1
|
Shree T, Czerwinski D, Haebe S, Sathe A, Grimes S, Martin B, Ozawa M, Hoppe R, Ji H, Levy R. A Phase I Clinical Trial Adding OX40 Agonism to In Situ Therapeutic Cancer Vaccination in Patients with Low-Grade B-cell Lymphoma Highlights Challenges in Translation from Mouse to Human Studies. Clin Cancer Res 2025; 31:868-880. [PMID: 39745391 PMCID: PMC11922159 DOI: 10.1158/1078-0432.ccr-24-2770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/25/2024] [Accepted: 12/30/2024] [Indexed: 03/04/2025]
Abstract
PURPOSE Activating T-cell costimulatory receptors is a promising approach for cancer immunotherapy. In preclinical work, adding an OX40 agonist to in situ vaccination with SD101, a TLR9 agonist, was curative in a mouse model of lymphoma. We sought to test this combination in a phase I clinical trial for patients with low-grade B-cell lymphoma. PATIENTS AND METHODS We treated 14 patients with low-dose radiation, intratumoral SD101, and intratumoral and intravenous BMS986178, an agonistic anti-OX40 antibody. The primary outcome was safety. Secondary outcomes included overall response rate and progression-free survival. RESULTS Adverse events were consistent with prior experience with low-dose radiation and SD101. No synergistic or dose-limiting toxicities were observed. One patient had a partial response, and nine patients had stable disease, a result inferior to our experience with TLR9 agonism and low-dose radiation alone. Flow cytometry and single-cell RNA sequencing of serial tumor biopsies revealed that T and NK cells were activated after treatment. However, high baseline OX40 expression in T follicular helper and T regulatory type 1 cells, as well as high posttreatment soluble OX40, shed from these T cells upon activation, associated with progression-free survival of less than 6 months. CONCLUSIONS Clinical results of T-cell costimulatory receptor agonism have now repeatedly been inferior to the motivating preclinical results. Our study highlights potential barriers to clinical translation, particularly differences in preclinical and clinical reagents and the complex biology of these coreceptors in heterogeneous T cell subpopulations, some of which may antagonize immunotherapy.
Collapse
Affiliation(s)
- Tanaya Shree
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health and Sciences University, Portland, Oregon
| | - Debra Czerwinski
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Sarah Haebe
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Medical Department III, LMU University Hospital, LMU Munich, Munich, Germany
| | - Anuja Sathe
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Sue Grimes
- Stanford Genome Technology Center, Stanford University, Stanford, California
| | - Brock Martin
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Michael Ozawa
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Richard Hoppe
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Hanlee Ji
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Stanford Genome Technology Center, Stanford University, Stanford, California
| | - Ronald Levy
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
2
|
Leau R, Duplouye P, Huchet V, Nerrière-Daguin V, Martinet B, Néel M, Morin M, Danger R, Braudeau C, Josien R, Blancho G, Haspot F. Correct stimulation of CD28H arms NK cells against tumor cells. Eur J Immunol 2024; 54:e2350901. [PMID: 39101623 DOI: 10.1002/eji.202350901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Tumor evasion has recently been associated with a novel member of the B7 family, HERV-H LTR-associating 2 (HHLA2), which is mostly overexpressed in PDL-1neg tumors. HHLA2 can either induce a costimulation signal when bound to CD28H or inhibit it by binding to KIR3DL3 on T- and NK cells. Given the broad distribution of CD28H expression on NK cells and its role, we compared two monoclonal antibodies targeting this novel NK-cell engager in this study. We show that targeting CD28H at a specific epitope not only strongly activates Ca2+ flux but also results in NK-cell activation. CD28H-activated NK cells further display increased cytotoxic activity against hematopoietic cell lines and bypass HHLA2 and HLA-E inhibitory signals. Additionally, scRNA-seq analysis of clear cell renal cancer cells revealed that HHLA2+ clear cell renal cancer cell tumors were infiltrated with CD28H+ NK cells, which could be targeted by finely chosen anti-CD28H Abs.
