk neuroblastoma (NB) portends very poor prognoses in children. Targeting tumor metabolism has emerged as a novel therapeutic strategy. High levels of nicotinamide-adenine-dinucleotide (NAD+) are required for rapid cell proliferation. Nicotinamide phosphoribosyl transferase (NAMPT) is the rate-limiting enzyme for NAD+ salvage and is overexpressed in several cancers. Here, we determine the potential of NAMPT as a therapeutic target for NB treatment. NAMPT inhibition cytotoxicity was determined by trypan blue exclusion and LDH assays. Neuroblastoma stem cell self-renewal was evaluated by neurosphere assay. Protein expression was evaluated via Western blot. The effect of targeting NAMPT in vivo was determined using an NB1691-xenografted mouse model. Robust NAMPT expression was demonstrated in multiple N-MYC amplified, high-risk neuroblastoma cell lines. NAMPT inhibition with STF-118804 (STF) decreased ATP, induced apoptosis, and reduced NB stem cell neurosphere formation. STF treatment down-regulated N-MYC levels and abrogated AKT activation. AKT and glycolytic pathway inhibitors in combination with NAMPT inhibition induced robust, greater-than-additive neuroblastoma cell death. Lastly, STF treatment blocked neuroblastoma tumor growth in mouse xenograft models. NAMPT is a valid therapeutic target as inhibition promoted neuroblastoma cell death in vitro and prevented tumor growth in vivo. Further investigation is warranted to establish this therapy’s role as an adjunctive modality.
Collapse
Affiliation(s)
- Frederic A. Vallejo
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anthony Sanchez
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Radiology and Imaging Sciences, University of Utah Hospital, Salt Lake City, UT, United States
| | - Branko Cuglievan
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Pediatrics Patient Care, Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Winston M. Walters
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Guillermo De Angulo
- Department of Hematology/Oncology and Immunology, Nicklaus Children’s Hospital, Miami, FL, United States
| | - Steven Vanni
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurosurgery, HCA Florida University Hospital, Davie, FL, United States
- Dr. Kiran C. Patel College of Allopathic Medicine, Davie, FL, United States
| | - Regina M. Graham
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL, United States
- *Correspondence: Regina M. Graham,
| |
Collapse
|
20
|
Chen DTL, Cheng SW, Chen T, Chang JPC, Hwang BF, Chang HH, Chuang EY, Chen CH, Su KP. Identification of Genetic Variations in the NAD-Related Pathways for Patients with Major Depressive Disorder: A Case-Control Study in Taiwan. J Clin Med 2022; 11:3622. [PMID: 35806906 PMCID: PMC9267440 DOI: 10.3390/jcm11133622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
Background and Objectives: Nicotinamide adenine dinucleotide (NAD) is an important coenzyme in various physiological processes, including sirtuins (SIRTs) and kynurenine pathway (KP). Previous studies have shown that lower NAD levels can be indicative of increased risks of cancer and psychiatric disorders. However, there has been no prior study exploring the link between NAD homeostasis and psychiatric disorders from a genetic perspective. Therefore, we aimed to investigate the association of genetic polymorphism in the pathways of NAD biosynthesis with major depressive disorder (MDD). Methods: A total of 317 patients were included in the case group and were compared with sex-matched control group of 1268 participants (1:4 ratio) from Taiwan Biobank (TWB). All subjects in the control group were over 65 years old, which is well past the average age of onset of MDD. Genomic DNA extracted from patients' blood buffy coat was analyzed using the Affymetrix TWB array. Full-model tests were conducted for the analysis of single nucleotide polymorphism (SNPs) in all candidate genes. We focused on genes within the NAD-related candidate pathways, including 15 in KP, 12 in nicotinate metabolism, 7 in SIRTs, and 19 in aldehyde dehydrogenases (ALDHs). A total of 508 SNPs were analyzed in this study. After significant SNPs were determined, 5000 genome-wide max(T) permutations were performed in Plink. Finally, we built a predictive model with logistic regression and assessed the interactions of SNPs with the haplotype association tests. Results: We found three SNPs that were significantly associated with MDD in our NAD-related candidate pathways, one within the KP (rs12622574 in ACMSD) and two within the nicotinate metabolism (rs28532698 in BST1 and rs3733593 in CD38). The observed association with MDD was significant in the dominant model of inheritance with marital status, education level, and body mass index (BMI) adjusted as covariates. Lastly, in haplotype analysis, the three associated SNPs consisted of one haploblock in ACMSD, four haploblocks in BST1, and two haploblocks in CD38. Conclusions: This study provides the first evidence that genetic variations involved in NAD homeostasis in the KP and nicotinate metabolism may be associated with the occurrence of MDD.
