1
|
Delgado de la Herran H, Vecellio Reane D, Cheng Y, Katona M, Hosp F, Greotti E, Wettmarshausen J, Patron M, Mohr H, Prudente de Mello N, Chudenkova M, Gorza M, Walia S, Feng MSF, Leimpek A, Mielenz D, Pellegata NS, Langer T, Hajnóczky G, Mann M, Murgia M, Perocchi F. Systematic mapping of mitochondrial calcium uniporter channel (MCUC)-mediated calcium signaling networks. EMBO J 2024:10.1038/s44318-024-00219-w. [PMID: 39261663 DOI: 10.1038/s44318-024-00219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024] Open
Abstract
The mitochondrial calcium uniporter channel (MCUC) mediates mitochondrial calcium entry, regulating energy metabolism and cell death. Although several MCUC components have been identified, the molecular basis of mitochondrial calcium signaling networks and their remodeling upon changes in uniporter activity have not been assessed. Here, we map the MCUC interactome under resting conditions and upon chronic loss or gain of mitochondrial calcium uptake. We identify 89 high-confidence interactors that link MCUC to several mitochondrial complexes and pathways, half of which are associated with human disease. As a proof-of-concept, we validate the mitochondrial intermembrane space protein EFHD1 as a binding partner of the MCUC subunits MCU, EMRE, and MCUB. We further show a MICU1-dependent inhibitory effect of EFHD1 on calcium uptake. Next, we systematically survey compensatory mechanisms and functional consequences of mitochondrial calcium dyshomeostasis by analyzing the MCU interactome upon EMRE, MCUB, MICU1, or MICU2 knockdown. While silencing EMRE reduces MCU interconnectivity, MCUB loss-of-function leads to a wider interaction network. Our study provides a comprehensive and high-confidence resource to gain insights into players and mechanisms regulating mitochondrial calcium signaling and their relevance in human diseases.
Collapse
Affiliation(s)
- Hilda Delgado de la Herran
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
| | - Denis Vecellio Reane
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
| | - Yiming Cheng
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
| | - Máté Katona
- Department of Pathology, Anatomy, and Cell Biology, MitoCare Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Fabian Hosp
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Roche Pharma Research and Early Development, Large Molecule Research, Mass Spectrometry, Penzberg, Germany
| | - Elisa Greotti
- Neuroscience Institute, National Research Council of Italy, Padua, Italy
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
| | - Jennifer Wettmarshausen
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
| | - Maria Patron
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Aging, Cologne, Germany
| | - Hermine Mohr
- Institute of Diabetes and Cancer, Helmholtz Center Munich, Munich, Germany
| | - Natalia Prudente de Mello
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
| | - Margarita Chudenkova
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
| | - Matteo Gorza
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
| | - Safal Walia
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
| | - Michael Sheng-Fu Feng
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
| | - Anja Leimpek
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, University of Erlangen, Nikolaus-Fiebiger-Zentrum, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Natalia S Pellegata
- Institute of Diabetes and Cancer, Helmholtz Center Munich, Munich, Germany
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Thomas Langer
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Aging, Cologne, Germany
| | - György Hajnóczky
- Department of Pathology, Anatomy, and Cell Biology, MitoCare Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Faculty of Health Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Marta Murgia
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Department of Biomedical Sciences, University of Padova, Padua, Italy.
| | - Fabiana Perocchi
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany.
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany.
- Munich Cluster for Systems Neurology, Munich, Germany.
| |
Collapse
|
2
|
Gutiérrez-Mireles ER, Páez-Franco JC, Rodríguez-Ruíz R, Germán-Acacio JM, López-Aquino MC, Gutiérrez-Aguilar M. An Arabidopsis mutant line lacking the mitochondrial calcium transport regulator MICU shows an altered metabolite profile. PLANT SIGNALING & BEHAVIOR 2023; 18:2271799. [PMID: 37879964 PMCID: PMC10601504 DOI: 10.1080/15592324.2023.2271799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Plant metabolism is constantly changing and requires input signals for efficient regulation. The mitochondrial calcium uniporter (MCU) couples organellar and cytoplasmic calcium oscillations leading to oxidative metabolism regulation in a vast array of species. In Arabidopsis thaliana, genetic deletion of AtMICU leads to altered mitochondrial calcium handling and ultrastructure. Here we aimed to further assess the consequences upon genetic deletion of AtMICU. Our results confirm that AtMICU safeguards intracellular calcium transport associated with carbohydrate, amino acid, and phytol metabolism modifications. The implications of such alterations are discussed.
Collapse
Affiliation(s)
- Emilia R. Gutiérrez-Mireles
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - José Carlos Páez-Franco
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Raúl Rodríguez-Ruíz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Juan Manuel Germán-Acacio
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - M. Casandra López-Aquino
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Manuel Gutiérrez-Aguilar
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
3
|
Marmolejo-Garza A, Krabbendam IE, Luu MDA, Brouwer F, Trombetta-Lima M, Unal O, O'Connor SJ, Majerníková N, Elzinga CRS, Mammucari C, Schmidt M, Madesh M, Boddeke E, Dolga AM. Negative modulation of mitochondrial calcium uniporter complex protects neurons against ferroptosis. Cell Death Dis 2023; 14:772. [PMID: 38007529 PMCID: PMC10676387 DOI: 10.1038/s41419-023-06290-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023]
Abstract
Ferroptosis is an iron- and reactive oxygen species (ROS)-dependent form of regulated cell death, that has been implicated in Alzheimer's disease and Parkinson's disease. Inhibition of cystine/glutamate antiporter could lead to mitochondrial fragmentation, mitochondrial calcium ([Ca2+]m) overload, increased mitochondrial ROS production, disruption of the mitochondrial membrane potential (ΔΨm), and ferroptotic cell death. The observation that mitochondrial dysfunction is a characteristic of ferroptosis makes preservation of mitochondrial function a potential therapeutic option for diseases associated with ferroptotic cell death. Mitochondrial calcium levels are controlled via the mitochondrial calcium uniporter (MCU), the main entry point of Ca2+ into the mitochondrial matrix. Therefore, we have hypothesized that negative modulation of MCU complex may confer protection against ferroptosis. Here we evaluated whether the known negative modulators of MCU complex, ruthenium red (RR), its derivative Ru265, mitoxantrone (MX), and MCU-i4 can prevent mitochondrial dysfunction and ferroptotic cell death. These compounds mediated protection in HT22 cells, in human dopaminergic neurons and mouse primary cortical neurons against ferroptotic cell death. Depletion of MICU1, a [Ca2+]m gatekeeper, demonstrated that MICU is protective against ferroptosis. Taken together, our results reveal that negative modulation of MCU complex represents a therapeutic option to prevent degenerative conditions, in which ferroptosis is central to the progression of these pathologies.
