1
|
Li S, Tao B, Wan J, Montecino-Rodriguez E, Wang P, Ma F, Sun B, Gu Y, Ramadoss S, Su L, Sun Q, Hoeve JT, Stiles L, Collins J, van Dam RM, Tamboline M, Taschereau R, Shirihai O, Kitchen DB, Pellegrini M, Graeber T, Dorshkind K, Xu S, Deb A. A humanized monoclonal antibody targeting an ectonucleotidase rescues cardiac metabolism and heart function after myocardial infarction. Cell Rep Med 2024; 5:101795. [PMID: 39454569 PMCID: PMC11604407 DOI: 10.1016/j.xcrm.2024.101795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/06/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
Myocardial infarction (MI) results in aberrant cardiac metabolism, but no therapeutics have been designed to target cardiac metabolism to enhance heart repair. We engineer a humanized monoclonal antibody against the ectonucleotidase ENPP1 (hENPP1mAb) that targets metabolic crosstalk in the infarcted heart. In mice expressing human ENPP1, systemic administration of hENPP1mAb metabolically reprograms myocytes and non-myocytes and leads to a significant rescue of post-MI heart dysfunction. Using metabolomics, single-nuclear transcriptomics, and cellular respiration studies, we show that the administration of the hENPP1mAb induces organ-wide metabolic and transcriptional reprogramming of the heart that enhances myocyte cellular respiration and decreases cell death and fibrosis in the infarcted heart. Biodistribution and safety studies showed specific organ-wide distribution with the antibody being well tolerated. In humanized animals, with drug clearance kinetics similar to humans, we demonstrate that a single "shot" of the hENPP1mAb after MI is sufficient to rescue cardiac dysfunction.
Collapse
Affiliation(s)
- Shen Li
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bo Tao
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jijun Wan
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Enca Montecino-Rodriguez
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Ping Wang
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Feiyang Ma
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Baiming Sun
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yiqian Gu
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sivakumar Ramadoss
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lianjiu Su
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Qihao Sun
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Johanna Ten Hoeve
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; UCLA Metabolomics Center, University of California, Los Angeles, Los Angeles, CA, USA; Crump Institute of Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Linsey Stiles
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jeffrey Collins
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; Crump Institute of Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - R Michael van Dam
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; Crump Institute of Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mikayla Tamboline
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; Crump Institute of Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Richard Taschereau
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; Crump Institute of Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Orian Shirihai
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Matteo Pellegrini
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Thomas Graeber
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; UCLA Metabolomics Center, University of California, Los Angeles, Los Angeles, CA, USA; Crump Institute of Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kenneth Dorshkind
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Shili Xu
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; Crump Institute of Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Bettini A, Camelliti P, Stuckey DJ, Day RM. Injectable biodegradable microcarriers for iPSC expansion and cardiomyocyte differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404355. [PMID: 38900068 PMCID: PMC11348074 DOI: 10.1002/advs.202404355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Cell therapy is a potential novel treatment for cardiac regeneration and numerous studies have attempted to transplant cells to regenerate the myocardium lost during myocardial infarction. To date, only minimal improvements to cardiac function have been reported. This is likely to be the result of low cell retention and survival following transplantation. This study aimed to improve the delivery and engraftment of viable cells by using an injectable microcarrier that provides an implantable, biodegradable substrate for attachment and growth of cardiomyocytes derived from induced pluripotent stem cells (iPSC). We describe the fabrication and characterisation of Thermally Induced Phase Separation (TIPS) microcarriers and their surface modification to enable iPSC-derived cardiomyocyte attachment in xeno-free conditions is described. The selected formulation resulted in iPSC attachment, expansion, and retention of pluripotent phenotype. Differentiation of iPSC into cardiomyocytes on the microcarriers is investigated in comparison with culture on 2D tissue culture plastic surfaces. Microcarrier culture is shown to support culture of a mature cardiomyocyte phenotype, be compatible with injectable delivery, and reduce anoikis. The findings from this study demonstrate that TIPS microcarriers provide a supporting matrix for culturing iPSC and iPSC-derived cardiomyocytes in vitro and are suitable as an injectable cell-substrate for cardiac regeneration.
Collapse
Affiliation(s)
- Annalisa Bettini
- Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonWC1E 6DDUK
- Centre for Precision Healthcare, Division of MedicineUniversity College LondonLondonWC1E 6JFUK
| | - Patrizia Camelliti
- School of Biosciences and MedicineUniversity of SurreyGuildfordSurreyGU2 7XHUK
| | - Daniel J. Stuckey
- Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonWC1E 6DDUK
| | - Richard M. Day
- Centre for Precision Healthcare, Division of MedicineUniversity College LondonLondonWC1E 6JFUK
| |
Collapse
|
3
|
Butler D, Reyes DR. Heart-on-a-chip systems: disease modeling and drug screening applications. LAB ON A CHIP 2024; 24:1494-1528. [PMID: 38318723 DOI: 10.1039/d3lc00829k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, casting a substantial economic footprint and burdening the global healthcare system. Historically, pre-clinical CVD modeling and therapeutic screening have been performed using animal models. Unfortunately, animal models oftentimes fail to adequately mimic human physiology, leading to a poor translation of therapeutics from pre-clinical trials to consumers. Even those that make it to market can be removed due to unforeseen side effects. As such, there exists a clinical, technological, and economical need for systems that faithfully capture human (patho)physiology for modeling CVD, assessing cardiotoxicity, and evaluating drug efficacy. Heart-on-a-chip (HoC) systems are a part of the broader organ-on-a-chip paradigm that leverages microfluidics, tissue engineering, microfabrication, electronics, and gene editing to create human-relevant models for studying disease, drug-induced side effects, and therapeutic efficacy. These compact systems can be capable of real-time measurements and on-demand characterization of tissue behavior and could revolutionize the drug development process. In this review, we highlight the key components that comprise a HoC system followed by a review of contemporary reports of their use in disease modeling, drug toxicity and efficacy assessment, and as part of multi-organ-on-a-chip platforms. We also discuss future perspectives and challenges facing the field, including a discussion on the role that standardization is expected to play in accelerating the widespread adoption of these platforms.
Collapse
Affiliation(s)
- Derrick Butler
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Darwin R Reyes
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
4
|
Hamsho K, Broadwin M, Stone CR, Sellke FW, Abid MR. The Current State of Extracellular Matrix Therapy for Ischemic Heart Disease. Med Sci (Basel) 2024; 12:8. [PMID: 38390858 PMCID: PMC10885030 DOI: 10.3390/medsci12010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
The extracellular matrix (ECM) is a three-dimensional, acellular network of diverse structural and nonstructural proteins embedded within a gel-like ground substance composed of glycosaminoglycans and proteoglycans. The ECM serves numerous roles that vary according to the tissue in which it is situated. In the myocardium, the ECM acts as a collagen-based scaffold that mediates the transmission of contractile signals, provides means for paracrine signaling, and maintains nutritional and immunologic homeostasis. Given this spectrum, it is unsurprising that both the composition and role of the ECM has been found to be modulated in the context of cardiac pathology. Myocardial infarction (MI) provides a familiar example of this; the ECM changes in a way that is characteristic of the progressive phases of post-infarction healing. In recent years, this involvement in infarct pathophysiology has prompted a search for therapeutic targets: if ECM components facilitate healing, then their manipulation may accelerate recovery, or even reverse pre-existing damage. This possibility has been the subject of numerous efforts involving the integration of ECM-based therapies, either derived directly from biologic sources or bioengineered sources, into models of myocardial disease. In this paper, we provide a thorough review of the published literature on the use of the ECM as a novel therapy for ischemic heart disease, with a focus on biologically derived models, of both the whole ECM and the components thereof.
Collapse
Affiliation(s)
- Khaled Hamsho
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
| | - Christopher R. Stone
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
| | - M. Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
| |
Collapse
|
5
|
Yap L, Chong LY, Tan C, Adusumalli S, Seow M, Guo J, Cai Z, Loo SJ, Lim E, Tan RS, Grishina E, Soong PL, Lath N, Ye L, Petretto E, Tryggvason K. Pluripotent stem cell-derived committed cardiac progenitors remuscularize damaged ischemic hearts and improve their function in pigs. NPJ Regen Med 2023; 8:26. [PMID: 37236990 DOI: 10.1038/s41536-023-00302-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Ischemic heart disease, which is often associated with irreversibly damaged heart muscle, is a major global health burden. Here, we report the potential of stem cell-derived committed cardiac progenitors (CCPs) have in regenerative cardiology. Human pluripotent embryonic stem cells were differentiated to CCPs on a laminin 521 + 221 matrix, characterized with bulk and single-cell RNA sequencing, and transplanted into infarcted pig hearts. CCPs differentiated for eleven days expressed a set of genes showing higher expression than cells differentiated for seven days. Functional heart studies revealed significant improvement in left ventricular ejection fraction at four and twelve weeks following transplantation. We also observed significant improvements in ventricular wall thickness and a reduction in infarction size after CCP transplantation (p-value < 0.05). Immunohistology analyses revealed in vivo maturation of the CCPs into cardiomyocytes (CM). We observed temporary episodes of ventricular tachyarrhythmia (VT) in four pigs and persistent VT in one pig, but the remaining five pigs exhibited normal sinus rhythm. Importantly, all pigs survived without the formation of any tumors or VT-related abnormalities. We conclude that pluripotent stem cell-derived CCPs constitute a promising possibility for myocardial infarction treatment and that they may positively impact regenerative cardiology.