Collapse
Affiliation(s)
- Daniel Tzu-Li Chen
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan; (S.-W.C.); (T.C.); (J.P.-C.C.)
- Graduate Institute of Biomedicine, College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Szu-Wei Cheng
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan; (S.-W.C.); (T.C.); (J.P.-C.C.)
- School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Tiffany Chen
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan; (S.-W.C.); (T.C.); (J.P.-C.C.)
- College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Jane Pei-Chen Chang
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan; (S.-W.C.); (T.C.); (J.P.-C.C.)
- School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Bing-Fang Hwang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung 404, Taiwan;
| | - Hen-Hong Chang
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, and Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan; (H.-H.C.); (C.-H.C.)
- Department of Chinese Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Eric Y. Chuang
- Master Program for Biomedical Engineering, China Medical University, Taichung 404, Taiwan;
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 100, Taiwan
| | - Che-Hong Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, and Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan; (H.-H.C.); (C.-H.C.)
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kuan-Pin Su
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan; (S.-W.C.); (T.C.); (J.P.-C.C.)
- Graduate Institute of Biomedicine, College of Medicine, China Medical University, Taichung 404, Taiwan
- An-Nan Hospital, China Medical University, Tainan 709, Taiwan
| |
Collapse
|
21
|
Lu J, Fu S, Dai J, Hu J, Li S, Ji H, Wang Z, Yu J, Bao J, Xu B, Guo J, Yang H. Integrated metabolism and epigenetic modifications in the macrophages of mice in responses to cold stress. J Zhejiang Univ Sci B 2022; 23:461-480. [PMID: 35686526 PMCID: PMC9198231 DOI: 10.1631/jzus.b2101091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The negative effects of low temperature can readily induce a variety of diseases. We sought to understand the reasons why cold stress induces disease by studying the mechanisms of fine-tuning in macrophages following cold exposure. We found that cold stress triggers increased macrophage activation accompanied by metabolic reprogramming of aerobic glycolysis. The discovery, by genome-wide RNA sequencing, of defective mitochondria in mice macrophages following cold exposure indicated that mitochondrial defects may contribute to this process. In addition, changes in metabolism drive the differentiation of macrophages by affecting histone modifications. Finally, we showed that histone acetylation and lactylation are modulators of macrophage differentiation following cold exposure. Collectively, metabolism-related epigenetic modifications are essential for the differentiation of macrophages in cold-stressed mice, and the regulation of metabolism may be crucial for alleviating the harm induced by cold stress.
Collapse
Affiliation(s)
- Jingjing Lu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jie Dai
- Shanghai Bioprofile Co. Ltd., Shanghai 201100, China
| | - Jianwen Hu
- Shanghai Bioprofile Co. Ltd., Shanghai 201100, China
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Hong Ji
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhiquan Wang
- Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta T5J 4P6, Canada
| | - Jiahong Yu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jiming Bao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jingru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Huanmin Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
22
|
Novak Kujundžić R. COVID-19: Are We Facing Secondary Pellagra Which Cannot Simply Be Cured by Vitamin B3? Int J Mol Sci 2022; 23:ijms23084309. [PMID: 35457123 PMCID: PMC9032523 DOI: 10.3390/ijms23084309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Immune response to SARS-CoV-2 and ensuing inflammation pose a huge challenge to the host’s nicotinamide adenine dinucleotide (NAD+) metabolism. Humans depend on vitamin B3 for biosynthesis of NAD+, indispensable for many metabolic and NAD+-consuming signaling reactions. The balance between its utilization and resynthesis is vitally important. Many extra-pulmonary symptoms of COVID-19 strikingly resemble those of pellagra, vitamin B3 deficiency (e.g., diarrhoea, dermatitis, oral cavity and tongue manifestations, loss of smell and taste, mental confusion). In most developed countries, pellagra is successfully eradicated by vitamin B3 fortification programs. Thus, conceivably, it has not been suspected as a cause of COVID-19 symptoms. Here, the deregulation of the NAD+ metabolism in response to the SARS-CoV-2 infection is reviewed, with special emphasis on the differences in the NAD+ biosynthetic pathway’s efficiency in conditions predisposing for the development of serious COVID-19. SARS-CoV-2 infection-induced NAD+ depletion and the elevated levels of its metabolites contribute to the development of a systemic disease. Acute liberation of nicotinamide (NAM) in antiviral NAD+-consuming reactions potentiates “NAM drain”, cooperatively mediated by nicotinamide N-methyltransferase and aldehyde oxidase. “NAM drain” compromises the NAD+ salvage pathway’s fail-safe function. The robustness of the host’s NAD+ salvage pathway, prior to the SARS-CoV-2 infection, is an important determinant of COVID-19 severity and persistence of certain symptoms upon resolution of infection.