Collapse
Affiliation(s)
- Raphaëlle Leau
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Pierre Duplouye
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Virginie Huchet
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Véronique Nerrière-Daguin
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Bernard Martinet
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Mélanie Néel
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Martin Morin
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Richard Danger
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Cécile Braudeau
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
- CHU Nantes, Laboratoire d'Immunologie, CIMNA, Nantes, France
| | - Régis Josien
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
- CHU Nantes, Laboratoire d'Immunologie, CIMNA, Nantes, France
| | - Gilles Blancho
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Fabienne Haspot
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| |
Collapse
|
3
|
Jiang Y, Chen X, Ye X, Wen C, Xu T, Yu C, Ning W, Wang G, Xiang X, Liu X, Wang Y, Chen Y, Liu X, Shi C, Liu C, Yuan Q, Chen Y, Zhang T, Luo W, Xia N. A Dual-domain Engineered Antibody for Efficient HBV Suppression and Immune Responses Restoration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305316. [PMID: 38342604 PMCID: PMC11022716 DOI: 10.1002/advs.202305316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/22/2023] [Indexed: 02/13/2024]
Abstract
Chronic hepatitis B (CHB) remains a major public health concern because of the inefficiency of currently approved therapies in clearing the hepatitis B surface antigen (HBsAg). Antibody-based regimens have demonstrated potency regarding virus neutralization and HBsAg clearance. However, high dosages or frequent dosing are required for virologic control. In this study, a dual-domain-engineered anti-hepatitis B virus (HBV) therapeutic antibody 73-DY is developed that exhibits significantly improved efficacy regarding both serum and intrahepatic viral clearance. In HBV-tolerant mice, administration of a single dose of 73-DY at 2 mg kg-1 is sufficient to reduce serum HBsAg by over 3 log10 IU mL-1 and suppress HBsAg to < 100 IU mL-1 for two weeks, demonstrating a dose-lowering advantage of at least tenfold. Furthermore, 10 mg kg-1 of 73-DY sustainably suppressed serum viral levels to undetectable levels for ≈ 2 weeks. Molecular analyses indicate that the improved efficacy exhibited by 73-DY is attributable to the synergy between fragment antigen binding (Fab) and fragment crystallizable (Fc) engineering, which conferred sustained viral suppression and robust viral eradication, respectively. Long-term immunotherapy with reverse chimeric 73-DY facilitated the restoration of anti-HBV immune responses. This study provides a foundation for the development of next-generation antibody-based CHB therapies.
Collapse
Affiliation(s)
- Yichao Jiang
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthSchool of Life SciencesXiamen UniversityXiamen361102P.R. China
| | - Xiaoqing Chen
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthSchool of Life SciencesXiamen UniversityXiamen361102P.R. China
| | - Xinya Ye
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthSchool of Life SciencesXiamen UniversityXiamen361102P.R. China
| | - Can Wen
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthSchool of Life SciencesXiamen UniversityXiamen361102P.R. China
| | - Tao Xu
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthSchool of Life SciencesXiamen UniversityXiamen361102P.R. China
| | - Chao Yu
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthSchool of Life SciencesXiamen UniversityXiamen361102P.R. China
| | - Wenjing Ning
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthSchool of Life SciencesXiamen UniversityXiamen361102P.R. China
| | - Guosong Wang
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthSchool of Life SciencesXiamen UniversityXiamen361102P.R. China
| | - Xinchu Xiang
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthSchool of Life SciencesXiamen UniversityXiamen361102P.R. China
| | - Xiaomin Liu
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsNational Institute of Diagnostics and Vaccine Development in Infectious DiseasesNational Innovation Platform for Industry‐Education Integration in Vaccine ResearchSchool of Public HealthSchool of Life SciencesXiamen UniversityXiamen361102P.R. China
| | - Yalin Wang
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthSchool of Life SciencesXiamen UniversityXiamen361102P.R. China
| | - Yuanzhi Chen
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthSchool of Life SciencesXiamen UniversityXiamen361102P.R. China
| | - Xue Liu
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthSchool of Life SciencesXiamen UniversityXiamen361102P.R. China
| | - Changrong Shi
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsNational Institute of Diagnostics and Vaccine Development in Infectious DiseasesNational Innovation Platform for Industry‐Education Integration in Vaccine ResearchSchool of Public HealthSchool of Life SciencesXiamen UniversityXiamen361102P.R. China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsNational Institute of Diagnostics and Vaccine Development in Infectious DiseasesNational Innovation Platform for Industry‐Education Integration in Vaccine ResearchSchool of Public HealthSchool of Life SciencesXiamen UniversityXiamen361102P.R. China
| | - Quan Yuan