Collapse
Affiliation(s)
- Alejandro Marmolejo-Garza
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Inge E Krabbendam
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Minh Danh Anh Luu
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Famke Brouwer
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Marina Trombetta-Lima
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Osman Unal
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Shane J O'Connor
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Naďa Majerníková
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Carolina R S Elzinga
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Cristina Mammucari
- Department of Biomedical Sciences, University of Padua, 35131, Padua, Italy
| | - Martina Schmidt
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Muniswamy Madesh
- Department of Medicine/Cardiology, Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Erik Boddeke
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Amalia M Dolga
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
4
|
Zhuang H, He X, Li H, Chen Y, Wu T, Jiang X, Zhang H, Zhao P, Wang Y, Chen J, Zhang J, Liu Y, Bu W. MnS Nanocapsule Mediates Mitochondrial Membrane Permeability Transition for Tumor Ion-Interference Therapy. ACS NANO 2023; 17:13872-13884. [PMID: 37458394 DOI: 10.1021/acsnano.3c03670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
"Structure subserves function" is one fundamental biological maxim, and so the biological membrane that delimits the regions primarily serves as the margin between life and death for individual cells. Here, an Oswald ripening mechanism-guided solvothermal method was proposed for the synthesis of uniform MnS nanocapsules assembled with metastable γ-MnS nanocrystals. Through designing the physicochemical properties, MnS nanocapsules would disaggregate into small γ-MnS nanocrystals in a tumor acidic environment, with the surface potential switched from negative to positive, thus showing conspicuous delivery performance. More significantly, the specific accumulation of Mn2+ in mitochondria was promoted due to the downregulation of mitochondrial calcium uptake 1 (MICU1) by the formed H2S, thus leading to serious mitochondrial Mn-poisoning for membrane permeability increase and then tumor apoptosis. This study provides a synthesis strategy of metal sulfide nanocapsules and encourages multidisciplinary researchers to focus on ion-cancer crosstalk for the development of an antitumor strategy.
Collapse
Affiliation(s)
- Hongjun Zhuang
- Departments of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Xiaofang He
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Huiyan Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Yang Chen
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, P. R. China
| | - Tong Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Xingwu Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Huilin Zhang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Peiran Zhao
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Ya Wang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Jian Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Jian Zhang
- Departments of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Yanyan Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Wenbo Bu
- Departments of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
5
|
Novorolsky RJ, Kasheke GDS, Hakim A, Foldvari M, Dorighello GG, Sekler I, Vuligonda V, Sanders ME, Renden RB, Wilson JJ, Robertson GS. Preserving and enhancing mitochondrial function after stroke to protect and repair the neurovascular unit: novel opportunities for nanoparticle-based drug delivery. Front Cell Neurosci 2023; 17:1226630. [PMID: 37484823 PMCID: PMC10360135 DOI: 10.3389/fncel.2023.1226630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
The neurovascular unit (NVU) is composed of vascular cells, glia, and neurons that form the basic component of the blood brain barrier. This intricate structure rapidly adjusts cerebral blood flow to match the metabolic needs of brain activity. However, the NVU is exquisitely sensitive to damage and displays limited repair after a stroke. To effectively treat stroke, it is therefore considered crucial to both protect and repair the NVU. Mitochondrial calcium (Ca2+) uptake supports NVU function by buffering Ca2+ and stimulating energy production. However, excessive mitochondrial Ca2+ uptake causes toxic mitochondrial Ca2+ overloading that triggers numerous cell death pathways which destroy the NVU. Mitochondrial damage is one of the earliest pathological events in stroke. Drugs that preserve mitochondrial integrity and function should therefore confer profound NVU protection by blocking the initiation of numerous injury events. We have shown that mitochondrial Ca2+ uptake and efflux in the brain are mediated by the mitochondrial Ca2+ uniporter complex (MCUcx) and sodium/Ca2+/lithium exchanger (NCLX), respectively. Moreover, our recent pharmacological studies have demonstrated that MCUcx inhibition and NCLX activation suppress ischemic and excitotoxic neuronal cell death by blocking mitochondrial Ca2+ overloading. These findings suggest that combining MCUcx inhibition with NCLX activation should markedly protect the NVU. In terms of promoting NVU repair, nuclear hormone receptor activation is a promising approach. Retinoid X receptor (RXR) and thyroid hormone receptor (TR) agonists activate complementary transcriptional programs that stimulate mitochondrial biogenesis, suppress inflammation, and enhance the production of new vascular cells, glia, and neurons. RXR and TR agonism should thus further improve the clinical benefits of MCUcx inhibition and NCLX activation by increasing NVU repair. However, drugs that either inhibit the MCUcx, or stimulate the NCLX, or activate the RXR or TR, suffer from adverse effects caused by undesired actions on healthy tissues. To overcome this problem, we describe the use of nanoparticle drug formulations that preferentially target metabolically compromised and damaged NVUs after an ischemic or hemorrhagic stroke. These nanoparticle-based approaches have the potential to improve clinical safety and efficacy by maximizing drug delivery to diseased NVUs and minimizing drug exposure in healthy brain and peripheral tissues.