Collapse
Affiliation(s)
- Renata Novak Kujundžić
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
23
|
Meyer-Ficca ML, Zwerdling AE, Swanson CA, Tucker AG, Lopez SA, Wandersee MK, Warner GM, Thompson KL, Chini CC, Chen H, Chini EN, Meyer RG. Low NAD + Levels Are Associated With a Decline of Spermatogenesis in Transgenic ANDY and Aging Mice. Front Endocrinol (Lausanne) 2022; 13:896356. [PMID: 35600581 PMCID: PMC9120959 DOI: 10.3389/fendo.2022.896356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
Advanced paternal age has increasingly been recognized as a risk factor for male fertility and progeny health. While underlying causes are not well understood, aging is associated with a continuous decline of blood and tissue NAD+ levels, as well as a decline of testicular functions. The important basic question to what extent ageing-related NAD+ decline is functionally linked to decreased male fertility has been difficult to address due to the pleiotropic effects of aging, and the lack of a suitable animal model in which NAD+ levels can be lowered experimentally in chronologically young adult males. We therefore developed a transgenic mouse model of acquired niacin dependency (ANDY), in which NAD+ levels can be experimentally lowered using a niacin-deficient, chemically defined diet. Using ANDY mice, this report demonstrates for the first time that decreasing body-wide NAD+ levels in young adult mice, including in the testes, to levels that match or exceed the natural NAD+ decline observed in old mice, results in the disruption of spermatogenesis with small testis sizes and reduced sperm counts. ANDY mice are dependent on dietary vitamin B3 (niacin) for NAD+ synthesis, similar to humans. NAD+-deficiency the animals develop on a niacin-free diet is reversed by niacin supplementation. Providing niacin to NAD+-depleted ANDY mice fully rescued spermatogenesis and restored normal testis weight in the animals. The results suggest that NAD+ is important for proper spermatogenesis and that its declining levels during aging are functionally linked to declining spermatogenesis and male fertility. Functions of NAD+ in retinoic acid synthesis, which is an essential testicular signaling pathway regulating spermatogonial proliferation and differentiation, may offer a plausible mechanism for the hypospermatogenesis observed in NAD+-deficient mice.