Collapse
Affiliation(s)
- Lynn Yap
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore.
| | - Li Yen Chong
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Clarissa Tan
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Swarnaseetha Adusumalli
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Millie Seow
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Jing Guo
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Zuhua Cai
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Sze Jie Loo
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Singapore
| | - Eric Lim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Singapore
| | - Ru San Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Singapore
| | | | - Poh Loong Soong
- Ternion Biosciences, Singapore, 574329, Singapore
- Cardiovascular Disease Translational Research Program, Yong Loo Lin School of Medicine, NUS, Singapore, 169609, Singapore
| | - Narayan Lath
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Singapore
| | - Lei Ye
- Department of Biomedical Engineering, University of Alabama, Birmingham, 35233, England
| | - Enrico Petretto
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Karl Tryggvason
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore.
- Department of Medicine Duke University, Durham, NC, 27710, USA.
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77, Stockholm, Sweden.
| |
Collapse
|
6
|
Tay HG, Andre H, Chrysostomou V, Adusumalli S, Guo J, Ren X, Tan WS, Tor JE, Moreno-Moral A, Plastino F, Bartuma H, Cai Z, Tun SBB, Barathi VA, Siew Wei GT, Grenci G, Chong LY, Holmgren A, Kvanta A, Crowston JG, Petretto E, Tryggvason K. Photoreceptor laminin drives differentiation of human pluripotent stem cells to photoreceptor progenitors that partially restore retina function. Mol Ther 2023; 31:825-846. [PMID: 36638800 PMCID: PMC10014235 DOI: 10.1016/j.ymthe.2022.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/12/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023] Open
Abstract
Blindness caused by advanced stages of inherited retinal diseases and age-related macular degeneration are characterized by photoreceptor loss. Cell therapy involving replacement with functional photoreceptor-like cells generated from human pluripotent stem cells holds great promise. Here, we generated a human recombinant retina-specific laminin isoform, LN523, and demonstrated the role in promoting the differentiation of human embryonic stem cells into photoreceptor progenitors. This chemically defined and xenogen-free method enables reproducible production of photoreceptor progenitors within 32 days. We observed that the transplantation into rd10 mice were able to protect the host photoreceptor outer nuclear layer (ONL) up to 2 weeks post transplantation as measured by full-field electroretinogram. At 4 weeks post transplantation, the engrafted cells were found to survive, mature, and associate with the host's rod bipolar cells. Visual behavioral assessment using the water maze swimming test demonstrated visual improvement in the cell-transplanted rodents. At 20 weeks post transplantation, the maturing engrafted cells were able to replace the loss of host ONL by extensive association with host bipolar cells and synapses. Post-transplanted rabbit model also provided congruent evidence for synaptic connectivity with the degenerated host retina. The results may pave the way for the development of stem cell-based therapeutics for retina degeneration.
Collapse
Affiliation(s)
- Hwee Goon Tay
- Centre for Vision Research, Duke-NUS Medical School, Singapore; Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore.
| | - Helder Andre
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Vicki Chrysostomou
- Centre for Vision Research, Duke-NUS Medical School, Singapore; Academic Clinical Program, Duke-NUS Medical School, Singapore
| | | | - Jing Guo
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Xiaoyuan Ren
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Wei Sheng Tan
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Jia En Tor
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Aida Moreno-Moral
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Flavia Plastino
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Hammurabi Bartuma
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Zuhua Cai
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Sai Bo Bo Tun
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Veluchamy Amutha Barathi
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gavin Tan Siew Wei
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Gianluca Grenci
- Mechanobiology Institute (MBI) and Department of Biomedical Engineering, NUS, Singapore
| | - Li Yen Chong
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Arne Holmgren
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Anders Kvanta
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan Guy Crowston
- Centre for Vision Research, Duke-NUS Medical School, Singapore; Academic Clinical Program, Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Enrico Petretto
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Karl Tryggvason
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Division of Nephrology, Department of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
7
|
Jung Y, Kim J, Jang H, Kim G, Kwon YW. Strategy of Patient-Specific Therapeutics in Cardiovascular Disease Through Single-Cell RNA Sequencing. Korean Circ J 2022; 53:1-16. [PMID: 36627736 PMCID: PMC9834554 DOI: 10.4070/kcj.2022.0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Recently, single cell RNA sequencing (scRNA-seq) technology has enabled the discovery of novel or rare subtypes of cells and their characteristics. This technique has advanced unprecedented biomedical research by enabling the profiling and analysis of the transcriptomes of single cells at high resolution and throughput. Thus, scRNA-seq has contributed to recent advances in cardiovascular research by the generation of cell atlases of heart and blood vessels and the elucidation of mechanisms involved in cardiovascular development and diseases. This review summarizes the overall workflow of the scRNA-seq technique itself and key findings in the cardiovascular development and diseases based on the previous studies. In particular, we focused on how the single-cell sequencing technology can be utilized in clinical field and precision medicine to treat specific diseases.
Collapse
Affiliation(s)
- Yunseo Jung
- Strategic Center of Cell and Bio Therapy for Heart, Diabetes & Cancer, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Juyeong Kim
- Department of Medicine, Seoul National University College of Medicine, Seoul National University, Seoul, Korea
| | - Howon Jang
- Department of Medicine, Seoul National University College of Medicine, Seoul National University, Seoul, Korea
| | - Gwanhyeon Kim
- Department of Medicine, Seoul National University College of Medicine, Seoul National University, Seoul, Korea
| | - Yoo-Wook Kwon
- Strategic Center of Cell and Bio Therapy for Heart, Diabetes & Cancer, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Department of Medicine, Seoul National University College of Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
8
|
Barnes AM, Holmstoen TB, Bonham AJ, Rowland TJ. Differentiating Human Pluripotent Stem Cells to Cardiomyocytes Using Purified Extracellular Matrix Proteins. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120720. [PMID: 36550926 PMCID: PMC9774171 DOI: 10.3390/bioengineering9120720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) can be differentiated into cardiomyocytes (hESC-CMs and iPSC-CMs, respectively), which hold great promise for cardiac regenerative medicine and disease modeling efforts. However, the most widely employed differentiation protocols require undefined substrates that are derived from xenogeneic (animal) products, contaminating resultant hESC- and iPSC-CM cultures with xenogeneic proteins and limiting their clinical applicability. Additionally, typical hESC- and iPSC-CM protocols produce CMs that are significantly contaminated by non-CMs and that are immature, requiring lengthy maturation procedures. In this review, we will summarize recent studies that have investigated the ability of purified extracellular matrix (ECM) proteins to support hESC- and iPSC-CM differentiation, with a focus on commercially available ECM proteins and coatings to make such protocols widely available to researchers. The most promising of the substrates reviewed here include laminin-521 with laminin-221 together or Synthemax (a synthetic vitronectin-based peptide coating), which both resulted in highly pure CM cultures. Future efforts are needed to determine whether combinations of specific purified ECM proteins or derived peptides could further improve CM maturation and culture times, and significantly improve hESC- and iPSC-CM differentiation protocols.