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthSchool of Life SciencesXiamen UniversityXiamen361102P.R. China
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical SciencesXiamen UniversityXiamen361102P.R. China
| | - Yixin Chen
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthSchool of Life SciencesXiamen UniversityXiamen361102P.R. China
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical SciencesXiamen UniversityXiamen361102P.R. China
| | - Tianying Zhang
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthSchool of Life SciencesXiamen UniversityXiamen361102P.R. China
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical SciencesXiamen UniversityXiamen361102P.R. China
| | - Wenxin Luo
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthSchool of Life SciencesXiamen UniversityXiamen361102P.R. China
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical SciencesXiamen UniversityXiamen361102P.R. China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthSchool of Life SciencesXiamen UniversityXiamen361102P.R. China
- State Key Laboratory of Vaccines for Infectious DiseasesCenter for Molecular Imaging and Translational MedicineXiang An Biomedicine LaboratorySchool of Public HealthXiamen UniversityXiamen361102P.R. China
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical SciencesXiamen UniversityXiamen361102P.R. China
| |
Collapse
|
4
|
Jiang B, Zhang T, Deng M, Jin W, Hong Y, Chen X, Chen X, Wang J, Hou H, Gao Y, Gong W, Wang X, Li H, Zhou X, Feng Y, Zhang B, Jiang B, Lu X, Zhang L, Li Y, Song W, Sun H, Wang Z, Song X, Shen Z, Liu X, Li K, Wang L, Liu Y. BGB-A445, a novel non-ligand-blocking agonistic anti-OX40 antibody, exhibits superior immune activation and antitumor effects in preclinical models. Front Med 2023; 17:1170-1185. [PMID: 37747585 DOI: 10.1007/s11684-023-0996-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/06/2023] [Indexed: 09/26/2023]
Abstract
OX40 is a costimulatory receptor that is expressed primarily on activated CD4+, CD8+, and regulatory T cells. The ligation of OX40 to its sole ligand OX40L potentiates T cell expansion, differentiation, and activation and also promotes dendritic cells to mature to enhance their cytokine production. Therefore, the use of agonistic anti-OX40 antibodies for cancer immunotherapy has gained great interest. However, most of the agonistic anti-OX40 antibodies in the clinic are OX40L-competitive and show limited efficacy. Here, we discovered that BGB-A445, a non-ligand-competitive agonistic anti-OX40 antibody currently under clinical investigation, induced optimal T cell activation without impairing dendritic cell function. In addition, BGB-A445 dose-dependently and significantly depleted regulatory T cells in vitro and in vivo via antibody-dependent cellular cytotoxicity. In the MC38 syngeneic model established in humanized OX40 knock-in mice, BGB-A445 demonstrated robust and dose-dependent antitumor efficacy, whereas the ligand-competitive anti-OX40 antibody showed antitumor efficacy characterized by a hook effect. Furthermore, BGB-A445 demonstrated a strong combination antitumor effect with an anti-PD-1 antibody. Taken together, our findings show that BGB-A445, which does not block OX40-OX40L interaction in contrast to clinical-stage anti-OX40 antibodies, shows superior immune-stimulating effects and antitumor efficacy and thus warrants further clinical investigation.
Collapse
Affiliation(s)
- Beibei Jiang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Tong Zhang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Minjuan Deng
- Department of Discovery Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Wei Jin
- Department of Discovery Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Yuan Hong
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Xiaotong Chen
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Xin Chen
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Jing Wang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Hongjia Hou
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Yajuan Gao
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Wenfeng Gong
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Xing Wang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Haiying Li
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Xiaosui Zhou
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Yingcai Feng
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Bo Zhang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Bin Jiang
- Department of Discovery Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Xueping Lu
- Department of Discovery Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Lijie Zhang
- Department of Discovery Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Yang Li
- Department of Discovery Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Weiwei Song
- Department of Discovery Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Hanzi Sun
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Zuobai Wang
- Department of Clinic Development, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Xiaomin Song
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Zhirong Shen
- Department of Discovery Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Xuesong Liu
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Kang Li
- Department of Biologics, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Lai Wang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Ye Liu
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China.