Collapse
Affiliation(s)
- Mirella L. Meyer-Ficca
- School of Veterinary Medicine, Utah State University, Logan, UT, United States
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
- *Correspondence: Ralph G. Meyer, ; Mirella L. Meyer-Ficca,
| | - Alexie E. Zwerdling
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Corey A. Swanson
- School of Veterinary Medicine, Utah State University, Logan, UT, United States
| | - Abby G. Tucker
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Sierra A. Lopez
- School of Veterinary Medicine, Utah State University, Logan, UT, United States
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Miles K. Wandersee
- School of Veterinary Medicine, Utah State University, Logan, UT, United States
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Gina M. Warner
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
- Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL, United States
| | - Katie L. Thompson
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
- Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL, United States
| | - Claudia C.S. Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
- Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL, United States
| | - Haolin Chen
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Eduardo N. Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
- Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL, United States
| | - Ralph G. Meyer
- School of Veterinary Medicine, Utah State University, Logan, UT, United States
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
- *Correspondence: Ralph G. Meyer, ; Mirella L. Meyer-Ficca,
| |
Collapse
|
24
|
Park SJ, Ahn JW, Choi JI. Improved tolerance of recombinant Chlamydomonas rainhardtii with putative 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase from Pyropia yezoensis to nitrogen starvation. J Microbiol 2021; 60:63-69. [PMID: 34964943 DOI: 10.1007/s12275-022-1491-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022]
Abstract
In a previous study, a putative 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (ACMSD) was highly expressed in a mutant strain of Pyropia yezoensis, which exhibited an improved growth rate compared to its wild strain. To investigate the functional role of the putative ACMSD (Pyacmsd) of P. yezoensis, the putative Pyacmsd was cloned and expressed in Chlamydomonas reinhardtii. Recombinant C. reinhardtii cells with Pyacmsd (Cr_Pyacmsd) exhibited enhanced tolerance compared to control C. reinhardtii cells (Cr_control) under nitrogen starvation. Notably, Cr_Pyacmsd cells showed accumulation of lipids in nitrogen-enriched conditions. These results demonstrate the role of Pyacmsd in the generation of acetyl-coenzyme A. Thus, it can be used to enhance the production of biofuel using microalgae such as C. reinhardtii and increase the tolerance of other biological systems to nitrogen-deficient conditions.
Collapse
Affiliation(s)
- Seo-Jeong Park
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Joon Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
25
|
Ge W, Yan ZH, Wang L, Tan SJ, Liu J, Reiter RJ, Luo SM, Sun QY, Shen W. A hypothetical role for autophagy during the day/night rhythm-regulated melatonin synthesis in the rat pineal gland. J Pineal Res 2021; 71:e12742. [PMID: 33960014 DOI: 10.1111/jpi.12742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/12/2021] [Accepted: 04/27/2021] [Indexed: 12/18/2022]
Abstract
Melatonin is a highly conserved molecule that regulates day/night rhythms; it is associated with sleep improvement, reactive oxygen species (ROS) scavenging, anti-aging effects, and seasonal and circadian rhythms and has been a hot topic of research for decades. Using single-cell RNA sequencing, a recent study describes a single-cell transcriptome atlas for the rat pineal gland. Based on a more comprehensive analysis of the retrieved data (Mays et al., PLoS One, 2018, 13, e0205883), results from the current study unveiled the underappreciated gene regulatory network behind different cell populations in the pineal gland. More importantly, our study here characterized, for the first time, the day/night activation of autophagy flux in the rat pineal gland, indicating a potential role of autophagy in regulating melatonin synthesis in the rat pineal gland. These findings emphasized a hypothetical role of day/night autophagy in linking the biological clock with melatonin synthesis. Furthermore, ultrastructure analysis of pinealocytes provided fascinating insights into differences in their intracellular structure between daytime and nighttime. In addition, we also provide a preliminary description of cell-cell communication in the rat pineal gland. In summary, the current study unveils the day/night regulation of autophagy in the rat pineal gland, raising a potential role of autophagy in day/night-regulated melatonin synthesis.
Collapse
Affiliation(s)
- Wei Ge
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zi-Hui Yan
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lu Wang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shao-Jing Tan
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jing Liu
- Central Laboratory of Qingdao Agricultural University, Qingdao Agricultural University, Qingdao, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX, USA
| | - Shi-Ming Luo
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
26
|
Zapata‐Pérez R, Wanders RJA, van Karnebeek CDM, Houtkooper RH. NAD + homeostasis in human health and disease. EMBO Mol Med 2021; 13:e13943. [PMID: 34041853 PMCID: PMC8261484 DOI: 10.15252/emmm.202113943] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Depletion of nicotinamide adenine dinucleotide (NAD+ ), a central redox cofactor and the substrate of key metabolic enzymes, is the causative factor of a number of inherited and acquired diseases in humans. Primary deficiencies of NAD+ homeostasis are the result of impaired biosynthesis, while secondary deficiencies can arise due to other factors affecting NAD+ homeostasis, such as increased NAD+ consumption or dietary deficiency of its vitamin B3 precursors. NAD+ depletion can manifest in a wide variety of pathological phenotypes, ranging from rare inherited defects, characterized by congenital malformations, retinal degeneration, and/or encephalopathy, to more common multifactorial, often age-related, diseases. Here, we discuss NAD+ biochemistry and metabolism and provide an overview of the etiology and pathological consequences of alterations of the NAD+ metabolism in humans. Finally, we discuss the state of the art of the potential therapeutic implications of NAD+ repletion for boosting health as well as treating rare and common diseases, and the possibilities to achieve this by means of the different NAD+ -enhancing agents.