Collapse
Affiliation(s)
- Robyn J. Novorolsky
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Gracious D. S. Kasheke
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Antoine Hakim
- School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Marianna Foldvari
- School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Gabriel G. Dorighello
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben Gurion University, Beersheva, Israel
| | | | | | - Robert B. Renden
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, College of Arts and Sciences, Cornell University, Ithaca, NY, United States
| | - George S. Robertson
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
6
|
Rodríguez-Prados M, Huang KT, Márta K, Paillard M, Csordás G, Joseph SK, Hajnóczky G. MICU1 controls the sensitivity of the mitochondrial Ca 2+ uniporter to activators and inhibitors. Cell Chem Biol 2023; 30:606-617.e4. [PMID: 37244260 PMCID: PMC10370359 DOI: 10.1016/j.chembiol.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/28/2023] [Accepted: 05/05/2023] [Indexed: 05/29/2023]
Abstract
Mitochondrial Ca2+ homeostasis loses its control in many diseases and might provide therapeutic targets. Mitochondrial Ca2+ uptake is mediated by the uniporter channel (mtCU), formed by MCU and is regulated by the Ca2+-sensing gatekeeper, MICU1, which shows tissue-specific stoichiometry. An important gap in knowledge is the molecular mechanism of the mtCU activators and inhibitors. We report that all pharmacological activators of the mtCU (spermine, kaempferol, SB202190) act in a MICU1-dependent manner, likely by binding to MICU1 and preventing MICU1's gatekeeping activity. These agents also sensitized the mtCU to inhibition by Ru265 and enhanced the Mn2+-induced cytotoxicity as previously seen with MICU1 deletion. Thus, MCU gating by MICU1 is the target of mtCU agonists and is a barrier for inhibitors like RuRed/Ru360/Ru265. The varying MICU1:MCU ratios result in different outcomes for both mtCU agonists and antagonists in different tissues, which is relevant for both pre-clinical research and therapeutic efforts.
Collapse
Affiliation(s)
- Macarena Rodríguez-Prados
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kai-Ting Huang
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Katalin Márta
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Melanie Paillard
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - György Csordás
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Suresh K Joseph
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
7
|
Seegren PV, Harper LR, Downs TK, Zhao XY, Viswanathan SB, Stremska ME, Olson RJ, Kennedy J, Ewald SE, Kumar P, Desai BN. Reduced mitochondrial calcium uptake in macrophages is a major driver of inflammaging. NATURE AGING 2023:10.1038/s43587-023-00436-8. [PMID: 37277641 DOI: 10.1038/s43587-023-00436-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Mitochondrial dysfunction is linked to age-associated inflammation or inflammaging, but underlying mechanisms are not understood. Analyses of 700 human blood transcriptomes revealed clear signs of age-associated low-grade inflammation. Among changes in mitochondrial components, we found that the expression of mitochondrial calcium uniporter (MCU) and its regulatory subunit MICU1, genes central to mitochondrial Ca2+ (mCa2+) signaling, correlated inversely with age. Indeed, mCa2+ uptake capacity of mouse macrophages decreased significantly with age. We show that in both human and mouse macrophages, reduced mCa2+ uptake amplifies cytosolic Ca2+ oscillations and potentiates downstream nuclear factor kappa B activation, which is central to inflammation. Our findings pinpoint the mitochondrial calcium uniporter complex as a keystone molecular apparatus that links age-related changes in mitochondrial physiology to systemic macrophage-mediated age-associated inflammation. The findings raise the exciting possibility that restoring mCa2+ uptake capacity in tissue-resident macrophages may decrease inflammaging of specific organs and alleviate age-associated conditions such as neurodegenerative and cardiometabolic diseases.
Collapse
Affiliation(s)
- Philip V Seegren
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Logan R Harper
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Taylor K Downs
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Xiao-Yu Zhao
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Microbiology, Immunology, and Cancer Biology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | - Marta E Stremska
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Microbiology, Immunology, and Cancer Biology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Rachel J Olson
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Joel Kennedy
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sarah E Ewald
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Microbiology, Immunology, and Cancer Biology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Pankaj Kumar
- Biochemistry and Molecular Genetics Department, University of Virginia School of Medicine, Charlottesville, VA, USA
- University of Virginia, Bioinformatics Core, Charlottesville, VA, USA
| | - Bimal N Desai
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
8
|
Moon DO. Calcium's Role in Orchestrating Cancer Apoptosis: Mitochondrial-Centric Perspective. Int J Mol Sci 2023; 24:ijms24108982. [PMID: 37240331 DOI: 10.3390/ijms24108982] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Calcium is an essential intracellular messenger that plays a vital role in controlling a broad range of cellular processes, including apoptosis. This review offers an in-depth analysis of calcium's multifaceted role in apoptosis regulation, focusing on the associated signaling pathways and molecular mechanisms. We will explore calcium's impact on apoptosis through its effects on different cellular compartments, such as the mitochondria and endoplasmic reticulum (ER), and discuss the connection between calcium homeostasis and ER stress. Additionally, we will highlight the interplay between calcium and various proteins, including calpains, calmodulin, and Bcl-2 family members, and the role of calcium in regulating caspase activation and pro-apoptotic factor release. By investigating the complex relationship between calcium and apoptosis, this review aims to deepen our comprehension of the fundamental processes, and pinpointing possible treatment options for illnesses associated with imbalanced cell death is crucial.