| |
Collapse
|
5
|
Suzuki K, Tajima M, Tokumaru Y, Oshiro Y, Nagata S, Kamada H, Kihara M, Nakano K, Honjo T, Ohta A. Anti-PD-1 antibodies recognizing the membrane-proximal region are PD-1 agonists that can down-regulate inflammatory diseases. Sci Immunol 2023; 8:eadd4947. [PMID: 36638191 DOI: 10.1126/sciimmunol.add4947] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The PD-1 receptor triggers a negative immunoregulatory mechanism that prevents overactivation of immune cells and subsequent inflammatory diseases. Because of its biological significance, PD-1 has been a drug target for modulating immune responses. Immunoenhancing anti-PD-1 blocking antibodies have become a widely used cancer treatment; however, little is known about the required characteristics for anti-PD-1 antibodies to be capable of stimulating immunosuppressive activity. Here, we show that PD-1 agonists exist in the group of anti-PD-1 antibodies recognizing the membrane-proximal extracellular region in sharp contrast to the binding of the membrane-distal region by blocking antibodies. This trend was consistent in an analysis of 81 anti-human PD-1 monoclonal antibodies. Because PD-1 agonist antibodies trigger immunosuppressive signaling by cross-linking PD-1 molecules, Fc engineering to enhance FcγRIIB binding of PD-1 agonist antibodies notably improved human T cell inhibition. A PD-1 agonist antibody suppressed inflammation in murine disease models, indicating its clinical potential for treatment of various inflammatory disorders, including autoimmune diseases.
Collapse
Affiliation(s)
- Kensuke Suzuki
- Department of Immunology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan.,Pharmaceutical R&D Division, Meiji Seika Pharma Co. Ltd., Tokyo 104-8002, Japan
| | - Masaki Tajima
- Department of Immunology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan.,Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yosuke Tokumaru
- Department of Immunology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan.,Pharmaceutical R&D Division, Meiji Seika Pharma Co. Ltd., Tokyo 104-8002, Japan
| | - Yuya Oshiro
- Department of Immunology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan.,Pharmaceutical R&D Division, Meiji Seika Pharma Co. Ltd., Tokyo 104-8002, Japan
| | - Satoshi Nagata
- Laboratory of Antibody Design, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Ibaraki 567-0085, Japan
| | - Haruhiko Kamada
- Laboratory of Antibody Design, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Ibaraki 567-0085, Japan
| | - Miho Kihara
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Kohei Nakano
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Akio Ohta
- Department of Immunology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan
| |
Collapse
|
6
|
Jhajj HS, Lwo TS, Yao EL, Tessier PM. Unlocking the potential of agonist antibodies for treating cancer using antibody engineering. Trends Mol Med 2023; 29:48-60. [PMID: 36344331 PMCID: PMC9742327 DOI: 10.1016/j.molmed.2022.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Agonist antibodies that target immune checkpoints, such as those in the tumor necrosis factor receptor (TNFR) superfamily, are an important class of emerging therapeutics due to their ability to regulate immune cell activity, especially for treating cancer. Despite their potential, to date, they have shown limited clinical utility and further antibody optimization is urgently needed to improve their therapeutic potential. Here, we discuss key antibody engineering approaches for improving the activity of antibody agonists by optimizing their valency, specificity for different receptors (e.g., bispecific antibodies) and epitopes (e.g., biepitopic or biparatopic antibodies), and Fc affinity for Fcγ receptors (FcγRs). These powerful approaches are being used to develop the next generation of cancer immunotherapeutics with improved efficacy and safety.
Collapse
Affiliation(s)
- Harkamal S Jhajj
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Timon S Lwo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily L Yao
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M Tessier
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
7
|
Zhang J, Jiang X, Gao H, Zhang F, Zhang X, Zhou A, Xu T, Cai H. Structural Basis of a Novel Agonistic Anti-OX40 Antibody. Biomolecules 2022; 12:biom12091209. [PMID: 36139048 PMCID: PMC9496217 DOI: 10.3390/biom12091209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022] Open
Abstract
Agonistic antibodies targeting co-stimulating receptor OX40 on T cells are considered as important as (or complementary to) the immune checkpoint blockers in cancer treatment. However, none of these agonistic antibodies have reached the late stage of clinical development partially due to the lack of intrinsic potency with the correlation between binding epitope and activity of the antibody not well understood. Here, we identified a novel anti-OX40 agonistic antibody DF004, which stimulated the proliferation of human CD4+ T cells in vitro and inhibited tumor growth in a mouse model. Our crystallography structural studies showed that DF004 binds to the CRD2 region of OX40 while RG7888, an OX40 agonist antibody developed by Roche, binds to CRD3 of OX40 to the diametrically opposite position of DF004. This suggests that the agonistic activities of the antibodies are not necessarily epitope dependent. As their agonistic activities critically depend on clustering or cross-linking, our structural modeling indicates that the agonistic activity requires the optimal positioning of three Fc receptor/antibody/OX40 complexes on the cell membrane to facilitate the formation of one intracellular hexameric TRAF complex for downstream signal transduction, which is relatively inefficient. This may explain the lack of sufficient potency of these OX40 antibodies in a therapeutic setting and sheds light on the development of cross-linking-independent agonistic antibodies.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Xiaoyong Jiang
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Han Gao
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Fei Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Xin Zhang
- Dingfu Biotarget Co., Ltd., Suzhou 215126, China
| | - Aiwu Zhou
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
- Correspondence: (A.Z.); (T.X.); (H.C.)