Collapse
Affiliation(s)
- Ashlynn M. Barnes
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Tessa B. Holmstoen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Andrew J. Bonham
- Department of Chemistry & Biochemistry, Metropolitan State University of Denver, Denver, CO 80217, USA
| | - Teisha J. Rowland
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- Correspondence:
| |
Collapse
|
9
|
Romanazzo S, Kopecky C, Jiang S, Doshi R, Mukund V, Srivastava P, Rnjak‐Kovacina J, Kelly K, Kilian KA. Biomaterials directed activation of a cryostable therapeutic secretome in induced pluripotent stem cell derived mesenchymal stromal cells. J Tissue Eng Regen Med 2022; 16:1008-1018. [PMID: 36017672 PMCID: PMC9804847 DOI: 10.1002/term.3347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/11/2022] [Accepted: 08/09/2022] [Indexed: 01/09/2023]
Abstract
Mesenchymal stem cell therapy has suffered from wide variability in clinical efficacy, largely due to heterogeneous starting cell populations and large-scale cell death during and after implantation. Optimizing the manufacturing process has led to reproducible cell populations that can be cryopreserved for clinical applications. Nevertheless, ensuring a reproducible cell state that persists after cryopreservation remains a significant challenge, and is necessary to ensure reproducible clinical outcomes. Here we demonstrate how matrix-conjugated hydrogel cell culture materials can normalize a population of induced pluripotent stem cell derived mesenchymal stem cells (iPSC-MSCs) to display a defined secretory profile that promotes enhanced neovascularization in vitro and in vivo. Using a protein-conjugated biomaterials screen we identified two conditions-1 kPa collagen and 10 kPa fibronectin coated polyacrylamide gels-that promote reproducible secretion of pro-angiogenic and immunomodulatory cytokines from iPSC-MSCs that enhance tubulogenesis of endothelial cells in Geltrex and neovascularization in chick chorioallantoic membranes. Using defined culture substrates alone, we demonstrate maintenance of secretory activity after cryopreservation for the first time. This advance provides a simple and scalable approach for cell engineering and subsequent manufacturing, toward normalizing and priming a desired cell activity for clinical regenerative medicine.
Collapse
Affiliation(s)
- Sara Romanazzo
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Chantal Kopecky
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Shouyuan Jiang
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
| | - Riddhesh Doshi
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Vipul Mukund
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Pallavi Srivastava
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNew South WalesAustralia,School of Medical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Jelena Rnjak‐Kovacina
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
| | - Kilian Kelly
- Cynata Therapeutics LimitedCremorneVictoriaAustralia
| | - Kristopher A. Kilian
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNew South WalesAustralia,School of Materials Science and EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
10
|
Nadkarni R, Chu WC, Lee CQ, Mohamud Y, Yap L, Toh GA, Beh S, Lim R, Fan YM, Zhang YL, Robinson K, Tryggvason K, Luo H, Zhong F, Ho L. Viral proteases activate the CARD8 inflammasome in the human cardiovascular system. J Exp Med 2022; 219:e20212117. [PMID: 36129453 PMCID: PMC9499823 DOI: 10.1084/jem.20212117] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 06/18/2022] [Accepted: 08/08/2022] [Indexed: 01/10/2023] Open
Abstract
Nucleotide-binding oligomerization domain (NBD), leucine-rich repeat (LRR) containing protein family (NLRs) are intracellular pattern recognition receptors that mediate innate immunity against infections. The endothelium is the first line of defense against blood-borne pathogens, but it is unclear which NLRs control endothelial cell (EC) intrinsic immunity. Here, we demonstrate that human ECs simultaneously activate NLRP1 and CARD8 inflammasomes in response to DPP8/9 inhibitor Val-boro-Pro (VbP). Enterovirus Coxsackie virus B3 (CVB3)-the most common cause of viral myocarditis-predominantly activates CARD8 in ECs in a manner that requires viral 2A and 3C protease cleavage at CARD8 p.G38 and proteasome function. Genetic deletion of CARD8 in ECs and human embryonic stem cell-derived cardiomyocytes (HCMs) attenuates CVB3-induced pyroptosis, inflammation, and viral propagation. Furthermore, using a stratified endothelial-cardiomyocyte co-culture system, we demonstrate that deleting CARD8 in ECs reduces CVB3 infection of the underlying cardiomyocytes. Our study uncovers the unique role of CARD8 inflammasome in endothelium-intrinsic anti-viral immunity.
Collapse
Affiliation(s)
- Rhea Nadkarni
- Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Wern Cui Chu
- Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Cheryl Q.E. Lee
- Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Yasir Mohamud
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lynn Yap
- Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Gee Ann Toh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Sheryl Beh
- Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Radiance Lim
- Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Yiyun Michelle Fan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yizhuo Lyanne Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kim Robinson
- Skin Research Institute of Singapore, A*STAR, Singapore, Singapore
| | - Karl Tryggvason
- Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Honglin Luo
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Franklin Zhong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Skin Research Institute of Singapore, A*STAR, Singapore, Singapore
| | - Lena Ho
- Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders, Singapore, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| |
Collapse
|
11
|
Nakashima Y, Yoshida S, Tsukahara M. Semi-3D cultures using Laminin 221 as a coating material for human induced pluripotent stem cells. Regen Biomater 2022; 9:rbac060. [PMID: 36176714 PMCID: PMC9514851 DOI: 10.1093/rb/rbac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/09/2022] [Accepted: 08/21/2022] [Indexed: 11/19/2022] Open
Abstract
It was previously believed that human induced pluripotent stem cells (hiPSCs) did not show adhesion to the coating material Laminin 221, which is known to have specific affinity for cardiomyocytes. In this study, we report that human mononuclear cell-derived hiPSCs, established with Sendai virus vector, form peninsular-like colonies rather than embryonic stem cell-like colonies; these peninsular-like colonies can be passaged more than 10 times after establishment. Additionally, initialization-deficient cells with residual Sendai virus vector adhered to the coating material Laminin 511 but not to Laminin 221. Therefore, the expression of undifferentiated markers tended to be higher in hiPSCs established on Laminin 221 than on Laminin 511. On Laminin 221, hiPSCs15M66 showed a semi-floating colony morphology. The expression of various markers of cell polarity was significantly lower in hiPSCs cultured on Laminin 221 than in hiPSCs cultured on Laminin 511. Furthermore, 201B7 and 15M66 hiPSCs showed 3D cardiomyocyte differentiation on Laminin 221. Thus, the coating material Laminin 221 provides semi-floating culture conditions for the establishment, culture and induced differentiation of hiPSCs.
Collapse
Affiliation(s)
- Yoshiki Nakashima
- Kyoto University Center for iPS Cell Research and Application Foundation (CiRA Foundation), Facility for iPS Cell Therapy (FiT), Kyoto 606-8397, Japan
| | - Shinsuke Yoshida
- Kyoto University Center for iPS Cell Research and Application Foundation (CiRA Foundation), Facility for iPS Cell Therapy (FiT), Kyoto 606-8397, Japan
| | - Masayoshi Tsukahara
- Kyoto University Center for iPS Cell Research and Application Foundation (CiRA Foundation), Facility for iPS Cell Therapy (FiT), Kyoto 606-8397, Japan
| |
Collapse
|
12
|
Zhu D, Zhang Z, Zhao J, Liu D, Gan L, Lau WB, Xie D, Meng Z, Yao P, Tsukuda J, Christopher TA, Lopez BL, Gao E, Koch WJ, Wang Y, Ma XL. Targeting Adiponectin Receptor 1 Phosphorylation Against Ischemic Heart Failure. Circ Res 2022; 131:e34-e50. [PMID: 35611695 PMCID: PMC9308652 DOI: 10.1161/circresaha.121.319976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Despite significantly reduced acute myocardial infarction (MI) mortality in recent years, ischemic heart failure continues to escalate. Therapeutic interventions effectively reversing pathological remodeling are an urgent unmet medical need. We recently demonstrated that AdipoR1 (APN [adiponectin] receptor 1) phosphorylation by GRK2 (G-protein-coupled receptor kinase 2) contributes to maladaptive remodeling in the ischemic heart. The current study clarified the underlying mechanisms leading to AdipoR1 phosphorylative desensitization and investigated whether blocking AdipoR1 phosphorylation may restore its protective signaling, reversing post-MI remodeling. METHODS Specific sites and underlying molecular mechanisms responsible for AdipoR1 phosphorylative desensitization were investigated in vitro (neonatal and adult cardiomyocytes). The effects of AdipoR1 phosphorylation inhibition upon APN post-MI remodeling and heart failure progression were investigated in vivo. RESULTS Among 4 previously identified sites sensitive to GRK2 phosphorylation, alanine substitution of Ser205 (AdipoR1S205A), but not other 3 sites, rescued GRK2-suppressed AdipoR1 functions, restoring APN-induced cell salvage kinase activation and reducing oxidative cell death. The molecular investigation followed by functional determination demonstrated that AdipoR1 phosphorylation promoted clathrin-dependent (not caveolae) endocytosis and lysosomal-mediated (not proteasome) degradation, reducing AdipoR1 protein level and suppressing AdipoR1-mediated cytoprotective action. GRK2-induced AdipoR1 endocytosis and degradation were blocked by AdipoR1S205A overexpression. Moreover, AdipoR1S205E (pseudophosphorylation) phenocopied GRK2 effects, promoted AdipoR1 endocytosis and degradation, and inhibited AdipoR1 biological function. Most importantly, AdipoR1 function was preserved during heart failure development in AdipoR1-KO (AdipoR1 knockout) mice reexpressing hAdipoR1S205A. APN administration in the failing heart reversed post-MI remodeling and improved cardiac function. However, reexpressing hAdipoR1WT in AdipoR1-KO mice failed to restore APN cardioprotection. CONCLUSIONS Ser205 is responsible for AdipoR1 phosphorylative desensitization in the failing heart. Blockade of AdipoR1 phosphorylation followed by pharmacological APN administration is a novel therapy effective in reversing post-MI remodeling and mitigating heart failure progression.