Collapse
Affiliation(s)
- Dong-Oh Moon
- Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
9
|
Delgado BD, Long SB. Mechanisms of ion selectivity and throughput in the mitochondrial calcium uniporter. SCIENCE ADVANCES 2022; 8:eade1516. [PMID: 36525497 PMCID: PMC9757755 DOI: 10.1126/sciadv.ade1516] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The mitochondrial calcium uniporter, which regulates aerobic metabolism by catalyzing mitochondrial Ca2+ influx, is arguably the most selective ion channel known. The mechanisms for this exquisite Ca2+ selectivity have not been defined. Here, using a reconstituted system, we study the electrical properties of the channel's minimal Ca2+-conducting complex, MCU-EMRE, from Tribolium castaneum to probe ion selectivity mechanisms. The wild-type TcMCU-EMRE complex recapitulates hallmark electrophysiological properties of endogenous Uniporter channels. Through interrogation of pore-lining mutants, we find that a ring of glutamate residues, the "E-locus," serves as the channel's selectivity filter. Unexpectedly, a nearby "D-locus" at the mouth of the pore has diminutive influence on selectivity. Anomalous mole fraction effects indicate that multiple Ca2+ ions are accommodated within the E-locus. By facilitating ion-ion interactions, the E-locus engenders both exquisite Ca2+ selectivity and high ion throughput. Direct comparison with structural information yields the basis for selective Ca2+ conduction by the channel.
Collapse
Affiliation(s)
- Bryce D. Delgado
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
- Graduate Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Stephen B. Long
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
10
|
Soto-Verdugo J, Siva-Parra J, Hernández-Kelly LC, Ortega A. Acute Manganese Exposure Modifies the Translation Machinery via PI3K/Akt Signaling in Glial Cells. ASN Neuro 2022; 14:17590914221131452. [PMID: 36203371 PMCID: PMC9551334 DOI: 10.1177/17590914221131452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SUMMARY STATEMENT We demonstrate herein that short-term exposure of radial glia cells to Manganese, a neurotoxic metal, induces an effect on protein synthesis, altering the protein repertoire of these cells.
Collapse
Affiliation(s)
| | | | | | - Arturo Ortega
- Arturo Ortega, Departamento de Toxicología,
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico
Nacional, México City, México, 07360.
| |
Collapse
|
11
|
Wang Y, Liu L, Pu X, Ma C, Qu H, Wei M, Zhang K, Wu Q, Li C. Transcriptome Analysis and SNP Identification Reveal That Heterologous Overexpression of Two Uncharacterized Genes Enhances the Tolerance of Magnaporthe oryzae to Manganese Toxicity. Microbiol Spectr 2022; 10:e0260521. [PMID: 35638819 PMCID: PMC9241697 DOI: 10.1128/spectrum.02605-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Manganese is a crucial trace element that constitutes the cofactors of many enzymes. However, excessive Mn2+ can be toxic for both prokaryotes and eukaryotes. The mechanism of fungal genetics and metabolism in response to Mn2+ stress remains understudied, warranting further studies. Magnaporthe oryzae is well-established as the most destructive pathogen of rice. A field strain, YN2046, more sensitive to Mn2+ toxicity than other strains, was obtained from a previous study. Herein, we explored the genetic mechanisms of Mn2+ sensitivity in YN2046 through comparative transcriptomic analyses. We found that many genes previously reported to participate in Mn2+ stress were not regulated in YN2046. These non-responsive genes might cause Mn2+ sensitivity in YN2046. Weight gene correlation network analysis (WGCNA) was performed to characterize the expression profile in YN2046. Some overexpressed genes were only found in the Mn2+ tolerant isolate YN125. Among these, many single nucleotide polymorphism (SNP) were identified between YN125 and YN2046, which might disrupt the expression levels of Mn responsive genes. We cloned two uncharacterized genes, MGG_13347 and MGG_16609, from YN125 and transformed them to YN2046 with a strong promoter. Our results showed that the heterologous overexpression of two genes in YN2046 restored its sensitivity. Transcriptomic and biochemical analyses were performed to understand Mn tolerance mechanisms mediated by the two heterologous overexpressed genes. Our results showed that heterologous overexpression of these two genes activated downstream gene expression and metabolite production to restore M. oryzae sensitivity to Mn, implying that SNPs in responsive genes account for different phenotypes of the two strains under Mn stress. IMPORTANCE Heavy metals are used for fungicides as they target phytopathogen in multiple ways. Magnaporthe oryzae is the most destructive rice pathogen and is threatening global rice production. In the eukaryotes, the regulation mechanisms of Mn homeostasis often focus on the posttranslation, there were a few results about regulation at transcript level. The comparative transcriptome analysis showed that fewer genes were regulated in the Mn-sensitive strain. WGCNA and SNP analyses found that mutations in promoter and coding sequence regions might disrupt the expression of genes involved in Mn detoxification in the sensitive strain. We transferred two unannotated genes that were cloned from the Mn-tolerant strain into a sensitive strain with strong promoters, and the transformants exhibited an enhanced tolerance to Mn2+ toxicity. Transcriptome and biochemistry results indicated that heterologous overexpression of the two genes enhanced the tolerance to Mn toxicity by reactivation of downstream genes in M. oryzae.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Lina Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Xin Pu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Chan Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Hao Qu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Mian Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Ke Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Qi Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| |
Collapse
|
12
|
Garbincius JF, Elrod JW. Mitochondrial calcium exchange in physiology and disease. Physiol Rev 2022; 102:893-992. [PMID: 34698550 PMCID: PMC8816638 DOI: 10.1152/physrev.00041.2020] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/16/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
The uptake of calcium into and extrusion of calcium from the mitochondrial matrix is a fundamental biological process that has critical effects on cellular metabolism, signaling, and survival. Disruption of mitochondrial calcium (mCa2+) cycling is implicated in numerous acquired diseases such as heart failure, stroke, neurodegeneration, diabetes, and cancer and is genetically linked to several inherited neuromuscular disorders. Understanding the mechanisms responsible for mCa2+ exchange therefore holds great promise for the treatment of these diseases. The past decade has seen the genetic identification of many of the key proteins that mediate mitochondrial calcium uptake and efflux. Here, we present an overview of the phenomenon of mCa2+ transport and a comprehensive examination of the molecular machinery that mediates calcium flux across the inner mitochondrial membrane: the mitochondrial uniporter complex (consisting of MCU, EMRE, MICU1, MICU2, MICU3, MCUB, and MCUR1), NCLX, LETM1, the mitochondrial ryanodine receptor, and the mitochondrial permeability transition pore. We then consider the physiological implications of mCa2+ flux and evaluate how alterations in mCa2+ homeostasis contribute to human disease. This review concludes by highlighting opportunities and challenges for therapeutic intervention in pathologies characterized by aberrant mCa2+ handling and by summarizing critical unanswered questions regarding the biology of mCa2+ flux.