| | - Ting Xu
- Dingfu Biotarget Co., Ltd., Suzhou 215126, China
- Correspondence: (A.Z.); (T.X.); (H.C.)
| | - Haiyan Cai
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
- Correspondence: (A.Z.); (T.X.); (H.C.)
| |
Collapse
|
8
|
Liu L, Wu Y, Ye K, Cai M, Zhuang G, Wang J. Antibody-Targeted TNFRSF Activation for Cancer Immunotherapy: The Role of FcγRIIB Cross-Linking. Front Pharmacol 2022; 13:924197. [PMID: 35865955 PMCID: PMC9295861 DOI: 10.3389/fphar.2022.924197] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Co-stimulation signaling in various types of immune cells modulates immune responses in physiology and disease. Tumor necrosis factor receptor superfamily (TNFRSF) members such as CD40, OX40 and CD137/4-1BB are expressed on myeloid cells and/or lymphocytes, and they regulate antigen presentation and adaptive immune activities. TNFRSF agonistic antibodies have been evaluated extensively in preclinical models, and the robust antitumor immune responses and efficacy have encouraged continued clinical investigations for the last two decades. However, balancing the toxicities and efficacy of TNFRSF agonistic antibodies remains a major challenge in the clinical development. Insights into the co-stimulation signaling biology, antibody structural roles and their functionality in immuno-oncology are guiding new advancement of this field. Leveraging the interactions between antibodies and the inhibitory Fc receptor FcγRIIB to optimize co-stimulation agonistic activities dependent on FcγRIIB cross-linking selectively in tumor microenvironment represents the current frontier, which also includes cross-linking through tumor antigen binding with bispecific antibodies. In this review, we will summarize the immunological roles of TNFRSF members and current clinical studies of TNFRSF agonistic antibodies. We will also cover the contribution of different IgG structure domains to these agonistic activities, with a focus on the role of FcγRIIB in TNFRSF cross-linking and clustering bridged by agonistic antibodies. We will review and discuss several Fc-engineering approaches to optimize Fc binding ability to FcγRIIB in the context of proper Fab and the epitope, including a cross-linking antibody (xLinkAb) model and its application in developing TNFRSF agonistic antibodies with improved efficacy and safety for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Yi Wu
- Lyvgen Biopharma, Shanghai, China
| | - Kaiyan Ye
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meichun Cai
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | |
Collapse
|
9
|
Heckel F, Turaj AH, Fisher H, Chan HTC, Marshall MJE, Dadas O, Penfold CA, Inzhelevskaya T, Mockridge CI, Alvarado D, Tews I, Keler T, Beers SA, Cragg MS, Lim SH. Agonistic CD27 antibody potency is determined by epitope-dependent receptor clustering augmented through Fc-engineering. Commun Biol 2022; 5:229. [PMID: 35288635 PMCID: PMC8921514 DOI: 10.1038/s42003-022-03182-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Agonistic CD27 monoclonal antibodies (mAb) have demonstrated impressive anti-tumour efficacy in multiple preclinical models but modest clinical responses. This might reflect current reagents delivering suboptimal CD27 agonism. Here, using a novel panel of CD27 mAb including a clinical candidate, we investigate the determinants of CD27 mAb agonism. Epitope mapping and in silico docking analysis show that mAb binding to membrane-distal and external-facing residues are stronger agonists. However, poor epitope-dependent agonism could partially be overcome by Fc-engineering, using mAb isotypes that promote receptor clustering, such as human immunoglobulin G1 (hIgG1, h1) with enhanced affinity to Fc gamma receptor (FcγR) IIb, or hIgG2 (h2). This study provides the critical knowledge required for the development of agonistic CD27 mAb that are potentially more clinically efficacious.