Collapse
Affiliation(s)
- Di Zhu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Zhen Zhang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Jianli Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Demin Liu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Lu Gan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Dina Xie
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Zhijun Meng
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Peng Yao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Jumpei Tsukuda
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | | | - Bernard L. Lopez
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Erhe Gao
- Department of Cardiovascular Sciences, Center for Translational Medicine, Temple University, Philadelphia, PA 19104
| | - Walter J. Koch
- Department of Cardiovascular Sciences, Center for Translational Medicine, Temple University, Philadelphia, PA 19104
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
- Corresponding Authors: Xinliang (Xin) Ma, M.D., Ph.D, Department of Medicine and, Department of Emergency Medicine, 1025 Walnut Street, College Building 300, Thomas Jefferson University, Philadelphia, PA 19107, Tel: 215-955-4994, Or Yajing Wang, MD,PhD, Department of Emergency Medicine, 1025 Walnut Street, College Building 325, Thomas Jefferson University, Philadelphia, PA 19107, Tel: 215-955-8895,
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
- Corresponding Authors: Xinliang (Xin) Ma, M.D., Ph.D, Department of Medicine and, Department of Emergency Medicine, 1025 Walnut Street, College Building 300, Thomas Jefferson University, Philadelphia, PA 19107, Tel: 215-955-4994, Or Yajing Wang, MD,PhD, Department of Emergency Medicine, 1025 Walnut Street, College Building 325, Thomas Jefferson University, Philadelphia, PA 19107, Tel: 215-955-8895,
| |
Collapse
|
13
|
Zhang J, Gregorich ZR, Tao R, Kim GC, Lalit PA, Carvalho JL, Markandeya Y, Mosher DF, Palecek SP, Kamp TJ. Cardiac differentiation of human pluripotent stem cells using defined extracellular matrix proteins reveals essential role of fibronectin. eLife 2022; 11:e69028. [PMID: 35758861 PMCID: PMC9236614 DOI: 10.7554/elife.69028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/05/2022] [Indexed: 11/13/2022] Open
Abstract
Research and therapeutic applications using human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) require robust differentiation strategies. Efforts to improve hPSC-CM differentiation have largely overlooked the role of extracellular matrix (ECM). The present study investigates the ability of defined ECM proteins to promote hPSC cardiac differentiation. Fibronectin (FN), laminin-111, and laminin-521 enabled hPSCs to attach and expand. However, only addition of FN promoted cardiac differentiation in response to growth factors Activin A, BMP4, and bFGF in contrast to the inhibition produced by laminin-111 or laminin-521. hPSCs in culture produced endogenous FN which accumulated in the ECM to a critical level necessary for effective cardiac differentiation. Inducible shRNA knockdown of FN prevented Brachyury+ mesoderm formation and subsequent hPSC-CM generation. Antibodies blocking FN binding integrins α4β1 or αVβ1, but not α5β1, inhibited cardiac differentiation. Furthermore, inhibition of integrin-linked kinase led to a decrease in phosphorylated AKT, which was associated with increased apoptosis and inhibition of cardiac differentiation. These results provide new insights into defined matrices for culture of hPSCs that enable production of FN-enriched ECM which is essential for mesoderm formation and efficient cardiac differentiation.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin - MadisonMadisonUnited States
- Stem Cell and Regenerative Medicine Center, University of Wisconsin - MadisonMadisonUnited States
| | - Zachery R Gregorich
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin - MadisonMadisonUnited States
| | - Ran Tao
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin - MadisonMadisonUnited States
| | - Gina C Kim
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin - MadisonMadisonUnited States
| | - Pratik A Lalit
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin - MadisonMadisonUnited States
| | - Juliana L Carvalho
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin - MadisonMadisonUnited States
- Department of Genomic Sciences and Biotechnology, University of BrasíliaBrasíliaBrazil
| | - Yogananda Markandeya
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin - MadisonMadisonUnited States
| | - Deane F Mosher
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin - MadisonMadisonUnited States
- Morgridge Institute for ResearchMadisonUnited States
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Sean P Palecek
- Stem Cell and Regenerative Medicine Center, University of Wisconsin - MadisonMadisonUnited States
- Department of Chemical and Biological Engineering, College of Engineering, University of WisconsinMadisonUnited States
| | - Timothy J Kamp
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin - MadisonMadisonUnited States
- Stem Cell and Regenerative Medicine Center, University of Wisconsin - MadisonMadisonUnited States
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - MadisonMadisonUnited States
| |
Collapse
|
14
|
Wang J, Xie L, Chen X, Lyu P, Zhang Q. Changes in Laminin in Acute Heart Failure. Int Heart J 2022; 63:454-458. [PMID: 35650146 DOI: 10.1536/ihj.21-769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Laminin is a major component of the basement membrane of cardiomyocytes and has been found at a high level in patients with heart failure. However, detailed information on the relationship between disease management and progression in patients with acute heart failure (AHF) remains lacking. We focused on the levels of laminin (LN) before and after admission to the hospital in AHF patients. One hundred twelve AHF patients who were hospitalized in the Affiliated Hospital 2 of Nantong University from January 2020 to February 2021 were selected as the main subjects of the study. The control group consisted of 137 hospitalized patients in New York Heart Association (NYHA) classes I-II during the same time period. Serum laminin levels were measured at baseline in all patients. Besides, laminin levels of AHF patients were measured again 1 week after admission. The serum laminin levels at admission were significantly higher in AHF patients than those in the patients of NYHA classes I-II [73.79 (41.04, 129.75) ng/mL versus 27.98 (20.75, 37.49) ng/mL, respectively, P < 0.001]. After 1 week of treatment, laminin levels in AHF patients were 41.56 (27.92, 78.67) ng/mL, which was significantly lower than before treatment (Z = -6.357, P < 0.001). Bivariate linear correlation analysis showed that LN was associated with NT-proBNP both in the acute phase and after treatment. Laminin levels were significantly higher in AHF patients who had atrial fibrillation (AF) than in those without AF. As a result, we speculated that laminin reflected improved heart function and the occurrence of myocardial fibrosis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Cardiology, Affiliated Hospital 2 of Nantong University
| | - Ling Xie
- Department of Cardiology, Affiliated Hospital 2 of Nantong University
| | - Xiangfan Chen
- Department of Pharmacy, Affiliated Hospital 2 of Nantong University
| | - Ping Lyu
- Department of Cardiology, Affiliated Hospital 2 of Nantong University
| | - Qing Zhang
- Department of General Practice, Affiliated Hospital 2 of Nantong University
| |
Collapse
|
15
|
Combined administration of laminin-221 and prostacyclin agonist enhances endogenous cardiac repair in an acute infarct rat heart. Sci Rep 2021; 11:22243. [PMID: 34782616 PMCID: PMC8593012 DOI: 10.1038/s41598-021-00918-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 09/27/2021] [Indexed: 11/24/2022] Open
Abstract
Although endogenous cardiac repair by recruitment of stem cells may serve as a therapeutic approach to healing a damaged heart, how to effectively enhance the migration of stem cells to the damaged heart is unclear. Here, we examined whether the combined administration of prostacyclin agonist (ONO1301), a multiple-cytokine inducer, and stem cell niche laminin-221 (LM221), enhances regeneration through endogenous cardiac repair. We administered ONO1301- and LM221-immersed sheets, LM221-immersed sheets, ONO1301-immersed sheets, and PBS-immersed sheets (control) to an acute infarction rat model. Four weeks later, cardiac function, histology, and cytokine expression were analysed. The combined administration of LM221 and ONO1301 upregulated angiogenic and chemotactic factors in the myocardium after 4 weeks and enhanced the accumulation of ILB4 positive cells, SMA positive cells, and platelet-derived growth factor receptor alpha (PDGFRα) and CD90 double-positive cells, leading to the generation of mature microvascular networks. Interstitial fibrosis reduced and functional recovery was prominent in LM221- and ONO1301-administrated hearts as compared with those in ONO1301-administrated or control hearts. LM221 and ONO1301 combination enhanced recruitment of PDGFRα and CD90 double-positive cells, maturation of vessels, and functional recovery in rat acute myocardial infarction hearts, highlighting a new promising acellular approach for the failed heart.