Collapse
Affiliation(s)
- Rubén Zapata‐Pérez
- Laboratory Genetic Metabolic DiseasesAmsterdam Gastroenterology, Endocrinology, and Metabolism (AGEM)Amsterdam Cardiovascular Sciences (ACS)Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic DiseasesAmsterdam Gastroenterology, Endocrinology, and Metabolism (AGEM)Amsterdam Cardiovascular Sciences (ACS)Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Clara D M van Karnebeek
- Department of PediatricsAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Pediatrics (Metabolic Diseases)Radboud Centre for Mitochondrial MedicineAmalia Children’s HospitalRadboud University Medical CenterNijmegenThe Netherlands
- On behalf of ‘United for Metabolic Diseases’AmsterdamThe Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic DiseasesAmsterdam Gastroenterology, Endocrinology, and Metabolism (AGEM)Amsterdam Cardiovascular Sciences (ACS)Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
27
|
Nicotinamide N-Methyltransferase in Acquisition of Stem Cell Properties and Therapy Resistance in Cancer. Int J Mol Sci 2021; 22:ijms22115681. [PMID: 34073600 PMCID: PMC8197977 DOI: 10.3390/ijms22115681] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
The activity of nicotinamide N-methyltransferase (NNMT) is tightly linked to the maintenance of the nicotinamide adenine dinucleotide (NAD+) level. This enzyme catalyzes methylation of nicotinamide (NAM) into methyl nicotinamide (MNAM), which is either excreted or further metabolized to N1-methyl-2-pyridone-5-carboxamide (2-PY) and H2O2. Enzymatic activity of NNMT is important for the prevention of NAM-mediated inhibition of NAD+-consuming enzymes poly-adenosine -diphosphate (ADP), ribose polymerases (PARPs), and sirtuins (SIRTs). Inappropriately high expression and activity of NNMT, commonly present in various types of cancer, has the potential to disrupt NAD+ homeostasis and cellular methylation potential. Largely overlooked, in the context of cancer, is the inhibitory effect of 2-PY on PARP-1 activity, which abrogates NNMT's positive effect on cellular NAD+ flux by stalling liberation of NAM and reducing NAD+ synthesis in the salvage pathway. This review describes, and discusses, the mechanisms by which NNMT promotes NAD+ depletion and epigenetic reprogramming, leading to the development of metabolic plasticity, evasion of a major tumor suppressive process of cellular senescence, and acquisition of stem cell properties. All these phenomena are related to therapy resistance and worse clinical outcomes.
Collapse
|
28
|
Ghanem MS, Monacelli F, Nencioni A. Advances in NAD-Lowering Agents for Cancer Treatment. Nutrients 2021; 13:1665. [PMID: 34068917 PMCID: PMC8156468 DOI: 10.3390/nu13051665] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential redox cofactor, but it also acts as a substrate for NAD-consuming enzymes, regulating cellular events such as DNA repair and gene expression. Since such processes are fundamental to support cancer cell survival and proliferation, sustained NAD production is a hallmark of many types of neoplasms. Depleting intratumor NAD levels, mainly through interference with the NAD-biosynthetic machinery, has emerged as a promising anti-cancer strategy. NAD can be generated from tryptophan or nicotinic acid. In addition, the "salvage pathway" of NAD production, which uses nicotinamide, a byproduct of NAD degradation, as a substrate, is also widely active in mammalian cells and appears to be highly exploited by a subset of human cancers. In fact, research has mainly focused on inhibiting the key enzyme of the latter NAD production route, nicotinamide phosphoribosyltransferase (NAMPT), leading to the identification of numerous inhibitors, including FK866 and CHS-828. Unfortunately, the clinical activity of these agents proved limited, suggesting that the approaches for targeting NAD production in tumors need to be refined. In this contribution, we highlight the recent advancements in this field, including an overview of the NAD-lowering compounds that have been reported so far and the related in vitro and in vivo studies. We also describe the key NAD-producing pathways and their regulation in cancer cells. Finally, we summarize the approaches that have been explored to optimize the therapeutic response to NAMPT inhibitors in cancer.