Collapse
Affiliation(s)
- Franziska Heckel
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Cancer Research UK Research Centre, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Anna H Turaj
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Cancer Research UK Research Centre, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Hayden Fisher
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Cancer Research UK Research Centre, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
- Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - H T Claude Chan
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Cancer Research UK Research Centre, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Michael J E Marshall
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Cancer Research UK Research Centre, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Osman Dadas
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Cancer Research UK Research Centre, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Christine A Penfold
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Cancer Research UK Research Centre, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Tatyana Inzhelevskaya
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Cancer Research UK Research Centre, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - C Ian Mockridge
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Cancer Research UK Research Centre, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | | | - Ivo Tews
- Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
- Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Tibor Keler
- Celldex Therapeutics, Inc., Hampton, NJ, 08827, USA
| | - Stephen A Beers
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Cancer Research UK Research Centre, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Mark S Cragg
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Cancer Research UK Research Centre, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Sean H Lim
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
- Cancer Research UK Research Centre, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| |
Collapse
|
10
|
Schardt JS, Jhajj HS, O’Meara RL, Lwo TS, Smith MD, Tessier PM. Agonist antibody discovery: Experimental, computational, and rational engineering approaches. Drug Discov Today 2022; 27:31-48. [PMID: 34571277 PMCID: PMC8714685 DOI: 10.1016/j.drudis.2021.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/19/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023]
Abstract
Agonist antibodies that activate cellular signaling have emerged as promising therapeutics for treating myriad pathologies. Unfortunately, the discovery of rare antibodies with the desired agonist functions is a major bottleneck during drug development. Nevertheless, there has been important recent progress in discovering and optimizing agonist antibodies against a variety of therapeutic targets that are activated by diverse signaling mechanisms. Herein, we review emerging high-throughput experimental and computational methods for agonist antibody discovery as well as rational molecular engineering methods for optimizing their agonist activity.
Collapse
Affiliation(s)
- John S. Schardt
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Harkamal S. Jhajj
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryen L. O’Meara
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Timon S. Lwo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew D. Smith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M. Tessier
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Kucka K, Wajant H. Receptor Oligomerization and Its Relevance for Signaling by Receptors of the Tumor Necrosis Factor Receptor Superfamily. Front Cell Dev Biol 2021; 8:615141. [PMID: 33644033 PMCID: PMC7905041 DOI: 10.3389/fcell.2020.615141] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/28/2020] [Indexed: 12/20/2022] Open
Abstract
With the exception of a few signaling incompetent decoy receptors, the receptors of the tumor necrosis factor receptor superfamily (TNFRSF) are signaling competent and engage in signaling pathways resulting in inflammation, proliferation, differentiation, and cell migration and also in cell death induction. TNFRSF receptors (TNFRs) become activated by ligands of the TNF superfamily (TNFSF). TNFSF ligands (TNFLs) occur as trimeric type II transmembrane proteins but often also as soluble ligand trimers released from the membrane-bound form by proteolysis. The signaling competent TNFRs are efficiently activated by the membrane-bound TNFLs. The latter recruit three TNFR molecules, but there is growing evidence that this is not sufficient to trigger all aspects of TNFR signaling; rather, the formed trimeric TNFL–TNFR complexes have to cluster secondarily in the cell-to-cell contact zone for full TNFR activation. With respect to their response to soluble ligand trimers, the signaling competent TNFRs can be subdivided into two groups. TNFRs of one group, designated as category I TNFRs, are robustly activated by soluble ligand trimers. The receptors of a second group (category II TNFRs), however, failed to become properly activated by soluble ligand trimers despite high affinity binding. The limited responsiveness of category II TNFRs to soluble TNFLs can be overcome by physical linkage of two or more soluble ligand trimers or, alternatively, by anchoring the soluble ligand molecules to the cell surface or extracellular matrix. This suggests that category II TNFRs have a limited ability to promote clustering of trimeric TNFL–TNFR complexes outside the context of cell–cell contacts. In this review, we will focus on three aspects on the relevance of receptor oligomerization for TNFR signaling: (i) the structural factors which promote clustering of free and liganded TNFRs, (ii) the signaling pathway specificity of the receptor oligomerization requirement, and (iii) the consequences for the design and development of TNFR agonists.