Collapse
|
16
|
Chong SY, Zharkova O, Yatim SMJ, Wang X, Lim XC, Huang C, Tan CY, Jiang J, Ye L, Tan MS, Angeli V, Versteeg HH, Dewerchin M, Carmeliet P, Lam CS, Chan MY, de Kleijn DP, Wang JW. Tissue factor cytoplasmic domain exacerbates post-infarct left ventricular remodeling via orchestrating cardiac inflammation and angiogenesis. Am J Cancer Res 2021; 11:9243-9261. [PMID: 34646369 PMCID: PMC8490508 DOI: 10.7150/thno.63354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/24/2021] [Indexed: 01/14/2023] Open
Abstract
The coagulation protein tissue factor (TF) regulates inflammation and angiogenesis via its cytoplasmic domain in infection, cancer and diabetes. While TF is highly abundant in the heart and is implicated in cardiac pathology, the contribution of its cytoplasmic domain to post-infarct myocardial injury and adverse left ventricular (LV) remodeling remains unknown. Methods: Myocardial infarction was induced in wild-type mice or mice lacking the TF cytoplasmic domain (TF∆CT) by occlusion of the left anterior descending coronary artery. Heart function was monitored with echocardiography. Heart tissue was collected at different time-points for histological, molecular and flow cytometry analysis. Results: Compared with wild-type mice, TF∆CT had a higher survival rate during a 28-day follow-up after myocardial infarction. Among surviving mice, TF∆CT mice had better cardiac function and less LV remodeling than wild-type mice. The overall improvement of post-infarct cardiac performance in TF∆CT mice, as revealed by speckle-tracking strain analysis, was attributed to reduced myocardial deformation in the peri-infarct region. Histological analysis demonstrated that TF∆CT hearts had in the infarct area greater proliferation of myofibroblasts and better scar formation. Compared with wild-type hearts, infarcted TF∆CT hearts showed less infiltration of proinflammatory cells with concomitant lower expression of protease-activated receptor-1 (PAR1) - Rac1 axis. In particular, infarcted TF∆CT hearts displayed markedly lower ratios of inflammatory M1 macrophages and reparative M2 macrophages (M1/M2). In vitro experiment with primary macrophages demonstrated that deletion of the TF cytoplasmic domain inhibited macrophage polarization toward the M1 phenotype. Furthermore, infarcted TF∆CT hearts presented markedly higher peri-infarct vessel density associated with enhanced endothelial cell proliferation and higher expression of PAR2 and PAR2-associated pro-angiogenic pathway factors. Finally, the overall cardioprotective effects observed in TF∆CT mice could be abolished by subcutaneously infusing a cocktail of PAR1-activating peptide and PAR2-inhibiting peptide via osmotic minipumps. Conclusions: Our findings demonstrate that the TF cytoplasmic domain exacerbates post-infarct cardiac injury and adverse LV remodeling via differential regulation of inflammation and angiogenesis. Targeted inhibition of the TF cytoplasmic domain-mediated intracellular signaling may ameliorate post-infarct LV remodeling without perturbing coagulation.
Collapse
|
17
|
The role of basement membranes in cardiac biology and disease. Biosci Rep 2021; 41:229516. [PMID: 34382650 PMCID: PMC8390786 DOI: 10.1042/bsr20204185] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/26/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
Basement membranes are highly specialised extracellular matrix structures that within the heart underlie endothelial cells and surround cardiomyocytes and vascular smooth muscle cells. They generate a dynamic and structurally supportive environment throughout cardiac development and maturation by providing physical anchorage to the underlying interstitium, structural support to the tissue, and by influencing cell behaviour and signalling. While this provides a strong link between basement membrane dysfunction and cardiac disease, the role of the basement membrane in cardiac biology remains under-researched and our understanding regarding the mechanistic interplay between basement membrane defects and their morphological and functional consequences remain important knowledge-gaps. In this review we bring together emerging understanding of basement membrane defects within the heart including in common cardiovascular pathologies such as contractile dysfunction and highlight some key questions that are now ready to be addressed.
Collapse
|
18
|
Neupane YR, Huang C, Wang X, Chng WH, Venkatesan G, Zharkova O, Wacker MG, Czarny B, Storm G, Wang JW, Pastorin G. Lyophilization Preserves the Intrinsic Cardioprotective Activity of Bioinspired Cell-Derived Nanovesicles. Pharmaceutics 2021; 13:pharmaceutics13071052. [PMID: 34371743 PMCID: PMC8309024 DOI: 10.3390/pharmaceutics13071052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022] Open
Abstract
Recently, bioinspired cell-derived nanovesicles (CDNs) have gained much interest in the field of nanomedicine due to the preservation of biomolecular structure characteristics derived from their parent cells, which impart CDNs with unique properties in terms of binding and uptake by target cells and intrinsic biological activities. Although the production of CDNs can be easily and reproducibly achieved with any kind of cell culture, application of CDNs for therapeutic purposes has been greatly hampered by their physical and chemical instability during long-term storage in aqueous dispersion. In the present study, we conceived a lyophilization approach that would preserve critical characteristics regarding stability (vesicles' size and protein content), structural integrity, and biological activity of CDNs for enabling long-term storage in freeze-dried form. Compared to the lyoprotectant sucrose, trehalose-lyoprotected CDNs showed significantly higher glass transition temperature and lower residual moisture content. As assessed by ATR-FTIR and far-UV circular dichroism, lyophilization in the presence of the lyoprotectant effectively maintained the secondary structure of cellular proteins. After reconstitution, lyoprotected CDNs were efficiently associated with HeLa cells, CT26 cells, and bone marrow-derived macrophages at a rate comparable to the freshly prepared CDNs. In vivo, both lyoprotected and freshly prepared CDNs, for the first time ever reported, targeted the injured heart, and exerted intrinsic cardioprotective effects within 24 h, attributable to the antioxidant capacity of CDNs in a myocardial ischemia/reperfusion injury animal model. Taken together, these results pave the way for further development of CDNs as cell-based therapeutics stabilized by lyophilization that enabled long-term storage while preserving their activity.
Collapse
Affiliation(s)
- Yub Raj Neupane
- Department of Pharmacy, National University of Singapore, Singapore 117559, Singapore; (Y.R.N.); (W.H.C.); (G.V.); (M.G.W.)
| | - Chenyuan Huang
- Department of Surgery, National University of Singapore, Singapore 119228, Singapore; (C.H.); (X.W.); (O.Z.); (G.S.)
- Cardiovascular Research Institute, National University Heart Centre, Singapore 117599, Singapore
| | - Xiaoyuan Wang
- Department of Surgery, National University of Singapore, Singapore 119228, Singapore; (C.H.); (X.W.); (O.Z.); (G.S.)
- Cardiovascular Research Institute, National University Heart Centre, Singapore 117599, Singapore
| | - Wei Heng Chng
- Department of Pharmacy, National University of Singapore, Singapore 117559, Singapore; (Y.R.N.); (W.H.C.); (G.V.); (M.G.W.)
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Gopalakrishnan Venkatesan
- Department of Pharmacy, National University of Singapore, Singapore 117559, Singapore; (Y.R.N.); (W.H.C.); (G.V.); (M.G.W.)
- Antimicrobial Resistance Interdisciplinary Research Group (AMR-IRG), Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Olga Zharkova
- Department of Surgery, National University of Singapore, Singapore 119228, Singapore; (C.H.); (X.W.); (O.Z.); (G.S.)
- Cardiovascular Research Institute, National University Heart Centre, Singapore 117599, Singapore
| | - Matthias Gerhard Wacker
- Department of Pharmacy, National University of Singapore, Singapore 117559, Singapore; (Y.R.N.); (W.H.C.); (G.V.); (M.G.W.)
| | - Bertrand Czarny
- School of Materials, Science and Engineering & Lee Kong Chian School of Medicine (LKC Medicine), Nanyang Technological University, Singapore 308232, Singapore;
| | - Gerrit Storm
- Department of Surgery, National University of Singapore, Singapore 119228, Singapore; (C.H.); (X.W.); (O.Z.); (G.S.)
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CS Utrecht, The Netherlands
- Department of Targeted Therapeutics, University of Twente, 7522 NB Enschede, The Netherlands
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, National University of Singapore, Singapore 119228, Singapore; (C.H.); (X.W.); (O.Z.); (G.S.)
- Cardiovascular Research Institute, National University Heart Centre, Singapore 117599, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
- Correspondence: (J.-W.W.); (G.P.)
| | - Giorgia Pastorin
- Department of Pharmacy, National University of Singapore, Singapore 117559, Singapore; (Y.R.N.); (W.H.C.); (G.V.); (M.G.W.)