Collapse
Affiliation(s)
- Moustafa S. Ghanem
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
29
|
Dall M, Hassing AS, Treebak JT. NAD + and NAFLD - caution, causality and careful optimism. J Physiol 2021; 600:1135-1154. [PMID: 33932956 DOI: 10.1113/jp280908] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing worldwide, and new treatments are sorely needed. Nicotinamide adenine dinucleotide (NAD+ ) has been proposed as a potential target to prevent and reverse NAFLD. NAD+ is an important redox factor for energy metabolism and is used as a substrate by a range of enzymes, including sirtuins (SIRT), which regulates histone acetylation, transcription factor activity and mitochondrial function. NAD+ is also a precursor for reduced nicotinamide adenine dinucleotide phosphate (NADPH), which is an important component of the antioxidant defense system. NAD+ precursors such as nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN) are available as over-the-counter dietary supplements, and oral supplementation with these precursors increases hepatic NAD+ levels and prevents hepatic lipid accumulation in pre-clinical models of NAFLD. NAD+ precursors have also been found to improve hepatic mitochondrial function and decrease oxidative stress in pre-clinical NAFLD models. NAD+ repletion also prevents NAFLD progression to non-alcoholic steatohepatitis (NASH), as NAD+ precursor supplementation is associated with decreased hepatic stellate cell activation, and decreased fibrosis. However, initial clinical trials have only shown modest effects when NAD+ precursors were administrated to people with obesity. We review the available pre-clinical investigations of NAD+ supplementation for targeting NAFLD, and discuss how data from the first clinical trials can be reconciled with observations from preclinical research.
Collapse
Affiliation(s)
- Morten Dall
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna S Hassing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Yang Y, Borel T, de Azambuja F, Johnson D, Sorrentino JP, Udokwu C, Davis I, Liu A, Altman RA. Diflunisal Derivatives as Modulators of ACMS Decarboxylase Targeting the Tryptophan-Kynurenine Pathway. J Med Chem 2020; 64:797-811. [PMID: 33369426 DOI: 10.1021/acs.jmedchem.0c01762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the kynurenine pathway for tryptophan degradation, an unstable metabolic intermediate, α-amino-β-carboxymuconate-ε-semialdehyde (ACMS), can nonenzymatically cyclize to form quinolinic acid, the precursor for de novo biosynthesis of nicotinamide adenine dinucleotide (NAD+). In a competing reaction, ACMS is decarboxylated by ACMS decarboxylase (ACMSD) for further metabolism and energy production. Therefore, the inhibition of ACMSD increases NAD+ levels. In this study, an Food and Drug Administration (FDA)-approved drug, diflunisal, was found to competitively inhibit ACMSD. The complex structure of ACMSD with diflunisal revealed a previously unknown ligand-binding mode and was consistent with the results of inhibition assays, as well as a structure-activity relationship (SAR) study. Moreover, two synthesized diflunisal derivatives showed half-maximal inhibitory concentration (IC50) values 1 order of magnitude better than diflunisal at 1.32 ± 0.07 μM (22) and 3.10 ± 0.11 μM (20), respectively. The results suggest that diflunisal derivatives have the potential to modulate NAD+ levels. The ligand-binding mode revealed here provides a new direction for developing inhibitors of ACMSD.