Collapse
Affiliation(s)
- Kirstin Kucka
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Decreased immune response in monkeys administered a human T-effector cell agonist (OX40) antibody. Toxicol Appl Pharmacol 2020; 409:115285. [PMID: 33069749 DOI: 10.1016/j.taap.2020.115285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/25/2020] [Accepted: 10/12/2020] [Indexed: 11/21/2022]
Abstract
The OX40 receptor plays a crucial co-stimulatory role in T effector cell survival, expansion, cytokine production, and cytotoxicity to tumor cells; therefore, OX40 agonists are being evaluated as anti-cancer immunotherapies, especially in combination with checkpoint inhibitors. To support clinical development of BMS-986178 (an OX40 agonist antibody), two repeat-dose toxicity studies were conducted in cynomolgus monkeys. In the first study, BMS-986178 was administered intravenously (IV) once weekly for one month at doses from 30 to 120 mg/kg. BMS-986178 was well tolerated; surprisingly, immune function was suppressed rather than increased based on pharmacodynamic (PD) and flow cytometry readouts (e.g. T-cell dependent antibody response [TDAR]). To determine whether immune suppression was due to a bi-phasic response, a follow-up study was conducted at lower doses (1 and 10 mg/kg). Although receptor engagement was confirmed, immune function was still suppressed at both doses. In addition, treatment-emergent anti-drug antibodies (ADAs) at 1 mg/kg resulted in hypersensitivity reactions and reduced BMS-986178 exposure after repeated dosing, which precluded a full PD assessment at this dose. In conclusion, BMS-986178 was clinically well-tolerated by monkeys at weekly IV doses from 10 to 120 mg/kg (AUC[0-168] ≤ 712,000 μg●h/mL). However, despite target engagement, PD assays and other immune endpoints demonstrated immune suppression, not stimulation. Due to the inverted immune response at higher doses and the onset of ADAs, additional repeat-dose toxicity studies of BMS-986178 in monkeys (that would typically be required to support Phase 3 clinical trials and registration) would not add value for human safety assessment.
Collapse
|
13
|
Griffiths J, Hussain K, Smith HL, Sanders T, Cox KL, Semmrich M, Mårtensson L, Kim J, Inzhelevskaya T, Penfold CA, Tutt AL, Mockridge CI, Chan HC, English V, French RF, Teige I, Al-Shamkhani A, Glennie MJ, Frendeus BL, Willoughby JE, Cragg MS. Domain binding and isotype dictate the activity of anti-human OX40 antibodies. J Immunother Cancer 2020; 8:e001557. [PMID: 33428585 PMCID: PMC7754644 DOI: 10.1136/jitc-2020-001557] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Previous data suggests that anti-OX40 mAb can elicit anti-tumor effects in mice through deletion of Tregs. However, OX40 also has powerful costimulatory effects on T cells which could evoke therapeutic responses. Human trials with anti-OX40 antibodies have shown that these entities are well tolerated but to date have delivered disappointing clinical responses, indicating that the rules for the optimal use of anti-human OX40 (hOX40) antibodies is not yet fully understood. Changes to timing and dosages may lead to improved outcomes; however, here we focus on addressing the role of agonism versus depleting activity in determining therapeutic outcomes. We investigated a novel panel of anti-hOX40 mAb to understand how these reagents and mechanisms may be optimized for therapeutic benefit. METHODS This study examines the binding activity and in vitro activity of a panel of anti-hOX40 antibodies. They were further evaluated in several in vivo models to address how isotype and epitope determine mechanism of action and efficacy of anti-hOX40 mAb. RESULTS Binding analysis revealed the antibodies to be high affinity, with epitopes spanning all four cysteine-rich domains of the OX40 extracellular domain. In vivo analysis showed that their activities relate directly to two key properties: (1) isotype-with mIgG1 mAb evoking receptor agonism and CD8+ T-cell expansion and mIgG2a mAb evoking deletion of Treg and (2) epitope-with membrane-proximal mAb delivering more powerful agonism. Intriguingly, both isotypes acted therapeutically in tumor models by engaging these different mechanisms. CONCLUSION These findings highlight the significant impact of isotype and epitope on the modulation of anti-hOX40 mAb therapy, and indicate that CD8+ T-cell expansion or Treg depletion might be preferred according to the composition of different tumors. As many of the current clinical trials using OX40 antibodies are now using combination therapies, this understanding of how to manipulate therapeutic activity will be vital in directing new combinations that are more likely to improve efficacy and clinical outcomes.