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
- NUSNNI-NanoCore, National University of Singapore, Singapore 117574, Singapore
- Correspondence: (J.-W.W.); (G.P.)
| |
Collapse
|
19
|
Gao Y, Pu J. Differentiation and Application of Human Pluripotent Stem Cells Derived Cardiovascular Cells for Treatment of Heart Diseases: Promises and Challenges. Front Cell Dev Biol 2021; 9:658088. [PMID: 34055788 PMCID: PMC8149736 DOI: 10.3389/fcell.2021.658088] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are derived from human embryos (human embryonic stem cells) or reprogrammed from human somatic cells (human induced pluripotent stem cells). They can differentiate into cardiovascular cells, which have great potential as exogenous cell resources for restoring cardiac structure and function in patients with heart disease or heart failure. A variety of protocols have been developed to generate and expand cardiovascular cells derived from hPSCs in vitro. Precisely and spatiotemporally activating or inhibiting various pathways in hPSCs is required to obtain cardiovascular lineages with high differentiation efficiency. In this concise review, we summarize the protocols of differentiating hPSCs into cardiovascular cells, highlight their therapeutic application for treatment of cardiac diseases in large animal models, and discuss the challenges and limitations in the use of cardiac cells generated from hPSCs for a better clinical application of hPSC-based cardiac cell therapy.
Collapse
Affiliation(s)
- Yu Gao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Abstract
The developing heart is formed of two tissue layers separated by an extracellular matrix (ECM) that provides chemical and physical signals to cardiac cells. While deposition of specific ECM components creates matrix diversity, the cardiac ECM is also dynamic, with modification and degradation playing important roles in ECM maturation and function. In this Review, we discuss the spatiotemporal changes in ECM composition during cardiac development that support distinct aspects of heart morphogenesis. We highlight conserved requirements for specific ECM components in human cardiac development, and discuss emerging evidence of a central role for the ECM in promoting heart regeneration.
Collapse
Affiliation(s)
| | - Emily S Noël
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
21
|
Han Z, Liu S, Pei Y, Ding Z, Li Y, Wang X, Zhan D, Xia S, Driedonks T, Witwer KW, Weiss RG, van Zijl PCM, Bulte JWM, Cheng L, Liu G. Highly efficient magnetic labelling allows MRI tracking of the homing of stem cell-derived extracellular vesicles following systemic delivery. J Extracell Vesicles 2021; 10:e12054. [PMID: 33489014 PMCID: PMC7809601 DOI: 10.1002/jev2.12054] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/05/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Human stem‐cell‐derived extracellular vesicles (EVs) are currently being investigated for cell‐free therapy in regenerative medicine applications, but the lack of noninvasive imaging methods to track EV homing and uptake in injured tissues has limited the refinement and optimization of the approach. Here, we developed a new labelling strategy to prepare magnetic EVs (magneto‐EVs) allowing sensitive yet specific MRI tracking of systemically injected therapeutic EVs. This new labelling strategy relies on the use of ‘sticky’ magnetic particles, namely superparamagnetic iron oxide (SPIO) nanoparticles coated with polyhistidine tags, to efficiently separate magneto‐EVs from unencapsulated SPIO particles. Using this method, we prepared pluripotent stem cell (iPSC)‐derived magneto‐EVs and subsequently used MRI to track their homing in different animal models of kidney injury and myocardial ischemia. Our results showed that iPSC‐derived EVs preferentially accumulated in the injury sites and conferred substantial protection. Our study paves a new pathway for preparing highly purified magnetic EVs and tracking them using MRI towards optimized, systemically administered EV‐based cell‐free therapies.
Collapse
Affiliation(s)
- Zheng Han
- Russell H. Morgan Department of Radiology Johns Hopkins University School of Medicine Baltimore Maryland USA.,F.M. Kirby Research Center Kennedy Krieger Institute Baltimore Maryland USA
| | - Senquan Liu
- Cellular Imaging Section and Vascular Biology Program Institute for Cell Engineering Johns Hopkins University School of Medicine Baltimore Maryland USA.,Department of Medicine Johns Hopkins University School of Medicine Baltimore Maryland USA.,Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui China
| | - Yigang Pei
- Russell H. Morgan Department of Radiology Johns Hopkins University School of Medicine Baltimore Maryland USA.,Department of Radiology Xiangya Hospital Central South University Changsha Hunan China
| | - Zheng Ding
- Cellular Imaging Section and Vascular Biology Program Institute for Cell Engineering Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Yuguo Li
- Russell H. Morgan Department of Radiology Johns Hopkins University School of Medicine Baltimore Maryland USA.,F.M. Kirby Research Center Kennedy Krieger Institute Baltimore Maryland USA
| | - Xinge Wang
- Department of Bioengineering University of Illinois at Chicago Chicago Illinois USA
| | - Daqian Zhan
- Department of Neurology Hugo W. Moser Research Institute at Kennedy Krieger Baltimore Maryland USA
| | - Shuli Xia
- Department of Neurology Hugo W. Moser Research Institute at Kennedy Krieger Baltimore Maryland USA
| | - Tom Driedonks
- Department of Molecular and Comparative Pathobiology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Robert G Weiss
- Russell H. Morgan Department of Radiology Johns Hopkins University School of Medicine Baltimore Maryland USA.,Division of Cardiology Department of Medicine Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology Johns Hopkins University School of Medicine Baltimore Maryland USA.,F.M. Kirby Research Center Kennedy Krieger Institute Baltimore Maryland USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology Johns Hopkins University School of Medicine Baltimore Maryland USA.,F.M. Kirby Research Center Kennedy Krieger Institute Baltimore Maryland USA.,Cellular Imaging Section and Vascular Biology Program Institute for Cell Engineering Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Linzhao Cheng
- Department of Medicine Johns Hopkins University School of Medicine Baltimore Maryland USA.,Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui China
| | - Guanshu Liu
- Russell H. Morgan Department of Radiology Johns Hopkins University School of Medicine Baltimore Maryland USA.,F.M. Kirby Research Center Kennedy Krieger Institute Baltimore Maryland USA
| |
Collapse
|
22
|
Kukumberg M, Phermthai T, Wichitwiengrat S, Wang X, Arjunan S, Chong SY, Fong CY, Wang JW, Rufaihah AJ, Mattar CNZ. Hypoxia-induced amniotic fluid stem cell secretome augments cardiomyocyte proliferation and enhances cardioprotective effects under hypoxic-ischemic conditions. Sci Rep 2021; 11:163. [PMID: 33420256 PMCID: PMC7794288 DOI: 10.1038/s41598-020-80326-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Secretome derived from human amniotic fluid stem cells (AFSC-S) is rich in soluble bioactive factors (SBF) and offers untapped therapeutic potential for regenerative medicine while avoiding putative cell-related complications. Characterization and optimal generation of AFSC-S remains challenging. We hypothesized that modulation of oxygen conditions during AFSC-S generation enriches SBF and confers enhanced regenerative and cardioprotective effects on cardiovascular cells. We collected secretome at 6-hourly intervals up to 30 h following incubation of AFSC in normoxic (21%O2, nAFSC-S) and hypoxic (1%O2, hAFSC-S) conditions. Proliferation of human adult cardiomyocytes (hCM) and umbilical cord endothelial cells (HUVEC) incubated with nAFSC-S or hAFSC-S were examined following culture in normoxia or hypoxia. Lower AFSC counts and richer protein content in AFSC-S were observed in hypoxia. Characterization of AFSC-S by multiplex immunoassay showed higher concentrations of pro-angiogenic and anti-inflammatory SBF. hCM demonstrated highest proliferation with 30h-hAFSC-S in hypoxic culture. The cardioprotective potential of concentrated 30h-hAFSC-S treatment was demonstrated in a myocardial ischemia-reperfusion injury mouse model by infarct size and cell apoptosis reduction and cell proliferation increase when compared to saline treatment controls. Thus, we project that hypoxic-generated AFSC-S, with higher pro-angiogenic and anti-inflammatory SBF, can be harnessed and refined for tailored regenerative applications in ischemic cardiovascular disease.