Collapse
Affiliation(s)
- Yu Yang
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Timothy Borel
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| | | | - David Johnson
- Computational Chemical Biology Core and Molecular Graphics and Modeling Laboratory, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Jacob P Sorrentino
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Chinedum Udokwu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ian Davis
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ryan A Altman
- Department of Medicinal Chemistry and Molecular Pharmacology and Department of Chemistry, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
31
|
Cardoso D, Muchir A. Need for NAD +: Focus on Striated Muscle Laminopathies. Cells 2020; 9:cells9102248. [PMID: 33036437 PMCID: PMC7599962 DOI: 10.3390/cells9102248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 11/23/2022] Open
Abstract
Laminopathies are a heterogeneous group of rare diseases caused by genetic mutations in the LMNA gene, encoding A-type lamins. A-type lamins are nuclear envelope proteins which associate with B-type lamins to form the nuclear lamina, a meshwork underlying the inner nuclear envelope of differentiated cells. The laminopathies include lipodystrophies, progeroid phenotypes and striated muscle diseases. Research on striated muscle laminopathies in the recent years has provided novel perspectives on the role of the nuclear lamina and has shed light on the pathological consequences of altered nuclear lamina. The role of altered nicotinamide adenine dinucleotide (NAD+) in the physiopathology of striated muscle laminopathies has been recently highlighted. Here, we have summarized these findings and reviewed the current knowledge about NAD+ alteration in striated muscle laminopathies, providing potential therapeutic approaches.
Collapse
|
32
|
Berge RK, Cacabelos D, Señarís R, Nordrehaug JE, Nygård O, Skorve J, Bjørndal B. Hepatic steatosis induced in C57BL/6 mice by a non-ß oxidizable fatty acid analogue is associated with reduced plasma kynurenine metabolites and a modified hepatic NAD +/NADH ratio. Lipids Health Dis 2020; 19:94. [PMID: 32410680 PMCID: PMC7227213 DOI: 10.1186/s12944-020-01271-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/29/2020] [Indexed: 01/14/2023] Open
Abstract
Background Non-alcoholic fatty liver disease is often associated with obesity, insulin resistance, dyslipidemia, and the metabolic syndrome in addition to mitochondrial dysfunction and nicotinamide adenine dinucleotide (NAD+) deficiency. The aim of this study was to investigate how inhibition of mitochondrial fatty acid oxidation using the compound tetradecylthiopropionic acid (TTP) would affect hepatic triacylglycerol level and plasma levels of kynurenine (Kyn) metabolites and nicotinamide. Methods 12 C57BL/6 mice were fed a control diet, or an intervention diet supplemented with 0.9% (w/w) tetradecylthiopropionic acid for 14 days. Blood and liver samples were collected, enzyme activities and gene expression were analyzed in liver, in addition to fatty acid composition. Metabolites in the tryptophan/kynurenine pathway and total antioxidant status were measured in plasma. Results Dietary treatment with tetradecylthiopropionic acid for 2 weeks induced fatty liver accompanied by decreased mitochondrial fatty acid oxidation. The liver content of the oxidized form of NAD+ was increased, as well as the ratio of NAD+/NADH, and these changes were associated by increased hepatic mRNA levels of NAD synthetase and nicotinamide mononucleotide adenyltransferase-3. The downstream metabolites of kynurenine were reduced in plasma whereas the plasma nicotinamide content was increased. Some effects on inflammation and oxidative stress was observed in the liver, while the plasma antioxidant capacity was increased. This was accompanied by a reduced plasma ratio of kynurenine/tryptophan. In addition, a significant decrease in the inflammation-related arachidonic fatty acid in liver was observed. Conclusion Fatty liver induced by short-time treatment with tetradecylthiopropionic acid decreased the levels of kynurenine metabolites but increased the plasma levels of NAD+ and nicotinamide. These changes are most likely not associated with increased inflammation and oxidative stress. Most probably the increase of NAD+ and nicotinamide are generated through the Preiss Handler pathway and/or salvage pathway and not through the de novo pathway. The take home message is that non-alcoholic fatty liver disease is associated with the metabolic syndrome in addition to mitochondrial dysfunction and nicotinamide adenine dinucleotide (NAD+) deficiency. Inducing fatty liver in mice by inhibition of fatty acid oxidation resulted in a concomitant change in kynurenine metabolites increasing the plasma levels of nicotinamides and the hepatic NAD+/NADH ratio, probably without affecting the de novo pathway of kynurenines.