Collapse
Affiliation(s)
- Joanne F Garbincius
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Mitochondrial calcium uniporter affects neutrophil bactericidal activity during Staphylococcus aureus infection. Infect Immun 2021; 90:e0055121. [PMID: 34871043 DOI: 10.1128/iai.00551-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neutrophils simultaneously restrict Staphylococcus aureus dissemination and facilitate bactericidal activity during infection through the formation of neutrophil extracellular traps (NETs). Neutrophils that produce higher levels of mitochondrial superoxide undergo enhanced terminal NET formation (suicidal NETosis) in response to S. aureus; however, mechanisms regulating mitochondrial homeostasis upstream of neutrophil antibacterial processes are not fully resolved. Here, we demonstrate that mitochondrial calcium uptake 1 (MICU1)-deficient (MICU1-/-) neutrophils accumulate higher levels of calcium and iron within the mitochondria in a mitochondrial calcium uniporter (MCU)-dependent manner. Corresponding with increased ion flux through the MCU, mitochondrial superoxide production is elevated, thereby increasing the propensity for MICU1-/- neutrophils to undergo suicidal NETosis rather than primary degranulation in response to S. aureus. Increased NET formation augments macrophage killing of bacterial pathogens. Similarly, MICU1-/- neutrophils alone are not more antibacterial towards S. aureus, but rather enhanced suicidal NETosis by MICU1-/- neutrophils facilitates increased bactericidal activity in the presence of macrophages. Similarly, mice with a deficiency in MICU1 restricted to cells expressing LysM exhibit lower bacterial burdens in the heart with increased survival during systemic S. aureus infection. Coinciding with the decrease in S. aureus burdens, MICU1-/- neutrophils in the heart produced higher levels of mitochondrial superoxide and undergo enhanced suicidal NETosis. These results demonstrate that ion flux by the MCU affects the antibacterial function of neutrophils during S. aureus infection.
Collapse
|
14
|
Zhang Z, Shi C, Xia X, Du J, Fan J, Peng X. Molecular Design of Monochromophore-Based Bifunctional Photosensitizers for Simultaneous Ratiometric Oxygen Reporting and Photodynamic Cancer Therapy. Anal Chem 2021; 93:13539-13547. [PMID: 34581571 DOI: 10.1021/acs.analchem.1c02485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Monitoring the tumor oxygen level when implementing photodynamic therapy (PDT) on malignant cancer has vital significance but remains challenging yet. Herein, by structurally manipulating a 2,4-dimethylpyrrole-engineered asymmetric BODIPY scaffold with different kinds, numbers, and positions of halogen atoms, we rationally designed several monochromophore-based bifunctional photosensitizers, named BDPs (BDP-I, BDP-II, and BDP-III), with self-sensitized photooxidation characteristics for accurate oxygen reporting and photodynamic tumor ablation. We show that different ways of halogen regulation allow available tuning of BDPs' oxygen-dependent ratiometric fluorescence turn-ons upon light irradiation as well as type-II PDT efficiencies before and after self-sensitized photooxidation. Encouragingly, measuring the specific ratiometric signals of the most promising BDP-II enabled the direct observation of initial oxygen concentration in both living 4T1 cells and a tumor-bearing mice model, affording an alternative way for evaluating oxygen supplementation strategies. Meanwhile, the "always on" PDT effect of BDP-II ensured efficient tumor ablation via apoptosis. Our research was thus believed to be of instructive significance for future application of oxygen-related auxiliary strategies and the design of unimolecular multifunctional PDT agents for cancer precision therapy.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Chao Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Xiang Xia
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
15
|
Garg V, Suzuki J, Paranjpe I, Unsulangi T, Boyman L, Milescu LS, Lederer WJ, Kirichok Y. The mechanism of MICU-dependent gating of the mitochondrial Ca 2+uniporter. eLife 2021; 10:e69312. [PMID: 34463251 PMCID: PMC8437439 DOI: 10.7554/elife.69312] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
Ca2+ entry into mitochondria is through the mitochondrial calcium uniporter complex (MCUcx), a Ca2+-selective channel composed of five subunit types. Two MCUcx subunits (MCU and EMRE) span the inner mitochondrial membrane, while three Ca2+-regulatory subunits (MICU1, MICU2, and MICU3) reside in the intermembrane space. Here, we provide rigorous analysis of Ca2+ and Na+ fluxes via MCUcx in intact isolated mitochondria to understand the function of MICU subunits. We also perform direct patch clamp recordings of macroscopic and single MCUcx currents to gain further mechanistic insights. This comprehensive analysis shows that the MCUcx pore, composed of the EMRE and MCU subunits, is not occluded nor plugged by MICUs during the absence or presence of extramitochondrial Ca2+ as has been widely reported. Instead, MICUs potentiate activity of MCUcx as extramitochondrial Ca2+ is elevated. MICUs achieve this by modifying the gating properties of MCUcx allowing it to spend more time in the open state.