Collapse
Affiliation(s)
- Marek Kukumberg
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tatsanee Phermthai
- Stem Cell Research and Development for Medical Therapy Unit, Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suparat Wichitwiengrat
- Stem Cell Research and Development for Medical Therapy Unit, Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Xiaoyuan Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore
| | - Subramanian Arjunan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suet Yen Chong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore
| | - Chui-Yee Fong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Abdul Jalil Rufaihah
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Citra Nurfarah Zaini Mattar
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Obstetrics and Gynaecology, National University Health System, Singapore, Singapore.
| |
Collapse
|
23
|
Szepes M, Melchert A, Dahlmann J, Hegermann J, Werlein C, Jonigk D, Haverich A, Martin U, Olmer R, Gruh I. Dual Function of iPSC-Derived Pericyte-Like Cells in Vascularization and Fibrosis-Related Cardiac Tissue Remodeling In Vitro. Int J Mol Sci 2020; 21:E8947. [PMID: 33255686 PMCID: PMC7728071 DOI: 10.3390/ijms21238947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Myocardial interstitial fibrosis (MIF) is characterized by excessive extracellular matrix (ECM) deposition, increased myocardial stiffness, functional weakening, and compensatory cardiomyocyte (CM) hypertrophy. Fibroblasts (Fbs) are considered the principal source of ECM, but the contribution of perivascular cells, including pericytes (PCs), has gained attention, since MIF develops primarily around small vessels. The pathogenesis of MIF is difficult to study in humans because of the pleiotropy of mutually influencing pathomechanisms, unpredictable side effects, and the lack of available patient samples. Human pluripotent stem cells (hPSCs) offer the unique opportunity for the de novo formation of bioartificial cardiac tissue (BCT) using a variety of different cardiovascular cell types to model aspects of MIF pathogenesis in vitro. Here, we have optimized a protocol for the derivation of hPSC-derived PC-like cells (iPSC-PCs) and present a BCT in vitro model of MIF that shows their central influence on interstitial collagen deposition and myocardial tissue stiffening. This model was used to study the interplay of different cell types-i.e., hPSC-derived CMs, endothelial cells (ECs), and iPSC-PCs or primary Fbs, respectively. While iPSC-PCs improved the sarcomere structure and supported vascularization in a PC-like fashion, the functional and histological parameters of BCTs revealed EC- and PC-mediated effects on fibrosis-related cardiac tissue remodeling.
Collapse
Affiliation(s)
- Monika Szepes
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.M.); (J.D.); (A.H.); (U.M.); (R.O.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany;
| | - Anna Melchert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.M.); (J.D.); (A.H.); (U.M.); (R.O.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany;
| | - Julia Dahlmann
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.M.); (J.D.); (A.H.); (U.M.); (R.O.)
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
| | - Jan Hegermann
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
- Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| | | | - Danny Jonigk
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany;
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany;
| | - Axel Haverich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.M.); (J.D.); (A.H.); (U.M.); (R.O.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany;
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.M.); (J.D.); (A.H.); (U.M.); (R.O.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany;
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.M.); (J.D.); (A.H.); (U.M.); (R.O.)
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
| | - Ina Gruh
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.M.); (J.D.); (A.H.); (U.M.); (R.O.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|
24
|
Xu Q, Ying P, Ren J, Kong N, Wang Y, Li YG, Yao Y, Kaplan DL, Ling S. Biomimetic Design for Bio-Matrix Interfaces and Regenerative Organs. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:411-429. [PMID: 33138695 DOI: 10.1089/ten.teb.2020.0234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The urgent demand for transplanted organs has motivated the development of regenerative medicine to biomimetically reconstruct the structure and function of natural tissues or organs. The prerequisites for constructing multicellular organs include specific cell sources, suitable scaffolding material, and interconnective biofunctional interfaces. As some of the most complex systems in nature, human organs, tissues, and cellular units have unique "bio-matrix" physicochemical interfaces. Human tissues support a large number of cells with distinct biofunctional interfaces for compartmentalization related to metabolism, material exchange, and physical barriers. These naturally shaped biofunctional interfaces support critical metabolic functions that drive adaptive human behavior. In contrast, mutations and disorders during organogenesis can disrupt these interfaces as a consequence of disease and trauma. To replicate the appropriate structure and physiological function of tissues and organs, the biomaterials used in these approaches should have properties that mimic those of natural biofunctional interfaces. In this review, the focus is on the biomimetic design of functional interfaces and hierarchical structures for four regenerative organs, liver, kidney, lung, heart, and the immune system. Research on these organs provides understanding of cell-matrix interactions for hierarchically bioinspired material engineering, and guidance for the design of bioartificial organs. Finally, we provide perspectives on future challenges in biofunctional interface designs and discuss the obstacles that remain toward the generation of functional bioartificial organs.
Collapse
Affiliation(s)
- Quanfu Xu
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pei Ying
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Na Kong
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yang Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yi-Gang Li
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Yao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
25
|
Montero P, Flandes-Iparraguirre M, Musquiz S, Pérez Araluce M, Plano D, Sanmartín C, Orive G, Gavira JJ, Prosper F, Mazo MM. Cells, Materials, and Fabrication Processes for Cardiac Tissue Engineering. Front Bioeng Biotechnol 2020; 8:955. [PMID: 32850768 PMCID: PMC7431658 DOI: 10.3389/fbioe.2020.00955] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular disease is the number one killer worldwide, with myocardial infarction (MI) responsible for approximately 1 in 6 deaths. The lack of endogenous regenerative capacity, added to the deleterious remodelling programme set into motion by myocardial necrosis, turns MI into a progressively debilitating disease, which current pharmacological therapy cannot halt. The advent of Regenerative Therapies over 2 decades ago kick-started a whole new scientific field whose aim was to prevent or even reverse the pathological processes of MI. As a highly dynamic organ, the heart displays a tight association between 3D structure and function, with the non-cellular components, mainly the cardiac extracellular matrix (ECM), playing both fundamental active and passive roles. Tissue engineering aims to reproduce this tissue architecture and function in order to fabricate replicas able to mimic or even substitute damaged organs. Recent advances in cell reprogramming and refinement of methods for additive manufacturing have played a critical role in the development of clinically relevant engineered cardiovascular tissues. This review focuses on the generation of human cardiac tissues for therapy, paying special attention to human pluripotent stem cells and their derivatives. We provide a perspective on progress in regenerative medicine from the early stages of cell therapy to the present day, as well as an overview of cellular processes, materials and fabrication strategies currently under investigation. Finally, we summarise current clinical applications and reflect on the most urgent needs and gaps to be filled for efficient translation to the clinical arena.
Collapse
Affiliation(s)
- Pilar Montero
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
| | - María Flandes-Iparraguirre
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
| | - Saioa Musquiz
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country – UPV/EHU, Vitoria-Gasteiz, Spain
| | - María Pérez Araluce
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Pamplona, Spain
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country – UPV/EHU, Vitoria-Gasteiz, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- University Institute for Regenerative Medicine and Oral Implantology – UIRMI (UPV/EHU – Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain
- Singapore Eye Research Institute, Singapore, Singapore
| | - Juan José Gavira
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Cardiology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Felipe Prosper
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
| | - Manuel M. Mazo
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
26
|
Zheng G, Xie ZY, Wang P, Wu YF, Shen HY. Recent advances of single-cell RNA sequencing technology in mesenchymal stem cell research. World J Stem Cells 2020; 12:438-447. [PMID: 32742561 PMCID: PMC7360991 DOI: 10.4252/wjsc.v12.i6.438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/13/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells with great potential for clinical applications. However, little is known about their cell heterogeneity at a single-cell resolution, which severely impedes the development of MSC therapy. In this review, we focus on advances in the identification of novel surface markers and functional subpopulations of MSCs made by single-cell RNA sequencing and discuss their participation in the pathophysiology of stem cells and related diseases. The challenges and future directions of single-cell RNA sequencing in MSCs are also addressed in this review.
Collapse
Affiliation(s)
- Guan Zheng
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, Guangdong Province, China
| | - Zhong-Yu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, Guangdong Province, China
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, Guangdong Province, China
| | - Yan-Feng Wu
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, China
| | - Hui-Yong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, Guangdong Province, China
| |
Collapse
|
27
|
Castillo EA, Lane KV, Pruitt BL. Micromechanobiology: Focusing on the Cardiac Cell-Substrate Interface. Annu Rev Biomed Eng 2020; 22:257-284. [PMID: 32501769 DOI: 10.1146/annurev-bioeng-092019-034950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Engineered, in vitro cardiac cell and tissue systems provide test beds for the study of cardiac development, cellular disease processes, and drug responses in a dish. Much effort has focused on improving the structure and function of engineered cardiomyocytes and heart tissues. However, these parameters depend critically on signaling through the cellular microenvironment in terms of ligand composition, matrix stiffness, and substrate mechanical properties-that is, matrix micromechanobiology. To facilitate improvements to in vitro microenvironment design, we review how cardiomyocytes and their microenvironment change during development and disease in terms of integrin expression and extracellular matrix (ECM) composition. We also discuss strategies used to bind proteins to common mechanobiology platforms and describe important differences in binding strength to the substrate. Finally, we review example biomaterial approaches designed to support and probe cell-ECM interactions of cardiomyocytes in vitro, as well as open questions and challenges.