Collapse
Affiliation(s)
- Jordana Griffiths
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Khiyam Hussain
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Hannah L Smith
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Theodore Sanders
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Kerry L Cox
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Monika Semmrich
- Preclinical Research, BioInvent International AB, Lund, Sweden
| | | | - Jinny Kim
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Tatyana Inzhelevskaya
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Chris A Penfold
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Alison L Tutt
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - C Ian Mockridge
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ht Claude Chan
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Vikki English
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ruth F French
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ingrid Teige
- Preclinical Research, BioInvent International AB, Lund, Sweden
| | - Aymen Al-Shamkhani
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Martin J Glennie
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Jane E Willoughby
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
14
|
Li DK, Wang W. Characteristics and clinical trial results of agonistic anti-CD40 antibodies in the treatment of malignancies. Oncol Lett 2020; 20:176. [PMID: 32934743 PMCID: PMC7471753 DOI: 10.3892/ol.2020.12037] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/19/2020] [Indexed: 12/20/2022] Open
Abstract
Cluster of differentiation 40 (CD40) mediates many immune activities. Preclinical studies have shown that activation of CD40 can evoke massive antineoplastic effects in several tumour models in vivo, providing a rationale for using CD40 agonists in cancer immunotherapy. To date, several potential agonistic antibodies that target CD40 have been investigated in clinical trials. Early clinical trials have shown that the adverse events associated with agonists of CD40 thus far have been largely transient and clinically controllable, including storms of cytokine release, hepatotoxicity and thromboembolic events. An antitumour effect of targeting CD40 for monotherapy or combination therapy has been observed in some tumours. However, these antitumour effects have been moderate. The present review aimed to provide updated details of the clinical results of these agonists, and offer information to further investigate the strategies of combining CD40 activation with chemotherapy, radiotherapy, targeted therapy and immunomodulators. Furthermore, biomarkers should be identified for monitoring and predicting responses and informing resistance mechanisms.
Collapse
Affiliation(s)
- Da-Ke Li
- Department of Clinical Science, Shanghai R&D Center, State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co. Ltd., Shanghai 201318, P.R. China
| | - Wen Wang
- Department of Clinical Science, Shanghai R&D Center, State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co. Ltd., Shanghai 201318, P.R. China
| |
Collapse
|
15
|
Sové RJ, Jafarnejad M, Zhao C, Wang H, Ma H, Popel AS. QSP-IO: A Quantitative Systems Pharmacology Toolbox for Mechanistic Multiscale Modeling for Immuno-Oncology Applications. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2020; 9:484-497. [PMID: 32618119 PMCID: PMC7499194 DOI: 10.1002/psp4.12546] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022]
Abstract
Immunotherapy has shown great potential in the treatment of cancer; however, only a fraction of patients respond to treatment, and many experience autoimmune‐related side effects. The pharmaceutical industry has relied on mathematical models to study the behavior of candidate drugs and more recently, complex, whole‐body, quantitative systems pharmacology (QSP) models have become increasingly popular for discovery and development. QSP modeling has the potential to discover novel predictive biomarkers as well as test the efficacy of treatment plans and combination therapies through virtual clinical trials. In this work, we present a QSP modeling platform for immuno‐oncology (IO) that incorporates detailed mechanisms for important immune interactions. This modular platform allows for the construction of QSP models of IO with varying degrees of complexity based on the research questions. Finally, we demonstrate the use of the platform through two example applications of immune checkpoint therapy.
Collapse
Affiliation(s)
- Richard J Sové
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mohammad Jafarnejad
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chen Zhao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Huilin Ma
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Deng J, Zhao S, Zhang X, Jia K, Wang H, Zhou C, He Y. OX40 (CD134) and OX40 ligand, important immune checkpoints in cancer. Onco Targets Ther 2019; 12:7347-7353. [PMID: 31564917 PMCID: PMC6735535 DOI: 10.2147/ott.s214211] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/30/2019] [Indexed: 12/26/2022] Open
Abstract
Immunotherapy has shown promising results in cancer treatment. Research shows that most patients might be resistant to these therapies. So, new immune therapies are needed. OX40 (CD134) and OX40 ligand (OX40L), costimulatory molecules, express on different types of immune cells. The interaction between OX40 and OX40L (OX40/OX40L) induces the expansion and proliferation of T cells and decreases the immunosuppression of regulatory T (Treg) cells to enhance the immune response to the specific antigen. For the important role OX40 takes in the process of immunity, many clinical trials are focusing on OX40 to find out whether it may have active effects in clinical cancer treatment. The results of clinical trials are still not enough. So, we reviewed the OX40 and its ligand (OX40L) function in cancer, clinical trials with OX40/OX40L and the correlation between OX40/OX40L and other immune checkpoints to add more ideas to tumor feasible treatment.
Collapse
Affiliation(s)
- Juan Deng
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Medical School, Tongji University, Shanghai 200092, People's Republic of China
| | - Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Medical School, Tongji University, Shanghai 200092, People's Republic of China
| | - Xiaoshen Zhang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Medical School, Tongji University, Shanghai 200092, People's Republic of China
| | - Keyi Jia
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Medical School, Tongji University, Shanghai 200092, People's Republic of China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Medical School, Tongji University, Shanghai 200092, People's Republic of China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| |
Collapse
|
17
|
|