Collapse
Affiliation(s)
- Vivek Garg
- Department of Physiology, University of California San FranciscoSan FranciscoUnited States
- Department of Physiology, University of MarylandBaltimoreUnited States
| | - Junji Suzuki
- Department of Physiology, University of California San FranciscoSan FranciscoUnited States
| | - Ishan Paranjpe
- Department of Physiology, University of California San FranciscoSan FranciscoUnited States
| | - Tiffany Unsulangi
- Department of Physiology, University of California San FranciscoSan FranciscoUnited States
| | - Liron Boyman
- Department of Physiology, University of MarylandBaltimoreUnited States
| | - Lorin S Milescu
- Department of Biology, University of MarylandCollege ParkUnited States
| | | | - Yuriy Kirichok
- Department of Physiology, University of California San FranciscoSan FranciscoUnited States
| |
Collapse
|
16
|
Wang Y, Li X, Zhao F. MCU-Dependent mROS Generation Regulates Cell Metabolism and Cell Death Modulated by the AMPK/PGC-1α/SIRT3 Signaling Pathway. Front Med (Lausanne) 2021; 8:674986. [PMID: 34307407 PMCID: PMC8299052 DOI: 10.3389/fmed.2021.674986] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial calcium uniporter is an intensively investigated calcium channel, and its molecular components, structural features, and encoded genes have long been explored. Further studies have shown that the mitochondrial calcium unidirectional transporter (MCU) is a macromolecular complex related to intracellular and extracellular calcium regulation. Based on the current understanding, the MCU is crucial for maintaining cytosolic Ca2+ (cCa2+) homeostasis by modulating mitochondrial Ca2+ (mCa2+) uptake. The elevation of MCU-induced calcium levels is confirmed to be the main cause of mitochondrial reactive oxygen species (mROS) generation, which leads to disordered cellular metabolic patterns and cell death. In particular, in an I/R injury model, cancer cells, and adipocytes, MCU expression is maintained at high levels. As is well accepted, the AMPK/PGC-1α/SIRT3 pathway is believed to have an affinity for mROS formation and energy consumption. Therefore, we identified a link between MCU-related mROS formation and the AMPK/PGC-1α/SIRT3 signaling pathway in controlling cell metabolism and cell death, which may provide a new possibility of targeting the MCU to reverse relevant diseases.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fengchao Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Nakamura T, Ogawa M, Kojima K, Takayanagi S, Ishihara S, Hattori K, Naguro I, Ichijo H. The mitochondrial Ca 2+ uptake regulator, MICU1, is involved in cold stress-induced ferroptosis. EMBO Rep 2021; 22:e51532. [PMID: 33822458 PMCID: PMC8097382 DOI: 10.15252/embr.202051532] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Ferroptosis has recently attracted much interest because of its relevance to human diseases such as cancer and ischemia-reperfusion injury. We have reported that prolonged severe cold stress induces lipid peroxidation-dependent ferroptosis, but the upstream mechanism remains unknown. Here, using genome-wide CRISPR screening, we found that a mitochondrial Ca2+ uptake regulator, mitochondrial calcium uptake 1 (MICU1), is required for generating lipid peroxide and subsequent ferroptosis under cold stress. Furthermore, the gatekeeping activity of MICU1 through mitochondrial calcium uniporter (MCU) is suggested to be indispensable for cold stress-induced ferroptosis. MICU1 is required for mitochondrial Ca2+ increase, hyperpolarization of the mitochondrial membrane potential (MMP), and subsequent lipid peroxidation under cold stress. Collectively, these findings suggest that the MICU1-dependent mitochondrial Ca2+ homeostasis-MMP hyperpolarization axis is involved in cold stress-induced lipid peroxidation and ferroptosis.
Collapse
Affiliation(s)
- Toshitaka Nakamura
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Motoyuki Ogawa
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Kazuki Kojima
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Saki Takayanagi
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Shunya Ishihara
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Kazuki Hattori
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Isao Naguro
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Hidenori Ichijo
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
18
|
MacEwen MJ, Markhard AL, Bozbeyoglu M, Bradford F, Goldberger O, Mootha VK, Sancak Y. Evolutionary divergence reveals the molecular basis of EMRE dependence of the human MCU. Life Sci Alliance 2020; 3:e202000718. [PMID: 32769116 PMCID: PMC7425227 DOI: 10.26508/lsa.202000718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 01/18/2023] Open
Abstract
The mitochondrial calcium uniporter (MCU) is a calcium-activated calcium channel critical for signaling and bioenergetics. MCU, the pore-forming subunit of the uniporter, contains two transmembrane domains and is found in all major eukaryotic taxa. In amoeba and fungi, MCU homologs are sufficient to form a functional calcium channel, whereas human MCU exhibits a strict requirement for the metazoan protein essential MCU regulator (EMRE) for conductance. Here, we exploit this evolutionary divergence to decipher the molecular basis of human MCU's dependence on EMRE. By systematically generating chimeric proteins that consist of EMRE-independent Dictyostelium discoideum MCU and Homo sapiens MCU (HsMCU), we converged on a stretch of 10 amino acids in D. discoideum MCU that can be transplanted to HsMCU to render it EMRE independent. We call this region in human MCU the EMRE dependence domain (EDD). Crosslinking experiments show that EMRE directly interacts with HsMCU at its transmembrane domains as well as the EDD. Our results suggest that EMRE stabilizes the EDD of MCU, permitting both channel opening and calcium conductance, consistent with recently published structures of MCU-EMRE.