Collapse
Affiliation(s)
- Rolf K Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway. .,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway.
| | - Daniel Cacabelos
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Rosa Señarís
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Jan Erik Nordrehaug
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Heart Disease, Stavanger University Hospital, Stavanger, Norway
| | - Ottar Nygård
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway.,KG Jebsen Centre for Diabetes Research, University of Bergen, Bergen, Norway
| | - Jon Skorve
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
33
|
Castro-Portuguez R, Sutphin GL. Kynurenine pathway, NAD + synthesis, and mitochondrial function: Targeting tryptophan metabolism to promote longevity and healthspan. Exp Gerontol 2020; 132:110841. [PMID: 31954874 DOI: 10.1016/j.exger.2020.110841] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Aging is characterized by a progressive decline in the normal physiological functions of an organism, ultimately leading to mortality. Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor that plays a critical role in mitochondrial energy production as well as many enzymatic redox reactions. Age-associated decline in NAD+ is implicated as a driving factor in several categories of age-associated disease, including metabolic and neurodegenerative disease, as well as deficiency in the mechanisms of cellular defense against oxidative stress. The kynurenine metabolic pathway is the sole de novo NAD+ biosynthetic pathway, generating NAD+ from ingested tryptophan. Altered kynurenine pathway activity is associated with both aging and a variety of age-associated diseases. Kynurenine pathway interventions can extend lifespan in both fruit flies and nematodes, and altered NAD+ metabolism represents one potential mediating mechanism. Recent studies demonstrate that supplementation with NAD+ or NAD+-precursors increase longevity and promote healthy aging in fruit flies, nematodes, and mice. NAD+ levels and the intrinsic relationship to mitochondrial function have been widely studied in the context of aging. Mitochondrial function and dynamics have both been implicated in longevity determination in a range of organisms from yeast to humans, at least in part due to their intimate link to regulating an organism's cellular energy economy and capacity to resist oxidative stress. Recent findings support the idea that complex communication between the mitochondria and the nucleus orchestrates a series of events and stress responses involving mitophagy, mitochondrial number, mitochondrial unfolded protein response (UPRmt), and mitochondria fission and fusion events. In this review, we discuss how mitochondrial morphological changes and dynamics operate during aging, and how altered metabolism of tryptophan to NAD+ through the kynurenine pathway interacts with these processes.
Collapse
Affiliation(s)
- Raul Castro-Portuguez
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, 85721, AZ, USA
| | - George L Sutphin
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, 85721, AZ, USA; Department of Molecular and Cellular Biology, University of Arizona, Tucson, 85721, AZ, USA.
| |
Collapse
|
34
|
Katsyuba E, Romani M, Hofer D, Auwerx J. NAD + homeostasis in health and disease. Nat Metab 2020; 2:9-31. [PMID: 32694684 DOI: 10.1038/s42255-019-0161-5] [Citation(s) in RCA: 326] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
Abstract
The conceptual evolution of nicotinamide adenine dinucleotide (NAD+) from being seen as a simple metabolic cofactor to a pivotal cosubstrate for proteins regulating metabolism and longevity, including the sirtuin family of protein deacylases, has led to a new wave of scientific interest in NAD+. NAD+ levels decline during ageing, and alterations in NAD+ homeostasis can be found in virtually all age-related diseases, including neurodegeneration, diabetes and cancer. In preclinical settings, various strategies to increase NAD+ levels have shown beneficial effects, thus starting a competitive race to discover marketable NAD+ boosters to improve healthspan and lifespan. Here, we review the basics of NAD+ biochemistry and metabolism, and its roles in health and disease, and we discuss current challenges and the future translational potential of NAD+ research.
Collapse
Affiliation(s)
- Elena Katsyuba
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Nagi Bioscience, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mario Romani
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dina Hofer
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Thermo Fisher Scientific, Zug, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
35
|
Abstract
NAD+ has a pivotal role in regulating many biological processes. A recent study (Palzer et al., Cell Rep. 2018, 25;1359-1370) demonstrated that alpha-amino-beta-carboxy-muconate-semialdehyde decarboxylase (ACMSD) is a key regulator of NAD+ metabolism and overexpression of human ACMSD leads to niacin dependency for NAD+ biosynthesis in mice, providing important insights into human diseases associated with niacin/NAD+ deficiency.
Collapse
Affiliation(s)
- Jun Yoshino
- Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|