Collapse
Affiliation(s)
- Erica A Castillo
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA; .,Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Kerry V Lane
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Beth L Pruitt
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA; .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93117, USA;
| |
Collapse
|
28
|
Aoki H, Yamashita M, Hashita T, Iwao T, Matsunaga T. Laminin 221 fragment is suitable for the differentiation of human induced pluripotent stem cells into brain microvascular endothelial-like cells with robust barrier integrity. Fluids Barriers CNS 2020; 17:25. [PMID: 32228708 PMCID: PMC7106710 DOI: 10.1186/s12987-020-00186-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/17/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In vitro blood-brain barrier (BBB) models using human induced pluripotent stem (iPS) cell-derived brain microvascular endothelial-like cells (iBMELCs) have been developed to predict the BBB permeability of drug candidates. For the differentiation of iBMELCs, Matrigel, which is a gelatinous protein mixture, is often used as a coating substrate. However, the components of Matrigel can vary among lots, as it is obtained from mouse sarcoma cells with the use of special technics and also contains various basement membranes. Therefore, fully defined substrates as substitutes for Matrigel are needed for a stable supply of iBMELCs with less variation among lots. METHODS iBMELCs were differentiated from human iPS cells on several matrices. The barrier integrity of iBMELCs was evaluated based on transendothelial electrical resistance (TEER) values and permeability of fluorescein isothiocyanate-dextran 4 kDa (FD4) and Lucifer yellow (LY). Characterization of iBMELCs was conducted by RT-qPCR and immunofluorescence analysis. Functions of efflux transporters were defined by intracellular accumulation of the substrates in the wells of multiwell plates. RESULTS iBMELCs differentiated on laminin 221 fragment (LN221F-iBMELCs) had higher TEER values and lower permeability of LY and FD4 as compared with iBMELCs differentiated on Matrigel (Matrigel-iBMELCs). Besides, the gene and protein expression levels of brain microvascular endothelial cells (BMEC)-related markers were similar between LN221F-iBMELCs and Matrigel-iBMELCs. Moreover, both Matrigel- and LN221F-iBMELCs had functions of P-glycoprotein and breast cancer resistance protein, which are essential efflux transporters for barrier functions of the BBB. CONCLUSION The fully defined substrate LN221F presents as an optimal coating matrix for differentiation of iBMELCs. The LN221F-iBMELCs had more robust barrier function for a longer period than Matrigel-iBMELCs with characteristics of BMECs. This finding will contribute the establishment of an iBMELC supply system for pharmacokinetic and pathological models of the BBB.
Collapse
Affiliation(s)
- Hiromasa Aoki
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Misaki Yamashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Tadahiro Hashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.
| |
Collapse
|
29
|
Chaudhry F, Isherwood J, Bawa T, Patel D, Gurdziel K, Lanfear DE, Ruden DM, Levy PD. Single-Cell RNA Sequencing of the Cardiovascular System: New Looks for Old Diseases. Front Cardiovasc Med 2019; 6:173. [PMID: 31921894 PMCID: PMC6914766 DOI: 10.3389/fcvm.2019.00173] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular disease encompasses a wide range of conditions, resulting in the highest number of deaths worldwide. The underlying pathologies surrounding cardiovascular disease include a vast and complicated network of both cellular and molecular mechanisms. Unique phenotypic alterations in specific cell types, visualized as varying RNA expression-levels (both coding and non-coding), have been identified as crucial factors in the pathology underlying conditions such as heart failure and atherosclerosis. Recent advances in single-cell RNA sequencing (scRNA-seq) have elucidated a new realm of cell subpopulations and transcriptional variations that are associated with normal and pathological physiology in a wide variety of diseases. This breakthrough in the phenotypical understanding of our cells has brought novel insight into cardiovascular basic science. scRNA-seq allows for separation of widely distinct cell subpopulations which were, until recently, simply averaged together with bulk-tissue RNA-seq. scRNA-seq has been used to identify novel cell types in the heart and vasculature that could be implicated in a variety of disease pathologies. Furthermore, scRNA-seq has been able to identify significant heterogeneity of phenotypes within individual cell subtype populations. The ability to characterize single cells based on transcriptional phenotypes allows researchers the ability to map development of cells and identify changes in specific subpopulations due to diseases at a very high throughput. This review looks at recent scRNA-seq studies of various aspects of the cardiovascular system and discusses their potential value to our understanding of the cardiovascular system and pathology.
Collapse
Affiliation(s)
- Farhan Chaudhry
- Department of Emergency Medicine and Integrative Biosciences Center, Wayne State University, Detroit, MI, United States
| | - Jenna Isherwood
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Tejeshwar Bawa
- Department of Emergency Medicine and Integrative Biosciences Center, Wayne State University, Detroit, MI, United States
| | - Dhruvil Patel
- Department of Emergency Medicine and Integrative Biosciences Center, Wayne State University, Detroit, MI, United States
| | - Katherine Gurdziel
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - David E Lanfear
- Heart and Vascular Institute, Henry Ford Health System, Detroit, MI, United States
| | - Douglas M Ruden
- Department of Obstetrics and Gynecology, Center for Urban Responses to Environmental Stressors, Wayne State University, Detroit, MI, United States
| | - Phillip D Levy
- Department of Emergency Medicine and Integrative Biosciences Center, Wayne State University, Detroit, MI, United States
| |
Collapse
|
30
|
Yap L, Tay HG, Nguyen MT, Tjin MS, Tryggvason K. Laminins in Cellular Differentiation. Trends Cell Biol 2019; 29:987-1000. [DOI: 10.1016/j.tcb.2019.10.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 12/21/2022]
|
31
|
Characterization of dystroglycan binding in adhesion of human induced pluripotent stem cells to laminin-511 E8 fragment. Sci Rep 2019; 9:13037. [PMID: 31506597 PMCID: PMC6737067 DOI: 10.1038/s41598-019-49669-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) grow indefinitely in culture and have the potential to regenerate various tissues. In the development of cell culture systems, a fragment of laminin-511 (LM511-E8) was found to improve the proliferation of stem cells. The adhesion of undifferentiated cells to LM511-E8 is mainly mediated through integrin α6β1. However, the involvement of non-integrin receptors remains unknown in stem cell culture using LM511-E8. Here, we show that dystroglycan (DG) is strongly expressed in hiPSCs. The fully glycosylated DG is functionally active for laminin binding, and although it has been suggested that LM511-E8 lacks DG binding sites, the fragment does weakly bind to DG. We further identified the DG binding sequence in LM511-E8, using synthetic peptides, of which, hE8A5-20 (human laminin α5 2688–2699: KTLPQLLAKLSI) derived from the laminin coiled-coil domain, exhibited DG binding affinity and cell adhesion activity. Deletion and mutation studies show that LLAKLSI is the active core sequence of hE8A5-20, and that, K2696 is a critical amino acid for DG binding. We further demonstrated that hiPSCs adhere to hE8A5-20-conjugated chitosan matrices. The amino acid sequence of DG binding peptides would be useful to design substrata for culture system of undifferentiated and differentiated stem cells.
Collapse
|
32
|
Leitolis A, Robert AW, Pereira IT, Correa A, Stimamiglio MA. Cardiomyogenesis Modeling Using Pluripotent Stem Cells: The Role of Microenvironmental Signaling. Front Cell Dev Biol 2019; 7:164. [PMID: 31448277 PMCID: PMC6695570 DOI: 10.3389/fcell.2019.00164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
Pluripotent stem cells (PSC) can be used as a model to study cardiomyogenic differentiation. In vitro modeling can reproduce cardiac development through modulation of some key signaling pathways. Therefore, many studies make use of this strategy to better understand cardiomyogenesis complexity and to determine possible ways to modulate cell fate. However, challenges remain regarding efficiency of differentiation protocols, cardiomyocyte (CM) maturation and therapeutic applications. Considering that the extracellular milieu is crucial for cellular behavior control, cardiac niche studies, such as those identifying secreted molecules from adult or neonatal tissues, allow the identification of extracellular factors that may contribute to CM differentiation and maturation. This review will focus on cardiomyogenesis modeling using PSC and the elements involved in cardiac microenvironmental signaling (the secretome - extracellular vesicles, extracellular matrix and soluble factors) that may contribute to CM specification and maturation.
Collapse
Affiliation(s)
- Amanda Leitolis
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| | - Anny W Robert
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| | - Isabela T Pereira
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| | - Alejandro Correa
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| | - Marco A Stimamiglio
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| |
Collapse
|