Collapse
Affiliation(s)
| | - Andrew L Markhard
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Mert Bozbeyoglu
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Forrest Bradford
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Olga Goldberger
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Vamsi K Mootha
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| |
Collapse
|
19
|
Transmembrane BAX Inhibitor-1 Motif Containing Protein 5 (TMBIM5) Sustains Mitochondrial Structure, Shape, and Function by Impacting the Mitochondrial Protein Synthesis Machinery. Cells 2020; 9:cells9102147. [PMID: 32977469 PMCID: PMC7598220 DOI: 10.3390/cells9102147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
The Transmembrane Bax Inhibitor-1 motif (TMBIM)-containing protein family is evolutionarily conserved and has been implicated in cell death susceptibility. The only member with a mitochondrial localization is TMBIM5 (also known as GHITM or MICS1), which affects cristae organization and associates with the Parkinson's disease-associated protein CHCHD2 in the inner mitochondrial membrane. We here used CRISPR-Cas9-mediated knockout HAP1 cells to shed further light on the function of TMBIM5 in physiology and cell death susceptibility. We found that compared to wild type, TMBIM5-knockout cells were smaller and had a slower proliferation rate. In these cells, mitochondria were more fragmented with a vacuolar cristae structure. In addition, the mitochondrial membrane potential was reduced and respiration was attenuated, leading to a reduced mitochondrial ATP generation. TMBIM5 did not associate with Mic10 and Mic60, which are proteins of the mitochondrial contact site and cristae organizing system (MICOS), nor did TMBIM5 knockout affect their expression levels. TMBIM5-knockout cells were more sensitive to apoptosis elicited by staurosporine and BH3 mimetic inhibitors of Bcl-2 and Bcl-XL. An unbiased proteomic comparison identified a dramatic downregulation of proteins involved in the mitochondrial protein synthesis machinery in TMBIM5-knockout cells. We conclude that TMBIM5 is important to maintain the mitochondrial structure and function possibly through the control of mitochondrial biogenesis.
Collapse
|
20
|
Discovery of EMRE in fungi resolves the true evolutionary history of the mitochondrial calcium uniporter. Nat Commun 2020; 11:4031. [PMID: 32788582 PMCID: PMC7423614 DOI: 10.1038/s41467-020-17705-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/06/2020] [Indexed: 01/25/2023] Open
Abstract
Calcium (Ca2+) influx into mitochondria occurs through a Ca2+-selective uniporter channel, which regulates essential cellular processes in eukaryotic organisms. Previous evolutionary analyses of its pore-forming subunits MCU and EMRE, and gatekeeper MICU1, pinpointed an evolutionary paradox: the presence of MCU homologs in fungal species devoid of any other uniporter components and of mt-Ca2+ uptake. Here, we trace the mt-Ca2+ uniporter evolution across 1,156 fully-sequenced eukaryotes and show that animal and fungal MCUs represent two distinct paralogous subfamilies originating from an ancestral duplication. Accordingly, we find EMRE orthologs outside Holoza and uncover the existence of an animal-like uniporter within chytrid fungi, which enables mt-Ca2+ uptake when reconstituted in vivo in the yeast Saccharomyces cerevisiae. Our study represents the most comprehensive phylogenomic analysis of the mt-Ca2+ uptake system and demonstrates that MCU, EMRE, and MICU formed the core of the ancestral opisthokont uniporter, with major implications for comparative structural and functional studies. The mitochondrial calcium uptake system, crucial for cellular processes, evolved in ancient eukaryotes. Here, authors perform a phylogenomic analysis across 1,156 eukaryotes, and show that previously identified animal and fungal genes in this system originated from an ancestral duplication.
Collapse
|
21
|
Tufi R, Gleeson TP, von Stockum S, Hewitt VL, Lee JJ, Terriente-Felix A, Sanchez-Martinez A, Ziviani E, Whitworth AJ. Comprehensive Genetic Characterization of Mitochondrial Ca 2+ Uniporter Components Reveals Their Different Physiological Requirements In Vivo. Cell Rep 2020; 27:1541-1550.e5. [PMID: 31042479 PMCID: PMC6506686 DOI: 10.1016/j.celrep.2019.04.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/21/2019] [Accepted: 04/04/2019] [Indexed: 02/03/2023] Open
Abstract
Mitochondrial Ca2+ uptake is an important mediator of metabolism and cell death. Identification of components of the highly conserved mitochondrial Ca2+ uniporter has opened it up to genetic analysis in model organisms. Here, we report a comprehensive genetic characterization of all known uniporter components conserved in Drosophila. While loss of pore-forming MCU or EMRE abolishes fast mitochondrial Ca2+ uptake, this results in only mild phenotypes when young, despite shortened lifespans. In contrast, loss of the MICU1 gatekeeper is developmentally lethal, consistent with unregulated Ca2+ uptake. Mutants for the neuronally restricted regulator MICU3 are viable with mild neurological impairment. Genetic interaction analyses reveal that MICU1 and MICU3 are not functionally interchangeable. More surprisingly, loss of MCU or EMRE does not suppress MICU1 mutant lethality, suggesting that this results from uniporter-independent functions. Our data reveal the interplay among components of the mitochondrial Ca2+ uniporter and shed light on their physiological requirements in vivo. MCU or EMRE loss blocks fast mitochondrial calcium uptake but are relatively benign MCU knockout flies are short lived compared to EMRE or MICU3 mutants MICU1 mutants are developmentally lethal, and MCU or EMRE knockout fails to rescue MICU1 and MICU3 are not functionally interchangeable
Collapse
Affiliation(s)
- Roberta Tufi
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Thomas P Gleeson
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Sophia von Stockum
- Department of Biology, University of Padova, Padova, Italy; Fondazione Ospedale San Camillo, IRCCS, Lido di Venezia, Venezia, Italy
| | - Victoria L Hewitt
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Juliette J Lee
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Ana Terriente-Felix
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Alvaro Sanchez-Martinez
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Elena Ziviani
- Department of Biology, University of Padova, Padova, Italy; Fondazione Ospedale San Camillo, IRCCS, Lido di Venezia, Venezia, Italy
| | - Alexander J Whitworth
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
22
|
Tarasova NV, Vishnyakova PA, Logashina YA, Elchaninov AV. Mitochondrial Calcium Uniporter Structure and Function in Different Types of Muscle Tissues in Health and Disease. Int J Mol Sci 2019; 20:ijms20194823. [PMID: 31569359 PMCID: PMC6801532 DOI: 10.3390/ijms20194823] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
Calcium ions (Ca2+) influx to mitochondrial matrix is crucial for the life of a cell. Mitochondrial calcium uniporter (mtCU) is a protein complex which consists of the pore-forming subunit (MCU) and several regulatory subunits. MtCU is the main contributor to inward Ca2+ currents through the inner mitochondrial membrane. Extensive investigations of mtCU involvement into normal and pathological molecular pathways started from the moment of discovery of its molecular components. A crucial role of mtCU in the control of these pathways is now recognized in both health and disease. In particular, impairments of mtCU function have been demonstrated for cardiovascular and skeletal muscle-associated pathologies. This review summarizes the current state of knowledge on mtCU structure, regulation, and function in different types of muscle tissues in health and disease.
Collapse
Affiliation(s)
- Nadezhda V Tarasova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8, bld. 2, Moscow 119991, Russia.
| | - Polina A Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
| | - Yulia A Logashina
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8, bld. 2, Moscow 119991, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow 117997, Russia.
| | - Andrey V Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia.
- Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia.
| |
Collapse
|
23
|
Marchi S, Vitto VAM, Danese A, Wieckowski MR, Giorgi C, Pinton P. Mitochondrial calcium uniporter complex modulation in cancerogenesis. Cell Cycle 2019; 18:1068-1083. [PMID: 31032692 DOI: 10.1080/15384101.2019.1612698] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aberrations in mitochondrial Ca2+ homeostasis have been associated with different pathological conditions, including neurological defects, cardiovascular diseases, and, in the last years, cancer. With the recent molecular identification of the mitochondrial calcium uniporter (MCU) complex, the channel that allows Ca2+ accumulation into the mitochondrial matrix, alterations in the expression levels or functioning in one or more MCU complex members have been linked to different cancers and cancer-related phenotypes. In this review, we will analyze the role of the uniporter and mitochondrial Ca2+ derangements in modulating cancer cell sensitivity to death, invasiveness, and migratory capacity, as well as cancer progression in vivo. We will also discuss some critical points and contradictory results to highlight the consequence of MCU complex modulation in tumor development.
Collapse
Affiliation(s)
- Saverio Marchi
- a Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology , Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara , Ferrara , Italy.,b Department of Clinical and Molecular Sciences, Polytechnical University of Marche , Ancona , Italy
| | - Veronica Angela Maria Vitto
- a Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology , Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara , Ferrara , Italy
| | - Alberto Danese
- a Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology , Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara , Ferrara , Italy
| | | | - Carlotta Giorgi
- a Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology , Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara , Ferrara , Italy
| | - Paolo Pinton
- a Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology , Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara , Ferrara , Italy.,d Maria Cecilia Hospital, GVM Care & Research, 48033 , Cotignola , Ravenna , Italy
| |
Collapse
|
24
|
Wang Y, Wu Q, Liu L, Li X, Lin A, Li C. MoMCP1, a Cytochrome P450 Gene, Is Required for Alleviating Manganese Toxin Revealed by Transcriptomics Analysis in Magnaporthe oryzae. Int J Mol Sci 2019; 20:ijms20071590. [PMID: 30934953 PMCID: PMC6480321 DOI: 10.3390/ijms20071590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 11/24/2022] Open
Abstract
Manganese, as an essential trace element, participates in many physiological reactions by regulating Mn associated enzymes. Magnaporthe oryzae is a serious pathogen and causes destructive losses for rice production. We identified a cytochrome P450 gene, MoMCP1, involving the alleviation of manganese toxin and pathogenicity. To identify the underlying mechanisms, transcriptomics were performed. The results indicated that many pathogenicity related genes were regulated, especially hydrophobin related genes in ∆Momcp1. Furthermore, the Mn2+ toxicity decreased the expressions of genes involved in the oxidative phosphorylation and energy production, and increased the reactive oxygen species (ROS) levels, which might impair the functions of mitochondrion and vacuole, compromising the pathogenicity and development in ∆Momcp1. Additionally, our results provided further information about Mn associated the gene network for Mn metabolism in cells.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
| | - Qi Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
- College of Science, Yunnan Agricultural University, Kunming 650201, China.
| | - Lina Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China.
| | - Xiaoling Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
- Kunming Edible Fungi Institute of All China Federation of Supply and Marketing Cooperatives, Kunming 650223, China.
| | - Aijia Lin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|